JP6936755B2 - Hardened Overlaid Gas Shield Arc Fluxed Wire for Welding - Google Patents

Hardened Overlaid Gas Shield Arc Fluxed Wire for Welding Download PDF

Info

Publication number
JP6936755B2
JP6936755B2 JP2018058886A JP2018058886A JP6936755B2 JP 6936755 B2 JP6936755 B2 JP 6936755B2 JP 2018058886 A JP2018058886 A JP 2018058886A JP 2018058886 A JP2018058886 A JP 2018058886A JP 6936755 B2 JP6936755 B2 JP 6936755B2
Authority
JP
Japan
Prior art keywords
flux
total
wire
welding
outer skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018058886A
Other languages
Japanese (ja)
Other versions
JP2019171387A (en
Inventor
諒 土久岡
諒 土久岡
竜太朗 千葉
竜太朗 千葉
笹木 聖人
聖人 笹木
直樹 坂林
直樹 坂林
Original Assignee
日鉄溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄溶接工業株式会社 filed Critical 日鉄溶接工業株式会社
Priority to JP2018058886A priority Critical patent/JP6936755B2/en
Publication of JP2019171387A publication Critical patent/JP2019171387A/en
Application granted granted Critical
Publication of JP6936755B2 publication Critical patent/JP6936755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、トラックローラ、ミルハンマやショベルカーの爪部などの硬化肉盛溶接に適用されるガスシールドアーク溶接用フラックス入りワイヤであって、溶接作業性が良好で、ビード表面に開口欠陥がなく、特に溶接後の熱処理を行わない状態(溶接のまま)であっても十分なビッカース硬さの溶接金属が得られる硬化肉盛ガスシールドアーク溶接用フラックス入りワイヤに関する。 The present invention is a flux-filled wire for gas shielded arc welding applied to hard overlay welding of track rollers, mill hammers, excavator car claws, etc., which has good welding workability and no opening defects on the bead surface. In particular, the present invention relates to a hardened overlay gas shielded arc welding flux-containing wire capable of obtaining a weld metal having sufficient Vickers hardness even when no heat treatment is performed after welding (as it is welded).

構造物の摩耗にはさまざまな要因がある。その磨耗の要因としては、金属間同士の接触による金属間摩耗、土砂やスラグなどが原因で生じる土砂摩耗、腐食環境化で一部または全面が減肉してしまう腐食摩耗、繰り返しの衝撃で生じる衝撃摩耗など多様な形態がある。このため、構造物の摩耗の形態に対応した溶接材料を選択する必要がある。その中でも硬化肉盛溶接は、建設機械や発電機器などに代表される各種産業機械の耐摩耗の要求される部位に、耐摩耗性に優れた肉盛金属を形成する方法として知られている。 There are various factors in structural wear. The causes of the wear are metal-to-metal wear due to contact between metals, earth and sand wear caused by earth and sand, slag, etc., corrosive wear in which part or the entire surface is thinned due to a corrosive environment, and repeated impacts. There are various forms such as impact wear. Therefore, it is necessary to select a welding material corresponding to the form of wear of the structure. Among them, hardened overlay welding is known as a method of forming an overlay metal having excellent abrasion resistance at a portion where abrasion resistance is required of various industrial machines represented by construction machinery and power generation equipment.

摩耗の形態が金属間摩耗であれば、肉盛溶接金属の硬さは450Hvレベルで対応可能である。一方、土砂摩耗の場合、肉盛溶接金属の硬さは500Hv以上を求められることが多い。特に肉盛溶接金属の硬さが600Hv以上になると、被覆アーク溶接棒の被覆剤やガスシールドアーク溶接用フラックス入りワイヤに充填するフラックスに適用する原材料の添加方法により歩留りが変化するため、安定した溶接部の硬さの確保が困難になる。 If the form of wear is intermetal wear, the hardness of the overlaid weld metal can be handled at the 450 Hv level. On the other hand, in the case of earth and sand wear, the hardness of the overlaid weld metal is often required to be 500 Hv or more. In particular, when the hardness of the overlaid weld metal is 600 Hv or more, the yield changes depending on the method of adding the raw material applied to the flux to be filled in the flux-cored wire for shielded metal arc welding and the flux-cored wire for gas shielded arc welding, so that the yield is stable. It becomes difficult to secure the hardness of the welded part.

ガスシールドアーク溶接による硬化肉盛溶接においては、例えば特許文献1の開示技術に示すように、ヒューム発生量やスラグ発生量の低減、平坦なビード形状並びに小さな溶け込み深さを得るためにシールドガスとして純Arガスを用いる硬化肉盛MIGアーク溶接ワイヤが開示されている。しかし、特許文献1に開示されている技術では、スパッタ発生量が多く、ビード形状が不良である等、溶接作業性が悪いという問題点があった。この他に特許文献1の開示技術では、ビッカース硬さ550Hv以上の溶接金属を得るために、原料コストの高いCr、V及びWの添加量を多くしているため、製造コストが高くなるという問題点があった。 In hard build-up welding by gas shield arc welding, for example, as shown in the disclosed technology of Patent Document 1, as a shield gas in order to reduce the amount of fume generation and slag generation, to obtain a flat bead shape and a small penetration depth. A hardened build-up MIG arc welded wire using pure Ar gas is disclosed. However, the technique disclosed in Patent Document 1 has a problem that welding workability is poor, such as a large amount of spatter generated and a poor bead shape. In addition to this, in the technique disclosed in Patent Document 1, in order to obtain a weld metal having a Vickers hardness of 550 Hv or more, the amount of Cr, V, and W, which have high raw material costs, is increased, so that the manufacturing cost becomes high. There was a point.

また、特許文献2には、溶接金属部のビッカース硬さが安定して800Hv以上が得られるガスシールドアーク溶接用フラックス入りワイヤが開示されている。しかし特許文献2に開示されている技術では、Mo、W、V、Coといった難伸線原料を多く添加している。このため、フラックス入りワイヤにおける外皮の肉厚変動が発生しやすく、伸線工程において断線が多発するため、ワイヤ径を3.2mmより細くすることができないといった問題点があった。 Further, Patent Document 2 discloses a flux-cored wire for gas shielded arc welding in which the Vickers hardness of the weld metal portion is stable and 800 Hv or more can be obtained. However, in the technique disclosed in Patent Document 2, a large amount of difficult-to-draw raw materials such as Mo, W, V, and Co are added. For this reason, there is a problem that the thickness of the outer skin of the flux-cored wire is liable to fluctuate, and the wire is broken frequently in the wire drawing process, so that the wire diameter cannot be made smaller than 3.2 mm.

特開2011−104624号公報Japanese Unexamined Patent Publication No. 2011-104624 特開昭61−7090号公報Japanese Unexamined Patent Publication No. 61-7090

そこで本発明は、上述した問題点に鑑みて案出されたものであり、硬化肉盛溶接に関し、溶接作業性が良好で、ビード表面に開口欠陥がなく、特に溶接後の熱処理を行わない状態(溶接のまま)であってもビッカース硬さが550Hv以上の溶接金属が得られる硬化肉盛ガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。 Therefore, the present invention has been devised in view of the above-mentioned problems, and is in a state in which welding workability is good, there are no opening defects on the bead surface, and heat treatment is not particularly performed after welding. It is an object of the present invention to provide a flux-containing wire for hardened overlay gas shielded arc welding, which can obtain a weld metal having a Vickers hardness of 550 Hv or more even (as welded).

本発明の要旨は、鋼製外皮にフラックスを充填してなる硬化肉盛ガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、C:0.2〜0.8%、Si:0.2〜0.8%、Mn:2〜5%、Mo:1〜6%、Cr:4〜8%、Al:0.1〜1.0%、Mg:0.1〜1.0%、さらに、ワイヤ全質量に対する質量%で、フラックス中に、Ti酸化物のTiO2換算値の合計:1〜6%、Si酸化物のSiO2換算値の合計:0.1〜1.0%、Na化合物及びK化合物のNa2O換算値及びK2O換算値の1種又は2種以上の合計:0.01〜0.30%、弗素化合物のF換算値の合計:0.01〜1.0%を含有し、残部が鋼製外皮のFe分、フラックス中の鉄粉、鉄合金粉のFe分及び不可避不純物を含有することを特徴とする硬化肉盛ガスシールドアーク溶接用フラックス入りワイヤにある。 The gist of the present invention is that in a wire containing a flux for hardened overlay gas shielded arc welding in which a steel outer skin is filled with flux, the total mass of the steel outer skin and the flux is C: 0. 2 to 0.8%, Si: 0.2 to 0.8%, Mn: 2 to 5%, Mo: 1 to 6%, Cr: 4 to 8%, Al: 0.1 to 1.0%, mg: 0.1 to 1.0%, further containing, by mass% with respect to total mass of the wire, in the flux, the total of TiO 2 converted value of Ti oxides: 1-6%, of SiO 2 converted value of Si oxide Total: 0.1 to 1.0%, total of one or more Na 2 O conversion values and K 2 O conversion values of Na compound and K compound: 0.01 to 0.30%, of fluorine compound Total F conversion value: Contains 0.01 to 1.0%, and the balance is characterized by containing Fe content of steel outer skin, iron powder in flux, Fe content of iron alloy powder, and unavoidable impurities. Hardened overlay gas shield Arc welded flux-filled wire.

本発明を適用した、硬化肉盛ガスシールドアーク溶接用フラックス入りワイヤによれば、トラックローラ、ミルハンマやショベルカーの爪部などを硬化肉盛溶接するにあたり、溶接作業性が良好で、ビード表面に開口欠陥がなく、特に溶接後の熱処理を行わない状態(溶接のまま)であっても、ビッカース硬さが550Hv以上の溶接金属が得られる硬化肉盛ガスシールドアーク溶接用フラックス入りワイヤを提供することができる。 According to the flux-welded wire for hardened overlay gas shielded arc welding to which the present invention is applied, welding workability is good and welding workability is good on the bead surface when performing hardened overlay welding of track rollers, mill hammers, excavator car claws, etc. Provided is a flux-containing wire for hardened overlay gas shielded arc welding, which can obtain a weld metal having a Vickers hardness of 550 Hv or more even when there is no opening defect and no heat treatment is performed after welding (as it is welded). be able to.

本発明者らは、硬化肉盛ガスシールドアーク溶接用フラックス入りワイヤについて、アークが安定し、スパッタ発生量が少なく、スラグ被包性、スラグ剥離性が良好で、ピット、ブローホール及びビード表面に開口欠陥の無いビード形状が得られ、かつ、溶接後の熱処理を行わない状態(溶接のまま)であっても、ビッカース硬さ550Hv以上の溶接金属を得るために種々検討を行った。 The present inventors have provided a hardened overlay gas shielded arc welding flux-filled wire with stable arc, low spatter generation, good slag encapsulation and slag peeling properties, and on pits, blow holes and bead surfaces. Various studies were conducted to obtain a weld metal having a Vickers hardness of 550 Hv or more even when a bead shape without opening defects was obtained and no heat treatment was performed after welding (as welded).

その結果、フラックス入りワイヤ中のC及びCrを適量とし、さらにMoを添加することにより溶接金属の安定した硬さが得られることを見出した。また、Si、Mnを適量とし、かつAl及びMgの適量添加により耐欠陥性が良好になることも見出した。 As a result, it was found that stable hardness of the weld metal can be obtained by adjusting the amounts of C and Cr in the flux-cored wire to appropriate amounts and further adding Mo. It was also found that the defect resistance is improved by using appropriate amounts of Si and Mn and adding appropriate amounts of Al and Mg.

溶接作業性については、フラックス入りワイヤ中のTi酸化物、Si酸化物、Na化合物とK化合物及び弗素化合物を適量とすることによって、アークが安定してスパッタ発生量が少なく、スラグ被包性やスラグ剥離性及びビード形状が良好になることを見出した。 Regarding welding workability, by adjusting the appropriate amounts of Ti oxide, Si oxide, Na compound, K compound and fluorine compound in the flux-cored wire, the arc is stable and the amount of spatter generated is small, and the slag encapsulation property is improved. It was found that the slag peelability and the bead shape were improved.

以下、本発明を適用した硬化肉盛ガスシールドアーク溶接用フラックス入りワイヤの各成分組成の限定理由について説明する。なお、各成分組成の含有量は、ワイヤ全質量に対する質量%で表すこととし、その質量%を表す時には単に%と記載して表すこととする。 Hereinafter, the reasons for limiting the composition of each component of the flux-cored wire for cured overlay gas shielded arc welding to which the present invention is applied will be described. The content of each component composition is expressed in% by mass with respect to the total mass of the wire, and when the mass% is expressed, it is simply expressed as%.

[鋼製外皮とフラックスの合計でC:0.2〜0.8%]
Cは、溶接金属の焼入れ性を高めるために重要な元素であり、Cr及びMoとの間で炭化物を生成して溶接金属の硬さを高める効果がある。Cが0.2%未満であると、目標とする溶接金属の硬さが得られない。一方、Cが0.8%を超えると、溶接金属が硬くなりすぎて延性が低下し、ビード表面に開口欠陥が発生しやすくなる。したがって、鋼製外皮とフラックスの合計でCは0.2〜0.8%とする。なお、Cは鋼製外皮に含まれる成分の他、フラックスからの金属粉及び合金粉等から添加できる。
[Total of steel outer skin and flux C: 0.2-0.8%]
C is an important element for enhancing the hardenability of the weld metal, and has the effect of forming carbides between Cr and Mo to increase the hardness of the weld metal. If C is less than 0.2%, the target hardness of the weld metal cannot be obtained. On the other hand, when C exceeds 0.8%, the weld metal becomes too hard and the ductility is lowered, and opening defects are likely to occur on the bead surface. Therefore, the total of the steel outer skin and the flux is set to 0.2 to 0.8%. In addition to the components contained in the steel outer skin, C can be added from metal powder from flux, alloy powder, and the like.

[鋼製外皮とフラックスの合計でSi:0.2〜0.8%]
Siは、脱酸剤として添加する。また、アークの安定性やビード形状を改善する効果もある。Siが0.2%未満であると、アークが不安定で、ブローホールやピットが発生しやすくなる。一方、Siが0.8%を超えると、酸化物として粒界に偏析して溶接金属の延性が低下してビード表面に開口欠陥が発生しやすくなる。したがって、鋼製外皮とフラックスの合計でSiは0.2〜0.8%とする。なお、Siは鋼製外皮に含まれる成分の他、フラックスからの金属Si、Fe−Si、Fe−Si−Mn等の合金粉から添加できる。
[Total of steel outer skin and flux Si: 0.2-0.8%]
Si is added as an antacid. It also has the effect of improving arc stability and bead shape. If Si is less than 0.2%, the arc is unstable and blow holes and pits are likely to occur. On the other hand, if Si exceeds 0.8%, it segregates at the grain boundaries as an oxide, the ductility of the weld metal is lowered, and opening defects are likely to occur on the bead surface. Therefore, the total of the steel outer skin and the flux is set to 0.2 to 0.8%. In addition to the components contained in the steel outer skin, Si can be added from alloy powders such as metal Si, Fe-Si, and Fe-Si-Mn from flux.

[鋼製外皮とフラックスの合計でMn:2〜5%]
Mnは、Siと同様に脱酸剤として添加する。また、低融点化合物の偏析を低減して耐割れ性を改善する効果もある。Mnが2%未満であると、ビード表面に開口欠陥が生じたり、ブローホールやピットが発生しやすくなる。一方、Mnが5%を超えると、ビード形状が凸になりやすくなり不良となる。したがって、鋼製外皮とフラックスの合計でMnは2〜5%とする。なお、Mnは鋼製外皮に含まれる成分の他、フラックスからの金属Mn、Fe−Mn、Fe−Si−Mn等の合金粉から添加できる。
[Mn: 2-5% in total of steel outer skin and flux]
Mn is added as a deoxidizer in the same manner as Si. It also has the effect of reducing segregation of low melting point compounds and improving crack resistance. If Mn is less than 2%, opening defects are likely to occur on the bead surface, and blow holes and pits are likely to occur. On the other hand, if Mn exceeds 5%, the bead shape tends to be convex, resulting in a defect. Therefore, the total Mn of the steel outer skin and the flux is set to 2 to 5%. In addition to the components contained in the steel outer skin, Mn can be added from alloy powders such as metal Mn, Fe-Mn, and Fe-Si-Mn from flux.

[鋼製外皮とフラックスの合計でMo:1〜6%]
Moは、Cr炭化物の生成を助長して溶接金属の硬さを高める効果がある。Moが1%未満であると、目標とする溶接金属の硬さが得られない。一方、Moが6%を超えると、伸線工程で断線が発生しやすくなる。したがって、鋼製外皮とフラックスの合計でMoは1〜6%とする。なお、Moは鋼製外皮に含まれる成分の他、フラックスからの金属Mo、Fe−Mo等の合金粉から添加できる。
[Mo: 1 to 6% in total of steel outer skin and flux]
Mo has the effect of promoting the formation of Cr carbides and increasing the hardness of the weld metal. If Mo is less than 1%, the target hardness of the weld metal cannot be obtained. On the other hand, if Mo exceeds 6%, disconnection is likely to occur in the wire drawing process. Therefore, the total Mo of the steel outer skin and the flux is 1 to 6%. In addition to the components contained in the steel outer skin, Mo can be added from alloy powders such as metal Mo and Fe-Mo from flux.

[鋼製外皮とフラックスの合計でCr:4〜8%]
Crは、炭化物を生成して溶接金属の硬さを確保するために重要な元素である。Crが4%未満であると、目標とする溶接金属の硬さが得られない。一方、Crが8%を超えると、溶接金属が硬くなりすぎて延性が低下し、ビード表面に開口欠陥が発生しやすくなる。したがって、鋼製外皮とフラックスの合計でCrは4〜8%とする。なお、Crは鋼製外皮に含まれる成分の他、フラックスからの金属Cr、Fe−Cr、クロムカ−バイト等の合金粉から添加できる。
[Cr: 4-8% in total of steel outer skin and flux]
Cr is an important element for forming carbides and ensuring the hardness of the weld metal. If Cr is less than 4%, the target hardness of the weld metal cannot be obtained. On the other hand, when Cr exceeds 8%, the weld metal becomes too hard and the ductility is lowered, and opening defects are likely to occur on the bead surface. Therefore, the total Cr of the steel outer skin and the flux is set to 4 to 8%. In addition to the components contained in the steel outer skin, Cr can be added from alloy powders such as metal Cr, Fe-Cr, and chromium carbide from flux.

[鋼製外皮とフラックスの合計でAl:0.1〜1.0%]
Alは、強脱酸剤として作用するとともに、溶融スラグの粘性を調整してビード形状を改善する効果がある。Alが0.1%未満であると、脱酸不足となりピットやブローホールが発生しやすくなる。一方、Alが1.0%を超えると、スラグの粘性が高くなりビード形状が凸になりやすくなる。したがって、鋼製外皮とフラックス中の合計でAlは0.1〜1.0%とする。なお、Alは鋼製外皮に含まれる成分の他、フラックスからの金属Al、Fe−Al、Mg−Al等の合金粉から添加できる。
[Total of steel outer skin and flux Al: 0.1 to 1.0%]
Al acts as a strong deoxidizer and has the effect of adjusting the viscosity of the molten slag to improve the bead shape. If Al is less than 0.1%, deoxidation is insufficient and pits and blow holes are likely to occur. On the other hand, when Al exceeds 1.0%, the viscosity of the slag becomes high and the bead shape tends to be convex. Therefore, Al is 0.1 to 1.0% in total in the steel outer skin and the flux. In addition to the components contained in the steel outer skin, Al can be added from alloy powders such as metal Al, Fe-Al, and Mg-Al from flux.

[鋼製外皮とフラックスの合計でMg:0.1〜1.0%]
Mgは、Alと同様に強脱酸剤として作用する。Mgが0.1%未満であると、脱酸不足となりブローホールやピットが発生しやすくなる。一方、Mgが1.0%を超えると、アークが不安定となりスパッタ発生量が多くなる。したがって、鋼製外皮とフラックスの合計でMgは0.1〜1.0%とする。なお、Mgは鋼製外皮に含まれる成分の他、フラックスからの金属Mg、Fe−Mg、Al−Mg等の合金粉から添加できる。
[Mg: 0.1 to 1.0% in total of steel outer skin and flux]
Mg acts as a strong antacid like Al. If Mg is less than 0.1%, deoxidation is insufficient and blow holes and pits are likely to occur. On the other hand, if Mg exceeds 1.0%, the arc becomes unstable and the amount of spatter generated increases. Therefore, the total of the steel outer skin and the flux is set to 0.1 to 1.0%. In addition to the components contained in the steel outer skin, Mg can be added from alloy powders such as metal Mg, Fe-Mg, and Al-Mg from flux.

[フラックス中のTi酸化物のTiO2換算値の合計:1〜6%]
Ti酸化物は、アークの安定性を良好にする効果がある。また、ビード形状を改善する目的で添加する。Ti酸化物のTiO2換算値の合計が1%未満であると、アークが不安定で、スパッタ発生量が多くなり、ビード形状も劣化する。一方、Ti酸化物のTiO2換算値の合計が6%を超えると、スラグ量が過多となりスラグ剥離性及びビード形状が劣化する。したがって、フラックス中のTi酸化物のTiO2換算値の合計は1〜6%とする。なお、Ti酸化物は、フラックスからのルチール、酸化チタン、チタンスラグ等から添加できる。
[Total of TiO 2 conversion values of Ti oxide in flux: 1 to 6%]
The Ti oxide has the effect of improving the stability of the arc. It is also added for the purpose of improving the bead shape. If the total of the TiO 2 conversion values of the Ti oxide is less than 1%, the arc is unstable, the amount of spatter generated increases, and the bead shape also deteriorates. On the other hand, if the total of the TiO 2 conversion values of the Ti oxide exceeds 6%, the amount of slag becomes excessive and the slag peelability and the bead shape deteriorate. Therefore, the total TiO 2 conversion value of the Ti oxide in the flux is 1 to 6%. The Ti oxide can be added from rutile from flux, titanium oxide, titanium slag and the like.

[フラックス中のSi酸化物のSiO2換算値の合計:0.1〜1.0%]
Si酸化物は、スラグの粘性を調整してビード形状を良好にする効果がある。Si酸化物のSiO2換算値の合計が0.1%未満であると、スラグの粘性が低くなりスラグ被包性が悪くなってビード形状が不良となる。一方、Si酸化物のSiO2換算値の合計が1.0%を超えると、スラグ量が過多となりスラグ剥離性及びビード形状が劣化する。したがって、フラックス中のSi酸化物のSiO2換算値の合計は0.1〜1.0%とする、なお、Si酸化物は、フラックスからの珪砂、長石等から添加できる。
[Total SiO 2 conversion value of Si oxide in flux: 0.1 to 1.0%]
The Si oxide has the effect of adjusting the viscosity of the slag to improve the bead shape. If the total value of the Si oxides in terms of SiO 2 is less than 0.1%, the viscosity of the slag becomes low, the slag encapsulation property deteriorates, and the bead shape becomes poor. On the other hand, if the total SiO 2 conversion value of the Si oxide exceeds 1.0%, the amount of slag becomes excessive and the slag peelability and the bead shape deteriorate. Therefore, the total value of Si oxides in the flux in terms of SiO 2 is 0.1 to 1.0%. Si oxides can be added from silica sand, feldspar, etc. from the flux.

[フラックス中のNa化合物及びK化合物のNa2O換算値とK2O換算値の1種又は2種以上の合計:0.01〜0.30%]
Na化合物及びK化合物は、アークの安定性と集中性を高めてスパッタ発生量を低減する効果がある。Na化合物及びK化合物のNa2O換算値とK2O換算値の1種又は2種以上の合計が0.01%未満であると、アークが不安定でスパッタ発生量が多くなる。一方、Na化合物及びK化合物のNa2O換算値とK2O換算値の1種又は2種以上の合計が0.30%を超えると、アークの集中性が強すぎてかえってスパッタ発生量が多くなる。したがって、フラックス中のNa化合物及びK化合物のNa2O換算値とK2O換算値の1種又は2種以上の合計は0.01〜0.30%とする。なお、フラックス中のNa化合物及びK化合物は、弗化ソーダ、チタン酸ナトリウム、珪弗化カリ、珪弗化ソーダ等から添加できる。
[Total of one or more Na 2 O conversion values and K 2 O conversion values of Na compound and K compound in the flux: 0.01 to 0.30%]
The Na compound and the K compound have the effect of increasing the stability and concentration of the arc and reducing the amount of spatter generated. If the total of one or more of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound is less than 0.01%, the arc is unstable and the amount of spatter generated increases. On the other hand, if the sum of one or more of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound exceeds 0.30%, the arc concentration is too strong and the amount of spatter generated is rather large. More. Therefore, the total of one or more of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound in the flux is 0.01 to 0.30%. The Na compound and K compound in the flux can be added from sodium fluoride, sodium titanate, potassium silicate, sodium silicate and the like.

[フラックス中の弗素化合物のF換算値の合計:0.01〜1.0%]
弗素化合物は、溶滴の離脱性を良好にしてスパッタ発生量を低減する効果がある。弗素化合物のF換算値の合計が0.01%未満であると、溶滴の離脱が不安定になるためアークそのものが不安定となり、スパッタ発生量が多くなる。一方、弗化物のF換算値の合計が1.0%を超えると、スラグの融点が低下してビード形状が不均一になる。したがって、フラックス中の弗素化合物のF換算値の合計は0.01〜1.0%とする。なお、フラックス中の弗素化合物は、弗化ソーダ、珪弗化カリ、ジルコン弗化カリ、氷晶石、弗化アルミ、蛍石等から添加できる。
[Total F conversion value of fluorine compounds in flux: 0.01 to 1.0%]
The fluorine compound has an effect of improving the detachability of droplets and reducing the amount of spatter generated. If the total F conversion value of the fluorine compounds is less than 0.01%, the detachment of droplets becomes unstable, so that the arc itself becomes unstable and the amount of spatter generated increases. On the other hand, when the total F conversion value of the fluoride exceeds 1.0%, the melting point of the slag is lowered and the bead shape becomes non-uniform. Therefore, the total F conversion value of the fluorine compounds in the flux is set to 0.01 to 1.0%. The fluorine compound in the flux can be added from sodium fluoride, potassium siliceous fluoride, potassium fluoride fluoride, cryolite, aluminum fluoride, fluorite and the like.

本発明の硬化肉盛ガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮をU字成形後、フラックスを充填し、孔ダイス伸線やローラダイスにより所定のワイヤ径(1.0〜1.6mm)に縮径して製造されるものである。また、フラックス充填率は、生産性及び溶接作業性の観点から15〜30%とすることが好ましい。ワイヤの種類としては、成形した鋼製外皮の合わせ目を溶接した継目の無いワイヤと、鋼製外皮の合わせ目を溶接せずに継目を有するワイヤに大別できるが、本発明では断面構造を特に限定するものではなく、いずれのワイヤも採用できるものとする。 The flux-cored wire for hardened overlay gas shielded arc welding of the present invention has a steel outer skin U-shaped, filled with flux, and has a predetermined wire diameter (1.0 to 1.6 mm) by wire drawing a hole die or a roller die. ) Is reduced in diameter. The flux filling rate is preferably 15 to 30% from the viewpoint of productivity and welding workability. The types of wires can be roughly divided into seamless wires in which the seams of the molded steel outer skin are welded and wires having seams without welding the seams of the steel outer skin. In the present invention, the cross-sectional structure is defined. It is not particularly limited, and any wire can be adopted.

また、本発明を適用した硬化肉盛ガスシールドアーク溶接用フラックス入りワイヤの残部は、鋼製外皮のFe分、フラックスの鉄粉、Fe−Si、Fe−Mn、Fe−Al、Fe−Mg、Fe−Mo、Fe−Cr、Fe−V等の鉄合金粉のFe分及び不可避不純物である。不可避不純物について、特に規定はしないが、耐高温割れ性の観点から、Pは0.015%以下、Sは0.015%以下が好ましい。 Further, the rest of the flux-containing wire for hardened overlay gas shield arc welding to which the present invention is applied includes Fe content of the steel outer skin, iron powder of the flux, Fe-Si, Fe-Mn, Fe-Al, Fe-Mg, etc. Fe content and unavoidable impurities of iron alloy powders such as Fe-Mo, Fe-Cr, and Fe-V. The unavoidable impurities are not particularly specified, but from the viewpoint of high temperature crack resistance, P is preferably 0.015% or less and S is preferably 0.015% or less.

さらに、溶接時のシールドガスは、炭酸ガスとし、シールドガスの流量は耐欠陥性及び大気からの窒素の混入を防ぐために20〜35リットル/分であることが好ましい。 Further, the shield gas at the time of welding is carbon dioxide gas, and the flow rate of the shield gas is preferably 20 to 35 liters / minute in order to prevent defects and nitrogen from the atmosphere.

以下、本発明を適用した硬化肉盛ガスシールドアーク溶接用フラックス入りワイヤの実施例について具体的に説明する。 Hereinafter, examples of a flux-cored wire for hardened overlay gas shielded arc welding to which the present invention is applied will be specifically described.

まず、鋼製外皮にJIS G3141 SPCC帯鋼を用いて、表1に示すフラックス入りワイヤを各種試作した。なお、ワイヤ径は1.6mm、フラックス充填率は17〜25%とした。 First, various prototypes of flux-cored wires shown in Table 1 were made using JIS G3141 SPCC strip steel for the steel outer skin. The wire diameter was 1.6 mm and the flux filling rate was 17 to 25%.

Figure 0006936755
Figure 0006936755

生産性の評価は、配合、混合・撹拌、乾燥したフラックスをU字成形した鋼製外皮に充填し、さらに、丸形に成形したワイヤ素線(線径3.2mm)を1.6mmまでダイス及びカセットローラダイスで伸線加工した際の断線の有無で評価した。 Productivity is evaluated by filling a U-shaped steel outer skin with blended, mixed / agitated, and dried flux, and then dies a round wire wire (wire diameter 3.2 mm) up to 1.6 mm. And the presence or absence of disconnection when wire drawing was performed with a cassette roller die was evaluated.

溶接作業性の評価は、表2に示すSM490A鋼板を用いて、JIS Z3114に準拠し、表3に示す溶接条件で、下向溶接姿勢で4層下盛の肉盛溶接試験を行い、溶接時のアーク安定性、スパッタ発生量、スラグ被包性、スラグ剥離性、ビード形状を調査した。 Welding workability was evaluated using the SM490A steel sheet shown in Table 2 in accordance with JIS Z3114, and under the welding conditions shown in Table 3, a 4-layer underlay welding test was performed in a downward welding posture, and during welding. The arc stability, the amount of spatter generated, the slag encapsulation property, the slag peeling property, and the bead shape were investigated.

Figure 0006936755
Figure 0006936755

Figure 0006936755
Figure 0006936755

溶接終了後、ビード表面について、JIS Z2343−1に準じて浸透探傷試験を行い、割れ(開口欠陥)の有無を調査した。また、ブローホール及びピットの評価は、溶接後の試験体を、JIS Z3106に準じてX線透過試験を行い、ブローホール及びピットの有無を調査した。 After the welding was completed, the bead surface was subjected to a penetrant inspection according to JIS Z2343-1 to investigate the presence or absence of cracks (opening defects). In addition, for the evaluation of blow holes and pits, the test piece after welding was subjected to an X-ray transmission test according to JIS Z3106, and the presence or absence of blow holes and pits was investigated.

溶接金属の硬さは、溶接欠陥評価後の試験板をJIS Z3114及びJIS Z2244に準拠してビッカース硬さ測定し、10点の平均が550〜700Hvを良好とした。これらの結果を表4にまとめて示す。 The hardness of the weld metal was measured by measuring the Vickers hardness of the test plate after welding defect evaluation in accordance with JIS Z3114 and JIS Z2244, and the average of 10 points was 550 to 700 Hv. These results are summarized in Table 4.

Figure 0006936755
Figure 0006936755

表1及び表4中のワイヤNo.1〜No.10が本発明例、ワイヤNo.11〜No.18が比較例である。本願発明例であるワイヤNo.1〜No.10は、フラックス入りワイヤのC、Si、Mn、Mo、Cr、Al、Mg、Ti酸化物のTiO2換算値の合計、Si酸化物のSiO2換算値の合計、Na化合物及びK化合物のNa2O換算値及びK2O換算値の1種又は2種以上の合計、弗素化合物のF換算値の合計が適正であるので、フラックス入りワイヤの製造時に断線が生じず、肉盛溶接においてアークが安定して、スパッタ発生量が少なく、スラグ被包性、スラグ剥離性及びビード形状が良好で、ビード表面に開口欠陥やブローホール等が無く、溶接金属の硬さが良好で極めて満足な結果であった。 Wire Nos. In Tables 1 and 4. 1-No. 10 is an example of the present invention, wire No. 11-No. 18 is a comparative example. Wire No. which is an example of the present invention. 1-No. 10 is the total of the TiO 2 conversion values of C, Si, Mn, Mo, Cr, Al, Mg, and Ti oxides of the flux-filled wire, the total of the SiO 2 conversion values of the Si oxide, and the Na of the Na compound and the K compound. one or the sum of two or more 2 O conversion value and K 2 O converted value, the sum of the F converted value of the fluorine compound is proper, disconnection does not occur during manufacture of the flux cored wire, arc in overlay welding Is stable, the amount of spatter generated is small, the slag encapsulation property, slag peelability and bead shape are good, there are no opening defects or blow holes on the bead surface, and the hardness of the weld metal is good, which is an extremely satisfactory result. Met.

比較例中ワイヤNo.11は、Cが少ないので、溶接金属の硬さが低かった。また、Siが少ないので、アークが不安定となり、ブローホール及びピットも発生した。さらに、Mnが多いので、ビード形状が凸状となって不良となり、弗素化合物のF換算値の合計が少ないので、スパッタ発生量が多かった。 In the comparative example, the wire No. In No. 11, since C was small, the hardness of the weld metal was low. In addition, since the amount of Si is small, the arc becomes unstable and blow holes and pits are generated. Further, since the amount of Mn is large, the bead shape becomes convex and becomes defective, and the total F conversion value of the fluorine compound is small, so that the amount of spatter generated is large.

ワイヤNo.12は、Cが多いので、溶接金属の硬さが高くなり、ビード表面に開口欠陥も発生した。また、Ti酸化物のTiO2換算値の合計が少ないのでアークが不安定でスパッタ発生量が多くなり、ビード形状も悪かった。さらに、Alが少ないので、ブローホール及びピットが発生した。ワイヤNo.13は、Ti酸化物のTiO2換算値の合計が多いので、スラグ剥離性が悪くなり、ビード形状も悪かった。また、Mgが多いのでアークが不安定で、スパッタ発生量が多かった。さらに、Crが多いので、溶接金属の硬さが高くなり、ビード表面に開口欠陥が発生した。 Wire No. In No. 12, since C was abundant, the hardness of the weld metal was high, and opening defects were also generated on the bead surface. In addition, since the total TiO 2 conversion value of the Ti oxide was small, the arc was unstable, the amount of spatter generated was large, and the bead shape was also bad. Further, since the amount of Al is small, blow holes and pits are generated. Wire No. In No. 13, since the total of the TIO 2 conversion values of the Ti oxide was large, the slag peelability was deteriorated and the bead shape was also poor. In addition, since the amount of Mg was large, the arc was unstable and the amount of spatter generated was large. Further, since the amount of Cr is large, the hardness of the weld metal is high, and opening defects are generated on the bead surface.

ワイヤNo.14は、Si酸化物のSiO2換算値が少ないので、スラグ被包性が悪くなり、ビード形状も悪かった。また、Crが少ないので溶接金属の硬さが低かった。さらに、Siが多いので、ビード表面に開口欠陥が発生した。 Wire No. In No. 14, since the value of Si oxide in terms of SiO 2 was small, the slag encapsulation property was poor and the bead shape was also poor. Further, since the amount of Cr was small, the hardness of the weld metal was low. Furthermore, since there is a large amount of Si, opening defects occur on the bead surface.

ワイヤNo.15は、Si酸化物のSiO2換算値が多いので、スラグ剥離性が悪くなり、ビード形状も悪かった。また、Mnが少ないので、ビード表面に開口欠陥が発生し、ブローホール及びピットも発生した。 Wire No. In No. 15, since the value of Si oxide in terms of SiO 2 was large, the slag peelability was deteriorated and the bead shape was also poor. Further, since the amount of Mn is small, opening defects are generated on the bead surface, and blow holes and pits are also generated.

ワイヤNo.16は、Na化合物及びK化合物のNa2O換算値及びK2O換算値の1種又は2種以上の合計が少ないので、アークが不安定で、スパッタ発生量が多かった。また、Alが多いので、ビード形状が凸状であった。さらに、Moが少ないので溶接金属の硬さが低かった。 Wire No. In No. 16, since the sum of one or more of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound was small, the arc was unstable and the amount of spatter generated was large. Moreover, since there was a large amount of Al, the bead shape was convex. Further, since the amount of Mo was small, the hardness of the weld metal was low.

ワイヤNo.17は、Na化合物及びK化合物のNa2O換算値及びK2O換算値の1種又は2種以上の合計が多いので、スパッタ発生量が多かった。また、弗素化合物のF換算値の合計Fが多いので、ビード形状が悪かった。さらに、Mgが少ないのでブローホール及びピットが発生した。 Wire No. In No. 17, the total amount of one or more of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound was large, so that the amount of spatter generated was large. Moreover, since the total F of the F conversion values of the fluorine compounds was large, the bead shape was bad. Further, since the amount of Mg is small, blow holes and pits are generated.

ワイヤNo.18は、Moが多いので伸線工程で目標のワイヤ径に至る前に断線が発生したため、製造を中止した。 Wire No. Since the number 18 had a large amount of Mo, the wire was broken before reaching the target wire diameter in the wire drawing process, so the production was discontinued.

Claims (1)

鋼製外皮にフラックスを充填してなる硬化肉盛ガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、
C:0.2〜0.8%、
Si:0.2〜0.8%、
Mn:2〜5%、
Mo:1〜6%、
Cr:4〜8%、
Al:0.1〜1.0%、
Mg:0.1〜1.0%を含有し
さらに、ワイヤ全質量に対する質量%で、フラックス中に、
Ti酸化物のTiO2換算値の合計:1〜6%、
Si酸化物のSiO2換算値の合計:0.1〜1.0%、
Na化合物及びK化合物のNa2O換算値及びK2O換算値の1種又は2種以上の合計:0.01〜0.30%、
弗素化合物のF換算値の合計:0.01〜1.0%を含有し、
残部が鋼製外皮のFe分、フラックス中の鉄粉、鉄合金粉のFe分及び不可避不純物からなることを特徴とする硬化肉盛ガスシールドアーク溶接用フラックス入りワイヤ。
In a hardened overlaid gas shield arc welding flux-cored wire in which a steel outer skin is filled with flux, the total of the steel outer skin and the flux is the mass% of the total weight of the wire.
C: 0.2-0.8%,
Si: 0.2-0.8%,
Mn: 2-5%,
Mo: 1-6%,
Cr: 4-8%,
Al: 0.1 to 1.0%,
Mg: 0.1 to 1.0%, and in mass% of the total weight of the wire, in the flux,
Total TiO 2 conversion value of Ti oxide: 1-6%,
Total SiO 2 conversion value of Si oxide: 0.1 to 1.0%,
Na 2 O conversion value of Na compound and K compound and one or more total of K 2 O conversion value: 0.01 to 0.30%,
Total F conversion value of fluorine compound: Contains 0.01-1.0%,
A flux-containing wire for hardened overlay gas shielded arc welding, characterized in that the balance is composed of Fe content of a steel outer skin, iron powder in a flux, Fe content of iron alloy powder, and unavoidable impurities.
JP2018058886A 2018-03-26 2018-03-26 Hardened Overlaid Gas Shield Arc Fluxed Wire for Welding Active JP6936755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018058886A JP6936755B2 (en) 2018-03-26 2018-03-26 Hardened Overlaid Gas Shield Arc Fluxed Wire for Welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018058886A JP6936755B2 (en) 2018-03-26 2018-03-26 Hardened Overlaid Gas Shield Arc Fluxed Wire for Welding

Publications (2)

Publication Number Publication Date
JP2019171387A JP2019171387A (en) 2019-10-10
JP6936755B2 true JP6936755B2 (en) 2021-09-22

Family

ID=68167894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018058886A Active JP6936755B2 (en) 2018-03-26 2018-03-26 Hardened Overlaid Gas Shield Arc Fluxed Wire for Welding

Country Status (1)

Country Link
JP (1) JP6936755B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115696A (en) * 1986-10-31 1988-05-20 Kobe Steel Ltd Flux-cored wire for hard overlay
JPH04138809A (en) * 1990-09-29 1992-05-13 Kobe Steel Ltd Manufacture of roll excellent in resistance to bead mark
JP3854553B2 (en) * 2002-08-14 2006-12-06 新日鐵住金ステンレス株式会社 Flux-cored wire for austenitic stainless steel with excellent sulfuric acid corrosion resistance, pitting corrosion resistance, ductility and toughness
JP5885618B2 (en) * 2012-08-09 2016-03-15 日鐵住金溶接工業株式会社 Stainless steel flux cored wire
JP6309485B2 (en) * 2015-05-07 2018-04-11 日鐵住金溶接工業株式会社 Flux-cored wire for Ar-CO2 mixed gas shielded arc welding

Also Published As

Publication number Publication date
JP2019171387A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
US20220281024A1 (en) Flux-cored wire, manufacturing method of welded joint, and welded joint
JP5768547B2 (en) High-strength steel flux cored wire for gas shielded arc welding
JP5005309B2 (en) Gas shielded arc welding flux cored wire for high strength steel
EP2374571B1 (en) Flux-cored wire for gas-shielding arc welding
KR101970076B1 (en) Flux-cored wire for gas-shielded arc welding
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP5400461B2 (en) Flux cored wire
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
KR20110091847A (en) Flux and wire for submerged arc welding of crmov steels
JP5314339B2 (en) Flux cored wire
JP6786472B2 (en) Flux-cored wire for duplex stainless steel welding
JP6988323B2 (en) Gas shield arc Welding flux-cored wire and welding joint manufacturing method
WO2016175154A1 (en) Flux cored wire for gas-shielded arc welding and welding method
JP6017406B2 (en) Stainless steel flux cored wire for self shielded arc welding
KR101600174B1 (en) Flux cored wire for gas shielded arc welding
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6877847B2 (en) Hardened Overlaid Gas Shield Arc Fluxed Wire for Welding
JP7160734B2 (en) flux cored wire
CN106794559B (en) Flux-cored wire for gas-shielded arc welding
JP6936755B2 (en) Hardened Overlaid Gas Shield Arc Fluxed Wire for Welding
JP4949449B2 (en) Flux-cored wire for welding
JP6084948B2 (en) Flux-cored wire for gas shielded arc welding
JP3880826B2 (en) Flux-cored wire for gas shielded arc welding
JP5361516B2 (en) Flux-cored wire for metal-based gas shielded arc welding for hardfacing
JP7215911B2 (en) Flux-cored wire for gas-shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210827

R150 Certificate of patent or registration of utility model

Ref document number: 6936755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150