JP6937508B2 - 画像処理システム、評価モデル構築方法、画像処理方法及びプログラム - Google Patents
画像処理システム、評価モデル構築方法、画像処理方法及びプログラム Download PDFInfo
- Publication number
- JP6937508B2 JP6937508B2 JP2017113630A JP2017113630A JP6937508B2 JP 6937508 B2 JP6937508 B2 JP 6937508B2 JP 2017113630 A JP2017113630 A JP 2017113630A JP 2017113630 A JP2017113630 A JP 2017113630A JP 6937508 B2 JP6937508 B2 JP 6937508B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- region
- candidate region
- candidate
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 title claims description 61
- 238000013210 evaluation model Methods 0.000 title claims description 55
- 238000010276 construction Methods 0.000 title claims description 14
- 238000003672 processing method Methods 0.000 title claims description 7
- 238000000605 extraction Methods 0.000 claims description 81
- 238000011156 evaluation Methods 0.000 claims description 69
- 238000001514 detection method Methods 0.000 claims description 32
- 238000005520 cutting process Methods 0.000 claims description 18
- 239000000284 extract Substances 0.000 claims description 18
- 230000006870 function Effects 0.000 claims description 10
- 238000013528 artificial neural network Methods 0.000 claims description 5
- 230000002194 synthesizing effect Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 description 38
- 230000008569 process Effects 0.000 description 32
- 238000013527 convolutional neural network Methods 0.000 description 22
- 238000012805 post-processing Methods 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 238000011176 pooling Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004256 retinal image Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Landscapes
- Image Analysis (AREA)
Description
なお、非特許文献2には、複素モーメントフィルタを用いた特徴点の抽出法が記載されている。非特許文献2には、複素モーメントフィルタによれば、一般的な特徴点の抽出法に比べ、ノイズの存在下でも安定して高精度に特徴点の抽出が可能であることが示されている。
以下、本発明の一実施形態による画像処理システムを図1〜図10を参照して説明する。本実施形態による画像処理システムは、1台または複数台のPC(personal computer)やサーバ端末などのコンピュータに実装される。画像処理システムは、直線状の部材、構造物に生じたヒビや亀裂等、画像に含まれる線状の対象物を検出する。以下の説明では、1台のコンピュータに実装された画像処理システム(画像処理装置10)によって、コンクリート構造物の画像からヒビを検出する処理を例に説明を行う。
図1に示す画像処理装置10は、制御部11と、入力部12と、出力部13と、記憶部14と、を備えている。
制御部11は、画像に含まれる線状の対象物を検出する処理を行う。制御部11は、対象物が含まれる学習用の画像(学習用画像)から対象物を検出するための評価モデルを構築する機能と、構築した評価モデルに基づいて、評価対象の画像(評価用画像)に写っている対象物を検出する機能を有している。制御部11の機能については後述する。
入力部12は、データの入力を行うインタフェースである。例えば、入力部12は、キーボード、マウス等の入力装置である。
出力部13は、データの出力を行うインタフェースである。例えば、出力部13は、対象物の検出処理の結果を他のコンピュータ装置、表示装置、プリンタ等に出力する。
記憶部14は、例えば、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)等の不揮発性の記憶媒体と、RAM(Random Access Memory)、レジスタ等の揮発性の記憶媒体とを含む。記憶部14は、諸々のデータを記憶する。
色変換部111は、カラー画像をグレースケール画像に変換する。また、色変換部111は、RGB色空間の入力画像をCIE−Lab色空間の画像に変換する機能を有している。
特徴点抽出部112は、複素モーメントフィルタ(CMF−2RS)を用いて、入力画像または入力画像に対して色情報の変更を行った画像に含まれる二回対称点を特徴点として抽出する。つまり、特徴点抽出部112は、入力画像を180°回転させても変わらない点の集合を検出する。特徴点抽出部112は、検出した特徴点を抽出したPb(probability)画像を生成する。
候補領域抽出部113は、特徴点抽出部112によって抽出された特徴点に基づいて、Pb画像から候補領域を抽出する。ここで候補領域とは、線状の領域のことである。候補領域抽出部113は、しきい値による二値化処理および細線化処理を行って候補領域の抽出を行う。
パッチ画像切出部114は、学習用画像と評価用画像から矩形の小領域を切り出したパッチ画像を生成する。
モデル構築部115は、学習用画像から切り出された対象物が写ったパッチ画像を学習して、対象物を検出するための評価モデルを構築する。評価モデルの構築には、例えば畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)等の深層学習を用いる。
評価部116は、評価用画像から切り出されたパッチ画像に線状の対象物が含まれているかどうかを、評価モデルに基づいて評価する。
後処理部117は、評価部116による評価結果が示す線状の領域について、ノイズを除去する後処理を行う。
評価結果表示部118は、評価用画像に含まれる線状の対象物に対する検出結果を表示する。例えば、評価結果表示部118は、評価用画像中における線状の対象物が写った領域に印を付す等した画像を生成して、その画像を出力する。
合成部119は、特徴点抽出部112がカラー画像に含まれる複数の色空間画像(色チャンネル画像)の各々について、特徴点の抽出処理を行った場合、その結果の各特徴点抽出画像を合成し、1つのPb画像を生成する。
図3は、本発明の一実施形態による特徴点の抽出処理を説明する第2の図である。
まず、ユーザが画像処理装置10に学習用画像を入力する。ここで、学習用画像は、RGB色空間の画像である。画像処理装置10では、入力部12が、学習用画像を取得し、記憶部14に記録する。制御部11は、学習用画像を記憶部14から読み出して、色変換部111が学習用画像をRGB色空間のカラー画像からグレースケール画像へ変換する。
次に特徴点抽出部112が、グレースケール画像から特徴点(二回対称点)を検出する処理を行う。特徴点抽出部112は、複素モーメントフィルタ(CMF―2RS)によって、特徴点の検出を行う。本実施形態で使用する複素モーメントフィルタについては、非特許文献2に開示がある。非特許文献2には、円対称点・非円対称点、エッジ、コーナー抽出のアルゴリズムが記載されている(「3.5特徴抽出のアルゴリズム」)。本実施形態で用いる複素モーメントフィルタ(CMF―2RS)の抽出アルゴリズムの概要を図3に示す。ここで、学習用画像は連続画像ではなく、これをサンプリングした離散画像である。特徴点抽出部112は、この離散画像における局所画像の複素モーメントを計算するためにまず、オペレータh1、h2、・・・、hn、・・・、hNを算出する。Nは、複素モーメントの最大次数である。次に特徴点抽出部112は、各オペレータh1、h2、・・・、hNから複素モーメントc1、c2、・・・、cn、・・・、cNを算出する。オペレータや複素モーメントの算出式は、非特許文献2に記載がある。N個の異なる次数の複素モーメントc1、c2、・・・、cNを算出すると、特徴点抽出部112は、下記の式(1)から特徴量Ssymを求める。式(1)に示すように「2の倍数の次数の複素モーメントの和」と「2の倍数以外の次数の複素モーメントの和」の差が二回対称点の特徴量である。
図2の右図に、CMF−2RSによって特徴点抽出部112が抽出した特徴点を強調したPb画像の例を示す。
図4は、本発明の一実施形態による候補領域の抽出処理を説明する図である。
候補領域の抽出処理では、しきい値処理と細線化処理を行う。まず、候補領域抽出部113は、Pb画像を入力し、所定のしきい値により、Pb画像から二値画像を生成するしきい値処理を行う。実験では、正規化していないPb画像に対してしきい値「0」を設定し、画素値が0以上の領域をヒビとして抽出することで安定した検出が可能であることが確認された。図4の左図にPb画像を、中図にPb画像から生成された二値画像を示す。
図5は、本発明の一実施形態によるパッチ画像の切り出し処理を説明する図である。
候補領域抽出画像が生成されると、パッチ画像切出部114が、学習用画像(最初に入力した学習用画像)から候補領域を含んだパッチ画像を切り出す。具体的には、パッチ画像切出部114は、候補領域抽出画像に含まれる各候補領域の重心の座標情報を計算する。パッチ画像切出部114は、計算した重心の座標を中心とする候補領域を含む矩形領域の画像を、学習用画像から切り出す(パッチ画像)。パッチ画像切出部114は、各候補領域(線状の領域)についてパッチ画像を生成する。このとき、パッチ画像切出部114は、候補領域の全領域を対象としてパッチ画像を生成する。これらのパッチ画像は、CNNによる評価モデルを学習する際に教師データとして用いられる。
図6は、本発明の一実施形態によるCNNモデルのネットワーク構成の一例を示す図である。
評価モデルの構築には、CNN(Convolutional Neural Network)を用いることができる。CNNとは、ニューラルネットワークの一種で画像処理の分野で広く用いられている。CNNのモデルは、畳み込み層(Convolutional Layer)、プーリング層(Pooling Layer)、局所応答正規化層(LRN層)を備えており、一般的なニューラルネットワークよりも複雑で膨大な教師データに対応することができる。また、ニューラルネットワークを用いると、SVM(support vector machine)等の機械学習と比較して分類器の構築だけではなく、同時に特徴量を抽出するフィルタの構築も行うことができる。本実施形態では、CNNを用いて検出対象と検出対象以外を分類する評価モデル(CNNモデル)を構築する。図6に本実施形態における評価モデルの構造の一例を示す。CNNモデルのネットワーク構造は、(1)入力画像は例えば、20×20ピクセルのパッチ画像をRGBの3チャンネルに分けて得られる画像、32個の5×5の2次元フィルタから成る1つ目の畳み込み層(2)、1つ目のプーリング層及びLRN層(3)、64個の5×5の2次元フィルタから成る2つ目の畳み込み層(4)、2つ目のプーリング層及びLRN層(5)、1600次元の特徴量空間を1024次元に分類する全結合層(6)、1024次元の特徴量空間を2次元(true、false)に分類する全結合層(7)、から構成される。適切なCNNモデルのネットワーク構造は教師データの数や、画像の解像度などに応じて異なる。ただし、同程度の解像度や教師画像の数の場合、CNNモデルのネットワーク構造を調整することなく評価モデルを構築することができる。
評価部116は、評価用画像から生成されたパッチ画像を評価モデルに入力し、各パッチ画像に検出対象の線状の対象物が含まれているかどうかを示す予測ラベルを得る。例えば、予測ラベル「1」が出力された場合、パッチ画像(評価用)の当該画素には線状の対象物が含まれている可能性が高いことを示す。予測ラベル「0」が出力された場合、パッチ画像(評価用)の当該画素には線状の対象物が含まれていない可能性が高いことを示す。評価部116は、図5で説明した異なるラベルを付した線状領域ごとに切り出されたパッチ画像の全てについて予測ラベルに基づく評価を行い、線状領域ごとにその領域がヒビかどうかを判定する。その際、評価部116は、異なるラベルが付された線状領域ごとに抽出されたパッチ画像の各々についてCNNを用いてヒビである確率を算出する。例えば、評価部116は、パッチ画像から予測ラベル「1」が出力された画素数が1つのパッチ画像を形成する全画素数に占める割合に応じた確率を算出する。評価部116は、1つのラベルに対応する線状領域から生成された各パッチ画像について算出した確率の平均値を算出し、その平均値を当該ラベルが付された線状領域が検出対象(ヒビ)である確率とする。評価部116は、この確率が所定の閾値を超えていれば、当該ラベルが付された線状領域は、検出対象であると評価する。
図7の左図は、評価用画像に対する評価モデルによる評価結果から得られる線状領域を示している。図の白い領域が線状領域である。この図は、例えば、評価用画像に対して、特徴点の抽出処理、候補領域の抽出処理、パッチ画像の切り出し、CNNによる分類を行い、その分類結果を、候補領域の抽出処理で得られた候補領域抽出画像に対して適用したものである。後処理部117は、図7の左図に例示する画像を読み込んで、ひとつながりの白い領域ごとにピクセル数を合計する。後処理部117は、合計したピクセル数が所定の閾値以下の線状領域(例えば、左図の丸で囲った2つの線状領域)についてはこれを除去し、図7の右図に例示する画像を生成する。図7の右図は、評価用画像に含まれる線状領域を示す最終的な画像である。
図8は、本発明の一実施形態による対象物の検出処理結果を示す図である。
図8の左図は、評価対象となるコンクリート構造物の画像である。右図は、評価結果を示す表示を追加したコンクリート構造物の画像である。検出対象の線状の対象物は、ヒビである。評価結果表示部118は、評価部116によって、線状の対象物が含まれている可能性が高いと評価された領域を強調する表示を行ってヒビの検出結果を表示する。
図9は、本発明の一実施形態による画像処理装置による対象物検出処理の一例を示すフローチャートである。
まず、ユーザが、学習用画像を画像処理装置10に入力し、評価モデルの構築を指示する。入力部12は、学習用画像を取得し(ステップS1)、記憶部14に記録する。また、制御部11は、評価モデルの構築処理を開始する。まず、色変換部111は、記憶部14から学習用画像を読み出して、学習用画像をカラー画像(RGB画像)からグレースケール画像に変換する(ステップS2)。
以上で、評価モデルの構築処理が完了する。
また、評価モデルの構築にはCNNを用いるので、検出対象が画像に含まれるかどうかを分類する分類器に加え、検出対象を分類するための特徴量を抽出するフィルタを学習して構築することができる。これにより、精度の高い評価モデルを構築することができる。
また、評価用画像について評価モデルによる線状の対象物の分類を行った後にノイズの除去(後処理)を行うことにより、検出精度を高めることができる。
これら適切な各処理方法を組み合わせることにより、効率的かつ精度良く線状の対象物の検出処理を行うことができる。
コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備える。
上述の画像処理装置10は、コンピュータ900に実装される。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、CPU901は、プログラムに従って、記憶部14に対応する記憶領域を主記憶装置902に確保する。また、CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。
また、上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。なお、画像処理装置10は、複数のコンピュータ900によって構成されていても良い。
Claims (10)
- 検出対象である線状の領域が含まれる学習用の画像から、複素モーメントフィルタにより二回対称点を特徴点として抽出する特徴点抽出部と、
前記抽出した特徴点を含む画像を二値化することにより前記検出対象の候補となる領域を抽出する候補領域抽出部と、
前記候補となる領域を含んだ画像を複数取得し、取得した前記画像に基づいて前記候補となる領域の特徴を学習し、前記画像における前記候補となる領域を含む画素と含まない画素とを分類する評価モデルを構築するモデル構築部と、
前記評価モデルに基づいて、評価対象の画像に含まれる前記線状の領域を特定する特定部と、
を備える画像処理システム。 - 前記候補領域抽出部は、前記候補となる領域に対して細線化処理を行う、
請求項1に記載の画像処理システム。 - 前記学習用の画像のうち、前記候補となる領域を対象に切り出した画像を生成するパッチ画像切出部、
をさらに備え、
前記モデル構築部は、前記切り出された画像を学習して、前記候補となる領域を含む画素と、前記候補となる領域を含まない画素とを分類する評価モデルを構築する、
請求項1または請求項2に記載の画像処理システム。 - 前記パッチ画像切出部は、1つながりの前記線状の領域について、その一部のみを対象とする前記画像を生成する、
請求項3に記載の画像処理システム。 - 前記モデル構築部は、ニューラルネットワークにより前記評価モデルを構築する、
請求項1から請求項4の何れか1項に記載の画像処理システム。 - 前記特定部が特定した前記線状の領域について、その領域の面積が所定の閾値以下の前記線状の領域を除去するノイズ除去部、
をさらに備える請求項1から請求項5の何れか1項に記載の画像処理システム。 - 前記特徴点抽出部は、前記学習用の画像に含まれる複数の色チャンネル画像それぞれについて、前記特徴点の抽出を行い、
前記候補領域抽出部は、前記特徴点抽出部が複数の前記色チャンネル画像から前記特徴点を抽出して生成した画像を合成して得られる画像から、前記候補となる領域を抽出する、
請求項1から請求項6の何れか1項に記載の画像処理システム。 - 検出対象である線状の領域が含まれる学習用の画像から、複素モーメントフィルタにより二回対称点を特徴点として抽出するステップと、
前記抽出した特徴点を含む画像を二値化することにより前記検出対象の候補となる領域を抽出するステップと、
前記候補となる領域を含んだ画像を複数取得し、取得した前記画像に基づいて前記候補となる領域の特徴を学習し、前記画像における前記候補となる領域を含む画素と含まない画素とを分類する評価モデルを構築するステップと、
を有する評価モデル構築方法。 - 検出対象である線状の領域が含まれる学習用の画像から、複素モーメントフィルタにより二回対称点を特徴点として抽出するステップと、
前記抽出した特徴点を含む画像を二値化することにより前記検出対象の候補となる領域を抽出するステップと、
前記候補となる領域を含んだ画像を複数取得し、取得した前記画像に基づいて前記候補となる領域の特徴を学習し、前記画像における前記候補となる領域を含む画素と含まない画素とを分類する評価モデルを構築するステップと、
前記評価モデルに基づいて、評価対象の画像に含まれる前記線状の領域を特定するステップと、
を有する画像処理方法。 - コンピュータを、
検出対象である線状の領域が含まれる学習用の画像から、複素モーメントフィルタにより二回対称点を特徴点として抽出する手段、
前記抽出した特徴点を含む画像を二値化することにより前記検出対象の候補となる領域を抽出する手段、
前記候補となる領域を含んだ画像を複数取得し、取得した前記画像に基づいて前記候補となる領域の特徴を学習し、前記画像における前記候補となる領域を含む画素と含まない画素とを分類する評価モデルを構築する手段、
前記評価モデルに基づいて、評価対象の画像に含まれる前記線状の領域を特定する手段、
として機能させるためのプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017113630A JP6937508B2 (ja) | 2017-06-08 | 2017-06-08 | 画像処理システム、評価モデル構築方法、画像処理方法及びプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017113630A JP6937508B2 (ja) | 2017-06-08 | 2017-06-08 | 画像処理システム、評価モデル構築方法、画像処理方法及びプログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018206252A JP2018206252A (ja) | 2018-12-27 |
JP6937508B2 true JP6937508B2 (ja) | 2021-09-22 |
Family
ID=64957914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017113630A Active JP6937508B2 (ja) | 2017-06-08 | 2017-06-08 | 画像処理システム、評価モデル構築方法、画像処理方法及びプログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6937508B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7049587B2 (ja) * | 2019-01-09 | 2022-04-07 | オムロン株式会社 | 画像処理装置、画像処理プログラム、及び画像処理方法 |
JP7079742B2 (ja) * | 2019-02-08 | 2022-06-02 | 株式会社日立製作所 | 計算機システム |
US11568540B2 (en) * | 2019-10-07 | 2023-01-31 | Optos Plc | System, method, and computer-readable medium for rejecting full and partial blinks for retinal tracking |
WO2023175870A1 (ja) * | 2022-03-17 | 2023-09-21 | ファナック株式会社 | 機械学習装置、特徴抽出装置、及び制御装置 |
CN115115820B (zh) * | 2022-06-16 | 2024-08-13 | 湖北工业大学 | 用于盾尾间隙智能监测的图像特征提取方法、系统及装置 |
CN114758363B (zh) * | 2022-06-16 | 2022-08-19 | 四川金信石信息技术有限公司 | 一种基于深度学习的绝缘手套佩戴检测方法和系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3194996B2 (ja) * | 1991-09-13 | 2001-08-06 | 富士通株式会社 | 疵検査装置 |
JP4292250B2 (ja) * | 2004-07-02 | 2009-07-08 | トヨタ自動車株式会社 | 道路環境認識方法及び道路環境認識装置 |
US7359555B2 (en) * | 2004-10-08 | 2008-04-15 | Mitsubishi Electric Research Laboratories, Inc. | Detecting roads in aerial images using feature-based classifiers |
JP4761838B2 (ja) * | 2005-02-15 | 2011-08-31 | 独立行政法人理化学研究所 | タンパク質溶液の析出物を判定する方法及びシステム |
JP5505409B2 (ja) * | 2009-03-13 | 2014-05-28 | 日本電気株式会社 | 特徴点生成システム、特徴点生成方法および特徴点生成プログラム |
US9111361B1 (en) * | 2013-02-22 | 2015-08-18 | The Boeing Company | Distinguishing between moving targets and clutter in a video |
-
2017
- 2017-06-08 JP JP2017113630A patent/JP6937508B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018206252A (ja) | 2018-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6937508B2 (ja) | 画像処理システム、評価モデル構築方法、画像処理方法及びプログラム | |
TWI651662B (zh) | 影像標註方法、電子裝置及非暫態電腦可讀取儲存媒體 | |
EP2806374B1 (en) | Method and system for automatic selection of one or more image processing algorithm | |
US9418283B1 (en) | Image processing using multiple aspect ratios | |
US8594431B2 (en) | Adaptive partial character recognition | |
WO2016054779A1 (en) | Spatial pyramid pooling networks for image processing | |
WO2016054778A1 (en) | Generic object detection in images | |
JP4877374B2 (ja) | 画像処理装置及びプログラム | |
TWI254891B (en) | Face image detection method, face image detection system, and face image detection program | |
JP5936561B2 (ja) | 画像における外観及びコンテキストに基づく物体分類 | |
JP6997369B2 (ja) | プログラム、測距方法、及び測距装置 | |
JP2017004350A (ja) | 画像処理装置、画像処理方法、及びプログラム | |
CN103824090A (zh) | 一种自适应的人脸低层特征选择方法及人脸属性识别方法 | |
JP6989450B2 (ja) | 画像解析装置、画像解析方法及びプログラム | |
JP6887154B2 (ja) | 画像処理システム、評価モデル構築方法、画像処理方法及びプログラム | |
US11410278B2 (en) | Automatic artifact removal in a digital image | |
JP2020087165A (ja) | 学習データ生成プログラム、学習データ生成装置、及び学習データ生成方法 | |
JPWO2015146113A1 (ja) | 識別辞書学習システム、識別辞書学習方法および識別辞書学習プログラム | |
JP5335554B2 (ja) | 画像処理装置及び画像処理方法 | |
WO2016192213A1 (zh) | 一种图像特征提取方法和装置、存储介质 | |
CN111476226B (zh) | 一种文本定位方法、装置及模型训练方法 | |
JP2016058018A (ja) | 画像処理方法、画像処理プログラムおよび画像処理装置 | |
Lindblad et al. | Coverage segmentation based on linear unmixing and minimization of perimeter and boundary thickness | |
KR101592087B1 (ko) | 배경 영상의 위치를 이용한 관심맵 생성 방법 및 이를 기록한 기록 매체 | |
JP5958557B2 (ja) | オブジェクト認識方法及びオブジェクト認識装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210525 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210629 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210810 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210824 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6937508 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |