JP6938838B2 - Polyimide film with improved thermal conductivity and its manufacturing method - Google Patents

Polyimide film with improved thermal conductivity and its manufacturing method Download PDF

Info

Publication number
JP6938838B2
JP6938838B2 JP2019568305A JP2019568305A JP6938838B2 JP 6938838 B2 JP6938838 B2 JP 6938838B2 JP 2019568305 A JP2019568305 A JP 2019568305A JP 2019568305 A JP2019568305 A JP 2019568305A JP 6938838 B2 JP6938838 B2 JP 6938838B2
Authority
JP
Japan
Prior art keywords
chemical formula
polyimide film
polyimide
formula
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019568305A
Other languages
Japanese (ja)
Other versions
JP2020523448A (en
Inventor
キム、キュンファン
ウォン ジョン、ヘ
ウォン ジョン、ヘ
ヒョ パク、チャン
ヒョ パク、チャン
パク、ジンヨン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Priority claimed from PCT/KR2019/000940 external-priority patent/WO2019160252A1/en
Publication of JP2020523448A publication Critical patent/JP2020523448A/en
Application granted granted Critical
Publication of JP6938838B2 publication Critical patent/JP6938838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Description

本願は、2018年2月13日付の韓国特許出願10−2018−0017561号及び2019年1月2日付の韓国特許出願10−2019−0000095号に基づいた優先権の利益を主張し、当該韓国特許出願の文献に開示されたあらゆる内容は、本明細書の一部として含まれる。 This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0017561 dated February 13, 2018 and Korean Patent Application No. 10-2019-00000955 dated January 2, 2019. Any content disclosed in the literature of the application is included as part of this specification.

本発明は、熱伝導度が向上したポリイミドフィルム及びその製造方法に関する。 The present invention relates to a polyimide film having improved thermal conductivity and a method for producing the same.

ポリイミド(polyimide、PI)は、比較的結晶化度が低いか、ほぼ非晶質構造を有する高分子であって、合成が容易であり、薄膜フィルムを作ることができ、硬化のための架橋基が不要であるという長所だけではなく、透明性、剛直な鎖構造によって優れた耐熱性と耐化学性、優れた機械的物性、電気的特性及び寸法安定性を有している高分子材料であって、現在、自動車、航空宇宙分野、柔軟性回路基板、LCD用液晶配向膜、接着及びコーティング剤などの電気、電子材料として広く使われている。 Polyimide (PI) is a polymer with a relatively low crystallinity or a nearly amorphous structure, which is easy to synthesize, can form a thin film, and is a cross-linking group for curing. It is a polymer material that has excellent heat resistance and chemical resistance, excellent mechanical properties, electrical properties and dimensional stability due to its transparency and rigid chain structure. Currently, it is widely used as an electric and electronic material such as automobiles, aerospace fields, flexible circuit boards, liquid crystal alignment films for LCDs, adhesives and coating agents.

特に、ポリイミドは、高い熱安定性、機械的物性、耐化学性、そして、電気的特性を有している高性能高分子材料であって、フレキシブルディスプレイ用基板素材として関心が増大しつつあるが、ディスプレイ用途に使用するためには、透明ではなければならず、ディスプレイ製造のための熱処理工程で基板の残留応力による不良率を低めるためには、350℃以上の温度で熱膨張係数が負数であってはならない問題がある。したがって、現在、ポリイミドの基本的な特性を保持しながら、光学的特性と熱履歴変化とを最小化するための研究が多く進められている。 In particular, polyimide is a high-performance polymer material having high thermal stability, mechanical properties, chemical resistance, and electrical properties, and interest is increasing as a substrate material for flexible displays. In order to use it for display applications, it must be transparent, and in order to reduce the defective rate due to residual stress of the substrate in the heat treatment process for manufacturing displays, the coefficient of thermal expansion is negative at a temperature of 350 ° C or higher. There is a problem that shouldn't be there. Therefore, many studies are currently underway to minimize the optical properties and thermal history changes while preserving the basic properties of polyimide.

フレキシブルディスプレイは、自在なフォームファクタ(form factor)、軽くて薄い特性及び割れない特性のために、市場の需要が高まりつつある。このようなフレキシブルディスプレイを具現するにおいて、耐熱性に優れたポリイミドであるBPDA(3,3',4,4'−Biphenyltetracarboxylic dianhydride)−PDA(phenylene diamine)で構成されるポリイミドが用いられる。 Flexible displays are in increasing demand in the market due to their flexible form factor, light and thin properties and unbreakable properties. In embodying such a flexible display, a polyimide composed of BPDA (3,3', 4,4'-Biffeneylterracarboxylic diamine) -PDA (phenylene diamine), which is a polyimide having excellent heat resistance, is used.

フレキシブルディスプレイ素子、例えば、TFT素子は、硬化されたポリイミド上にバッファ層(buffer layer)、活性層(active layer)、ゲート絶縁膜(gate insulator)など多層の無機膜を成膜して製作される。 A flexible display element, for example, a TFT element, is manufactured by forming a multilayer inorganic film such as a buffer layer, an active layer, and a gate insulator on a cured polyimide. ..

最近、OLED方式のフレキシブルディスプレイ具現時に、ポリイミド基板は、ガラス基板に比べて、残像に脆弱なイシューが発生している。残像の原因としては、電流駆動方式のOLEDディスプレイでスレショルド電圧(Vth)のシフト(shift)による同一電圧で異なる電流によって表われる輝度差であると推定される。ここで、スレショルド電圧(Threshold Voltage:Vth)とは、電流の流れがチャネルを通じて流れ始める電圧の臨界点を意味し、また、スレショルド電圧は、MOSFET上で電流が流れなかった電流が流れる状態に反転される時点の電位障壁である。 Recently, when the OLED type flexible display is realized, the polyimide substrate has an issue that is more vulnerable to afterimages than the glass substrate. It is presumed that the cause of the afterimage is the difference in brightness that appears due to different currents at the same voltage due to the shift (shift) of the threshold voltage (Vth) in the current-driven OLED display. Here, the threshold voltage (Threshold Voltage: Vth ) means the critical point of the voltage at which the current flow starts to flow through the channel, and the threshold voltage is in a state where the current that did not flow on the MOSFET flows. The potential barrier at the time of inversion.

本発明者らは、残像問題を解決するために研究中にVthのシフトがTFT駆動時に発生する熱によってさらに深まるということが分かった。 The present inventors have found during research to solve the afterimage problem that the Vth shift is further deepened by the heat generated when the TFT is driven.

本発明は、前記問題を解決するために、放熱特性、すなわち、熱伝導度及び熱拡散度が向上して、Vthのシフトを緩和させることができるポリイミドフィルムを提供することである。 In order to solve the above problems, the present invention is to provide a polyimide film capable of improving heat dissipation characteristics, that is, thermal conductivity and thermal diffusivity, and mitigating a Vth shift.

また、本発明は、前記ポリイミドフィルムを製造する方法を提供することである。 The present invention also provides a method for producing the polyimide film.

また、本発明は、前記ポリイミドフィルムを基板として含むフレキシブルディスプレイ素子を提供することである。 The present invention also provides a flexible display element containing the polyimide film as a substrate.

本発明は、前述した課題を解決するために、イミド単分子化合物を有機フィラーとして含み、下記数式1によって定義される熱伝導度(k)が0.2W/m・K以上であるポリイミドフィルムを提供する。
[数式1]
熱伝導度(k)=比熱(C)×密度(ρ)×熱拡散度(α)
前記式において、C、ρ及びαは、それぞれポリイミドフィルムの比熱(J/g・K)、密度(g/cm)及び熱拡散度(mm/sec)を示す。
In order to solve the above-mentioned problems, the present invention provides a polyimide film containing an imide monomolecular compound as an organic filler and having a thermal conductivity (k) of 0.2 W / m · K or more as defined by the following formula 1. offer.
[Formula 1]
Thermal conductivity (k) = specific heat (C) x density (ρ) x thermal diffusivity (α)
In the above formula, C, ρ and α represent the specific heat (J / g · K), density (g / cm 3 ) and thermal diffusivity (mm 2 / sec) of the polyimide film, respectively.

一実施例によれば、前記イミド単分子化合物は、下記化学式1及び化学式2の化合物のうちから選択される1つ以上の化合物であり得る。
[化学式1]

Figure 0006938838
[化学式2]
Figure 0006938838
前記式において、X、Y、X及びYは、炭素数6〜12の単環または多環芳香族環または複数個の単環芳香族環が連結された有機基である。 According to one example, the imide monomolecular compound can be one or more compounds selected from the compounds of Chemical Formula 1 and Chemical Formula 2 below.
[Chemical formula 1]
Figure 0006938838
[Chemical formula 2]
Figure 0006938838
In the above formula, X, Y, X 1 and Y 1 are organic groups in which a monocyclic or polycyclic aromatic ring having 6 to 12 carbon atoms or a plurality of monocyclic aromatic rings are linked.

一実施例によれば、前記ポリイミドフィルムは、3,3',4,4'−ビフェニルカルボン酸二無水物(s−BPDA)及び4,4'−パラフェニレンジアミン(pPDA)を重合成分とするものである。 According to one example, the polyimide film contains 3,3', 4,4'-biphenylcarboxylic acid dianhydride (s-BPDA) and 4,4'-para-phenylenediamine (pPDA) as polymerization components. It is a thing.

一実施例によれば、前記化学式1または化学式2の化合物が、下記化学式3または化学式4の化合物であり得る。
[化学式3]

Figure 0006938838
[化学式4]
Figure 0006938838
。 According to one embodiment, the compound of Chemical Formula 1 or Chemical Formula 2 can be a compound of Chemical Formula 3 or Chemical Formula 4 below.
[Chemical formula 3]
Figure 0006938838
[Chemical formula 4]
Figure 0006938838
..

一実施例によれば、前記3,3',4,4'−ビフェニルカルボン酸二無水物(s−BPDA)及び4,4'−パラフェニレンジアミン(pPDA)のmol比が、0.98:1〜0.99:1であるものである。 According to one example, the mol ratio of 3,3', 4,4'-biphenylcarboxylic acid dianhydride (s-BPDA) and 4,4'-para-phenylenediamine (pPDA) is 0.98 :. It is 1 to 0.99: 1.

一実施例によれば、前記ポリイミドフィルムは、10μmの厚さで測定した比熱1.5J/g・K以上、密度1.5g/cm以上、熱拡散度が0.07mm/sec以上であるものである。 According to one embodiment, the polyimide film has a specific heat of 1.5 J / g · K or more, a density of 1.5 g / cm 3 or more, and a thermal diffusivity of 0.07 mm 2 / sec or more measured at a thickness of 10 μm. There is.

本発明の他の態様によれば、重合溶媒に4,4'−パラフェニレンジアミン(pPDA)1molに対して3,3',4,4'−ビフェニルカルボン酸二無水物(s−BPDA)を1mol未満に含む重合成分を添加してポリイミド前駆体を製造する段階;前記ポリイミド前駆体溶液にイミド単分子化合物を有機フィラーとして添加する段階;前記ポリイミド前駆体溶液を基板上に塗布する段階;及び前記塗布されたポリイミド前駆体溶液を乾燥及び加熱する段階;を含むポリイミドフィルムの製造方法が提供される。 According to another aspect of the present invention, the polymerization solution is 3,3', 4,4'-biphenylcarboxylic acid dianhydride (s-BPDA) with respect to 1 mol of 4,4'-paraphenylenediamine (pPDA). A step of producing a polyimide precursor by adding a polymerization component contained in less than 1 mol; a step of adding an imide monomolecular compound as an organic filler to the polyimide precursor solution; a step of applying the polyimide precursor solution on a substrate; and Provided is a method for producing a polyimide film, which comprises a step of drying and heating the applied polyimide precursor solution.

一実施例によれば、前記ポリイミド前駆体溶液の乾燥及び加熱を通じる硬化工程において、最終硬化温度が450℃以上であり得る。 According to one embodiment, the final curing temperature can be 450 ° C. or higher in the curing step through drying and heating of the polyimide precursor solution.

一実施例によれば、イミド単分子化合物が、前記化学式1及び化学式2の化合物から選択される1つ以上であり、前記化学式1または化学式2の化合物を前駆体溶液総重量を基準に0.1〜10重量%に含むものである。 According to one example, the imide monomolecular compound is one or more selected from the compounds of the chemical formula 1 and the chemical formula 2, and the compound of the chemical formula 1 or the chemical formula 2 is 0. It is contained in 1 to 10% by weight.

本発明の他の態様によれば、前述したポリイミドフィルムを基板として含むフレキシブルディスプレイ素子が提供される。 According to another aspect of the present invention, there is provided a flexible display device containing the above-mentioned polyimide film as a substrate.

本発明によれば、ポリイミド前駆体であるポリアミド酸組成物にモノマーを導入して、高温硬化進行時に、高分子の面方向への密度と比熱、熱拡散度などを向上させることにより、フィルムの熱伝導度、すなわち、放熱特性を向上させうる。フィルムの放熱特性の向上は、電流駆動方式ディスプレイのスレショルド電圧シフト現象を緩和させて、ディスプレイの残像特性を大幅に向上させうる。 According to the present invention, a monomer is introduced into a polyamic acid composition which is a polyimide precursor to improve the density, specific heat, thermal diffusivity, etc. of the polymer in the plane direction during high temperature curing. Thermal conductivity, that is, heat dissipation characteristics can be improved. Improving the heat dissipation characteristics of the film can alleviate the threshold voltage shift phenomenon of the current-driven display, and can greatly improve the afterimage characteristics of the display.

熱拡散度の測定方法を説明する図面である。It is a drawing explaining the method of measuring the degree of thermal diffusivity. 熱拡散度の測定方法を説明する図面である。It is a drawing explaining the method of measuring the degree of thermal diffusivity. 比較例(a)及び実施例(b)による組成物をガラス基板に塗布及び硬化時に、高分子挙動を概略的に図示する。The polymer behavior is schematically illustrated when the compositions according to Comparative Examples (a) and (b) are applied to a glass substrate and cured. 熱拡散度の測定装置の写真である。It is a photograph of a measuring device of thermal diffusivity. 熱拡散度の測定に使われるサンプル写真である。It is a sample photograph used for measuring the degree of thermal diffusivity.

本発明は、多様な変換を加え、さまざまな実施例を有することができるので、特定実施例を図面に例示し、詳細な説明に詳細に説明する。しかし、これは、本発明を特定の実施形態に対して限定しようとするものではなく、本発明の思想及び技術範囲に含まれる、あらゆる変換、均等物または代替物を含むものと理解しなければならない。本発明を説明するに当って、関連した公知技術についての具体的な説明が、本発明の要旨を不明にする恐れがあると判断される場合、その詳細な説明を省略する。 Since the present invention can be subjected to various transformations and have various examples, specific examples will be illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the invention to any particular embodiment and must be understood to include any transformations, equivalents or alternatives within the ideas and technical scope of the invention. It doesn't become. In explaining the present invention, if it is determined that a specific description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.

本発明は、プラスチック基板の放熱特性を制御することにより、ディスプレイの残像特性を改善しうるフレキシブル基板製造用ポリイミドフィルムに関するものである。 The present invention relates to a polyimide film for manufacturing a flexible substrate, which can improve the afterimage characteristics of a display by controlling the heat dissipation characteristics of a plastic substrate.

具体的に、本発明は、下記数式1によって定義される熱伝導度(k)が0.2W/m・K以上であるポリイミドフィルムを提供する:
[数式1]
熱伝導度(k)=C×ρ×α
前記数式1において、C、ρ及びαは、それぞれポリイミドフィルムの比熱(J/g・K)、密度(g/cm)及び熱拡散度(mm/sec)を示す。
Specifically, the present invention provides a polyimide film having a thermal conductivity (k) of 0.2 W / m · K or more as defined by the following mathematical formula 1.
[Formula 1]
Thermal conductivity (k) = C × ρ × α
In the above formula 1, C, ρ and α represent the specific heat (J / g · K), density (g / cm 3 ) and thermal diffusivity (mm 2 / sec) of the polyimide film, respectively.

望ましい実施例によれば、前記熱伝導度は、0.25W/m・K以上であり得る。フィルムの熱伝導度が大きいほど、放熱特性に優れていることを意味するので、放熱特性が向上すれば、スレショルド電圧(Vth)のシフトによる電流変動が抑制される。これにより、ディスプレイ素子の残像特性を向上させうる。 According to the preferred embodiment, the thermal conductivity can be 0.25 W / m · K or higher. The larger the thermal conductivity of the film, the better the heat dissipation characteristics. Therefore, if the heat dissipation characteristics are improved, the current fluctuation due to the shift of the threshold voltage (Vth) is suppressed. Thereby, the afterimage characteristic of the display element can be improved.

フィルムの放熱特性の向上のために、無機フィラーを使用する場合には、熱伝導度は優れているが、無機フィラーが水分に対する親和力が高いために、フィルムの吸湿性によってVHR(voltage holding ratio)特性が劣悪になる。 When an inorganic filler is used to improve the heat dissipation characteristics of the film, the thermal conductivity is excellent, but since the inorganic filler has a high affinity for moisture, the hygroscopicity of the film causes VHR (voltage holding ratio). The characteristics become poor.

したがって、本発明は、フィルムの放熱特性の向上のために、無機フィラーではない有機単分子を有機フィラーとして使用した。その結果、フレキシブルディスプレイ素子に要求される他の物性を補完しながらも、熱伝導度が向上したポリイミドフィルムが得られた。 Therefore, in the present invention, an organic single molecule that is not an inorganic filler is used as the organic filler in order to improve the heat dissipation characteristics of the film. As a result, a polyimide film having improved thermal conductivity was obtained while complementing other physical characteristics required for the flexible display element.

ポリイミドフィルムの熱伝導度(k)は、ポリイミドフィルムの比熱、密度及び熱拡散度の積から得られる。 The thermal conductivity (k) of the polyimide film is obtained from the product of the specific heat, density and thermal diffusivity of the polyimide film.

ポリイミドフィルムの比熱(J/g・K)は、DSC法で測定し、密度(g/cm)は、アルキメデス法で測定することができる。 The specific heat (J / g · K) of the polyimide film can be measured by the DSC method, and the density (g / cm 3 ) can be measured by the Archimedes method.

ポリイミドフィルムの熱拡散度は、ASTM E1461によるレーザフラッシュ(Flash)法で求めうる。 The thermal diffusivity of the polyimide film can be determined by the laser flash method using ASTM E1461.

図1及び図2は、フラッシュ法による熱拡散度の測定方法を概略的に図示する。所定厚さのフィルムサンプルにフラッシュソースの熱源を照射すれば、検出器(detector)で経時的な温度を感知して、図2のようなT−tグラフを得て、ここで、T−tグラフのTが1/2になる時間t1/2を求めて、数式2に代入することにより、熱拡散度を求めうる。数式2は、パーカー方程式(PARKER's equation)であり、これは、熱損失が全くなく、熱的に等方性である材料であると仮定して、サンプルの厚さと時間の関数として計算する方法である。図2のパーカー方程式で、Lは、サンプルの厚さであり、αは、熱拡散度である。 1 and 2 schematically show a method of measuring the degree of thermal diffusivity by the flash method. When a film sample of a predetermined thickness is irradiated with a heat source of a flash source, a detector detects the temperature over time to obtain a Tt graph as shown in FIG. 2, and here, Tt. The degree of thermal diffusivity can be obtained by finding the time t 1/2 at which T in the graph becomes 1/2 and substituting it into Equation 2. Equation 2 is the PARKER's equation, which is calculated as a function of sample thickness and time, assuming that the material is thermally isotropic with no thermal loss. The method. In the Parker equation of FIG. 2, L is the thickness of the sample and α is the degree of thermal diffusivity.

一実施例によれば、前記ポリイミドフィルムは、3,3',4,4'−ビフェニルカルボン酸二無水物(s−BPDA)及び4,4'−パラフェニレンジアミン(pPDA)を重合成分とし、下記化学式1または化学式2の化合物を含む組成物を重合及び硬化させて得たものである。
[化学式1]

Figure 0006938838
[化学式2]
Figure 0006938838
前記式において、X、Y、X及びYは、炭素数6〜12の単環または多環芳香族環または複数個の単環芳香族環が連結された有機基である。 According to one embodiment, the polyimide film contains 3,3', 4,4'-biphenylcarboxylic acid dianhydride (s-BPDA) and 4,4'-paraphenylenediamine (pPDA) as polymerization components. It is obtained by polymerizing and curing a composition containing the compound of the following chemical formula 1 or chemical formula 2.
[Chemical formula 1]
Figure 0006938838
[Chemical formula 2]
Figure 0006938838
In the above formula, X, Y, X 1 and Y 1 are organic groups in which a monocyclic or polycyclic aromatic ring having 6 to 12 carbon atoms or a plurality of monocyclic aromatic rings are linked.

化学式1または化学式2の単分子化合物は、下記反応式1または反応式2による方法で製造することができる。
[反応式1]

Figure 0006938838
[反応式2]
Figure 0006938838
The monomolecular compound of Chemical Formula 1 or Chemical Formula 2 can be produced by the method according to Reaction Scheme 1 or Reaction Scheme 2 below.
[Reaction formula 1]
Figure 0006938838
[Reaction equation 2]
Figure 0006938838

望ましい実施例によれば、前記化学式1または化学式2の化合物は、下記化学式3または化学式4の化合物を含むものである。
[化学式3]

Figure 0006938838
[化学式4]
Figure 0006938838
。 According to a preferred embodiment, the compound of Chemical Formula 1 or Chemical Formula 2 comprises a compound of Chemical Formula 3 or Chemical Formula 4 below.
[Chemical formula 3]
Figure 0006938838
[Chemical formula 4]
Figure 0006938838
..

一実施例によれば、前記3,3',4,4'−ビフェニルカルボン酸二無水物(s−BPDA)及び4,4'−パラフェニレンジアミン(pPDA)のmol比が、0.98:1〜0.99:1であるものである。 According to one example, the mol ratio of 3,3', 4,4'-biphenylcarboxylic acid dianhydride (s-BPDA) and 4,4'-para-phenylenediamine (pPDA) is 0.98 :. It is 1 to 0.99: 1.

一実施例によれば、前記ポリイミドフィルムは、10μmの厚さで測定した比熱1.5J/g・K以上、密度1.5g/cm以上、熱拡散度が0.07mm/sec以上であるものである。より望ましくは、比熱1.7J/g・K以上、密度1.7g/cm以上、熱拡散度が0.08mm/sec以上であり得る。このような特性は、単分子化合物を含まない場合に比べて、熱伝導度が2倍以上、望ましくは、2.5倍以上向上するようにする。 According to one embodiment, the polyimide film has a specific heat of 1.5 J / g · K or more, a density of 1.5 g / cm 3 or more, and a thermal diffusivity of 0.07 mm 2 / sec or more measured at a thickness of 10 μm. There is. More preferably, the specific heat may be 1.7 J / g · K or more, the density may be 1.7 g / cm 3 or more, and the thermal diffusivity may be 0.08 mm 2 / sec or more. Such properties are such that the thermal conductivity is improved by 2 times or more, preferably 2.5 times or more, as compared with the case where the monomolecular compound is not contained.

本発明の他の態様によれば、重合溶媒に4,4'−パラフェニレンジアミン(pPDA)1molに対して3,3',4,4'−ビフェニルカルボン酸二無水物(s−BPDA)を1mol未満に含む重合成分を添加してポリイミド前駆体を製造する段階;前記ポリイミド前駆体溶液に前記化学式1または化学式2のモノマーを添加する段階;前記ポリイミド前駆体溶液を基板上に塗布する段階;及び前記塗布されたポリイミド前駆体溶液を乾燥及び加熱する段階;を含むポリイミドフィルムの製造方法が提供される。 According to another aspect of the present invention, the polymerization solution is 3,3', 4,4'-biphenylcarboxylic acid dianhydride (s-BPDA) with respect to 1 mol of 4,4'-paraphenylenediamine (pPDA). A step of producing a polyimide precursor by adding a polymerization component contained in less than 1 mol; a step of adding a monomer of the chemical formula 1 or the chemical formula 2 to the polyimide precursor solution; a step of applying the polyimide precursor solution on a substrate; A method for producing a polyimide film comprising the steps of drying and heating the applied polyimide precursor solution;

一実施例によれば、前記ポリイミド前駆体溶液の乾燥及び加熱を通じる硬化工程において、最終硬化温度が450℃以上であり得る。 According to one embodiment, the final curing temperature can be 450 ° C. or higher in the curing step through drying and heating of the polyimide precursor solution.

一実施例によれば、前記化学式1または化学式2の化合物を前駆体溶液総重量を基準に5〜50重量%、望ましくは、15〜25重量%含むものである。単分子化合物の含量が過度に少なければ、フィルムの熱伝導度の向上効果が微小であり、単分子化合物の含量が過度に多ければ、フィルム形成特性が低下し、透明度が落ちるという問題点がある。 According to one embodiment, the compound of Chemical Formula 1 or Chemical Formula 2 is contained in an amount of 5 to 50% by weight, preferably 15 to 25% by weight, based on the total weight of the precursor solution. If the content of the monomolecular compound is excessively small, the effect of improving the thermal conductivity of the film is minute, and if the content of the monomolecular compound is excessively large, the film forming characteristics are deteriorated and the transparency is lowered. ..

本発明による組成物は、化学式1 または化学式2の化合物を導入することにより、高温硬化進行時に、高分子(PAA、PI)フィルムの厚さ及び面方向への密度を向上させて、比熱などを向上させうる。 The composition according to the present invention improves the thickness and the density in the plane direction of the polymer (PAA, PI) film at the time of high-temperature curing by introducing the compound of Chemical Formula 1 or Chemical Formula 2, and reduces specific heat and the like. Can be improved.

図3は、イミド単分子を含まない組成物(a)と、本発明によってイミド単分子を含む組成物(b)と、をガラス基板に塗布した後、硬化進行時に、高分子挙動を示す。ポリアミド酸がポリイミドに構造的に変化しながら、イミド構造の単分子化合物が周辺の高分子と相互作用するが、π−π interactionの増加を意味し、これは、フィルムの熱拡散度及び熱伝導度の向上に寄与する。 FIG. 3 shows the polymer behavior as the curing progresses after the composition (a) containing no imide single molecule and the composition (b) containing an imide single molecule according to the present invention are applied to a glass substrate. While the polyamic acid structurally changes to polyimide, the imide-structured monomolecular compound interacts with the surrounding macromolecules, which means an increase in π-π interactivity, which means the thermal diffusivity and thermal conductivity of the film. Contributes to improving the degree.

本発明によるポリイミドフィルムは、350℃以上の温度で熱膨張係数が正の値を有し、より詳細には、TMAを利用したCTE測定方法において、1次昇温以後、冷却されたポリイミドフィルムを100℃から460℃に2次昇温時に、測定されたCTE値が350℃以上の温度で正数を示すものであり、望ましくは、0以上15ppm/℃以下の値を有し、望ましくは、0以上10ppm/℃以下の熱膨張係数を有するものである。 The polyimide film according to the present invention has a positive coefficient of thermal expansion at a temperature of 350 ° C. or higher. More specifically, in a CTE measurement method using TMA, a polyimide film cooled after a primary temperature rise is used. When the secondary temperature is raised from 100 ° C. to 460 ° C., the measured CTE value shows a positive value at a temperature of 350 ° C. or higher, preferably having a value of 0 or more and 15 ppm / ° C. or lower, and preferably. It has a coefficient of thermal expansion of 0 or more and 10 ppm / ° C. or less.

前記ポリイミド前駆体重合反応は、溶液重合など通常のポリイミド前駆体重合方法によって実施される。 The polyimide precursor polymerization reaction is carried out by a usual polyimide precursor polymerization method such as solution polymerization.

前記反応は、無水条件で実施され、前記重合反応時に、温度は、−75〜50℃、望ましくは、0〜40℃で実施される。ジアミンが有機溶媒に溶解された状態で酸二無水物を投入する方式で実施され、そのうち、ジアミン及び酸二無水物は重合溶媒でほぼ10〜30重量%の含量で含まれ、重合時間及び反応温度によって分子量が調節される。 The reaction is carried out under anhydrous conditions, and the temperature during the polymerization reaction is −75 to 50 ° C., preferably 0 to 40 ° C. The method was carried out by adding an acid dianhydride in a state where the diamine was dissolved in an organic solvent. Among them, the diamine and the acid dianhydride were contained in the polymerization solvent in a content of about 10 to 30% by weight, and the polymerization time and reaction were carried out. The molecular weight is regulated by the temperature.

また、前記重合反応に使われる有機溶媒としては、具体的に、γ−ブチロラクトン、1,3−ジメチル−イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4−ヒドロキシ−4−メチル−2−ペンタノンなどのケトン類;トルエン、キシレン、テトラメチルベンゼンなどの芳香族炭化水素類;エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテルなどのグリコールエーテル類(セロソルブ);酢酸エチル、酢酸ブチル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、エタノール、プロパノール、エチレングリコール、プロピレングリコール、カルビトール、ジメチルアセトアミド(DMAc)、N,N−ジエチルアセトアミド、ジメチルホルムアミド(DMF)、ジエチルホルムアミド(DEF)、N,N−ジメチルアセトアミド(DMAc)、N−メチルピロリドン(NMP)、N−エチルピロリドン(NEP)、N−ビニルピロリドン、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルメトキシアセトアミド、ジメチルスルホキシド、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、テトラメチルウレア、N−メチルカプロラクタム、テトラヒドロフラン、m−ジオキサン、P−ジオキサン、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、1,2−ビス(2−メトキシエトキシ)エタン、ビス[2−(2−メトキシエトキシ)]エーテル、及びこれらの混合物からなる群から選択されるものが使われる。 Specific examples of the organic solvent used in the polymerization reaction include γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, and 4-hydroxy-4-methyl-2-pentanone. Ketones such as; aromatic hydrocarbons such as toluene, xylene, tetramethylbenzene; ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene Glycol ethers (cellosolve) such as glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether; ethyl acetate, butyl acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, Diethylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, ethanol, propanol, ethylene glycol, propylene glycol, carbitol, dimethylacetamide (DMAc), N, N-diethylacetamide, dimethylformamide (DMF), diethylformamide (DEF) , N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), N-ethylpyrrolidone (NEP), N-vinylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, N, N-dimethylmethoxy Acetamide, dimethylsulfoxide, pyridine, dimethylsulfone, hexamethylphosphoramide, tetramethylurea, N-methylcaprolactam, tetrahydrofuran, m-dioxane, P-dioxane, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether , 1,2-Bis (2-methoxyethoxy) ethane, bis [2- (2-methoxyethoxy)] ether, and mixtures thereof are selected from the group.

望ましくは、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒;N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミドなどのホルムアミド系溶媒;N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミドなどのアセトアミド系溶媒;N−メチル−2−ピロリドン、N−ビニル−2−ピロリドンなどのピロリドン系溶媒を単独または混合物として用いられる。しかし、これに限定されるものではない。また、キシレン、トルエンのような芳香族炭化水素をさらに含んで使われる。 Desirably, sulfoxide-based solvents such as dimethyl sulfoxide and diethyl sulfoxide; formamide-based solvents such as N, N-dimethylformamide and N, N-diethylformamide; acetamide-based solvents such as N, N-dimethylacetamide and N, N-diethylacetamide. Solvent: Pyrrolidone-based solvents such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone are used alone or as a mixture. However, it is not limited to this. In addition, aromatic hydrocarbons such as xylene and toluene are further contained and used.

前記製造されたポリイミド前駆体を用いてポリイミドフィルムを製造する方法は、前記ポリイミド前駆体及び有機溶媒を含むポリイミド前駆体組成物を基板の一面に塗布し、イミド化及び硬化工程以後、基板から分離する段階を含む。 In the method of producing a polyimide film using the produced polyimide precursor, a polyimide precursor composition containing the polyimide precursor and an organic solvent is applied to one surface of a substrate, and separated from the substrate after an imidization and curing step. Including the stage to do.

具体的に、前記ポリイミド前駆体組成物は、有機溶媒中にポリイミド前駆体が溶解された溶液の形態であり、このような形態を有する場合、例えば、ポリイミド前駆体を有機溶媒中で合成した場合には、ポリイミド前駆体組成物は、重合後、得られるポリイミド前駆体溶液のそれ自体または同一溶液をさらに添加したものであっても良く、または、前記重合後、得られたポリイミド前駆体溶液を他の溶媒で希釈したものであっても良い。 Specifically, the polyimide precursor composition is in the form of a solution in which the polyimide precursor is dissolved in an organic solvent, and has such a form, for example, when the polyimide precursor is synthesized in an organic solvent. The polyimide precursor composition may be obtained by further adding itself or the same solution of the polyimide precursor solution obtained after the polymerization, or the polyimide precursor solution obtained after the polymerization. It may be diluted with another solvent.

前記ポリイミド前駆体組成物は、フィルム形成工程で塗布性などの工程性を考慮して、適切な粘度を有させる量で固形分を含むことが望ましく、前記固形分は、ポリイミド前駆体組成物総重量に対して5〜20重量%に含まれうる。または、前記ポリイミド前駆体組成物が、400〜50,000cPの粘度を有するように調節することが望ましい。ポリイミド前駆体組成物の粘度が400cP未満であり、ポリイミド前駆体組成物の粘度が50,000cPを超過する場合、前記ポリイミド前駆体組成物を利用したディスプレイ基板の製造時に、流動性が低下して、コーティング時に均一に塗布にならないなどの製造工程上の問題点を引き起こし得る。 It is desirable that the polyimide precursor composition contains a solid content in an amount that gives an appropriate viscosity in consideration of processability such as coatability in the film forming step, and the solid content is the total amount of the polyimide precursor composition. It can be contained in 5 to 20% by weight based on the weight. Alternatively, it is desirable to adjust the polyimide precursor composition so that it has a viscosity of 400 to 50,000 cP. When the viscosity of the polyimide precursor composition is less than 400 cP and the viscosity of the polyimide precursor composition exceeds 50,000 cP, the fluidity is lowered during the production of the display substrate using the polyimide precursor composition. , It may cause problems in the manufacturing process such as not being applied uniformly at the time of coating.

次いで、前記で製造したポリイミド前駆体組成物を基板の一面に塗布し、80〜500℃の温度で熱イミド化及び硬化した後、基板から分離することにより、ポリイミドフィルムが製造可能である。 Next, the polyimide precursor composition produced above is applied to one surface of a substrate, thermally imidized and cured at a temperature of 80 to 500 ° C., and then separated from the substrate to produce a polyimide film.

この際、前記基板としては、ガラス、金属基板またはプラスチック基板などが特に制限なしに使われ、そのうちでも、ポリイミド前駆体に対するイミド化及び硬化工程のうち、熱及び化学的安定性に優れ、別途の離型剤処理なしでも、硬化後、形成されたポリイミド系フィルムに対して損傷なしに容易に分離されるガラス基板が望ましい。 At this time, as the substrate, a glass, a metal substrate, a plastic substrate, or the like is used without particular limitation, and among them, among the imidization and curing steps for the polyimide precursor, the substrate is excellent in thermal and chemical stability, and is separately provided. It is desirable to use a glass substrate that can be easily separated from the formed polyimide-based film after curing without damage even without the release agent treatment.

また、前記塗布工程は、通常の塗布方法によって実施され、具体的には、スピンコーティング法、バーコーティング法、ロールコーティング法、エアナイフ法、グラビア法、リバースロール法、キスロール法、ドクターブレード法、スプレー法、浸漬法またはブラシ法などが用いられうる。そのうちでも、連続工程が可能であり、ポリイミドのイミド化率を増加させることができるキャスティング法によって実施されることがより望ましい。 Further, the coating step is carried out by a normal coating method, and specifically, a spin coating method, a bar coating method, a roll coating method, an air knife method, a gravure method, a reverse roll method, a kiss roll method, a doctor blade method, and a spray. A method, a dipping method, a brush method, etc. may be used. Among them, it is more preferable to carry out by a casting method capable of a continuous step and increasing the imidization rate of the polyimide.

また、前記ポリイミド前駆体組成物は、最終的に製造されるポリイミドフィルムをして、ディスプレイ基板用として適した厚さを有させる厚さ範囲で基板上に塗布されうる。 In addition, the polyimide precursor composition can be applied to a polyimide film finally produced on the substrate in a thickness range having a thickness suitable for a display substrate.

具体的には、10〜30μmの厚さにする量で塗布されうる。前記ポリイミド前駆体組成物塗布後、硬化工程に先立って、ポリイミド前駆体組成物内に存在する溶媒を除去するための乾燥工程が選択的にさらに実施される。 Specifically, it can be applied in an amount having a thickness of 10 to 30 μm. After applying the polyimide precursor composition, a drying step for removing the solvent present in the polyimide precursor composition is selectively further carried out prior to the curing step.

前記乾燥工程は、通常の方法によって実施され、具体的に、140℃以下、あるいは80〜140℃の温度で実施される。乾燥工程の実施温度が80℃未満であれば、乾燥工程が長くなり、140℃を超過する場合、イミド化が急激に進行して、均一な厚さのポリイミドフィルムの形成が難しい。 The drying step is carried out by a usual method, and specifically, is carried out at a temperature of 140 ° C. or lower, or 80 to 140 ° C. If the temperature at which the drying step is carried out is less than 80 ° C., the drying step becomes long, and if it exceeds 140 ° C., imidization proceeds rapidly, making it difficult to form a polyimide film having a uniform thickness.

引き続き、前記硬化工程は、80〜500℃の温度での熱処理によって進行しうる。前記硬化工程は、前記温度範囲内で多様な温度での多段階加熱処理で進行することもできる。また、前記硬化工程時に、硬化時間は特に限定されず、一例として、3〜60分間実施される。 Subsequently, the curing step can proceed by heat treatment at a temperature of 80-500 ° C. The curing step can also proceed by a multi-step heat treatment at various temperatures within the temperature range. Further, during the curing step, the curing time is not particularly limited, and is carried out for 3 to 60 minutes as an example.

また、前記硬化工程後に、ポリイミドフィルム内のポリイミドのイミド化率を高めて、前述した物性的特徴を有するポリイミド系フィルムを形成するために、後続の熱処理工程が選択的にさらに実施することもできる。 Further, after the curing step, a subsequent heat treatment step can be selectively further carried out in order to increase the imidization rate of the polyimide in the polyimide film and form the polyimide-based film having the above-mentioned physical characteristics. ..

前記後続の熱処理工程は、200℃以上、あるいは200〜500℃で1〜30分間実施されることが望ましい。また、前記後続の熱処理工程は、1回実施することもでき、または、2回以上多段階で実施することもできる。具体的には、200〜220℃での第1熱処理、300〜380℃での第2熱処理及び400〜500℃での第3熱処理を含む3段階で実施され、望ましくは、最終硬化温度が450℃以上である条件で30分以上硬化させて製造可能である。 It is desirable that the subsequent heat treatment step be carried out at 200 ° C. or higher, or 200 to 500 ° C. for 1 to 30 minutes. Further, the subsequent heat treatment step may be carried out once, or may be carried out twice or more in multiple steps. Specifically, it is carried out in three stages including a first heat treatment at 200 to 220 ° C., a second heat treatment at 300 to 380 ° C., and a third heat treatment at 400 to 500 ° C., preferably having a final curing temperature of 450. It can be manufactured by curing for 30 minutes or more under the condition of ° C. or higher.

以後、基板上に形成されたポリイミドフィルムを通常の方法によって基板から剥離することにより、ポリイミドフィルムが製造可能である。 After that, the polyimide film can be produced by peeling the polyimide film formed on the substrate from the substrate by a usual method.

本発明によるポリイミドは、約360℃以上のガラス転移温度を有するものである。このように優れた耐熱性を有するために、前記ポリイミドを含むフィルムは、素子製造工程中に付加される高温の熱に対しても、優れた耐熱性及び機械的特性を保持することができる。 The polyimide according to the present invention has a glass transition temperature of about 360 ° C. or higher. In order to have such excellent heat resistance, the film containing the polyimide can maintain excellent heat resistance and mechanical properties even with respect to high temperature heat added during the device manufacturing process.

本発明によるポリイミドフィルムは、1%の質量減少を示す熱分解温度(Td 1%)が550℃以上であり得る。 The polyimide film according to the present invention can have a thermal decomposition temperature (Td 1%) showing a mass loss of 1% of 550 ° C. or higher.

また、本発明によるポリイミドフィルムは、機械的物性が非常に優れ、例えば、延伸率(Elongation)は、10%以上、望ましくは、20%以上であり、引張強度は、400MPa以上、望ましくは、450MPa以上、より望ましくは、500MPa以上であり、引張モジュラス(Tensile Modulus)は、10GPa以上であり得る。 Further, the polyimide film according to the present invention has very excellent mechanical properties, for example, the elongation is 10% or more, preferably 20% or more, and the tensile strength is 400 MPa or more, preferably 450 MPa. As described above, more preferably, it is 500 MPa or more, and the tensile modulus (Tensile Modulus) can be 10 GPa or more.

本発明によるポリイミドは、素子用基板、ディスプレイ用カバー基板、光学フィルム(optical film)、IC(integrated circuit)パッケージ、粘着フィルム(adhesive film)、多層FPC(flexible printed circuit)、テープ、タッチパネル、光ディスク用保護フィルムのような多様な分野に使われる。 The polyimide according to the present invention is used for element substrates, display cover substrates, optical films, IC (integrated circuit) packages, adhesive films, multilayer FPCs (flexible printed circuits), tapes, touch panels, and optical disks. Used in various fields such as protective films.

本発明は、前記ポリイミドフィルムを含むフレキシブルディスプレイ装置を提供する。例えば、前記ディスプレイ装置は、液晶表示装置(liquid crystal display device、LCD)、有機発光ダイオード(organic light emitting diode、OLED)などが挙げられ、特に、高温工程を必要とするLTPS(low temperature polycrystalline silicon)工程を使用するOLEDデバイスに適するが、これに限定されるものではない。 The present invention provides a flexible display device including the polyimide film. For example, the display device includes a liquid crystal display device (liquid crystal display device, LCD), an organic light emitting device, an organic light emitting diode (OLED), and the like, and in particular, a LTPS (low temperature primary radio) that requires a high temperature process. Suitable for, but not limited to, OLED devices that use the process.

以下、当業者が容易に実施できるように、本発明の実施例について詳しく説明する。しかし、本発明は、さまざまな異なる形態として具現可能であり、ここで説明する実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described in detail so that those skilled in the art can easily carry out the invention. However, the present invention can be embodied in a variety of different forms and is not limited to the examples described herein.

<製造例1>化学式3の化合物の合成
窒素気流が流れる攪拌機内に有機溶媒NMP(N−メチル−2−ピロリドン)80gを満たした後、反応器の温度を25℃に保持した状態でアニリン18.99g(0.204mol)を溶解させた。前記アニリン溶液に3,3',4,4'−ビフェニルカルボン酸二無水物(s−BPDA)30.0g(0.102mol)とNMP 93.7gとを同じ温度で添加して、一定時間溶解しながら撹拌した後、化学式3の化合物を合成した。
[化学式3]

Figure 0006938838
。 <Production Example 1> Synthesis of the compound of Chemical Formula 3 After filling 80 g of the organic solvent NMP (N-methyl-2-pyrrolidone) in a stirrer through which a nitrogen stream flows, aniline 18 is maintained at a reactor temperature of 25 ° C. .99 g (0.204 mol) was dissolved. To the aniline solution, 30.0 g (0.102 mol) of 3,3', 4,4'-biphenylcarboxylic acid dianhydride (s-BPDA) and 93.7 g of NMP were added at the same temperature and dissolved for a certain period of time. After stirring while stirring, the compound of Chemical Formula 3 was synthesized.
[Chemical formula 3]
Figure 0006938838
..

<実施例1>BPDA−pPDA/化学式3の化合物(98.9:100:2.2)ポリイミド重合
窒素気流が流れる攪拌機内に有機溶媒NMP(N−メチル−2−ピロリドン)100gを満たした後、反応器の温度を25℃に保持した状態でパラフェニレンジアミン(p−PDA)6.192g(57.259mmol)を溶解させた。前記p−PDA溶液に3,3',4,4'−ビフェニルカルボン酸二無水物(s−BPDA)16.661g(56.629mmol)とNMP 56.96gとを同じ温度で添加して、一定時間溶解しながら撹拌した後、ポリアミド酸を重合した。
<Example 1> BPDA-pPDA / Compound of chemical formula 3 (98.9: 100: 2.2) Polyimide polymerization After filling 100 g of the organic solvent NMP (N-methyl-2-pyrrolidone) in a stirrer through which a nitrogen stream flows. 6.192 g (57.259 mmol) of para-phenylenediamine (p-PDA) was dissolved while maintaining the temperature of the reactor at 25 ° C. 16.661 g (56.629 mmol) of 3,3', 4,4'-biphenylcarboxylic acid dianhydride (s-BPDA) and 56.96 g of NMP were added to the p-PDA solution at the same temperature to maintain a constant value. After stirring while dissolving for a time, the polyamic acid was polymerized.

以後、前記ポリアミド酸溶液に製造例1で製造した化学式3の化合物2wt%を投入して、一定時間撹拌して、ポリイミド組成物を製造した。 After that, 2 wt% of the compound of Chemical Formula 3 produced in Production Example 1 was added to the polyamic acid solution, and the mixture was stirred for a certain period of time to produce a polyimide composition.

前記反応から製造されたポリイミド前駆体溶液の固形分濃度を12.8重量%になるように、前記有機溶媒を添加して、ポリイミド前駆体溶液を製造した。 The organic solvent was added so that the solid content concentration of the polyimide precursor solution produced from the reaction was 12.8% by weight to produce a polyimide precursor solution.

前記ポリイミド前駆体溶液をガラス基板にスピンコーティングした。ポリイミド前駆体溶液が塗布されたガラス基板をオーブンに入れ、6℃/minの速度で加熱し、120℃で10分、460℃で55分を保持して硬化工程を進行した。硬化工程完了後に、ガラス基板を水に浸してガラス基板上に形成されたフィルムを取り外して、オーブンで100℃に乾燥して、厚さが10μmであるポリイミドフィルムを製造した。 The polyimide precursor solution was spin-coated on a glass substrate. The glass substrate coated with the polyimide precursor solution was placed in an oven, heated at a rate of 6 ° C./min, and held at 120 ° C. for 10 minutes and 460 ° C. for 55 minutes to proceed with the curing step. After the curing step was completed, the glass substrate was immersed in water to remove the film formed on the glass substrate, and dried in an oven at 100 ° C. to produce a polyimide film having a thickness of 10 μm.

<実施例2>BPDA−pPDA/化学式4の化合物(98.9:100:2.2)ポリイミド重合
化学式4の化合物を使用したことを除いては、実施例1と同様に厚さ10μmであるポリイミドフィルムを製造した。
<Example 2> BPDA-pPDA / Compound of Chemical Formula 4 (98.9: 100: 2.2) Polyimide Polymerization The thickness is 10 μm as in Example 1 except that the compound of Chemical Formula 4 is used. A polyimide film was manufactured.

<比較例1>BPDA−pPDA(98.9:100)ポリイミド重合
窒素気流が流れる攪拌機内に有機溶媒NMP(N−メチル−2−ピロリドン)100gを満たした後、反応器の温度を25℃に保持した状態でパラフェニレンジアミン(p−PDA)6.243g(57.726mmol)を溶解させた。前記p−PDA溶液に3,3',4,4'−ビフェニルカルボン酸二無水物(s−BPDA)16.797g(57.091mmol)とNMP 56.96gとを同じ温度で添加して、一定時間溶解しながら撹拌した後、ポリイミド前駆体を製造した。
<Comparative Example 1> BPDA-pPDA (98.9: 100) Polyimide Polymerization After filling 100 g of the organic solvent NMP (N-methyl-2-pyrrolidone) in a stirrer through which a nitrogen stream flows, the temperature of the reactor is raised to 25 ° C. 6.243 g (57.726 mmol) of para-phenylenediamine (p-PDA) was dissolved in the retained state. 16.797 g (57.091 mmol) of 3,3', 4,4'-biphenylcarboxylic acid dianhydride (s-BPDA) and 56.96 g of NMP were added to the p-PDA solution at the same temperature to make a constant amount. After stirring while dissolving for a time, a polyimide precursor was produced.

前記反応から製造されたポリイミド前駆体を固形分濃度を12.8重量%になるように、前記有機溶媒を添加して、ポリイミド前駆体溶液を製造した。 The organic solvent was added to the polyimide precursor produced from the reaction so that the solid content concentration was 12.8% by weight to produce a polyimide precursor solution.

前記ポリイミド前駆体溶液をガラス基板にスピンコーティングした。ポリイミド前駆体溶液が塗布されたガラス基板をオーブンに入れ、6℃/minの速度で加熱し、120℃で10分、460℃で55分を保持して硬化工程を進行した。硬化工程完了後に、ガラス基板を水に浸してガラス基板上に形成されたフィルムを取り外して、オーブンで100℃に乾燥して、厚さが10μmであるポリイミドフィルムを製造した。 The polyimide precursor solution was spin-coated on a glass substrate. The glass substrate coated with the polyimide precursor solution was placed in an oven, heated at a rate of 6 ° C./min, and held at 120 ° C. for 10 minutes and 460 ° C. for 55 minutes to proceed with the curing step. After the curing step was completed, the glass substrate was immersed in water to remove the film formed on the glass substrate, and dried in an oven at 100 ° C. to produce a polyimide film having a thickness of 10 μm.

<実験例1>
前記製造されたそれぞれのポリイミドフィルムに対して、下記のような方法で、熱分解温度(Td 1%)、透過度、熱拡散度及び熱伝導度を測定して、表1に示した。
<Experimental example 1>
The thermal decomposition temperature (Td 1%), permeability, thermal diffusivity and thermal conductivity were measured for each of the produced polyimide films by the following methods and are shown in Table 1.

<熱分解温度の測定>
TA instruments社のDiscovery TGAを用いて窒素雰囲気、30〜00℃の区間でTGA評価進行、初期重量(100%)で1%の重量損失が発生した温度を示す。
◎:Td 1% 565℃以上
○:Td 1% 545〜564℃
X:Td 1% 545℃以下
<Measurement of pyrolysis temperature>
Using the Discovery TGA of TA instruments, the nitrogen atmosphere, the TGA evaluation progress in the interval of 30 to 00 ° C., and the temperature at which a weight loss of 1% occurred at the initial weight (100%) are shown.
⊚: Td 1% 565 ° C or higher ○: Td 1% 545-564 ° C
X: Td 1% 545 ° C or less

<透過度>
透過度は、JIS K 7105に基づいて透過率計(モデル8453 UV−visible Spectrophotometer、Agilent Technologies製造)で380〜780nmの波長に対する透過率の平均を測定した。
◎:60%以上
○:50〜60%
X:50%以下
<Transparency>
The transmittance was measured by measuring the average transmittance for a wavelength of 380 to 780 nm with a transmittance meter (model 8453 UV-visible Transmissometer, manufactured by Agilent Technologies) based on JIS K 7105.
⊚: 60% or more ○: 50-60%
X: 50% or less

<比熱及び密度>
ポリイミドフィルムの比熱(J/g・K)は、DSC法で測定し、密度(g/cm)は、アルキメデス法で測定した。
<Specific heat and density>
The specific heat (J / g · K) of the polyimide film was measured by the DSC method, and the density (g / cm 3 ) was measured by the Archimedes method.

<熱拡散度>
図4に示されたNETZSCH社のLFA 467装置を使用して熱拡散度を測定した。サンプルは、フィルムを10mm×12.7mmサイズの四角形に切り、図5に示したように、サンプルの両側面に金を250〜500nmの厚さに蒸着して準備した。
<Heat diffusivity>
The degree of thermal diffusivity was measured using the LFA 467 apparatus of NETZSCH Co., Ltd. shown in FIG. The sample was prepared by cutting a film into a quadrangle having a size of 10 mm × 12.7 mm and depositing gold on both side surfaces of the sample to a thickness of 250 to 500 nm as shown in FIG.

<熱伝導度>
下記数式1によって熱伝導度を求めた。
[数式1]
熱伝導度(k)=比熱(C)×密度(ρ)×熱拡散度(α)
実施例1と比較例とで製造したポリイミドフィルムに対して、Td 1%、透過度、熱拡散度、密度、比重及び熱伝導度の測定結果を表1に示した。
<Thermal conductivity>
The thermal conductivity was calculated by the following formula 1.
[Formula 1]
Thermal conductivity (k) = specific heat (C) x density (ρ) x thermal diffusivity (α)
Table 1 shows the measurement results of Td 1%, transmittance, thermal diffusivity, density, specific gravity and thermal conductivity with respect to the polyimide films produced in Example 1 and Comparative Example.

Figure 0006938838
Figure 0006938838

表1の結果に示すように、化学式3の単分子を添加して製造されたポリイミドフィルムは、熱分解特性及び透過性は保持しながら、比重、密度及び熱拡散度が向上し、その結果、熱伝導度が比較例に比べて、2.8倍以上増加したことが分かる。したがって、本発明によるポリイミドフィルムは、優れた放熱特性によってスレショルド電圧のシフトによる電流変動が抑制されて、残像問題が解決される。 As shown in the results of Table 1, the polyimide film produced by adding a single molecule of chemical formula 3 has improved specific gravity, density and thermal diffusivity while maintaining thermal decomposition characteristics and permeability, and as a result, It can be seen that the thermal conductivity increased by 2.8 times or more as compared with the comparative example. Therefore, in the polyimide film according to the present invention, the current fluctuation due to the shift of the threshold voltage is suppressed due to the excellent heat dissipation characteristics, and the afterimage problem is solved.

以上、本発明の内容の特定の部分を詳しく記述したところ、当業者において、このような具体的記述は、単に望ましい実施態様であり、これにより、本発明の範囲が制限されるものではないという点は明白である。したがって、本発明の実質的な範囲は、下記の特許請求の範囲とそれらの等価物とによって定義される。 As described above, when a specific part of the content of the present invention is described in detail, those skilled in the art say that such a specific description is merely a desirable embodiment, and the scope of the present invention is not limited by this. The point is clear. Therefore, the substantial scope of the present invention is defined by the following claims and their equivalents.

Claims (9)

イミド単分子化合物を有機フィラーとして含み、下記数式1によって定義される熱伝導度(k)が0.2W/m・K以上であるポリイミドフィルムであって、
前記イミド単分子化合物が、下記化学式1及び化学式2の化合物から選択される1つ以上であり、
前記ポリイミドフィルムは、3,3',4,4'−ビフェニルカルボン酸二無水物(s−BPDA)及び4,4'−パラフェニレンジアミン(pPDA)を重合成分とするポリイミドフィルム:
[数式1]
熱伝導度(k)=比熱(C)×密度(ρ)×熱拡散度(α)
前記数式1において、C、ρ及びαは、それぞれポリイミドフィルムの比熱(J/g・K)、密度(g/cm)及び熱拡散度(mm/sec)を示し、
[化学式1]
Figure 0006938838
[化学式2]
Figure 0006938838
前記化学式1及び化学式2において、X、Y、X 及びY は、炭素数6〜12の単環または多環芳香族環または複数個の単環芳香族環が連結された有機基である。
A polyimide film containing an imide monomolecular compound as an organic filler and having a thermal conductivity (k) of 0.2 W / m · K or more as defined by the following mathematical formula 1 .
The imide monomolecular compound is one or more selected from the compounds of the following chemical formulas 1 and 2.
The polyimide film contains 3,3', 4,4'-biphenylcarboxylic acid dianhydride (s-BPDA) and 4,4'-para-phenylenediamine (pPDA) as polymerization components.
[Formula 1]
Thermal conductivity (k) = specific heat (C) x density (ρ) x thermal diffusivity (α)
In Equation 1, C, is ρ and alpha, specific heat of each polyimide film (J / g · K), density (g / cm 3) and the thermal diffusivity a (mm 2 / sec) indicates,
[Chemical formula 1]
Figure 0006938838
[Chemical formula 2]
Figure 0006938838
In Formula 1 and Formula 2, X, Y, X 1 and Y 1 is a monocyclic or polycyclic aromatic ring or a plurality of monocyclic aromatic rings linked organic group having 6 to 12 carbon atoms ..
前記化学式1または化学式2の化合物が、下記化学式3または化学式4の化合物である請求項に記載のポリイミドフィルム:
[化学式3]
Figure 0006938838
[化学式4]
Figure 0006938838
The polyimide film according to claim 1 , wherein the compound of the chemical formula 1 or the chemical formula 2 is a compound of the following chemical formula 3 or the chemical formula 4.
[Chemical formula 3]
Figure 0006938838
[Chemical formula 4]
Figure 0006938838
..
前記3,3',4,4'−ビフェニルカルボン酸二無水物(s−BPDA)及び4,4'−パラフェニレンジアミン(pPDA)のmol比が、0.98:1〜0.99:1である請求項1または2に記載のポリイミドフィルム。 The mol ratio of 3,3', 4,4'-biphenylcarboxylic acid dianhydride (s-BPDA) and 4,4'-para-phenylenediamine (pPDA) is 0.98: 1 to 0.99: 1. The polyimide film according to claim 1 or 2. 前記ポリイミドフィルムは、10μmの厚さで測定した比熱1.5J/g・K以上、密度1.5g/cm以上、熱拡散度が0.07mm/sec以上である請求項1からのいずれか一項に記載のポリイミドフィルム。 The polyimide film is measured specific heat 1.5 J / g · K or more at a thickness of 10 [mu] m, density 1.5 g / cm 3 or more, the thermal diffusivity is of claims 1 to 3 is 0.07 mm 2 / sec or more The polyimide film according to any one of the items. 重合溶媒に4,4'−パラフェニレンジアミン(pPDA)1molに対して3,3',4,4'−ビフェニルカルボン酸二無水物(s−BPDA)を1mol未満に含む重合成分を添加してポリイミド前駆体を製造する段階と、
前記ポリイミド前駆体溶液にイミド単分子化合物を有機フィラーとして添加する段階と、
前記ポリイミド前駆体溶液を基板上に塗布する段階と、
前記塗布されたポリイミド前駆体溶液を乾燥及び加熱する段階と、
を含むポリイミドフィルムの製造方法であって、
前記イミド単分子化合物が、下記化学式1または化学式2の化合物から選択される1つ以上であるポリイミドフィルムの製造方法:
[化学式1]
Figure 0006938838
[化学式2]
Figure 0006938838
前記化学式1及び化学式2において、X、Y、X 及びY は、炭素数6〜12の単環または多環芳香族環または複数個の単環芳香族環が連結された有機基である。
A polymerization component containing less than 1 mol of 3,3', 4,4'-biphenylcarboxylic acid dianhydride (s-BPDA) with respect to 1 mol of 4,4'-para-phenylenediamine (pPDA) was added to the polymerization solvent. The stage of manufacturing the polyimide precursor and
The step of adding an imide monomolecular compound as an organic filler to the polyimide precursor solution, and
The stage of applying the polyimide precursor solution on the substrate and
The steps of drying and heating the applied polyimide precursor solution, and
A method for producing a polyimide film containing
A method for producing a polyimide film in which the imide monomolecular compound is one or more selected from the compounds of the following chemical formula 1 or chemical formula 2.
[Chemical formula 1]
Figure 0006938838
[Chemical formula 2]
Figure 0006938838
In Formula 1 and Formula 2, X, Y, X 1 and Y 1 is a monocyclic or polycyclic aromatic ring or a plurality of monocyclic aromatic rings linked organic group having 6 to 12 carbon atoms ..
前記化学式1または化学式2の化合物が、下記化学式3または化学式4の化合物である請求項に記載のポリイミドフィルムの製造方法:
[化学式3]
Figure 0006938838
[化学式4]
Figure 0006938838
The method for producing a polyimide film according to claim 5 , wherein the compound of the chemical formula 1 or the chemical formula 2 is a compound of the following chemical formula 3 or the chemical formula 4.
[Chemical formula 3]
Figure 0006938838
[Chemical formula 4]
Figure 0006938838
..
前記イミド単分子化合物を前駆体溶液総重量を基準に0.1〜10重量%に含む請求項5または6に記載のポリイミドフィルムの製造方法。 The method for producing a polyimide film according to claim 5 or 6 , wherein the imide monomolecular compound is contained in 0.1 to 10% by weight based on the total weight of the precursor solution. 前記ポリイミド前駆体溶液の乾燥及び加熱を通じる硬化工程において、
最終硬化温度が450℃以上である請求項からのいずれか一項に記載のポリイミドフィルムの製造方法。
In the curing step through drying and heating of the polyimide precursor solution,
The method for producing a polyimide film according to any one of claims 5 to 7 , wherein the final curing temperature is 450 ° C. or higher.
請求項1から請求項のうち何れか一項に記載のポリイミドフィルムを基板として含むフレキシブルディスプレイ素子。 A flexible display device containing the polyimide film according to any one of claims 1 to 4 as a substrate.
JP2019568305A 2018-02-13 2019-01-23 Polyimide film with improved thermal conductivity and its manufacturing method Active JP6938838B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2018-0017561 2018-02-13
KR20180017561 2018-02-13
KR10-2019-0000095 2019-01-02
KR1020190000095A KR102338871B1 (en) 2018-02-13 2019-01-02 A polyimide film with improved thermal conductivity and a method for preparing same
PCT/KR2019/000940 WO2019160252A1 (en) 2018-02-13 2019-01-23 Polyimide film having improved thermal conductivity and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2020523448A JP2020523448A (en) 2020-08-06
JP6938838B2 true JP6938838B2 (en) 2021-09-22

Family

ID=67808326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019568305A Active JP6938838B2 (en) 2018-02-13 2019-01-23 Polyimide film with improved thermal conductivity and its manufacturing method

Country Status (6)

Country Link
US (1) US11649354B2 (en)
EP (1) EP3620483B1 (en)
JP (1) JP6938838B2 (en)
KR (1) KR102338871B1 (en)
CN (1) CN110753721B (en)
TW (1) TWI791748B (en)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906730A (en) 1988-05-06 1990-03-06 General Electric Company Polyetherimide blends, and molding method
JPH04211225A (en) 1990-03-15 1992-08-03 Canon Inc Liquid crystal element and display method and display device using the same
JP3176276B2 (en) 1995-01-13 2001-06-11 三井化学株式会社 Polyimide resin composition
US5763537A (en) 1995-01-13 1998-06-09 Mitsui Toatsu Chemicals, Inc. Polyimide based resin composition
KR100646248B1 (en) 2004-05-04 2006-11-23 주식회사 엘지화학 The Preparation Method of 2-Layer Copper Clad Laminate
JP2006274040A (en) 2005-03-29 2006-10-12 Du Pont Toray Co Ltd Polyimide film and flexible circuit board using the same
KR101467563B1 (en) * 2007-10-29 2014-12-01 코오롱인더스트리 주식회사 Polyimide composite
JP5364414B2 (en) 2009-03-30 2013-12-11 三井化学株式会社 Polyimide resin composition and metal laminate using the same
JP5646823B2 (en) 2009-05-27 2014-12-24 株式会社カネカ High thermal conductivity polyimide film
JP2011032430A (en) 2009-08-05 2011-02-17 Nitto Denko Corp Infrared absorptive thermally conductive polyimide film and self-adhesive sheet
JP2011107518A (en) 2009-11-19 2011-06-02 Nitto Denko Corp Tubular body for electromagnetic induction heating
CN101805517B (en) 2010-03-02 2012-05-09 天津恒通时代电工材料科技有限公司 Manufacturing method of inorganic particle filled polyimide film
KR20110099939A (en) 2010-03-03 2011-09-09 숭실대학교산학협력단 Liquid crystal device and its method for homeotropic alignment by using liquid crystal and photocurable monomer composite system through light irradiation
WO2011111684A1 (en) 2010-03-10 2011-09-15 新日鐵化学株式会社 Thermally conductive polyimide film and thermally conductive laminate produced using same
JP2013189568A (en) 2012-03-14 2013-09-26 Du Pont-Toray Co Ltd Highly thermally conductive polyimide film containing graphite powder
JPWO2014123045A1 (en) 2013-02-07 2017-02-02 株式会社カネカ Alkoxysilane-modified polyamic acid solution, laminate and flexible device using the same, and method for producing laminate
KR101775198B1 (en) * 2013-04-09 2017-09-06 주식회사 엘지화학 A laminate structure and a device comprising a substrate manufactured by using same
KR20150095113A (en) 2014-02-12 2015-08-20 에스케이씨코오롱피아이 주식회사 Polyimide film
JP6801648B2 (en) * 2015-05-25 2020-12-16 コニカミノルタ株式会社 Polyimide film, polyimide film manufacturing method, flexible printed circuit board, flexible display board, flexible display front plate, LED lighting device and organic electroluminescence display device
KR102125911B1 (en) * 2015-10-29 2020-06-23 피아이첨단소재 주식회사 Polyimide film and preparation method thereof
JP2017171736A (en) 2016-03-22 2017-09-28 日産化学工業株式会社 Manufacturing method of heat conductive resin film
KR102581446B1 (en) 2016-04-05 2023-09-21 삼성디스플레이 주식회사 Alignment film composition, liquid crystal display device and manufacturing method of the liquid crystal display device
KR20170115339A (en) 2016-04-07 2017-10-17 주식회사 엘지화학 Polyimide film having improved heat resistant and method for preparing same

Also Published As

Publication number Publication date
CN110753721A (en) 2020-02-04
US11649354B2 (en) 2023-05-16
TW201945445A (en) 2019-12-01
KR20190098042A (en) 2019-08-21
US20210147679A1 (en) 2021-05-20
TWI791748B (en) 2023-02-11
EP3620483A4 (en) 2020-06-24
KR102338871B1 (en) 2021-12-13
EP3620483A1 (en) 2020-03-11
JP2020523448A (en) 2020-08-06
CN110753721B (en) 2022-08-16
EP3620483B1 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
CN112204077B (en) Polyimide precursor composition, polyimide film prepared by using same, substrate for display device, and optical device
JP6938837B2 (en) Polyimide film for flexible display element substrate
JP7167412B2 (en) Method for producing polyimide film
JP6927535B2 (en) Polyimide film for display board
JP6938838B2 (en) Polyimide film with improved thermal conductivity and its manufacturing method
KR20200042222A (en) Polyimide precursor and polyimide film manufactured by using same
TWI809172B (en) Polyimide precursor composition, polyimide film, and flexible device and process for preparing the same
KR102279081B1 (en) Polyimide film and flexible device using same
JP2022518984A (en) Polyimide precursor composition and polyimide films produced from it, substrates for display devices, and optics.
JP6938839B2 (en) Polyimide film for display board
TWI750497B (en) Polyimide film, flexible device using same and preparation process thereof
KR102465430B1 (en) Polyimide precursor composition and polyimide film substrate for display device, and optical device prepared by using same
KR102224986B1 (en) Diamine compound, polyimide precursor and polyimide film prepared by using same
JP2022503568A (en) Diamine compound, polyimide precursor using it and polyimide film
JP2021516277A (en) Polyimide precursor composition, its production method and a polyimide film using it
KR20200046881A (en) Polyimide precursor and polyimide film manufactured by using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210813

R150 Certificate of patent or registration of utility model

Ref document number: 6938838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150