JP6938964B2 - Biological sample pretreatment equipment - Google Patents

Biological sample pretreatment equipment Download PDF

Info

Publication number
JP6938964B2
JP6938964B2 JP2017037207A JP2017037207A JP6938964B2 JP 6938964 B2 JP6938964 B2 JP 6938964B2 JP 2017037207 A JP2017037207 A JP 2017037207A JP 2017037207 A JP2017037207 A JP 2017037207A JP 6938964 B2 JP6938964 B2 JP 6938964B2
Authority
JP
Japan
Prior art keywords
pretreatment
biological sample
instrument
hemoglobin
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017037207A
Other languages
Japanese (ja)
Other versions
JP2018141739A (en
Inventor
真希子 平岡
真希子 平岡
裕 川南
裕 川南
岡本 淳
淳 岡本
圭三 米田
米田  圭三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2017037207A priority Critical patent/JP6938964B2/en
Publication of JP2018141739A publication Critical patent/JP2018141739A/en
Application granted granted Critical
Publication of JP6938964B2 publication Critical patent/JP6938964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、生体試料中のヘモグロビンを定量する際に、測定誤差の原因となるビリルビン等の夾雑物質を除去するための前処理器具に関する。 The present invention relates to a pretreatment device for removing contaminants such as bilirubin that cause measurement errors when quantifying hemoglobin in a biological sample.

糖尿病診断項目の一つである糖化ヘモグロビン(以下、HbA1cと略すことがある)とは、血液中の酸素を運搬する役割を担うヘモグロビン(以下、Hbと略すことがある)に糖(グルコース)が結合した糖化ヘモグロビンの内、ヘモグロビンβ鎖のN末端側に位置するバリン残基が糖化された物質を指し、総ヘモグロビン量に対するHbA1c濃度が過去1〜2ヶ月間の平均血糖値を反映することから、糖尿病の長期的な経過を観察するのに利用されている。 Glycated hemoglobin (hereinafter, may be abbreviated as HbA1c), which is one of the diagnostic items for diabetes, is hemoglobin (hereinafter, sometimes abbreviated as Hb), which is responsible for transporting oxygen in the blood, and sugar (glucose) is added to the hemoglobin. Among the bound glycated hemoglobin, the valine residue located on the N-terminal side of the hemoglobin β chain refers to a glycated substance, and the HbA1c concentration with respect to the total amount of hemoglobin reflects the average blood glucose level over the past 1 to 2 months. , Used to observe the long-term course of diabetes.

近年、医療現場ではPOCTという言葉が注目を集めている。POCTとはPoint Of Care Testingの略であり、医療従事者が被験者の傍らで行う臨床検査のことをいう。POCTは大規模病院の中央検査室等で行う臨床検査とは異なり、その場で瞬時に検査結果が得られることから、糖尿病診断においてもPOCTが広まりつつある。 In recent years, the word POCT has been attracting attention in the medical field. POCT is an abbreviation for Point Of Care Testing, and refers to a clinical test performed by a healthcare professional near a subject. Unlike clinical tests performed in a central laboratory of a large-scale hospital, POCT is becoming widespread in diabetes diagnosis because test results can be obtained instantly on the spot.

HbA1c濃度の測定を目的としたPOCTの中に、イムノクロマト法を利用した技術が提案されている。イムノクロマト法とは毛細管現象を利用した免疫測定法であり、イムノクロマト法を利用した妊娠検査薬やインフルエンザ検査薬などで用いられる分析技術であり世界的に普及している。従来のイムノクロマト法は目視判定(定性評価)が一般的であったが、近年、クロマトリーダー等の分析装置を利用し、検体中に含まれる物質の濃度を定量化する技術が開発されつつある。 In POCT for the purpose of measuring HbA1c concentration, a technique using an immunochromatography method has been proposed. The immunochromatography method is an immunoassay method that utilizes capillarity, and is an analytical technique used in pregnancy test agents and influenza test agents that use the immunochromatography method, and is widely used worldwide. In the conventional immunochromatography method, visual judgment (qualitative evaluation) is common, but in recent years, a technique for quantifying the concentration of a substance contained in a sample by using an analyzer such as a chromatographic reader has been developed.

しかし、血液中には、ビリルビンやアスコルビン酸等の還元物質が存在し、これらの物質の存在により、ヘモグロビンおよび糖化ヘモグロビンの測定値は大きく影響を受け、測定値に誤差を生じることがある。また、ビリルビン等は色素としても作用することから、測定波長によっては誤差の原因となりうる。 However, reducing substances such as bilirubin and ascorbic acid are present in blood, and the presence of these substances greatly affects the measured values of hemoglobin and glycated hemoglobin, which may cause an error in the measured values. In addition, since bilirubin and the like also act as dyes, they may cause an error depending on the measurement wavelength.

ビリルビンの影響を回避する方法として、両性界面活性剤を測定試薬に添加する方法が知られている。例えば、特許文献1には、ビリルビンの影響を回避する目的で第1試薬に両性界面活性剤を添加することが記載されている。また、特許文献2には、酵素反応により生成される過酸化水素をペルオキシターゼ及び被酸化性発色剤で検出する生体成分の測定法において、第一試薬又は第一試薬と第二試薬両方に、両性界面活性剤とフェロシアン化合物を存在させる生体成分の測定方法が記載されている。 As a method of avoiding the influence of bilirubin, a method of adding an amphoteric tenside agent to a measurement reagent is known. For example, Patent Document 1 describes that an amphoteric surfactant is added to the first reagent for the purpose of avoiding the influence of bilirubin. Further, in Patent Document 2, in a method for measuring a biological component in which hydrogen peroxide produced by an enzymatic reaction is detected by a peroxidase and an oxidizable color former, both the first reagent or the first reagent and the second reagent are amphoteric. A method for measuring a biological component in which a surfactant and a ferrocyanide compound are present is described.

特開平7−039394号公報Japanese Unexamined Patent Publication No. 7-039394 特開平7−155196号公報Japanese Unexamined Patent Publication No. 7-155196

本発明は、生体試料中のヘモグロビン濃度を定量的に測定する際に、測定誤差の原因となるビリルビン等の測定阻害物質を選択的、効率的に除去することができる生体試料の前処理器具を提供することを課題とする。 The present invention provides a biological sample pretreatment device that can selectively and efficiently remove measurement-inhibiting substances such as bilirubin that cause measurement errors when quantitatively measuring the hemoglobin concentration in a biological sample. The challenge is to provide.

本発明者は、前記課題を解決するために鋭意検討した結果、特定の構成を有する前処理器具を用いて生体試料を処理することにより、生体試料中の夾雑物質を選択的かつ瞬時に除去できることを見出し、本発明を完成した。 As a result of diligent studies to solve the above problems, the present inventor can selectively and instantly remove contaminants in a biological sample by treating the biological sample with a pretreatment instrument having a specific configuration. The present invention was completed.

すなわち、本発明は以下の構成を有する。
(1) 生体試料中のヘモグロビンを定量的に分析する際に、前記生体試料からビリルビンを除去するための前処理器具であって、
前記器具は前記生体試料の入口と出口を有するハウジングケースと前記ハウジングケース内にビリルビンの除去材料が充填され、
前記除去材料は、粒状活性炭または活性炭素繊維であり、
前記除去材料の全細孔容積が0.25〜1.00cc/gであることを特徴とする前処理器具。
That is, the present invention has the following configuration.
(1) A pretreatment device for removing bilirubin from the biological sample when quantitatively analyzing hemoglobin in the biological sample.
The instrument is a housing case having an inlet and an outlet for the biological sample, and the housing case is filled with a bilirubin removing material.
The removal material is granular activated carbon or activated carbon fiber.
A pretreatment instrument characterized in that the total pore volume of the removal material is 0.25 to 1.00 cc / g.

本発明によれば、特定の構成を有する前処理器具に生体試料を接触させることにより、生体試料中の夾雑物質を選択的、効率的、速やかに除去できるので、夾雑物質の影響を受けずにヘモグロビン濃度を定量的に測定することができる。また、夾雑物質の影響が低減されるので、ヘモグロビンの極大吸収波長域での測定が可能となり、生体試料中のヘモグロビン濃度が低い場合にも高精度に測定することができる。 According to the present invention, by bringing a biological sample into contact with a pretreatment instrument having a specific configuration, contaminants in the biological sample can be selectively, efficiently and promptly removed, so that the biological sample is not affected by the contaminants. Hemoglobin concentration can be measured quantitatively. In addition, since the influence of contaminants is reduced, it is possible to measure hemoglobin in the maximum absorption wavelength range, and it is possible to measure with high accuracy even when the hemoglobin concentration in the biological sample is low.

本発明の前処理器具の実施形態の一例(シリンジフィルタタイプ)を示す概略図。The schematic which shows an example (syringe filter type) of embodiment of the pretreatment instrument of this invention. 本発明の前処理器具の実施形態の他の一例(スポイトタイプ)を示す概略図。The schematic which shows another example (dropper type) of embodiment of the pretreatment instrument of this invention.

本発明において、生体試料は、血液、血しょう、血清、便、尿などのヘモグロビンを含有する体液等を意味するが、それらの中には、ヘモグロビンを定量的に分析、特に吸光光度法を利用して分析(測定)する際に、測定誤差を与える多様な夾雑物質(測定阻害物質)が含まれている。 In the present invention, the biological sample means a body fluid containing hemoglobin such as blood, plasma, serum, stool, and urine, and among them, hemoglobin is quantitatively analyzed, and in particular, the absorptiometry is used. It contains various contaminants (measurement-inhibiting substances) that give a measurement error when analyzing (measuring).

本発明は、生体試料を検出装置(イムノクロマト試験片)等に供する前に予め、生体試料中の夾雑物質を除去するための器具であって、前記器具は前記生体試料の入口と出口を有するハウジングケースと前記ハウジングケース内に夾雑物質の除去材料が充填されたものであることを特徴とする。以下、本発明の前処理器具の詳細について、図1を参照して説明する。 The present invention is an instrument for removing contaminants in a biological sample before subjecting the biological sample to a detection device (immunochromatographic test piece) or the like, and the instrument is a housing having an inlet and an outlet for the biological sample. The case and the housing case are filled with a material for removing contaminants. Hereinafter, the details of the pretreatment instrument of the present invention will be described with reference to FIG.

[実施形態1]
図1は、シリンジフィルタタイプの前処理器具の断面図を示す。図1において、1は、生体試料を導入するための試料入口である。また、2は、夾雑物質の除去材料である。また、3は、処理された生体試料への除去材料自体や除去材料からの溶出物のコンタミを防止するためのメンブレンフィルタである。さらに、4は、処理された生体試料を取り出すための試料出口である。なお、3は目的、用途により有っても無くてもよい。また、コンタミ防止を達成できるものであれば、他のものを代用してもよい。
[Embodiment 1]
FIG. 1 shows a cross-sectional view of a syringe filter type pretreatment instrument. In FIG. 1, reference numeral 1 denotes a sample inlet for introducing a biological sample. In addition, 2 is a material for removing contaminants. Reference numeral 3 denotes a membrane filter for preventing contamination of the removal material itself and the eluate from the removal material on the treated biological sample. Further, reference numeral 4 denotes a sample outlet for taking out the processed biological sample. Note that 3 may or may not be present depending on the purpose and application. Further, other substances may be substituted as long as they can achieve contamination prevention.

試料入口1は、シリンジが液密に接続できるような構造を有していればよく、必要によりメス型ルアロック構造を有していてもよい。一方、試料出口4は、イムノクロマト試験片に直接試料を適量滴下できるように形状等を調節するのが好ましい。イムノクロマト試験片を用いた測定においては、その大きさにもよるが、凡そ100μL〜500μL程度を滴下できる形状とすればよい。 The sample inlet 1 may have a structure that allows the syringe to be connected in a liquid-tight manner, and may have a female luar lock structure if necessary. On the other hand, it is preferable to adjust the shape and the like of the sample outlet 4 so that an appropriate amount of the sample can be directly dropped onto the immunochromatographic test piece. In the measurement using an immunochromatographic test piece, the shape may be such that about 100 μL to 500 μL can be dropped, although it depends on the size.

本発明において、夾雑物質の除去材料は、活性炭、活性炭素繊維(以下、活性炭と活性炭素繊維をあわせて単に活性炭と称することがある)、酸化チタン、ジビニルベンゼン/グリシジルメタクリレート共重合体および疎水性シリカからなる群から選ばれる1種以上であることが好ましい。これらの中で、活性炭が入手のしやすさやコストの面より好ましい。また、活性炭の中でも水処理用のものがより好ましい。 In the present invention, the material for removing contaminants is activated carbon, activated carbon fiber (hereinafter, the activated carbon and activated carbon fiber may be collectively referred to as activated carbon), titanium oxide, divinylbenzene / glycidyl methacrylate copolymer, and hydrophobicity. It is preferably one or more selected from the group consisting of silica. Of these, activated carbon is preferable in terms of availability and cost. Further, among the activated carbons, those for water treatment are more preferable.

本発明において、夾雑物質の除去材料は、繊維、織布、不織布、粒子および粉末からなる群から選ばれる1以上の形態であることが好ましい。前処理器具をコンパクトにできることから、不織布や粒子、粉末の形態であることがより好ましい。ここで、酸化チタンおよび疎水性シリカは粒子状または粉末状のものが入手でき、それ以外は繊維状、不織布状、粒子状または粉末状のいずれも入手および調製可能である。 In the present invention, the material for removing contaminants is preferably in one or more forms selected from the group consisting of fibers, woven fabrics, non-woven fabrics, particles and powders. Since the pretreatment instrument can be made compact, it is more preferable that it is in the form of a non-woven fabric, particles, or powder. Here, titanium oxide and hydrophobic silica are available in the form of particles or powder, and other than that, fibrous, non-woven fabric, particulate or powder can be obtained and prepared.

前記活性炭は、その原料(前駆体)は特に限定されるものではなく、例えばフェノール、セルロース、レーヨン、ポリアクリロニトリル系、ピッチ系、アラミド、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンベンゾビスオキサゾール、ポリビニルアルコール、ポリエーテルスルホン、ポリスルホン、ポリフェニレンオキサイドなどを挙げることができる。これらの材料を用いて、繊維、織布、不織布、粒子、粉末に成形した後、炭化、賦活化、必要により精製することで製造することができる。 The raw material (precursor) of the activated charcoal is not particularly limited, and for example, phenol, cellulose, rayon, polyacrylonitrile-based, pitch-based, aramid, polyimide, polyamide, polyamideimide, polyphenylene benzobisoxazole, polyvinyl alcohol, and the like. Examples thereof include polyethersulfone, polysulfone, and polyphenylene oxide. These materials can be produced by molding into fibers, woven fabrics, non-woven fabrics, particles, and powders, and then carbonizing, activating, and purifying if necessary.

本発明において、夾雑物質の除去材料は、多孔質体を用いる場合、その全細孔容積は0.25〜1.00cc/gの範囲内であることが好ましい。全細孔容積が小さすぎると、生体試料中の夾雑物質を十分に除去できないことがあり、大きすぎると、単繊維の強度が著しく低下し、形態を保てないことがある。なお、全細孔容積は、例えば比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を用いて測定することができる。 In the present invention, when a porous body is used as the material for removing contaminants, the total pore volume thereof is preferably in the range of 0.25 to 1.00 cc / g. If the total pore volume is too small, contaminants in the biological sample may not be sufficiently removed, and if it is too large, the strength of the single fiber may be significantly reduced and the morphology may not be maintained. The total pore volume can be measured using, for example, a specific surface area / pore distribution measuring device Gemini2375 (manufactured by Micromeritics).

本発明において、夾雑物質の除去材料は、その比表面積は5〜2500m/gの範囲内であることが好ましい。比表面積が小さすぎると、生体試料中の夾雑物質を十分に除去できないことがあるとか、前処理器具を必要以上に大きくする必要がある。また、比表面積が大きすぎると、単繊維の強度が著しく低下し、形態を保てないことがある。比表面積とは、液体窒素温度での窒素ガス吸着等温線によるBET法により求められる比表面積を意味し、例えば比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を用いて測定することができる。 In the present invention, the specific surface area of the material for removing contaminants is preferably in the range of 5 to 2500 m 2 / g. If the specific surface area is too small, contaminants in the biological sample may not be sufficiently removed, or the pretreatment instrument needs to be made larger than necessary. Further, if the specific surface area is too large, the strength of the single fiber is remarkably lowered, and the morphology may not be maintained. The specific surface area means the specific surface area obtained by the BET method using a nitrogen gas adsorption isotherm at a liquid nitrogen temperature, and can be measured using, for example, a specific surface area / pore distribution measuring device Gemini2375 (manufactured by Micromeritics). ..

本発明において、夾雑物質の除去材料は、多孔質体を用いる場合、細孔直径が10Å以下のマイクロポア容積が全マイクロポア容積の95%以上であることが好ましい。細孔直径が10Å以下のマイクロポア容積が全マイクロポア容積の95%未満である場合には、細孔が大きくなりすぎて、夾雑物質が十分に除去されないことがある。なお、細孔直径10Å以下のマイクロポア容積の割合は、例えば比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を用いて測定することができる。 In the present invention, when a porous body is used as the material for removing contaminants, it is preferable that the micropore volume having a pore diameter of 10 Å or less is 95% or more of the total micropore volume. If the micropore volume with a pore diameter of 10 Å or less is less than 95% of the total micropore volume, the pores may become too large and contaminants may not be sufficiently removed. The ratio of the micropore volume having a pore diameter of 10 Å or less can be measured using, for example, a specific surface area / pore distribution measuring device Gemini2375 (manufactured by Micromeritics).

本発明において、夾雑物質の除去材料が繊維形状の場合は、単繊維径が5〜30μmであることが好ましい。単繊維径が小さすぎると、夾雑物質を除去するための有効細孔を確保できないことがある。一方、単繊維径が大きすぎると、前処理器具のコンパクト性を損なうことがある。また、夾雑物質の除去材料が粒子状または粉末状である場合は、平均粒子径が1nm〜1mmであることが好ましい。平均粒子径が小さすぎると、夾雑物質を除去するための有効細孔を確保できないことがある。一方、平均粒子径が大きすぎると、前処理器具のコンパクト性を損なうことがある。 In the present invention, when the material for removing contaminants has a fiber shape, the single fiber diameter is preferably 5 to 30 μm. If the single fiber diameter is too small, it may not be possible to secure effective pores for removing contaminants. On the other hand, if the single fiber diameter is too large, the compactness of the pretreatment instrument may be impaired. When the material for removing contaminants is in the form of particles or powder, the average particle size is preferably 1 nm to 1 mm. If the average particle size is too small, it may not be possible to secure effective pores for removing contaminants. On the other hand, if the average particle size is too large, the compactness of the pretreatment instrument may be impaired.

本発明において、前記した材料を用いて構成された前処理器具がヘモグロビンは除去しないが、ビリルビンや乳ビ等の夾雑物質は除去するという選択性が発揮される理由は実は明らかでない。しかし、後述するようにヘモグロビンを溶解した溶液を前処理器具で処理しても処理前後で吸光度はほぼ低下しないが、ビリルビンを溶解した溶液を前処理器具で処理すると吸光度が大きく低下することからもビリルビンが選択的に除去されることは明らかである。 In the present invention, it is not clear why the pretreatment instrument constructed using the above-mentioned material does not remove hemoglobin, but exhibits the selectivity of removing contaminants such as bilirubin and milky lotion. However, as will be described later, even if the solution in which hemoglobin is dissolved is treated with a pretreatment instrument, the absorbance does not decrease almost before and after the treatment, but when the solution in which bilirubin is dissolved is treated with a pretreatment instrument, the absorbance greatly decreases. It is clear that bilirubin is selectively removed.

実施形態1において、例えばシリンジに希釈液で希釈された生体試料を必要量吸上げた後、シリンジの先端に本発明の前処理器具を装着し、シリンジのプランジャーを押し込んで生体試料または希釈された生体試料を前処理器具の試料出口より押し出すことにより、容易にビリルビン等の測定阻害物質を除去することができる。 In the first embodiment, for example, after sucking up a required amount of a biological sample diluted with a diluent into a syringe, the pretreatment instrument of the present invention is attached to the tip of the syringe, and the plunger of the syringe is pushed into the biological sample or diluted. By extruding the biological sample from the sample outlet of the pretreatment instrument, measurement-inhibiting substances such as bilirubin can be easily removed.

[実施形態2]
実施形態1は、前処理器具が試料採取器具と別体となっているのに対して、実施形態2においては、試料採取器具が前処理器具と一体となっている点で異なる(図2参照)。
[Embodiment 2]
The first embodiment is different from the pretreatment instrument in that the pretreatment instrument is separate from the sampling instrument, whereas the second embodiment is different in that the sampling instrument is integrated with the pretreatment instrument (see FIG. 2). ).

(比表面積の測定)
夾雑物質除去材料を約30mg採取し、120℃で12時間真空乾燥して秤量し、比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を使用して測定した。液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が0.02〜0.95の範囲で測定し、前記材料の吸着等温線を作成した。相対圧0.02〜0.15の範囲での結果をもとに、BET法により重量あたりの比表面積(単位:m/g)を求めた。
(Measurement of specific surface area)
Approximately 30 mg of the contaminant removing material was sampled, vacuum dried at 120 ° C. for 12 hours, weighed, and measured using a specific surface area / pore distribution measuring device Gemini2375 (manufactured by Micromeritics). The adsorption amount of nitrogen gas at the boiling point (-195.8 ° C.) of liquid nitrogen was measured in the range of relative pressure of 0.02 to 0.95, and an adsorption isotherm of the material was prepared. Based on the results in the range of relative pressure 0.02 to 0.15, the specific surface area per weight (unit: m 2 / g) was determined by the BET method.

(全細孔容積の測定)
夾雑物質除去材料を約30mg採取し、120℃で12時間真空乾燥して秤量し、比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を使用して測定した。液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が0.02〜0.95の範囲で測定し、前記材料の吸着等温線を作成した。相対圧0.95での結果より全細孔容積(単位:cc/g)を算出した。
(Measurement of total pore volume)
Approximately 30 mg of the contaminant removing material was sampled, vacuum dried at 120 ° C. for 12 hours, weighed, and measured using a specific surface area / pore distribution measuring device Gemini2375 (manufactured by Micromeritics). The adsorption amount of nitrogen gas at the boiling point (-195.8 ° C.) of liquid nitrogen was measured in the range of relative pressure of 0.02 to 0.95, and an adsorption isotherm of the material was prepared. The total pore volume (unit: cc / g) was calculated from the result at a relative pressure of 0.95.

(全マイクロポア容積(A))
夾雑物質除去材料を約30mg採取し、120℃で12時間真空乾燥して秤量し、比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を使用して測定した。液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が0.02〜0.95の範囲で測定し、前記材料の吸着等温線を作成した。この結果をMP法によって解析範囲0〜20Å、t決定式H.Jの条件で解析し、吸着時のマイクロポア径分布数表の結果より全マイクロポア容積(A)(単位:cc/g)を算出した。
(Total micropore volume (A))
Approximately 30 mg of the contaminant removing material was sampled, vacuum dried at 120 ° C. for 12 hours, weighed, and measured using a specific surface area / pore distribution measuring device Gemini2375 (manufactured by Micromeritics). The adsorption amount of nitrogen gas at the boiling point (-195.8 ° C.) of liquid nitrogen was measured in the range of relative pressure of 0.02 to 0.95, and an adsorption isotherm of the material was prepared. The analysis range of this result is 0 to 20 Å by the MP method, and the t-determination formula H. The analysis was performed under the condition of J, and the total micropore volume (A) (unit: cc / g) was calculated from the result of the micropore diameter distribution number table at the time of adsorption.

(細孔直径10Å以下のマイクロポア容積(B))
夾雑物質除去材料を約30mg採取し、120℃で12時間真空乾燥して秤量し、比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を使用して測定した。液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が0.02〜0.95の範囲で測定し、前記材料の吸着等温線を作成した。この結果をMP法によって解析範囲0〜2nm、t決定式H.Jの条件で解析し、吸着時のマイクロポア径分布数表の結果より全マイクロポア容積(A)から細孔直径10.03Å以上のマイクロポア容積を引いて、細孔直径10Å以下のマイクロポア容積B(単位:cc/g)を算出した。
(Micropore volume (B) with a pore diameter of 10 Å or less)
Approximately 30 mg of the contaminant removing material was sampled, vacuum dried at 120 ° C. for 12 hours, weighed, and measured using a specific surface area / pore distribution measuring device Gemini2375 (manufactured by Micromeritics). The adsorption amount of nitrogen gas at the boiling point (-195.8 ° C.) of liquid nitrogen was measured in the range of relative pressure of 0.02 to 0.95, and an adsorption isotherm of the material was prepared. This result was analyzed by the MP method in an analysis range of 0 to 2 nm, and the t-determination formula H. Analysis under the condition of J, and subtract the micropore volume of 10.03 Å or more from the total micropore volume (A) from the result of the micropore diameter distribution number table at the time of adsorption, and micropores with a pore diameter of 10 Å or less. Volume B (unit: cc / g) was calculated.

(吸光度の測定)
各測定用試料について、分光光度計UV−2450(島津製作所社製)を用いて、420nmの吸光度を測定した。なお、測定用セルは、1mL容ディスポーザブルセルを用い、光路長10mmで測定した。
(Measurement of absorbance)
For each measurement sample, the absorbance at 420 nm was measured using a spectrophotometer UV-2450 (manufactured by Shimadzu Corporation). As the measurement cell, a 1 mL disposable cell was used, and the measurement was performed with an optical path length of 10 mm.

(前処理冶具1の作製)
図1に示されるような入口および出口を有するポリプロピレン製のフィルターホルダーにフェノール繊維を炭化、賦活化して得られた比表面積973m/g、全細孔容積0.42cc/gの活性炭素繊維を34mg充填し、前処理器具1を作製した。
(Preparation of pretreatment jig 1)
Activated carbon fibers having a specific surface area of 973 m 2 / g and a total pore volume of 0.42 cc / g obtained by carbonizing and activating phenol fibers in a polypropylene filter holder having an inlet and an outlet as shown in FIG. A pretreatment instrument 1 was prepared by filling with 34 mg.

(前処理冶具2の作製)
フェノール繊維を炭化、賦活化して得られた比表面積1962m/g、全細孔容積0.85cc/gの活性炭素繊維34mgを充填した以外は、前処理器具1と同様にして前処理器具2を作製した。
(Preparation of pretreatment jig 2)
Pretreatment device 2 in the same manner as pretreatment device 1 except that it was filled with 34 mg of activated carbon fiber having a specific surface area of 1962 m 2 / g and a total pore volume of 0.85 cc / g obtained by carbonizing and activating phenol fibers. Was produced.

(前処理冶具3の作製)
ピッチ系繊維を炭化、賦活化して得られた比表面積850m/g、全細孔容積0.35cc/gの活性炭素繊維34mgを充填した以外は、前処理器具1と同様にして前処理器具3を作製した。
(Preparation of pretreatment jig 3)
Pretreatment equipment similar to pretreatment equipment 1 except that it was filled with 34 mg of activated carbon fiber having a specific surface area of 850 m 2 / g and a total pore volume of 0.35 cc / g obtained by carbonizing and activating pitch fibers. 3 was prepared.

(前処理冶具4の作製)
フェノール繊維を炭化、賦活化して得られた比表面積1520m/g、全細孔容積0.65cc/gの活性炭素繊維34mgを充填した以外は、前処理器具1と同様にして前処理器具4を作製した。
(Preparation of pretreatment jig 4)
Pretreatment device 4 in the same manner as pretreatment device 1 except that it was filled with 34 mg of activated carbon fiber having a specific surface area of 1520 m 2 / g and a total pore volume of 0.65 cc / g obtained by carbonizing and activating phenol fibers. Was produced.

(前処理冶具5の作製)
ピッチ繊維を炭化、賦活化して得られた比表面積1700m/g、全細孔容積0.80cc/gの活性炭素繊維34mgを充填した以外は、前処理器具1と同様にして前処理器具5を作製した。
(Preparation of pretreatment jig 5)
The pretreatment device 5 is the same as the pretreatment device 1 except that it is filled with 34 mg of activated carbon fiber having a specific surface area of 1700 m 2 / g and a total pore volume of 0.80 cc / g obtained by carbonizing and activating the pitch fibers. Was produced.

(前処理冶具6の作製)
粒状活性炭(ユーイーエス社製、KD−GW−A、比表面積1329m/g、全細孔容積0.44cc/g)34mgを充填した以外は、前処理器具1と同様にして前処理器具6を作製した。
(Preparation of pretreatment jig 6)
Pretreatment instrument 6 in the same manner as pretreatment instrument 1 except that it was filled with 34 mg of granular activated carbon (KD-GW-A manufactured by US Corporation, specific surface area 1329 m 2 / g, total pore volume 0.44 cc / g). Was produced.

[参考例1]
干渉チェックAプラス(シスメックス社)の溶血ヘモグロビンを蒸留水で135g/Lになるように溶解した後、希釈液(1%Triton X−100、1%Tween−20、50mM PBS、pH7.1)で500倍希釈し測定用試料1を得た。1mL容のシリンジに前記測定用試料1を1mL吸い上げた後、シリンジの先に前処理器具1を取付け、前記測定用試料1をセルに押し出した。前記セルを分光光度計にセットし、420nmの吸光度を測定した。結果を表1にまとめた。
[Reference example 1]
Interference Check A Plus (Cysmex) hemolyzed hemoglobin was dissolved in distilled water to 135 g / L, and then diluted with a diluent (1% Triton X-100, 1% Tween-20, 50 mM PBS, pH 7.1). The sample 1 for measurement was obtained by diluting 500 times. After sucking up 1 mL of the measurement sample 1 into a 1 mL syringe, a pretreatment instrument 1 was attached to the tip of the syringe, and the measurement sample 1 was extruded into a cell. The cell was set in a spectrophotometer and the absorbance at 420 nm was measured. The results are summarized in Table 1.

[参考例2]
干渉チェックAプラス(シスメックス社)のビリルビンFを蒸留水で200mg/dLになるように溶解した後、参考例1と同様の希釈液で500倍希釈し測定用試料2を得た。1mL容のシリンジに前記測定用試料2を1mL吸い上げた後、シリンジの先の前処理器具1を取付け、前記測定用試料2をセルに押し出した。前記セルを分光光度計にセットし、420nmの吸光度を測定した。結果を表1にまとめた。
[Reference example 2]
Bilirubin F of Interference Check A Plus (Sysmex Corporation) was dissolved in distilled water to a concentration of 200 mg / dL, and then diluted 500-fold with the same diluent as in Reference Example 1 to obtain Sample 2 for measurement. After sucking up 1 mL of the measurement sample 2 into a 1 mL syringe, the pretreatment instrument 1 at the tip of the syringe was attached, and the measurement sample 2 was pushed out into the cell. The cell was set in a spectrophotometer and the absorbance at 420 nm was measured. The results are summarized in Table 1.

Figure 0006938964
Figure 0006938964

表1の結果から明らかなように、ヘモグロビンを溶解した溶液を前処理器具に接触させた場合に、吸光度は接触前後でほぼ変化しなかったが、ビリルビンを溶解した溶液を前処理器具に接触させた場合には、吸光度は大きく低下した。これは、本発明の前処理器具を用いると、生体試料中のヘモグロビンは除去されないが、ビリルビンに代表される夾雑物質は除去されることを示している。 As is clear from the results in Table 1, when the solution in which hemoglobin was dissolved was brought into contact with the pretreatment instrument, the absorbance did not change much before and after the contact, but the solution in which bilirubin was dissolved was brought into contact with the pretreatment instrument. In that case, the absorbance was greatly reduced. This indicates that the pretreatment device of the present invention does not remove hemoglobin in the biological sample, but removes contaminants such as bilirubin.

[実施例1]
1mL容のシリンジに前記測定用試料1を1mL吸い上げた後、シリンジの先に前処理器具1を取付け、測定用試料1をセルに押し出した。前記セルを分光光度計にセットし、420nmの吸光度を測定した。また、前記測定用試料2についても同様の処理を施して吸光度を測定した。結果を表2にまとめた。
[Example 1]
After sucking up 1 mL of the measurement sample 1 into a 1 mL syringe, a pretreatment instrument 1 was attached to the tip of the syringe, and the measurement sample 1 was extruded into a cell. The cell was set in a spectrophotometer and the absorbance at 420 nm was measured. Further, the measurement sample 2 was also subjected to the same treatment to measure the absorbance. The results are summarized in Table 2.

[実施例2]
1mL容のシリンジに実施例1と同様の測定用試料を1mL吸い上げた後、シリンジの先に前処理器具2を取付け、測定用試料をセルに押し出した。前記セルを分光光度計にセットし、420nmの吸光度を測定した。結果を表2にまとめた。
[Example 2]
After sucking up 1 mL of the same measurement sample as in Example 1 into a 1 mL syringe, the pretreatment instrument 2 was attached to the tip of the syringe, and the measurement sample was pushed out into the cell. The cell was set in a spectrophotometer and the absorbance at 420 nm was measured. The results are summarized in Table 2.

[実施例3]
1mL容のシリンジに実施例1と同様の測定用試料を1mL吸い上げた後、シリンジの先に前処理器具3を取付け、測定用試料をセルに押し出した。前記セルを分光光度計にセットし、420nmの吸光度を測定した。結果を表2にまとめた。
[Example 3]
After sucking up 1 mL of the same measurement sample as in Example 1 into a 1 mL syringe, the pretreatment instrument 3 was attached to the tip of the syringe, and the measurement sample was pushed out into the cell. The cell was set in a spectrophotometer and the absorbance at 420 nm was measured. The results are summarized in Table 2.

[実施例4]
1mL容のシリンジに実施例1と同様の測定用試料を1mL吸い上げた後、シリンジの先に前処理器具4を取付け、測定用試料をセルに押し出した。前記セルを分光光度計にセットし、420nmの吸光度を測定した。結果を表2にまとめた。
[Example 4]
After sucking up 1 mL of the same measurement sample as in Example 1 into a 1 mL syringe, the pretreatment instrument 4 was attached to the tip of the syringe, and the measurement sample was pushed out into the cell. The cell was set in a spectrophotometer and the absorbance at 420 nm was measured. The results are summarized in Table 2.

[実施例5]
1mL容のシリンジに実施例1と同様の測定用試料を1mL吸い上げた後、シリンジの先に前処理器具5を取付け、測定用試料をセルに押し出した。前記セルを分光光度計にセットし、420nmの吸光度を測定した。結果を表2にまとめた。
[Example 5]
After sucking up 1 mL of the same measurement sample as in Example 1 into a 1 mL syringe, the pretreatment instrument 5 was attached to the tip of the syringe, and the measurement sample was pushed out into the cell. The cell was set in a spectrophotometer and the absorbance at 420 nm was measured. The results are summarized in Table 2.

[実施例6]
1mL容のシリンジに実施例1と同様の測定用試料を1mL吸い上げた後、シリンジの先に前処理器具6を取付け、測定用試料をセルに押し出した。前記セルを分光光度計にセットし、420nmの吸光度を測定した。結果を表2にまとめた。
[Example 6]
After sucking up 1 mL of the same measurement sample as in Example 1 into a 1 mL syringe, the pretreatment instrument 6 was attached to the tip of the syringe, and the measurement sample was pushed out into the cell. The cell was set in a spectrophotometer and the absorbance at 420 nm was measured. The results are summarized in Table 2.

[比較例1]
1mL容のシリンジに実施例1と同様の測定用試料を1mL吸い上げた後、シリンジの先に前処理器具を取付けずに、測定用試料をセルに押し出した。前記セルを分光光度計にセットし、420nmの吸光度を測定した。結果を表2にまとめた。
[Comparative Example 1]
After sucking up 1 mL of the same measurement sample as in Example 1 into a 1 mL syringe, the measurement sample was extruded into the cell without attaching a pretreatment instrument to the tip of the syringe. The cell was set in a spectrophotometer and the absorbance at 420 nm was measured. The results are summarized in Table 2.

Figure 0006938964
Figure 0006938964

表2の結果から明らかなように、前処理器具1−6を用いた実施例1−6は、比較例1に比較して、波長420nmの吸光度が大きく低下している。ヘモグロビンA1c(%)は、ヘモグロビンA1c濃度/ヘモグロビン濃度×100で求められる糖尿病診断の指標であり、ヘモグロビン濃度の測定値に誤差が含まれると正確な診断ができない。本発明によれば、より正確なヘモグロビン濃度を測定することができる。 As is clear from the results in Table 2, in Examples 1-6 using the pretreatment instrument 1-6, the absorbance at a wavelength of 420 nm is significantly reduced as compared with Comparative Example 1. Hemoglobin A1c (%) is an index for diagnosing diabetes obtained by hemoglobin A1c concentration / hemoglobin concentration × 100, and accurate diagnosis cannot be made if the measured value of hemoglobin concentration contains an error. According to the present invention, the hemoglobin concentration can be measured more accurately.

本発明によれば、夾雑物質の影響を受けずにヘモグロビン濃度を定量的に測定することができる。また、夾雑物質の影響が低減されるので、ヘモグロビンの極大吸収波長域での測定が可能となり、生体試料中のヘモグロビン濃度が低い場合にも高精度に測定することができるので、糖尿病診断において極めて好適である。 According to the present invention, the hemoglobin concentration can be quantitatively measured without being affected by contaminants. In addition, since the influence of contaminants is reduced, it is possible to measure hemoglobin in the maximum absorption wavelength range, and even when the hemoglobin concentration in the biological sample is low, it can be measured with high accuracy, which is extremely important in diabetes diagnosis. Suitable.

1.試料入口
2.夾雑物質の除去材料
3.メンブレンフィルタ
4.試料出口
1. 1. Sample inlet 2. Material for removing contaminants 3. Membrane filter 4. Sample outlet

Claims (1)

生体試料中のヘモグロビンを定量的に分析する際に、前記生体試料からビリルビンを除去するための前処理器具であって、
前記器具は前記生体試料の入口と出口を有するハウジングケースと前記ハウジングケース内にビリルビンの除去材料が充填され、
前記除去材料は、粒状活性炭または活性炭素繊維であり、
前記除去材料の全細孔容積が0.25〜1.00cc/gであることを特徴とする前処理器具。
A pretreatment device for removing bilirubin from the biological sample when quantitatively analyzing hemoglobin in the biological sample.
The instrument is a housing case having an inlet and an outlet for the biological sample, and the housing case is filled with a bilirubin removing material.
The removal material is granular activated carbon or activated carbon fiber.
A pretreatment instrument characterized in that the total pore volume of the removal material is 0.25 to 1.00 cc / g.
JP2017037207A 2017-02-28 2017-02-28 Biological sample pretreatment equipment Active JP6938964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017037207A JP6938964B2 (en) 2017-02-28 2017-02-28 Biological sample pretreatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017037207A JP6938964B2 (en) 2017-02-28 2017-02-28 Biological sample pretreatment equipment

Publications (2)

Publication Number Publication Date
JP2018141739A JP2018141739A (en) 2018-09-13
JP6938964B2 true JP6938964B2 (en) 2021-09-22

Family

ID=63526602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017037207A Active JP6938964B2 (en) 2017-02-28 2017-02-28 Biological sample pretreatment equipment

Country Status (1)

Country Link
JP (1) JP6938964B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717658A (en) * 1980-07-04 1982-01-29 Kuraray Co Purifier for blood
JPS58216059A (en) * 1982-06-10 1983-12-15 工業技術院長 Body liquid purifying apparatus
ES2136418T3 (en) * 1995-05-05 1999-11-16 Genzyme Ltd DETERMINATION OF GLYCOSILATED PROTEINS.
JP2001245973A (en) * 2000-03-06 2001-09-11 Japan Science & Technology Corp Blood purifying adsorbent formed of titanium oxide
BRPI0511977A (en) * 2004-06-09 2008-01-22 Pathogen Removal And Diagnosti devices and methods for removing target agents from a sample
JP5210800B2 (en) * 2008-10-31 2013-06-12 シスメックス株式会社 Sample analyzer, reagent information display method and computer program in sample analyzer
CN203941046U (en) * 2014-06-19 2014-11-12 深圳市凯特生物医疗电子科技有限公司 The miniature chromatographic column of a kind of glycolated hemoglobin analysis

Also Published As

Publication number Publication date
JP2018141739A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP2729503B2 (en) Particle separation method and apparatus
Kataoka et al. Recent progress in solid-phase microextraction and its pharmaceutical and biomedical applications
CA2909190C (en) Biological fluid sampling transfer device and biological fluid separation and testing system
EP1767935A1 (en) Biological sample collecting implement and method of collecting biological sample
JP6227689B2 (en) Method for reducing increase in fluid flow pressure of liquid chromatography member
JP2005515431A (en) Sample testing equipment
JP2014232023A (en) Analysis chip
EP1717585B1 (en) Microchip and analysis method using the same
Turoňová et al. Application of microextraction in pipette tips in clinical and forensic toxicology
EP1092978B1 (en) Method for determining the concentration of heparin in a sample of fluid
WO2014025401A1 (en) Kits and methods for determining physiologic level(s) and/or range(s) of hemoglobin and/or disease state
JP6938964B2 (en) Biological sample pretreatment equipment
JP2004501366A (en) Method for detecting alpha-oxoaldehyde in whole blood, plasma and / or serum of a patient
JP6874432B2 (en) Immunochromatographic test piece
CN107153121A (en) Glycosylated hemoglobin, hemoglobin detection kit and its detection method
CN116430036A (en) Blood filtering membrane detection device and preparation method and application thereof
CN113330315A (en) Microsampling detection of diabetes
EP3321679B1 (en) Blood analysis method
JP6495768B2 (en) Blood analysis method and blood test kit
JP3569401B2 (en) Preparation of hemolysis sample
CN210301061U (en) Urine sampling device
CN216257110U (en) Micro blood sampling separation storage device
RU2755073C1 (en) Method for detecting oncological diseases and apparatus for implementation thereof
WO2017006965A1 (en) Blood analysis method and blood testing kit
Bold Determination of Calcium in Plasma; A Review of Some Modern Methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R151 Written notification of patent or utility model registration

Ref document number: 6938964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350