JP6938427B2 - Manufacturing method of electrophotographic photosensitive member and electrophotographic photosensitive member and image forming apparatus - Google Patents

Manufacturing method of electrophotographic photosensitive member and electrophotographic photosensitive member and image forming apparatus Download PDF

Info

Publication number
JP6938427B2
JP6938427B2 JP2018102243A JP2018102243A JP6938427B2 JP 6938427 B2 JP6938427 B2 JP 6938427B2 JP 2018102243 A JP2018102243 A JP 2018102243A JP 2018102243 A JP2018102243 A JP 2018102243A JP 6938427 B2 JP6938427 B2 JP 6938427B2
Authority
JP
Japan
Prior art keywords
cylindrical substrate
photosensitive member
electrophotographic photosensitive
vapor deposition
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018102243A
Other languages
Japanese (ja)
Other versions
JP2019207311A (en
Inventor
大輔 長浜
大輔 長浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2018102243A priority Critical patent/JP6938427B2/en
Publication of JP2019207311A publication Critical patent/JP2019207311A/en
Application granted granted Critical
Publication of JP6938427B2 publication Critical patent/JP6938427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Cleaning In Electrography (AREA)

Description

本発明は、電子写真感光体の製造方法、および、それにより得られる電子写真感光体、ならびに画像形成装置に関する。 The present invention relates to a method for producing an electrophotographic photosensitive member, an electrophotographic photosensitive member obtained thereby, and an image forming apparatus.

画像形成装置に用いられる電子写真感光体は、たとえば、全体がアルミニウム(Al)系材料で形成された円筒状の基体の外周面の表面である外表面(最表面ともいう)に、電荷注入阻止層,光導電層,表面保護層等からなる表面層を形成した構成をとる。このアルミニウム製の円筒状基体は、軽量かつ低コストで電子写真感光体を製造可能であり、その上、前記の表面層をアモルファスシリコン(a−Si)系材料で形成する場合には、基体のアルミニウム表面と、その表面上に成膜形成される膜状の表面層との間の密着性が高くなって、信頼性を向上させることができるという利点を有する。 The electrophotographic photosensitive member used in the image forming apparatus, for example, prevents charge injection on the outer surface (also referred to as the outermost surface) which is the outer peripheral surface of a cylindrical substrate entirely made of an aluminum (Al) -based material. It has a structure in which a surface layer composed of a layer, a photoconductive layer, a surface protection layer, etc. is formed. This aluminum cylindrical substrate can produce an electrophotographic photosensitive member at low cost and light weight, and moreover, when the surface layer is formed of an amorphous silicon (a-Si) -based material, the substrate can be manufactured. It has an advantage that the adhesion between the aluminum surface and the film-like surface layer formed on the surface of the aluminum is increased, and the reliability can be improved.

前述の表面層は、たとえばプラズマCVD装置,グロー放電分解装置等の堆積膜形成装置を用いて形成することができる。このようなプラズマCVD装置等を用いれば、1つの装置にて、真空反応室内の真空状態を維持したまま、円筒状基体の外周面の粗面化処理と、表面層を構成する各層の形成処理とを、連続的に行なうことができる(特許文献1,2等を参照)。 The above-mentioned surface layer can be formed by using a deposit film forming apparatus such as a plasma CVD apparatus or a glow discharge decomposition apparatus. If such a plasma CVD apparatus or the like is used, one apparatus can roughen the outer peripheral surface of the cylindrical substrate and form each layer constituting the surface layer while maintaining the vacuum state in the vacuum reaction chamber. Can be performed continuously (see Patent Documents 1, 2, etc.).

円筒状基体は、上記の成膜工程とは別の基体製造工程または工場等で製造されており、素管と呼ばれる、外表面を露出した状態で、表面層の成膜工程または工場に移送あるいは搬送されて、納入等される。円筒状基体の製造は、特許文献3に開示のように、たとえばアルミニウム系材料を熱間押し出し加工、または冷間引き抜き加工した管状体を所定の長さに切断してなる円筒状基体の外表面に、センタレス研磨加工を施した後、この基体の両端に、外表面を加工基準にして切削によるインロー(印籠)部加工を施し、さらにこのインロー部切削加工面を加工基準にして、この基体の外表面に切削加工を施す方法等によって行なわれる。 The cylindrical substrate is manufactured in a substrate manufacturing process or a factory different from the above-mentioned film forming process, and is transferred to a surface layer film forming process or a factory in a state where the outer surface is exposed, which is called a raw tube. It is transported and delivered. As disclosed in Patent Document 3, the cylindrical substrate is manufactured by cutting a tubular body obtained by hot-extruding or cold-drawing an aluminum-based material to a predetermined length, for example, on the outer surface of the cylindrical substrate. After performing centerless polishing, both ends of this substrate are machined with the in-row part by cutting with the outer surface as the processing standard, and the machined surface of the in-row part is used as the processing standard for this substrate. It is performed by a method of cutting the outer surface.

特開平10−186698号公報Japanese Unexamined Patent Publication No. 10-186698 特開2009−64030号公報JP-A-2009-64030 特開2003−162078号公報Japanese Unexamined Patent Publication No. 2003-162078

ところで、成膜工程前の円筒状基体の素管は、前述のように、端部切断および切削等の金属加工を経て、切削加工の精度のため、あるいは切削加工による応力が蓄積されているため、素管の外周面である外表面の円周形状は、各素管個々に異なる。したがって、円筒状基体の素管の中には、外表面の円周形状が周方向部分的に設計仕様を満たさないもの、あるいは周方向に変動しているもの等が含まれている可能性があり、そのような円筒状基体は、外表面の真円度が低下しているものと考えられる。 By the way, as described above, the raw tube of the cylindrical substrate before the film forming process undergoes metal processing such as end cutting and cutting, and because of the accuracy of the cutting process or because the stress due to the cutting process is accumulated. , The circumferential shape of the outer surface, which is the outer peripheral surface of the raw pipe, is different for each raw pipe. Therefore, it is possible that some of the raw tubes of the cylindrical substrate do not meet the design specifications partially in the circumferential direction, or the circumferential shape of the outer surface fluctuates in the circumferential direction. There is, and it is considered that the roundness of the outer surface of such a cylindrical substrate is reduced.

上述のような、外表面の円周形状が周方向で部分的に異なる、すなわち真円度の低下した素管を円筒状基体として、その外表面上に表面層の成膜形成を行ない、この電子写真感光体を画像形成装置に組み込んで、印刷を実行すると、電子写真感光体とその周囲に位置するローラまたはブレードとの、間隙,ギャップあるいは接圧等が周方向で変動して、濃淡模様等の画像異常を招く場合がある。 As described above, the circumferential shape of the outer surface is partially different in the circumferential direction, that is, a raw tube having a reduced roundness is used as a cylindrical substrate, and a surface layer is formed on the outer surface. When the electrophotographic photosensitive member is incorporated into an image forming apparatus and printing is performed, the gap, gap, contact pressure, etc. between the electrophotographic photosensitive member and the rollers or blades located around the electrophotographic photosensitive member fluctuates in the circumferential direction, resulting in a shading pattern. It may cause image abnormalities such as.

本開示の目的は、印画品質の高い電子写真感光体を安定的に製造することのできる方法、および、その方法によって得られる高品質な電子写真感光体と、この電子写真感光体を備えることにより画像異常の発生を抑制することのできる画像形成装置を提供することである。 An object of the present disclosure is to provide a method capable of stably producing an electrophotographic photosensitive member having high print quality, a high-quality electrophotographic photosensitive member obtained by the method, and the electrophotographic photosensitive member. It is an object of the present invention to provide an image forming apparatus capable of suppressing the occurrence of an image abnormality.

本開示の電子写真感光体の製造方法は、円筒状基体の外周面上に表面層を備える電子写真感光体を製造する方法であって、
真円度測定装置における所定の対象物計測位置に、測定対象の円筒状基体を配置する測定準備ステップと、
前記円筒状基体と前記真円度測定装置とを相対回転させながら、前記対象物計測位置における、前記円筒状基体の外周面の測定を全周にわたって行ない、前記外周面の基準円と真円度とを算出する真円度測定ステップと、
前記真円度測定ステップで算出された前記外周面の真円度の値と、予め決められた基準真円度の値とを比較して、前記円筒状基体に対する蒸着マスクの要否を判定する蒸着マスク要否判定ステップと、
前記蒸着マスク要否判定ステップにおいて蒸着マスクが必要と判定されたとき、当該判定された前記円筒状基体に対して、該円筒状基体の回転軸方向の端部または縁部に位置する、前記外周面の周方向に連続する帯状のマスク対象領域上に、該領域への表面層の付着を阻害する蒸着マスクを、周方向に間隔を空けて複数個、配設する蒸着マスク付加ステップと、
前記蒸着マスクを含む前記円筒状基体の外周面上に、表面層を堆積させて形成する表面層成膜ステップと、
前記表面層の形成が終了した前記円筒状基体から、前記外周面上の前記蒸着マスクを取り除く蒸着マスク除去ステップと、
前記蒸着マスク要否判定ステップにおいて蒸着マスクが不要と判定されたとき、当該判定された前記円筒状基体に対して、外周面上に表面層を堆積させて形成する良品成膜ステップと、を含む。
The method for producing an electrophotographic photosensitive member of the present disclosure is a method for producing an electrophotographic photosensitive member having a surface layer on the outer peripheral surface of a cylindrical substrate.
A measurement preparation step in which a cylindrical substrate to be measured is placed at a predetermined object measurement position in the roundness measuring device, and a measurement preparation step.
While the cylindrical substrate and the roundness measuring device are relatively rotated, the outer peripheral surface of the cylindrical substrate is measured at the object measurement position over the entire circumference, and the reference circle and roundness of the outer peripheral surface are measured. The roundness measurement step to calculate and
The necessity of the thin-film deposition mask for the cylindrical substrate is determined by comparing the value of the roundness of the outer peripheral surface calculated in the roundness measurement step with the value of the predetermined reference roundness. Deposition mask necessity judgment step and
When it is determined in the step of determining the necessity of a vapor deposition mask that a vapor deposition mask is necessary, the outer periphery thereof is located at the end or edge of the cylindrical substrate in the rotation axis direction with respect to the determined cylindrical substrate. A thin-film mask addition step of arranging a plurality of thin-film masks that prevent the surface layer from adhering to the area on a strip-shaped mask target region that is continuous in the circumferential direction at intervals in the circumferential direction.
A surface layer film forming step of depositing a surface layer on the outer peripheral surface of the cylindrical substrate including the vapor deposition mask, and a surface layer film forming step.
A thin-film mask removal step of removing the thin-film mask on the outer peripheral surface from the cylindrical substrate for which the formation of the surface layer has been completed.
When it is determined in the vapor deposition mask necessity determination step that the vapor deposition mask is unnecessary, a non-defective film forming step of forming a surface layer on the outer peripheral surface of the determined cylindrical substrate is included. ..

また、本開示の電子写真感光体は、前述の製造方法を用いて製造されたものである。 Further, the electrophotographic photosensitive member of the present disclosure is manufactured by using the above-mentioned manufacturing method.

さらに、本開示の画像形成装置は、前述の電子写真感光体を備える。 Further, the image forming apparatus of the present disclosure includes the above-mentioned electrophotographic photosensitive member.

本開示の電子写真感光体の製造方法によれば、画像異常の発生が抑制された、印画品質の高い電子写真感光体を、安定的に製造することができる。また、この製造方法を用いて製造された電子写真感光体およびこの電子写真感光体を備える画像形成装置は、画像異常の発生を抑制することができる。 According to the method for producing an electrophotographic photosensitive member of the present disclosure, it is possible to stably produce an electrophotographic photosensitive member having high printing quality in which the occurrence of image abnormalities is suppressed. Further, the electrophotographic photosensitive member manufactured by using this manufacturing method and the image forming apparatus including the electrophotographic photosensitive member can suppress the occurrence of image abnormality.

実施形態の電子写真感光体の製造方法の概略を示すフロー図である。It is a flow chart which shows the outline of the manufacturing method of the electrophotographic photosensitive member of an embodiment. (a)は実施形態の電子写真感光体の半断面図、(b)は実施形態の電子写真感光体の外周面上に形成される表面層の一構成例である。(A) is a semi-cross-sectional view of the electrophotographic photosensitive member of the embodiment, and (b) is a configuration example of a surface layer formed on the outer peripheral surface of the electrophotographic photosensitive member of the embodiment. 実施形態の画像形成装置の構成を一部断面で示す構造図である。It is a structural drawing which shows the structure of the image forming apparatus of embodiment in a partial cross section. (a),(b)はそれぞれ、図3の矢印E方向から見た、電子写真感光体10と磁気ローラ(現像ローラ)のころ113Bとの摺接位置と、帯電領域(Zone)との位置関係を示す図である。In each of (a) and (b), the sliding contact position between the electrophotographic photosensitive member 10 and the roller 113B of the magnetic roller (development roller) and the position of the charged region (Zone) as viewed from the direction of arrow E in FIG. It is a figure which shows the relationship. 円筒状基体の真円度の測定方法を説明する図である。It is a figure explaining the method of measuring the roundness of a cylindrical substrate. (a),(b)はともに、円筒状基体の外周面形状に対応した蒸着マスクの配設位置の例を説明する図である。Both (a) and (b) are diagrams for explaining an example of the arrangement position of the vapor deposition mask corresponding to the outer peripheral surface shape of the cylindrical substrate. 円筒状基体の他の外周面形状に対応した蒸着マスクの配設位置の例を説明する図である。It is a figure explaining the example of the arrangement position of the vapor deposition mask corresponding to the other outer peripheral surface shape of a cylindrical substrate. 円筒状基体のさらに他の外周面形状に対応した蒸着マスクの配設位置の例を説明する図である。It is a figure explaining the example of the arrangement position of the vapor deposition mask corresponding to the other outer peripheral surface shape of a cylindrical substrate. 円筒状基体の端部に施される蒸着マスクの一例であり、テープを用いた例を示す。This is an example of a thin-film deposition mask applied to the end of a cylindrical substrate, and an example using tape is shown. 円筒状基体の端部に施される蒸着マスクの一例であり、端部カバーを用いた例を示す。This is an example of a thin-film deposition mask applied to the end of a cylindrical substrate, and an example of using an end cover is shown. 円筒状基体の端部に施される蒸着マスクの一例であり、治具様の他の端部カバーを用いた例を示す。This is an example of a thin-film deposition mask applied to the end of a cylindrical substrate, and an example of using another jig-like end cover is shown.

以下、実施形態に係る電子写真感光体の製造方法、電子写真感光体およびこれを備えた画像形成装置について、図面を参照しつつ説明する。なお、実施形態では、電子写真感光体の筒長方向に沿った、円筒の長手方向を回転軸方向、または、単に軸線方向と呼ぶ。また、以下で用いる「真円度」は、JIS B 0621−1984「幾何偏差の定義及び表示」およびJIS B 7451−1997「真円度測定機」を準用して測定されたものであり、上述の「回転軸」(回転中心)を中心として測定された基体外周面の「基準円」に対する真円度を表すものとする。 Hereinafter, a method for manufacturing an electrophotographic photosensitive member according to an embodiment, an electrophotographic photosensitive member and an image forming apparatus provided with the electrophotographic photosensitive member will be described with reference to the drawings. In the embodiment, the longitudinal direction of the cylinder along the tubular length direction of the electrophotographic photosensitive member is referred to as a rotation axis direction or simply an axial direction. The "roundness" used below is measured by applying JIS B 0621-1984 "Definition and display of geometric deviation" and JIS B 7451-1997 "Roundness measuring machine" mutatis mutandis. It shall represent the roundness of the outer peripheral surface of the substrate measured around the "rotation axis" (center of rotation) with respect to the "reference circle".

まず、本実施形態の電子写真感光体10の構成と、機器内での用いられ方の概要について説明する。
図2(a)に構成図を示す実施形態の電子写真感光体10は、図3に示す画像形成装置100に、電子写真感光体または電子写真感光体ユニットとして組み込んで使用されるものである。この電子写真感光体10は、金属からなる円筒状基体1の最表面である外周面1aに、図2(b)に示すような、耐圧層2a,電荷注入阻止層2b,光導電層2c,表面保護層2dからなる表面層2が、積層(成膜)されている。
First, the configuration of the electrophotographic photosensitive member 10 of the present embodiment and the outline of how it is used in the device will be described.
The electrophotographic photosensitive member 10 of the embodiment shown in the configuration diagram of FIG. 2A is used by being incorporated as an electrophotographic photosensitive member or an electrophotographic photosensitive member unit in the image forming apparatus 100 shown in FIG. The electrophotographic photosensitive member 10 has a pressure-resistant layer 2a, a charge injection blocking layer 2b, a photoconductive layer 2c, as shown in FIG. 2B, on an outer peripheral surface 1a which is the outermost surface of a cylindrical substrate 1 made of metal. The surface layer 2 composed of the surface protective layer 2d is laminated (deposited).

電子写真感光体10は、図3の画像形成装置100に組み込んで使用される際、図3の矢印E方向から見た、電子写真感光体10と磁気ローラ(現像ローラ)113Aとの摺接位置と、電子写真感光体10の帯電領域(図中Zoneで表示)との位置関係を示す図である「図4(a),(b)」に示すように、磁気ローラ113Aの軸線方向両端の2つのころ113Bが、電子写真感光体10の回転軸方向両側の端部近傍の所定位置に当接して回転することにより、これら電子写真感光体10と磁気ローラ113Aとの間の微小な間隙(いわゆるギャップ)が規定され、安定した印写が可能となっている。 When the electrophotographic photosensitive member 10 is incorporated into the image forming apparatus 100 of FIG. 3 and used, the sliding contact position between the electrophotographic photosensitive member 10 and the magnetic roller (development roller) 113A as viewed from the direction of arrow E in FIG. As shown in "FIGS. 4 (a) and 4 (b)", which is a diagram showing the positional relationship between the electrophotographic photosensitive member 10 and the charged region (indicated by Zone in the figure), both ends of the magnetic roller 113A in the axial direction. The two rollers 113B come into contact with predetermined positions near the ends on both sides of the electrophotographic photosensitive member 10 in the rotation axis direction and rotate, so that a minute gap (a minute gap between the electrophotographic photosensitive member 10 and the magnetic roller 113A) ( The so-called gap) is defined, and stable printing is possible.

そして、本実施形態の電子写真感光体10は、図1に示す後記の製造方法を用いることによって、電子写真感光体10が回転する印写時の、電子写真感光体10に当接する前記ころ113Bの回転とギャップとが安定するため、高い印写品質と画像の再現性を維持することができる。以下にその製造方法について説明する。 Then, the electrophotographic photosensitive member 10 of the present embodiment uses the manufacturing method described later shown in FIG. 1 to bring the electrophotographic photosensitive member 10 into contact with the electrophotographic photosensitive member 10 at the time of printing when the electrophotographic photosensitive member 10 rotates. Since the rotation and the gap are stable, high imprint quality and image reproducibility can be maintained. The manufacturing method will be described below.

実施形態の電子写真感光体の製造方法は、円筒状基体の外周面上に表面層を備える電子写真感光体を製造する方法であって、図1に示すように、真円度測定装置に測定対象の円筒状基体を配置する測定準備ステップと、円筒状基体の外周面の測定を全周にわたって行ない、外周面の基準円および真円度を算出する真円度測定ステップと、測定した円筒状基体に対する蒸着マスクの要否を判定する蒸着マスク要否判定ステップと、蒸着マスクが必要と判定された円筒状基体に対して蒸着マスクを施す蒸着マスク付加ステップと、蒸着マスクを含む円筒状基体の外周面上に表面層を堆積させる表面層成膜ステップと、成膜が終了した円筒状基体から蒸着マスクを取り除く蒸着マスク除去ステップと、を含む。 The method for producing an electrophotographic photosensitive member of the embodiment is a method for producing an electrophotographic photosensitive member having a surface layer on the outer peripheral surface of a cylindrical substrate, and is measured by a roundness measuring device as shown in FIG. A measurement preparation step for arranging the target cylindrical substrate, a roundness measurement step for calculating the reference circle and roundness of the outer peripheral surface by measuring the outer peripheral surface of the cylindrical substrate over the entire circumference, and the measured cylindrical shape. A step of determining the necessity of a vapor deposition mask for a substrate, a step of adding a vapor deposition mask to apply a vapor deposition mask to a cylindrical substrate determined to require a vapor deposition mask, and a step of adding a vapor deposition mask to the cylindrical substrate including the vapor deposition mask. It includes a surface layer film forming step of depositing a surface layer on the outer peripheral surface and a vapor deposition mask removing step of removing the vapor deposition mask from the cylindrical substrate after the film formation.

なお、前述の蒸着マスク要否判定ステップにおいて蒸着マスクが不要と判定された場合、当該判定された円筒状基体に対しては、外周面上に表面層を堆積させて形成する良品成膜ステップを実行する。良品成膜ステップは、蒸着マスクの有無以外、上述の表面層成膜ステップと同様であるため、詳細な説明は省略する。 When it is determined that the vapor deposition mask is unnecessary in the above-mentioned step of determining the necessity of the vapor deposition mask, a non-defective film formation step of forming a surface layer by depositing a surface layer on the outer peripheral surface is performed on the determined cylindrical substrate. Run. Since the non-defective product film forming step is the same as the surface layer film forming step described above except for the presence or absence of the vapor deposition mask, detailed description thereof will be omitted.

図1における測定準備ステップは、たとえば図5に示すような回転計測台を有する真円度測定装置における所定の対象物計測位置に、測定対象の円筒状基体1を配置して、測定準備を行なう工程である。図5における符号X,Yは、寸法測定器および変位センサからなる計測プローブを示し、符号Zは、下側チャックを示す。 In the measurement preparation step in FIG. 1, for example, the cylindrical substrate 1 to be measured is placed at a predetermined object measurement position in a roundness measuring device having a rotation measuring table as shown in FIG. 5 to prepare for measurement. It is a process. Reference numerals X and Y in FIG. 5 indicate a measuring probe including a dimension measuring instrument and a displacement sensor, and reference numeral Z indicates a lower chuck.

なお、これら計測プローブX,Yは、接触式のものであってもよいが、測定位置によって微細な測定痕も避けたい場合には、非接触式のものを用いることが好ましい。また、符号Zで示す下側チャックは、回転駆動機構に繋がるターンテーブルを兼用する。下側チャックZは、それを駆動するステッピングモータ等により、回転角と周方向の位相とを同期して検出できる。 The measurement probes X and Y may be contact type, but it is preferable to use non-contact type when it is desired to avoid minute measurement marks depending on the measurement position. Further, the lower chuck indicated by reference numeral Z also serves as a turntable connected to the rotation drive mechanism. The lower chuck Z can detect the rotation angle and the phase in the circumferential direction in synchronization with a stepping motor or the like that drives the lower chuck Z.

円筒状基体1は、表面層2の支持体となるものであり、少なくとも円筒状基体1の表面は導電性を有し、図2(a)の半断面図に示すように、筒長方向である軸線方向に連続する円周状の外周面1aおよび内周面1bと、軸線方向両端部に形成された基体端面(以下、単に「端面」という)である端面1cとを備える。 The cylindrical substrate 1 serves as a support for the surface layer 2, and at least the surface of the cylindrical substrate 1 has conductivity, and as shown in the semi-cross-sectional view of FIG. 2A, in the tubular length direction. It includes an outer peripheral surface 1a and an inner peripheral surface 1b that are continuous in a certain axial direction, and an end surface 1c that is a substrate end surface (hereinafter, simply referred to as “end surface”) formed at both ends in the axial direction.

なお、内周面1bにおける円筒の両端開口縁部で、かつ、端面1cと隣接する領域には、フランジ3と呼ばれるドラムアタッチメントを、一点鎖線で示す円筒状基体1の回転軸に芯出しして精密にインロー(印籠)嵌合するための円周段部1dが、それぞれ形成される。また、各端面1cは、上記したフランジ3および後記する真円度測定装置のターンテーブルとの当接と、後に実施される成膜工程等におけるハンドリング等とを考慮して、少なくとも円周段部1dの周面、できれば円周段部1dの周面と外周面1aとに対して、垂直となるように形成される。 A drum attachment called a flange 3 is centered on the rotation axis of the cylindrical substrate 1 indicated by the alternate long and short dash line in the region of the inner peripheral surface 1b that is open at both ends of the cylinder and adjacent to the end surface 1c. Circumferential step portions 1d for precisely fitting the inro (inro) are formed. Further, each end face 1c has at least a circumferential step portion in consideration of contact with the flange 3 described above and the turntable of the roundness measuring device described later and handling in a film forming process or the like to be performed later. It is formed so as to be perpendicular to the peripheral surface of 1d, preferably the peripheral surface of the circumferential step portion 1d and the outer peripheral surface 1a.

円筒状基体1は、円筒状で、たとえばアルミニウム(Al),ステンレススチール(SUS),亜鉛(Zn),銅(Cu),鉄(Fe),チタン(Ti),ニッケル(Ni),クロム(Cr),タンタル(Ta),スズ(Sn),金(Au),銀(Ag),マグネシウム(Mg)およびマンガン(Mn)などの金属材料、あるいはこれら例示した金属材料を含む合金によって、全体が導電性を有するものとして形成される。 The cylindrical substrate 1 has a cylindrical shape, for example, aluminum (Al), stainless steel (SUS), zinc (Zn), copper (Cu), iron (Fe), titanium (Ti), nickel (Ni), and chromium (Cr). ), Tantal (Ta), Tin (Sn), Gold (Au), Silver (Ag), Magnesium (Mg) and Manganese (Mn), or alloys containing these exemplified metal materials make the whole conductive. It is formed as having sex.

また、円筒状基体1は、樹脂,ガラスあるいはセラミックスなどの表面に、例示した金属材料あるいはITO(Indium Tin Oxide)または二酸化すず(SnO)などの透明導電性材料による導電性膜を被着したものであってもよい。 Further, in the cylindrical substrate 1, a conductive film made of the above-exemplified metal material or a transparent conductive material such as ITO (Indium Tin Oxide) or tin dioxide (SnO 2) is adhered to the surface of resin, glass, ceramics or the like. It may be a thing.

これらの例示した材料のうち、円筒状基体1を形成するための材料としては、アルミニウム(Al)系材料を用いればよい。実施形態の円筒状基体1は、全体をアルミニウム(Al)系材料で形成した。アルミニウム(Al)系材料は、電子写真感光体10を軽量かつ低コストで製造可能であり、その上、後記の耐圧層2a、電荷注入阻止層2bおよび光導電層2cをアモルファスシリコン(a−Si)系材料で形成する場合には、それらの層と円筒状基体1との間の密着性が高くなって信頼性を向上させることができる。 Among these exemplified materials, an aluminum (Al) -based material may be used as the material for forming the cylindrical substrate 1. The cylindrical substrate 1 of the embodiment was entirely made of an aluminum (Al) -based material. As the aluminum (Al) -based material, the electrophotographic photosensitive member 10 can be manufactured lightweight and at low cost, and the pressure-resistant layer 2a, the charge injection blocking layer 2b, and the photoconductive layer 2c described later are formed of amorphous silicon (a-Si). ) When it is formed of a material, the adhesion between those layers and the cylindrical substrate 1 is increased, and the reliability can be improved.

真円度測定装置における円筒状基体1の計測対象位置、すなわち計測プローブX,Yの図示上下方向位置は、先に述べた、画像形成装置100に組み込んだ後の磁気ローラ(現像ローラ)113Aのころ113Bとの当接または摺接を考慮して、円筒状基体1の端部近傍の位置に設定される。なお、図中の二点鎖線は、画像形成装置100に組み込まれた場合の帯電領域の仮想端を示す円周である。組み込まれる機種にもよるが、通常、真円度の計測位置は、円筒状基体1の端部近傍、すなわち外周面1aにおける端面1cからの距離が、2〜50mmの位置に設定される。後記の実施例では、両端面1cからそれぞれ15mmの位置で、測定を行なった。 The measurement target position of the cylindrical substrate 1 in the roundness measuring device, that is, the illustrated vertical position of the measuring probes X and Y is the position of the magnetic roller (development roller) 113A after being incorporated into the image forming device 100 described above. It is set at a position near the end of the cylindrical substrate 1 in consideration of contact or sliding contact with the roller 113B. The alternate long and short dash line in the figure is a circumference indicating a virtual end of a charged region when incorporated in the image forming apparatus 100. Although it depends on the model to be incorporated, the roundness measurement position is usually set near the end of the cylindrical substrate 1, that is, the distance from the end surface 1c on the outer peripheral surface 1a is set to a position of 2 to 50 mm. In the example described later, the measurement was performed at a position 15 mm from each of both end faces 1c.

また、測定対象の円筒状基体1の図示上下方向の把持(チャック)は、画像形成装置100内における、フランジ3が取り付けられた実際の回転を考慮して、フランジ3と同様に、内周面1bに設けられた円周段部1dへのインロー(印籠)嵌合により、行なわれる。これにより、円筒状基体1の回転軸と、真円度測定装置のチャックZの回転軸とを、正確に芯出し(心出し)することができる。なお、円筒状基体1の図示上下方向の上側端部においても、芯出しのためのチャックを設けてもよい。 Further, the grip (chuck) of the cylindrical substrate 1 to be measured in the illustrated vertical direction is the inner peripheral surface of the image forming apparatus 100 in the same manner as the flange 3 in consideration of the actual rotation to which the flange 3 is attached. This is performed by fitting an inro (inro) to the circumferential step portion 1d provided in 1b. As a result, the rotation axis of the cylindrical substrate 1 and the rotation axis of the chuck Z of the roundness measuring device can be accurately centered (centered). A chuck for centering may also be provided at the upper end of the cylindrical substrate 1 in the vertical direction shown in the drawing.

円筒状基体1の真円度測定装置へのセットが完了すると、真円度測定ステップを実行する。真円度測定ステップは、前述の真円度測定装置を用いて、円筒状基体1を真円度測定装置に対して相対回転させながら、前記の対象物計測位置における、円筒状基体1の外周面1aの全周にわたって測定を行なう工程である。この測定において、たとえば半径法の場合であれば、回転中心からの距離である「半径r」を、外周面1aの全周にわたって計測して記録する。また、真円度測定装置の制御装置またはコンピュータ等は、前述の半径rの記録から、図6〜図8に例示するような、測定対象の円筒状基体1の外周面1aの円周形状(計測点付きの太線:真円度曲線)と、それに対応する、前記の回転中心に対する外周面の基準円Sと、真円度とを、それぞれの測定対象の円筒状基体1ごとに、演算により算出する。 When the setting of the cylindrical substrate 1 into the roundness measuring device is completed, the roundness measuring step is executed. In the roundness measurement step, the outer circumference of the cylindrical base 1 at the above-mentioned object measurement position is performed while rotating the cylindrical base 1 relative to the roundness measuring device using the above-mentioned roundness measuring device. This is a step of measuring over the entire circumference of the surface 1a. In this measurement, for example in the case of radial method, the distance from the center of rotation "radius r n", and records the measured over the entire circumference of the outer peripheral surface 1a. The control device or computer such as a roundness measuring apparatus, the circumferential shape of the outer peripheral surface 1a of the recording radius r n of the above, as illustrated in FIGS. 6-8, the measured cylindrical substrate 1 (Thick line with measurement point: roundness curve), the corresponding reference circle S of the outer peripheral surface with respect to the center of rotation, and the roundness are calculated for each cylindrical substrate 1 to be measured. Calculated by

なお、半径rの計測ポイント数nは、円筒状基体1の直径φ、または、測定子の形状および先端径にもよるが、30mmφのもので5000〜10000点(n=5000〜10000)程度行なう。ただし、全てを表示すると煩雑になるため、図6〜図8の例では、計測結果を10°ごとに抜粋して、36点(360°)で表示している。また、図中のRsは基準円Sの半径を示し、rmaxおよびrminは、測定された半径r中の最大値(極大値)および最小値(極小値)を、それぞれ示す。 The number of measurement points n of the radius r depends on the diameter φ of the cylindrical substrate 1 or the shape and tip diameter of the stylus, but is about 5000 to 10000 points (n = 5000 to 10000) with a radius r of 30 mmφ. .. However, since it would be complicated to display all of them, in the examples of FIGS. 6 to 8, the measurement results are extracted every 10 ° and displayed at 36 points (360 °). Further, Rs in the figure shows the radius of the reference circle S, r max and r min are measured maximum values in the radius r n (the maximum value) and the minimum value (minimum value), respectively.

つぎに、測定対象の円筒状基体1の外周面1aの円周形状(真円度曲線)が確定したら、真円度測定装置の制御装置またはコンピュータ等は、JIS B 7451−1997「真円度測定機」付属書1に記載の、最小二乗中心(LSC),最小領域中心(MZC),最小外接円中心(MCC),最大内接円中心(MIC)のいずれかの中心に対する、前記の測定真円度曲線の最大半径(rmax)と最小半径(rmin)の差を、測定対象の外周面1aの「真円度」として評価する。なお、参考として、測定真円度曲線の最小外接円(Circumcircle)と最大内接円(Incircle)とを、図6(a)に表示した。 Next, when the circumferential shape (roundness curve) of the outer peripheral surface 1a of the cylindrical substrate 1 to be measured is determined, the control device or computer of the roundness measuring device can be used with JIS B 7451-1997 "roundness". The above-mentioned measurement with respect to any one of the minimum square center (LSC), the minimum region center (MZC), the minimum circumferential circle center (MCC), and the maximum inscribed circle center (MIC) described in Annex 1 of "Measuring Machine". The difference between the maximum radius (r max ) and the minimum radius (r min ) of the roundness curve is evaluated as the "roundness" of the outer peripheral surface 1a of the measurement target. As a reference, the minimum circumscribed circle (Circumcircle) and the maximum inscribed circle (Incircle) of the measured roundness curve are shown in FIG. 6A.

ついで、図1に示すように、蒸着マスク要否判定ステップを実行する。蒸着マスク要否判定ステップは、上述の外周面1aの測定真円度の値と、予め決められた基準真円度の値とを比較して、測定した円筒状基体1に対する蒸着マスクの要否を判定する工程である。 Then, as shown in FIG. 1, the vapor deposition mask necessity determination step is executed. In the vapor deposition mask necessity determination step, the measurement roundness value of the outer peripheral surface 1a described above is compared with a predetermined reference roundness value, and the necessity of the vapor deposition mask for the measured cylindrical substrate 1 is necessary. Is a step of determining.

たとえば、基準真円度が5μmに設定されている場合、前述の真円度測定装置の制御装置またはコンピュータ等は、測定された外周面1aの測定真円度が5μm以上であれば、測定円筒状基体1の真円度の改善が必要であると判断して、蒸着マスクの要否を「要」と判定する。逆に、測定された外周面1aの測定真円度が5μm未満であれば、測定円筒状基体1の真円度の改善は必要ないと判断して、蒸着マスクの要否を「否」と判定する(図1参照)。 For example, when the reference roundness is set to 5 μm, the control device or computer of the roundness measuring device described above is a measuring cylinder if the measured roundness of the measured outer peripheral surface 1a is 5 μm or more. It is determined that the roundness of the state substrate 1 needs to be improved, and the necessity of the vapor deposition mask is determined to be "necessary". On the contrary, if the measured roundness of the measured outer peripheral surface 1a is less than 5 μm, it is judged that the roundness of the measured cylindrical substrate 1 does not need to be improved, and the necessity of the vapor deposition mask is set to “No”. Judgment (see FIG. 1).

ここで、真円度の改善は必要ないと判定された、測定真円度が5μm未満の円筒状基体1は、以下の蒸着マスク付加ステップをスキップして、従来の電子写真感光体の製造方法と同様に、表面層成膜ステップに進む。 Here, for the cylindrical substrate 1 having a measured roundness of less than 5 μm, for which it is determined that improvement in roundness is not necessary, the following step of adding a vapor deposition mask is skipped, and a conventional method for manufacturing an electrophotographic photosensitive member is performed. Similarly, the process proceeds to the surface layer deposition step.

一方、真円度の改善が必要と判定された、測定真円度が5μm以上の円筒状基体1は、蒸着マスク付加ステップに進む。以下の蒸着マスク付加ステップは、前述の表面層2の蒸着および成膜工程後に、基体1の円筒形状において、表面層2が付着していない部位の径方向の収縮(縮径)が、表面層2が付着・成膜された部位の径方向の収縮に比べて大きくなることに着目して、表面層2を周方向の部分的に、選択的に付着させることにより、円筒状基体1の真円度の改善を目指すものである。なお、外周面1aへ、端部または縁部において周方向に不均一(不連続)な表面層2を形成することにより、円筒状基体1自体を、周方向に不均一に望んだ形で縮径させるという知見は、本開示より以前にはなかった技術思想である。 On the other hand, the cylindrical substrate 1 having a measured roundness of 5 μm or more, which is determined to require improvement in roundness, proceeds to the vapor deposition mask addition step. In the following step of adding a vapor deposition mask, after the vapor deposition and film formation steps of the surface layer 2 described above, in the cylindrical shape of the substrate 1, the radial shrinkage (diameter reduction) of the portion to which the surface layer 2 is not attached is the surface layer. Focusing on the fact that the surface layer 2 is partially and selectively adhered in the circumferential direction, paying attention to the fact that the portion 2 adhered / formed is larger than the shrinkage in the radial direction, the true shape of the cylindrical substrate 1 is formed. The aim is to improve the roundness. By forming a non-uniform (discontinuous) surface layer 2 in the circumferential direction on the outer peripheral surface 1a at the end or edge, the cylindrical substrate 1 itself is non-uniformly contracted in the circumferential direction in a desired shape. The finding of diameter is a technical idea that did not exist before this disclosure.

すなわち、蒸着マスク付加ステップは、前述の真円度の改善が必要と判定された円筒状基体1に対して、この円筒状基体1の回転軸方向の端部または縁部に位置する、外周面1aの周方向に部分的に連続する帯状のマスク対象領域W上に、この領域Wへの表面層2の付着を阻害する蒸着マスクMを、周方向に間隔を空けて複数個、配設する。 That is, in the vapor deposition mask addition step, the outer peripheral surface is located at the end or edge of the cylindrical substrate 1 in the rotation axis direction with respect to the cylindrical substrate 1 for which it is determined that the roundness needs to be improved. A plurality of thin-film masks M that inhibit the adhesion of the surface layer 2 to this region W are arranged at intervals in the circumferential direction on the band-shaped mask target region W that is partially continuous in the circumferential direction of 1a. ..

具体的な例を挙げると、たとえば、図6(a)に示すような、回転中心Oを挟んで2方向に膨出する外周面の歪みが存在する円筒状基体1の場合、複数個の蒸着マスクMのうち、少なくとも1つを、マスク対象領域Wにおける、前記測定された半径rの値が最大となる位置(rmax)に配置する。 To give a specific example, for example, in the case of the cylindrical substrate 1 having distortion of the outer peripheral surface that bulges in two directions with the rotation center O in between, as shown in FIG. 6A, a plurality of thin-film depositions are performed. At least one of the masks M is arranged at a position (r max ) in the mask target area W where the value of the measured radius rn is maximized.

また、各蒸着マスクMは、前記外周面の真円度曲線(計測点付きの太線)が、各計測半径rの全周平均値を表す基準円Sよりも径方向外側に突出する位置であって、前記計測された半径rの値が全周平均値よりも大きい位置に、それぞれ配置される。なお、これは、先にも述べたとおり、各蒸着マスクMが配設された位置において、後述の表面層2の付着が阻害された周方向部位の径方向の収縮(縮径)が、表面層2が付着・成膜された部位に比べて大きくなることを利用して、計測半径rが大きな大径部分の基体1を縮径させ、計測半径rが小さな小径部分の縮径を抑えて、外周面1aの真円度を改善するためである。 Each deposition mask M, roundness curve of the outer peripheral surface (thick line with the measurement point), at a position projecting radially outward from the reference circle S representing the entire circumference average value of each measurement radius r n there, the value of the measured radius r n is the position greater than the full circumference average value, are respectively arranged. As described above, this is because at the position where each vapor deposition mask M is arranged, the radial contraction (reduced diameter) of the circumferential portion where the adhesion of the surface layer 2 described later is inhibited is the surface. by utilizing the fact that larger than the site where the layer 2 is deposited, deposition, measuring radius r n reduced in diameter the base of the big large-diameter portion is measured radius r n is the diameter of the small diameter portion This is to suppress and improve the roundness of the outer peripheral surface 1a.

また、図6〜図8に示すような円筒状基体1の回転軸に直交する断面視において、外周面1a上の複数個の蒸着マスクMは、各蒸着マスクMの外周面1a上における周方向位置に対応する回転軸周りの扇形の中心角、たとえば図6(a),(b)に示すそれぞれの角αは、回転軸および回転中心Oの周りに、所定の角度を開けて等間隔に配置される。 Further, in a cross-sectional view orthogonal to the rotation axis of the cylindrical substrate 1 as shown in FIGS. 6 to 8, the plurality of vapor deposition masks M on the outer peripheral surface 1a are in the circumferential direction on the outer peripheral surface 1a of each vapor deposition mask M. The central angles of the sector around the rotation axis corresponding to the positions, for example, the respective angles α shown in FIGS. 6A and 6B, are evenly spaced around the rotation axis and the rotation center O at predetermined angles. Be placed.

すなわち、言い換えれば、これら各蒸着マスクMは、いわゆる周方向等配に配置される。なお、このような周方向等配のマスク配置は、円筒状基体1の外周面1aの歪みが、周方向等配に出現し易いことに由来する。そのため、各蒸着マスクMの周方向配置は、前述のように、計測半径rが基準円Sよりも径方向外側に突出する位置への配設を基本に設計する。 That is, in other words, each of these vapor deposition masks M is arranged in the so-called circumferential direction equidistant arrangement. It should be noted that such an arrangement of masks evenly distributed in the circumferential direction is derived from the fact that distortion of the outer peripheral surface 1a of the cylindrical substrate 1 tends to appear evenly distributed in the circumferential direction. Therefore, the circumferential arrangement of the deposition mask M, as described above, to design the arrangement of the position measuring radius r n protrudes radially outward from the reference circle S basis.

また、角α等の、各蒸着マスクMの回転軸周りの扇形の中心角は、計測半径rの基準円Sからの突出量、すなわち真円度の大小により決定される。たとえば、計測半径rの基準円Sからの突出量が小さい図6(a)の場合、回転中心Oを挟んで対称(等配)に配設される2つの蒸着マスクMは、それぞれ中心角αが30°となるように配置される。 Further, such angle alpha, the central angle of the sector around the axis of rotation of each deposition mask M is projected from the reference circle S of the measuring radius r n, i.e. it is determined by the magnitude of the roundness. For example, if the measured radius r projecting amount from the reference circle S of n is small FIG 6 (a), 2 single deposition mask M disposed symmetrically (equal intervals) across the rotation center O are each central angle It is arranged so that α is 30 °.

また、図6(a)の場合よりも計測半径rの基準円Sからの突出量が大きな図6(b)の場合のように、対称(等配)に配設される2つの蒸着マスクMの中心角αを90°としてもよい。 Also, as in the case projecting amount from the reference circle S of the measuring radius r n than in FIGS. 6 (a) is large Fig 6 (b), 2 single deposition mask disposed symmetrically (equal intervals) The central angle α of M may be 90 °.

また、図7に示すような、円筒状基体1の外周面1aが3方に突出する円筒状基体1の場合は、前述の図6(a),(b)の場合と同様に、蒸着マスクMを、測定半径rの値が最大となる位置(rmax)を少なくとも1つ含む、外周面1aの真円度曲線が、基準円Sよりも径方向外側に突出する位置に配置する。この例では、3つの蒸着マスクMのそれぞれ中心角βは60°であるが、この中心角βは、計測半径rの基準円Sからの突出量に応じて、適宜変更すればよい。 Further, in the case of the cylindrical substrate 1 in which the outer peripheral surface 1a of the cylindrical substrate 1 protrudes in three directions as shown in FIG. 7, the vapor deposition mask is similar to the case of FIGS. 6 (a) and 6 (b) described above. the M, values of the measured radius r n comprises at least one maximum and a position (r max), roundness curve of the outer peripheral surface 1a is arranged at a position projecting radially outward from the reference circle S. In this example, each center angle beta of the three deposition mask M is 60 °, the center angle beta, in accordance with the protruding amount from the reference circle S of the measuring radius r n, may be appropriately changed.

さらに、図8に示すような、円筒状基体1の外周面1aが4方に突出する円筒状基体1の場合も、前述の図6,図7の場合と同様に、蒸着マスクMを、測定半径rの値が最大となる位置(rmax)を少なくとも1つ含む、外周面1aの真円度曲線が、基準円Sよりも径方向外側に突出する位置、すなわち4箇所に配置する。この例においては、4つの蒸着マスクMのそれぞれ中心角γを45°としたが、この中心角γも、計測半径rの基準円Sからの突出量に応じて、適宜変更することができる。 Further, in the case of the cylindrical substrate 1 in which the outer peripheral surface 1a of the cylindrical substrate 1 protrudes in four directions as shown in FIG. 8, the vapor deposition mask M is measured in the same manner as in the cases of FIGS. 6 and 7 described above. the value of the radius r n comprises at least one maximum and a position (r max), roundness curve of the outer peripheral surface 1a is to position, i.e. in positions 4 which protrudes outward in a radial direction than the reference circle S. In this example, although the four 45 ° central angle gamma respective deposition mask M, also the central angle gamma, according to the projection amount from the reference circle S of the measuring radius r n, can be changed as appropriate ..

なお、以上のような各蒸着マスクMの配置と設計を容易にするために、先に述べた真円度測定ステップにおいて、外周面1aの計測が終わった直後に、半径計測の基点を、円筒状基体1の内周面1bまたは端面1cに、ペンあるいは罫書き等により、刻印しておいてもよい。たとえば図6〜図8は、0°の位置が分かる印を、円筒状基体1の内面に、罫書きにより、基体の寸法精度に影響が出ない程度のマーキングを行なった例である。 In order to facilitate the arrangement and design of each thin-film deposition mask M as described above, in the roundness measurement step described above, immediately after the measurement of the outer peripheral surface 1a is completed, the base point of the radius measurement is set to a cylinder. The inner peripheral surface 1b or the end surface 1c of the shape substrate 1 may be engraved with a pen, a ruled line, or the like. For example, FIGS. 6 to 8 show an example in which a mark showing the position of 0 ° is marked on the inner surface of the cylindrical substrate 1 by marking to the extent that the dimensional accuracy of the substrate is not affected.

また、各蒸着マスクMの回転軸方向の長さ(周方向の幅)は、少なくとも3mm以上あればよい。たとえば、図4を用いて説明すると、図4(a)のように、磁気ローラ113Aのころ113Bが電子写真感光体10の帯電領域(Zone)の外側でかつ端部側に位置する場合、蒸着マスクMの回転軸方向の長さは、前記の3mm以上で、かつ、ころ113Bの基体端部からの距離L1以下とすればよい。 Further, the length (width in the circumferential direction) of each vapor deposition mask M in the rotation axis direction may be at least 3 mm or more. For example, when the roller 113B of the magnetic roller 113A is located outside the charging region (Zone) of the electrophotographic photosensitive member 10 and on the end side as shown in FIG. 4A, vapor deposition will be described with reference to FIG. The length of the mask M in the rotation axis direction may be 3 mm or more and the distance L1 or less from the end of the substrate of the rollers 113B.

さらに、図4(b)のように、ころ113Bが電子写真感光体10の帯電領域(Zone)の内側で中央側に位置する場合、蒸着マスクMの回転軸方向の長さは、前記の3mm以上で、かつ、帯電領域の基体端部からの距離L2以下とすればよい。 Further, as shown in FIG. 4B, when the roller 113B is located on the center side inside the charged region (Zone) of the electrophotographic photosensitive member 10, the length of the vapor deposition mask M in the rotation axis direction is 3 mm. The distance from the end of the substrate in the charged region may be L2 or less.

また、円筒状基体1の端部のマスク対象領域Wに配設される蒸着マスクMの具体例としては、図9〜図11に示すような蒸着マスクM1〜M3を挙げることができる。なお、これらの例は、図6(b)に示す外周面が2方向に膨出する円筒状基体1に対応したものであるが、図6(a)および図7,図8での例や、その他の例にも同様に対応するものである。 Further, as a specific example of the vapor deposition mask M arranged in the mask target region W at the end of the cylindrical substrate 1, the vapor deposition masks M1 to M3 as shown in FIGS. 9 to 11 can be mentioned. These examples correspond to the cylindrical substrate 1 whose outer peripheral surface bulges in two directions as shown in FIG. 6 (b), but the examples in FIG. 6 (a) and FIGS. 7 and 8 and the examples , And other examples as well.

たとえば、図9に示す蒸着マスクM1は、円筒状基体1の端部に、マスキングテープ等の、テープ状の蒸着マスクM1を貼着したものである。この場合、どのような配置のマスクにも、即座にかつ容易に対応することができるという利点がある。 For example, the thin-film deposition mask M1 shown in FIG. 9 is obtained by attaching a tape-shaped thin-film deposition mask M1 such as masking tape to the end of the cylindrical substrate 1. In this case, there is an advantage that the mask of any arrangement can be dealt with immediately and easily.

また、図10に示す蒸着マスクM2は、円筒状基体1の端部に嵌め込み可能な、種々の中心角を有する形状の蒸着マスクM2を、パターン化して複数種類用意しておき、要求に応じて端部に嵌め込むというものである。この場合、簡単に、端部に蒸着マスクM2を配設することができる。また、円筒状基体1の素管における、外周面1aの計測半径rの基準円Sからの突出(膨出)は、どのロットも同じように2方向に突出し易いという性質があるため、特に有効である。 Further, as the thin-film deposition mask M2 shown in FIG. 10, a plurality of types of thin-film deposition masks M2 having various central angles that can be fitted to the end portion of the cylindrical substrate 1 are prepared in a patterned manner, and if required. It fits into the end. In this case, the vapor deposition mask M2 can be easily arranged at the end portion. Further, in the base tube of the cylindrical substrate 1, projecting from the reference circle S of the measuring radius r n of the outer circumferential surface 1a (swelling) is, which lot since the the property that just as easily protrude in two directions, in particular It is valid.

蒸着マスクM2のパターンは、15°,30°,45°・・・等の15°ステップ、あるいは、10°刻みのステップとしてもよい。パターンを予め豊富に用意しておくことにより、各種サイズの円筒状基体1に対応することができる。 The pattern of the vapor deposition mask M2 may be a 15 ° step such as 15 °, 30 °, 45 °, etc., or a step in steps of 10 °. By preparing abundant patterns in advance, it is possible to correspond to the cylindrical substrate 1 of various sizes.

さらに、図11に示す蒸着マスクM3は、円筒状基体1の端部に続けて配置する、回転軸方向に延長する補助パイプ(ダミーパイプ)DPを用いるもので、この補助パイプDPに、蒸着マスクM3を固定する。これによっても、蒸着マスクM3を容易にかつ素早く配設することができる。なお、蒸着マスクM3と補助パイプDPとは、別体であっても一体であってもよい。 Further, the vapor deposition mask M3 shown in FIG. 11 uses an auxiliary pipe (dummy pipe) DP extending in the rotation axis direction, which is arranged continuously at the end of the cylindrical substrate 1, and the vapor deposition mask is used on the auxiliary pipe DP. Fix M3. This also allows the vapor deposition mask M3 to be easily and quickly disposed. The vapor deposition mask M3 and the auxiliary pipe DP may be separate or integrated.

なお、蒸着マスクMを構成する材料としては、金属,ガラスを含むセラミックス,主にフッ素系を主体とする樹脂等を用いることができる。特に、材質の限定はないが、後記する成膜時の温度(約350℃)において、充分な耐熱性を有し、かつ、プラズマ放電等による分解またはアウトガスの放出が無いものがよい。 As the material constituting the vapor deposition mask M, a metal, ceramics containing glass, a resin mainly composed of fluorine, or the like can be used. In particular, although the material is not limited, it is preferable that the material has sufficient heat resistance at the temperature (about 350 ° C.) at the time of film formation described later and does not decompose or emit outgas due to plasma discharge or the like.

つぎに、表面層2を形成する表面層成膜ステップを行なう。表面層成膜ステップは、前記の蒸着マスクMが配設された円筒状基体1の外周面1a上に、表面層2を堆積させて形成する工程である。 Next, a surface layer film forming step for forming the surface layer 2 is performed. The surface layer film forming step is a step of depositing the surface layer 2 on the outer peripheral surface 1a of the cylindrical substrate 1 on which the vapor deposition mask M is arranged.

表面層2は、たとえばプラズマCVD装置等の堆積膜形成装置を用いて形成することができる。また、このようなプラズマCVD装置等を用いれば、1つの装置にて、真空反応室内の真空状態を維持したまま連続的に、円筒状基体1の外周面1aの粗面化処理と、表面層2を構成する各層の形成処理とを、行なうことが可能である。 The surface layer 2 can be formed by using a deposit film forming apparatus such as a plasma CVD apparatus. Further, if such a plasma CVD apparatus or the like is used, the outer peripheral surface 1a of the cylindrical substrate 1 can be continuously roughened and the surface layer can be continuously maintained in a vacuum state in the vacuum reaction chamber by one apparatus. It is possible to perform the formation process of each layer constituting 2.

表面層2を構成する各層を簡単に説明すると、図2(b)に示すように、最も円筒状基体1側でかつ円筒状基体1に密着する耐圧層2aは、表面層2における耐電圧特性を向上させるためのものであり、たとえばアモルファス窒化シリコン(a−SiN)を含有する層である。その厚さは0.5〜15μmとされる。耐圧層2aは、耐電圧層または耐圧保持層とも呼ばれる。なお、図に記載の表面層2は、各層または各膜の厚みを強調して描いているため、層厚さおよび層厚比等は、実際のものとは異なる。 Briefly explaining each layer constituting the surface layer 2, as shown in FIG. 2B, the pressure-resistant layer 2a on the most cylindrical substrate 1 side and in close contact with the cylindrical substrate 1 has withstand voltage characteristics in the surface layer 2. This is a layer containing, for example, amorphous silicon nitride (a-SiN). Its thickness is 0.5 to 15 μm. The withstand voltage layer 2a is also called a withstand voltage layer or a withstand voltage holding layer. Since the surface layer 2 shown in the drawing emphasizes the thickness of each layer or each film, the layer thickness, the layer thickness ratio, and the like are different from the actual ones.

電荷注入阻止層2bは、正帯電の場合であれば、円筒状基体1からのキャリアである電子の注入を阻止する役割を有するものであり、たとえばアモルファスシリコン(a−Si)系材料で形成される。この電荷注入阻止層2bは、たとえばa−Siに、ドーパントとして正帯電の場合であれば、ホウ素(B)と場合により窒素(N)か酸素(O)またはその両方を含有させたもの、あるいは負帯電の場合であればリン(P)と場合により窒素(N)か酸素(O)またはその両方を含有させたものを用いることができ、その厚さは2〜10μmとされる。 In the case of positive charge, the charge injection blocking layer 2b has a role of blocking the injection of electrons as carriers from the cylindrical substrate 1, and is formed of, for example, an amorphous silicon (a-Si) -based material. NS. The charge injection blocking layer 2b is, for example, a-Si containing boron (B) and, in some cases, nitrogen (N), oxygen (O), or both in the case of positive charging as a dopant. In the case of negative charge, phosphorus (P) and optionally nitrogen (N), oxygen (O), or both can be used, and the thickness thereof is 2 to 10 μm.

光導電層2cは、レーザ光などの光照射によってキャリアを発生させる役割を有するものであり、たとえばa−Si系材料ならびにSe−TeあるいはAsSeなどのアモルファスセレン(a−Se)系材料で形成される。実施形態の光導電層2cは、a−Siならびにa−Siに炭素(C),窒素(N)および酸素(O)などを加えたa−Si系材料で形成されており、ドーパントとしてホウ素(B)あるいはリン(P)を含有する。a−Si系材料を用いて光導電層2cを形成する場合、その厚さは5〜100μm程度、より具体的には10〜80μmに設定すればよい。なお、電荷注入阻止層2bと光導電層2cとを合わせて「感光層」と呼ぶ場合もある。 The photoconductive layer 2c has a role of generating carriers by irradiation with light such as laser light, and is, for example, an a-Si-based material and an amorphous selenium (a-Se) -based material such as Se-Te or As 2 Se 3. Is formed by. The photoconductive layer 2c of the embodiment is formed of a-Si and a-Si based material in which carbon (C), nitrogen (N), oxygen (O) and the like are added to a-Si and a-Si, and boron (boron) is used as a dopant. B) or phosphorus (P) is contained. When the photoconductive layer 2c is formed by using the a-Si material, the thickness thereof may be set to about 5 to 100 μm, more specifically to 10 to 80 μm. The charge injection blocking layer 2b and the photoconductive layer 2c may be collectively referred to as a “photosensitive layer”.

表面保護層2dは、光導電層2cの表面を保護する役割を有するものであり、たとえばアモルファス炭化シリコン(a−SiC)あるいはアモルファス窒化シリコン(a−SiN)などのa−Si系材料または、アモルファスカーボン(a−C)を用いるか、あるいはそれらの多層構造とすればよい。実施形態では、耐摩耗性の観点から、a−SiCの上に耐性の高いa−Cを積層した構成の表面保護層2dが好適に採用される。表面保護層2dの厚さは、たとえば0.1〜2μm、より具体的には0.5〜1.5μmに設定すればよい。 The surface protective layer 2d has a role of protecting the surface of the photoconductive layer 2c, and is an a-Si-based material such as amorphous silicon carbide (a-SiC) or amorphous silicon nitride (a-SiN), or an amorphous material. Carbon (a-C) may be used, or a multilayer structure thereof may be used. In the embodiment, from the viewpoint of abrasion resistance, the surface protective layer 2d having a structure in which a-C having high resistance is laminated on a-SiC is preferably adopted. The thickness of the surface protective layer 2d may be set to, for example, 0.1 to 2 μm, more specifically 0.5 to 1.5 μm.

最後に、前記の表面層2の形成が終了した電子写真感光体10から、外周面1a上の蒸着マスクMを取り除く蒸着マスク除去ステップを行ない、電子写真感光体10が完成する。 Finally, the electrophotographic photosensitive member 10 is completed by performing a vapor deposition mask removing step of removing the vapor deposition mask M on the outer peripheral surface 1a from the electrophotographic photosensitive member 10 for which the formation of the surface layer 2 has been completed.

以上詳述した本実施形態の電子写真感光体10の製造方法によれば、すべての工程が終了した放冷後に、画像形成装置100の磁気ローラ113Aのころ113Bと当接または摺接する円筒位置の、回転軸に対する真円度が改善されるため、いわゆる現像ギャップの変動の少ない、高品質な電子写真感光体を、安定的に製造することができる。 According to the method for manufacturing the electrophotographic photosensitive member 10 of the present embodiment described in detail above, the position of the cylindrical position in contact with or in sliding contact with the roller 113B of the magnetic roller 113A of the image forming apparatus 100 after cooling is completed after all the steps are completed. Since the roundness with respect to the rotation axis is improved, a high-quality electrophotographic photosensitive member with little fluctuation in the so-called development gap can be stably produced.

つぎに、以上のようにして製造された電子写真感光体10が組み込まれる画像形成装置100の構成例を示す。 Next, a configuration example of the image forming apparatus 100 incorporating the electrophotographic photosensitive member 10 manufactured as described above will be shown.

実施形態に係る画像形成装置100は、画像形成方式としてカールソン法を採用したものであり、先述の電子写真感光体10と、帯電器111、露光器112、先に述べた現像ローラ113Aを含む現像器113、転写器114、定着器115である115Aおよび115Bと、電子写真感光体に接触するクリーニングローラ116Bとクリーニングブレード116Aとを含むクリーニング器116、および、除電器117等を備える。なお、図中の記録媒体Pに沿った矢印は、記録媒体Pである用紙の移動方向を示す。 The image forming apparatus 100 according to the embodiment adopts the Carlson method as an image forming method, and includes the electrophotographic photosensitive member 10 described above, a charger 111, an exposure device 112, and a developing roller 113A described above. The device 113, the transfer device 114, the fixing devices 115A and 115B, the cleaning device 116 including the cleaning roller 116B and the cleaning blade 116A in contact with the electrophotographic photosensitive member, the static eliminator 117 and the like are provided. The arrow along the recording medium P in the drawing indicates the moving direction of the paper which is the recording medium P.

画像形成装置100の構成を簡単に説明する。 The configuration of the image forming apparatus 100 will be briefly described.

帯電器(帯電ローラ)111は、たとえば負帯電の電子写真感光体10の表面を負極性に帯電させる役割を有するものである。本実施形態において帯電器111は、たとえば芯金を導電性ゴムあるいはPVDF(ポリフッ化ビニリデン)によって被覆して構成される接触型帯電器が採用される。 The charger (charging roller) 111 has a role of negatively charging the surface of the negatively charged electrophotographic photosensitive member 10, for example. In the present embodiment, as the charger 111, for example, a contact type charger configured by coating a core metal with conductive rubber or PVDF (polyvinylidene fluoride) is adopted.

露光器112は、電子写真感光体10に静電潜像を形成する役割を有するものである。露光器112としては、たとえば複数のLED素子(波長:680nm)を配列させてなるLED(発光ダイオード:Light Emitting Diode)ヘッドを採用することができる。 The exposure device 112 has a role of forming an electrostatic latent image on the electrophotographic photosensitive member 10. As the exposure device 112, for example, an LED (light emitting diode) head in which a plurality of LED elements (wavelength: 680 nm) are arranged can be adopted.

現像器113は、電子写真感光体10の静電潜像を現像してトナー像を形成する役割を有するものである。本例における現像器113は、現像剤(以下、トナー)Tを磁気的に保持する磁気ローラ113Aを備える。 The developer 113 has a role of developing an electrostatic latent image of the electrophotographic photosensitive member 10 to form a toner image. The developer 113 in this example includes a magnetic roller 113A that magnetically holds the developer (hereinafter, toner) T.

トナーTは、電子写真感光体10の表面上に形成されるトナー像を構成するものであり、現像器113において摩擦帯電する。トナーTとしては、たとえば、磁性キャリアおよび絶縁性トナーを含んでなる2成分系現像剤と、磁性トナーを含んでなる1成分系現像剤とが挙げられる。 The toner T constitutes a toner image formed on the surface of the electrophotographic photosensitive member 10, and is triboelectrically charged in the developing device 113. Examples of the toner T include a two-component developer containing a magnetic carrier and an insulating toner, and a one-component developer containing a magnetic toner.

磁気ローラ113Aは、電子写真感光体10の表面の現像領域にトナーTを搬送する役割を有するものである。磁気ローラ113Aは、現像器113において摩擦帯電したトナーTを一定の穂長に調整された磁気ブラシの形で電子写真感光体10の表面に搬送する。 The magnetic roller 113A has a role of transporting the toner T to the developing region on the surface of the electrophotographic photosensitive member 10. The magnetic roller 113A conveys the triboelectric toner T in the developing device 113 to the surface of the electrophotographic photosensitive member 10 in the form of a magnetic brush adjusted to a constant ear length.

転写器114は、電子写真感光体10と転写器114との間の転写領域に供給された、紙等の記録媒体Pに、電子写真感光体10のトナー像を転写する役割を有するものである。本例における転写器114は、転写用チャージャ114Aおよび分離用チャージャ114Bを備える。 The transfer device 114 has a role of transferring the toner image of the electrophotographic photosensitive member 10 to a recording medium P such as paper supplied to the transfer region between the electrophotographic photosensitive member 10 and the transfer device 114. .. The transfer device 114 in this example includes a transfer charger 114A and a separation charger 114B.

定着器115は、記録媒体Pに転写されたトナー像を記録媒体Pに定着させる役割を有するものであり、一対の定着ローラ115A,115Bを備える。定着ローラ115A,115Bは、たとえば金属ローラ上に四フッ化エチレンなどで表面被覆したものである。 The fuser 115 has a role of fixing the toner image transferred to the recording medium P to the recording medium P, and includes a pair of fixing rollers 115A and 115B. The fixing rollers 115A and 115B are, for example, metal rollers whose surface is coated with ethylene tetrafluoride or the like.

クリーニング器116は、電子写真感光体10の表面に残存するトナーTを除去する役割を有するものであり、クリーニングローラ116Bおよびクリーニングブレード116Aを備える。 The cleaner 116 has a role of removing the toner T remaining on the surface of the electrophotographic photosensitive member 10, and includes a cleaning roller 116B and a cleaning blade 116A.

除電器117は、電子写真感光体10の表面電荷を除去する役割を有するものであり、特定波長(たとえば630nm以上)の光を出射可能なデバイスが用いられる。 The static eliminator 117 has a role of removing the surface charge of the electrophotographic photosensitive member 10, and a device capable of emitting light having a specific wavelength (for example, 630 nm or more) is used.

本実施形態の画像形成装置100は、先に述べた、真円度の小さい電子写真感光体10を備えることにより、いわゆる現像ギャップの変動の少ない、高品質な印写画像を、安定的に得ることができる。すなわち、高い印画品質を安定して維持することができる。 By providing the electrophotographic photosensitive member 10 having a small roundness described above, the image forming apparatus 100 of the present embodiment stably obtains a high-quality printed image with little fluctuation in the so-called development gap. be able to. That is, high print quality can be stably maintained.

なお、本発明は上述の実施形態に示したものだけに限定されるものではなく、本発明の要旨を逸脱しない範囲で改良または変更ができる。 The present invention is not limited to those shown in the above-described embodiments, and can be improved or modified without departing from the gist of the present invention.

たとえば、上述の実施形態では真円度の測定について半径法による例を示したが、接触式または非接触式の計測プローブを用いた直径法による測定であってもよい。上述のように、円筒状基体1の素管における、外周面1aの基準円Sからの突出(膨出)は、どのロットも同じように2方向に突出し易いという性質があるため、測定した円周形状において基準円Sに対して最も直径が大きくなっている部分にマスク対象領域Wを設定して、その領域Wに蒸着マスクMを配設するようにしてもよい。この場合にも円筒状基体1の真円度の改善を図ることができる。 For example, in the above-described embodiment, the measurement of roundness is shown by the radius method, but the measurement may be performed by the diameter method using a contact type or non-contact type measurement probe. As described above, the protrusion (bulge) of the outer peripheral surface 1a from the reference circle S in the raw pipe of the cylindrical substrate 1 has the property that it easily protrudes in two directions in the same manner in all lots, and therefore the measured circle. The mask target region W may be set in the portion of the circumferential shape having the largest diameter with respect to the reference circle S, and the vapor deposition mask M may be arranged in the region W. In this case as well, the roundness of the cylindrical substrate 1 can be improved.

つぎに、前述の「真円度測定ステップ」および「蒸着マスク要否判定ステップ」を経て、測定真円度が5μm以上のため、蒸着マスクが必要と判断された円筒状基体(サンプル)を用いて、本開示の蒸着マスクを施した上で成膜した場合(実施例1〜5)と、蒸着マスクを施さずに全周に成膜した場合(比較例1,2)とで、真円度がどの程度改善されるかの評価を行なった。 Next, a cylindrical substrate (sample) determined to require a vapor deposition mask is used because the measured roundness is 5 μm or more through the above-mentioned “roundness measurement step” and “deposition mask necessity determination step”. The case where the film is formed after applying the vapor deposition mask of the present disclosure (Examples 1 to 5) and the case where the film is formed on the entire circumference without the vapor deposition mask (Comparative Examples 1 and 2) are perfect circles. We evaluated how much the degree was improved.

後記の「表1」は、蒸着マスクを施した実施例1〜5の円筒状基体(素管)および蒸着マスクを施さなかった比較例1,2の円筒状基体(素管)の、成膜前の諸元と、成膜後の「電子写真感光体(製品)」の真円度とを一覧としたものである。また、「表1」には、各サンプルに適用された蒸着マスクの諸元を明記している。 “Table 1” below shows the film formation of the cylindrical substrates (bare tubes) of Examples 1 to 5 with a vapor deposition mask and the cylindrical substrates (bare tubes) of Comparative Examples 1 and 2 without a vapor deposition mask. It is a list of the previous specifications and the roundness of the "electrophotographic photosensitive member (product)" after film formation. In addition, "Table 1" specifies the specifications of the vapor deposition mask applied to each sample.

なお、各円筒状基体は、全て、回転軸方向の長さが360mmのものを用いた。また、真円度の測定には、図5に記載の真円度測定装置を用い、測定位置は、両端面からそれぞれL=15mmの位置(ころ位置)とした。 As each of the cylindrical substrates, those having a length of 360 mm in the rotation axis direction were used. Further, for the measurement of roundness, the roundness measuring device shown in FIG. 5 was used, and the measurement position was set to a position (roller position) of L = 15 mm from both end faces.

また、成膜条件の詳細な説明は省略するが、成膜により形成される表面層の全厚は20μmとした。その内わけは、耐圧層(2μm)、電荷注入阻止層(3μm)、光導電層(14μm)、表面保護層(1μm)である。 Although detailed description of the film forming conditions is omitted, the total thickness of the surface layer formed by the film forming is 20 μm. The breakdown is a pressure resistant layer (2 μm), a charge injection blocking layer (3 μm), a photoconductive layer (14 μm), and a surface protective layer (1 μm).

円筒状基体の端部を保護する(表面層の付着を阻止する)蒸着マスクとしては、ポリイミド製の耐熱性粘着テープ(幅5mmと幅10mmの2種のマスキングテープ)を用いた。そして、先述の実施形態で説明したパターンのように、このポリイミド製テープを、蒸着マスクとして、円筒状基体の両端部(マスク対象領域W)に、以下のパターンで貼り付けた。 As a vapor deposition mask that protects the end portion of the cylindrical substrate (prevents adhesion of the surface layer), a heat-resistant adhesive tape made of polyimide (two types of masking tape having a width of 5 mm and a width of 10 mm) was used. Then, as in the pattern described in the above-described embodiment, this polyimide tape was attached to both ends (mask target area W) of the cylindrical substrate as a vapor deposition mask in the following pattern.

たとえば、外周面の形状が「楕円」状である円筒状基体(実施例1,2,4)に対しては、図6(b)に記載のように、中心角αが90°で、回転中心を挟んで対角(等配)となる位置の2箇所(真円度の極大位置)に、それぞれ所定の周方向長さのポリイミド製テープ(テープ幅は5mmまたは10mm)を貼り付けた。 For example, with respect to a cylindrical substrate (Examples 1, 2, and 4) having an "elliptical" outer peripheral surface, the central angle α is 90 ° and rotation is performed as shown in FIG. 6 (b). Polyimide tapes (tape width 5 mm or 10 mm) having a predetermined circumferential length were attached to two positions (maximum positions of roundness) diagonally (equally distributed) with the center in between.

また、外周面の形状が「三角」状である円筒状基体(実施例3)および外周面の形状が「四角」状である円筒状基体(実施例5)に対しては、それぞれ、図7および図8に記載のように、中心角がβ(60°)またはγ(45°)で、かつ、中心を挟んで対角(等配)となる位置の3箇所または4箇所に、それぞれ所定の周方向長さのポリイミド製テープ(テープ幅は5mmまたは10mm)を、図示のように貼り付けた。 Further, with respect to the cylindrical substrate having a “triangular” shape on the outer peripheral surface (Example 3) and the cylindrical substrate having a “square” shape on the outer peripheral surface (Example 5), FIG. 7 respectively. And as shown in FIG. 8, the central angle is β (60 °) or γ (45 °), and the positions are diagonally (equally distributed) with the center in between. A polyimide tape having a length in the circumferential direction (tape width is 5 mm or 10 mm) was attached as shown in the figure.

Figure 0006938427
Figure 0006938427

成膜後の結果は、表1に示すように、周方向に部分的に連続する(周方向に不連続の)蒸着マスクを用いた実施例1〜5の円筒状基体は、成膜して電子写真感光体となった際、そのどれもが、外周面の真円度が改善されていることが分かる。これに対して、蒸着マスクを用いず成膜した電子写真感光体は、真円度が悪化もしくは変わらない結果となった。 As shown in Table 1, the results after film formation show that the cylindrical substrates of Examples 1 to 5 using the vapor deposition mask partially continuous in the circumferential direction (discontinuous in the circumferential direction) were formed into a film. It can be seen that the roundness of the outer peripheral surface of each of the electrophotographic photosensitive members is improved. On the other hand, in the electrophotographic photosensitive member formed without using the vapor deposition mask, the roundness deteriorated or did not change.

このように、周方向に不連続な蒸着マスクの付設により、円筒状基体の外周面の端部または縁部に、周方向に不均一(不連続)な表面層を形成させることによって、真円度の劣る円筒状基体を、周方向に不均一に、望んだ形で縮径させ、その真円度を改善することが可能である。 In this way, by attaching a vapor deposition mask that is discontinuous in the circumferential direction, a surface layer that is non-uniform (discontinuous) in the circumferential direction is formed at the end or edge of the outer peripheral surface of the cylindrical substrate, thereby forming a perfect circle. It is possible to reduce the diameter of a cylindrical substrate having an inferior degree in a non-uniform manner in the circumferential direction in a desired shape and improve its roundness.

また、実施形態および実施例の製造方法により、通常、円筒状基体(納入された素管)の真円度が5μm以上の規格外で、最終製品(感光体)としての仕様を満たさず、不良品として処分される感光体を、製品化することが可能となる。したがって、円筒状基体のロット単位での歩留まりを向上させることができ、その結果、電子写真感光体のコストダウンを達成することができる。 Further, depending on the manufacturing method of the embodiment and the example, the roundness of the cylindrical substrate (delivered raw tube) is usually out of the standard of 5 μm or more, and the specification as a final product (photoreceptor) is not satisfied, which is not possible. It becomes possible to commercialize a photoconductor that is disposed of as a non-defective product. Therefore, the yield of the cylindrical substrate in lot units can be improved, and as a result, the cost of the electrophotographic photosensitive member can be reduced.

1 円筒状基体
1a 外周面
1b 内周面
1c 端面
1d 円周段部
2 表面層
3 フランジ
10 電子写真感光体
M,M1,M2,M3 蒸着マスク
1 Cylindrical substrate 1a Outer peripheral surface 1b Inner peripheral surface 1c End surface 1d Circumferential step 2 Surface layer 3 Flange 10 Electrophotographic photoconductor M, M1, M2, M3 Evaporation mask

100 画像形成装置
111 帯電器
112 露光器
113 現像器
113A 磁気ローラ
114 転写器
114A 転写用チャージャ
114B 分離用チャージャ
115 定着器
115A,115B 定着ローラ
116 クリーニング器
116A クリーニングブレード
116B クリーニングローラ
117 除電器
P 記録媒体
T トナー(現像剤)
100 Image forming device 111 Charger 112 Exposure device 113 Developer 113A Magnetic roller 114 Transfer device 114A Transfer charger 114B Separation charger 115 Fixer 115A, 115B Fixing roller 116 Cleaning device 116A Cleaning blade 116B Cleaning roller 117 Static eliminator P Recording medium T toner (developer)

Claims (4)

円筒状基体の外周面上に表面層を備える電子写真感光体を製造する方法であって、
真円度測定装置における所定の対象物計測位置に、測定対象の円筒状基体を配置する測定準備ステップと、
前記円筒状基体と前記真円度測定装置とを相対回転させながら、前記対象物計測位置における、前記円筒状基体の外周面の測定を全周にわたって行ない、前記外周面の基準円と真円度とを算出する真円度測定ステップと、
前記真円度測定ステップで算出された前記外周面の真円度の値と、予め決められた基準真円度の値とを比較して、前記円筒状基体に対する蒸着マスクの要否を判定する蒸着マスク要否判定ステップと、
前記蒸着マスク要否判定ステップにおいて蒸着マスクが必要と判定されたとき、当該判定された前記円筒状基体に対して、該円筒状基体の回転軸方向の端部または縁部に位置する、前記外周面の周方向に連続する帯状のマスク対象領域上に、該領域への表面層の付着を阻害する蒸着マスクを、周方向に間隔を空けて複数個、配設する蒸着マスク付加ステップと、
前記蒸着マスクを含む前記円筒状基体の外周面上に、表面層を堆積させて形成する表面層成膜ステップと、
前記表面層の形成が終了した前記円筒状基体から、前記外周面上の前記蒸着マスクを取り除く蒸着マスク除去ステップと、
前記蒸着マスク要否判定ステップにおいて蒸着マスクが不要と判定されたとき、当該判定された前記円筒状基体に対して、外周面上に表面層を堆積させて形成する良品成膜ステップと、
を含む電子写真感光体の製造方法。
A method for producing an electrophotographic photosensitive member having a surface layer on the outer peripheral surface of a cylindrical substrate.
A measurement preparation step in which a cylindrical substrate to be measured is placed at a predetermined object measurement position in the roundness measuring device, and a measurement preparation step.
While the cylindrical substrate and the roundness measuring device are relatively rotated, the outer peripheral surface of the cylindrical substrate is measured at the object measurement position over the entire circumference, and the reference circle and roundness of the outer peripheral surface are measured. The roundness measurement step to calculate and
The necessity of the thin-film deposition mask for the cylindrical substrate is determined by comparing the value of the roundness of the outer peripheral surface calculated in the roundness measurement step with the value of the predetermined reference roundness. Deposition mask necessity judgment step and
When it is determined in the step of determining the necessity of a vapor deposition mask that a vapor deposition mask is necessary, the outer periphery thereof is located at the end or edge of the cylindrical substrate in the rotation axis direction with respect to the determined cylindrical substrate. A thin-film mask addition step of arranging a plurality of thin-film masks that prevent the surface layer from adhering to the area on a strip-shaped mask target region that is continuous in the circumferential direction at intervals in the circumferential direction.
A surface layer film forming step of depositing a surface layer on the outer peripheral surface of the cylindrical substrate including the vapor deposition mask, and a surface layer film forming step.
A thin-film mask removal step of removing the thin-film mask on the outer peripheral surface from the cylindrical substrate for which the formation of the surface layer has been completed.
When it is determined in the vapor deposition mask necessity determination step that the vapor deposition mask is unnecessary, a non-defective film forming step of forming a surface layer on the outer peripheral surface of the determined cylindrical substrate is provided.
A method for producing an electrophotographic photosensitive member including.
複数個の前記蒸着マスクのうち、少なくとも1つを、前記マスク対象領域における、半径または直径の値が最大となる位置に配置する、請求項1に記載の電子写真感光体の製造方法。 The method for producing an electrophotographic photosensitive member according to claim 1, wherein at least one of the plurality of thin-film vapor deposition masks is arranged at a position in the mask target region where the value of the radius or the diameter is maximum. 各蒸着マスクは、前記外周面の円周形状が前記基準円よりも径方向外側に突出する位置であって、前記半径または直径の値が全周平均値よりも大きい位置に、それぞれ配置される、請求項1に記載の電子写真感光体の製造方法。 Each vapor deposition mask is arranged at a position where the circumferential shape of the outer peripheral surface protrudes radially outward from the reference circle, and the radius or diameter value is larger than the all-around average value. The method for producing an electrophotographic photosensitive member according to claim 1. 前記円筒状基体の回転軸に直交する断面視において、複数個の前記蒸着マスクは、各蒸着マスクの前記外周面上における周方向位置に対応する回転軸周りの扇形の中心角が、該回転軸周りに所定の角度を開けて等間隔に配置される、請求項1に記載の電子写真感光体の製造方法。 In a cross-sectional view orthogonal to the rotation axis of the cylindrical substrate, the plurality of vapor deposition masks have a fan-shaped central angle around the rotation axis corresponding to the circumferential position on the outer peripheral surface of each vapor deposition mask. The method for manufacturing an electrophotographic photosensitive member according to claim 1, wherein the electrophotographic photosensitive member is arranged at equal intervals with a predetermined angle around it.
JP2018102243A 2018-05-29 2018-05-29 Manufacturing method of electrophotographic photosensitive member and electrophotographic photosensitive member and image forming apparatus Active JP6938427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018102243A JP6938427B2 (en) 2018-05-29 2018-05-29 Manufacturing method of electrophotographic photosensitive member and electrophotographic photosensitive member and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018102243A JP6938427B2 (en) 2018-05-29 2018-05-29 Manufacturing method of electrophotographic photosensitive member and electrophotographic photosensitive member and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2019207311A JP2019207311A (en) 2019-12-05
JP6938427B2 true JP6938427B2 (en) 2021-09-22

Family

ID=68767685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018102243A Active JP6938427B2 (en) 2018-05-29 2018-05-29 Manufacturing method of electrophotographic photosensitive member and electrophotographic photosensitive member and image forming apparatus

Country Status (1)

Country Link
JP (1) JP6938427B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4059710A4 (en) 2019-11-15 2023-11-15 Mitsui Chemicals, Inc. Laminate body, production method for laminate body, composition for forming antifogging film, antifogging film, and composition set for forming antifogging film

Also Published As

Publication number Publication date
JP2019207311A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
JP4499785B2 (en) Electrophotographic photoreceptor and image forming apparatus provided with the same
JP6265695B2 (en) Image forming apparatus
JP4404942B2 (en) Image forming apparatus
JP6938427B2 (en) Manufacturing method of electrophotographic photosensitive member and electrophotographic photosensitive member and image forming apparatus
JP2019074735A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP4242893B2 (en) Electrophotographic photoreceptor and image forming apparatus provided with the same
JP2008033224A (en) Electrophotographic photosensitive member and image forming apparatus equipped with the same
JP4242902B2 (en) Electrophotographic photoreceptor and image forming apparatus provided with the same
JP2007226185A (en) Image forming apparatus
US9964867B2 (en) Electrophotographic photoreceptor, manufacturing method and identification method thereof, and image forming apparatus
JPWO2018124243A1 (en) Electrophotographic photoreceptor and image forming apparatus
JP5296399B2 (en) Image forming apparatus and image forming method
US7672612B2 (en) Electrophotographic photosensitive member, and image forming apparatus using same
JP6741644B2 (en) Substrate, electrophotographic photoreceptor and image forming apparatus
JP2005099637A (en) Substrate for photoreceptor and photoreceptor, and image forming apparatus
JP5495621B2 (en) Electrophotographic photosensitive member, specific position detection system in the circumferential direction of the electrophotographic photosensitive member, electrophotographic photosensitive member unit, and electrophotographic apparatus
JP2007121533A (en) Electrophotographic image forming apparatus
JP2019191398A (en) Electrophotographic photoreceptor and image forming apparatus
JP2019219624A (en) Electrophotographic photoreceptor and image forming apparatus
JP5506494B2 (en) Image forming apparatus
JP2020181074A (en) Holder for electrophotographic photoreceptor and image forming apparatus
JP6342603B2 (en) Electrophotographic photoreceptor and photoreceptor unit
JP2007293280A (en) Electrophotographic photosensitive member and image forming apparatus equipped with the same
JP5594582B2 (en) Electrophotographic photoreceptor and method for producing the same
JP4283331B2 (en) Image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210901

R150 Certificate of patent or registration of utility model

Ref document number: 6938427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150