JP6934746B2 - A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film. - Google Patents

A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film. Download PDF

Info

Publication number
JP6934746B2
JP6934746B2 JP2017093959A JP2017093959A JP6934746B2 JP 6934746 B2 JP6934746 B2 JP 6934746B2 JP 2017093959 A JP2017093959 A JP 2017093959A JP 2017093959 A JP2017093959 A JP 2017093959A JP 6934746 B2 JP6934746 B2 JP 6934746B2
Authority
JP
Japan
Prior art keywords
film
piezoelectric
thin film
piezoelectric thin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017093959A
Other languages
Japanese (ja)
Other versions
JP2018190890A (en
Inventor
柴田 憲治
憲治 柴田
渡辺 和俊
和俊 渡辺
文正 堀切
文正 堀切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2017093959A priority Critical patent/JP6934746B2/en
Publication of JP2018190890A publication Critical patent/JP2018190890A/en
Application granted granted Critical
Publication of JP6934746B2 publication Critical patent/JP6934746B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、圧電膜を有する積層基板、圧電膜を有する素子および圧電膜を有する積層基板の製造方法に関する。 The present invention relates to a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a method for manufacturing a laminated substrate having a piezoelectric film.

圧電体は、センサやアクチュエータ等の機能性電子部品に広く利用されている。圧電体の材料としては、例えばニオブ酸カリウムナトリウム(KNN)が用いられている(例えば特許文献1,2参照)。近年、より汎用性が高い圧電体が強く求められるようになっている。 Piezoelectric bodies are widely used in functional electronic components such as sensors and actuators. As the material of the piezoelectric material, for example, sodium potassium niobate (KNN) is used (see, for example, Patent Documents 1 and 2). In recent years, there has been a strong demand for more versatile piezoelectric materials.

特開2007−184513号公報JP-A-2007-184513 特開2008−159807号公報Japanese Unexamined Patent Publication No. 2008-159807

本発明の目的は、汎用性を高めた圧電膜およびその関連技術を提供することにある。 An object of the present invention is to provide a piezoelectric membrane having enhanced versatility and related techniques thereof.

本発明の一態様によれば、
基板と、前記基板上に製膜された電極膜と、前記電極膜上に製膜された圧電膜と、を備え、
前記圧電膜は、
第1圧電薄膜と、前記第1圧電薄膜とは異なる材料で形成される第2圧電薄膜と、が積層されてなり、
前記第1圧電薄膜の比誘電率と前記第2圧電薄膜の比誘電率との間の比誘電率を有する、圧電膜を有する積層基板およびその関連技術が提供される。
According to one aspect of the invention
A substrate, an electrode film formed on the substrate, and a piezoelectric film formed on the electrode film are provided.
The piezoelectric film is
The first piezoelectric thin film and the second piezoelectric thin film formed of a material different from the first piezoelectric thin film are laminated.
Provided are a laminated substrate having a piezoelectric film having a relative permittivity between the relative permittivity of the first piezoelectric thin film and the relative permittivity of the second piezoelectric thin film, and related techniques thereof.

本発明によれば、汎用性を高めた圧電膜およびその関連技術を提供することが可能となる。 According to the present invention, it is possible to provide a piezoelectric membrane having enhanced versatility and related technology.

本発明の一実施形態にかかる積層基板10の断面構造の一例を示す図である。It is a figure which shows an example of the cross-sectional structure of the laminated substrate 10 which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる積層基板10の断面構造の変形例を示す図である。It is a figure which shows the modification of the cross-sectional structure of the laminated substrate 10 which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる圧電膜デバイス30の概略構成図である。It is a schematic block diagram of the piezoelectric membrane device 30 which concerns on one Embodiment of this invention.

<本発明の一実施形態>
以下、本発明の一実施形態について図面を参照しながら説明する。
<One Embodiment of the present invention>
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(1)積層基板の構成
図1に示すように、本実施形態にかかる積層基板10は、基板1と、基板1上に製膜さ
れた下部電極膜2と、下部電極膜2上に製膜された圧電膜(圧電薄膜)3と、圧電膜3上に製膜された上部電極膜4と、を備えた積層体として構成されている。
(1) Configuration of Laminated Substrate As shown in FIG. 1, the laminated substrate 10 according to the present embodiment has a substrate 1, a lower electrode film 2 formed on the substrate 1, and a film formed on the lower electrode film 2. It is configured as a laminate including the piezoelectric film (piezoelectric thin film) 3 formed and the upper electrode film 4 formed on the piezoelectric film 3.

基板1としては、熱酸化膜やCVD(Chemical Vapor Deposition)酸化膜等の表面酸
化膜(SiO膜)1bが形成された単結晶シリコン(Si)基板1a、すなわち、表面酸化膜を有するSi基板を好適に用いることができる。また、基板1としては、図2に示すように、その表面にSiO以外の絶縁性材料により形成された絶縁膜1dを有するSi基板1aを用いることもできる。また、基板1としては、表面にSi(100)面やSi(111)面等が露出したSi基板1a、すなわち、表面酸化膜1bや絶縁膜1dを有さないSi基板を用いることもできる。また、基板1としては、SOI(Silicon On Insulator)基板、石英ガラス(SiO)基板、ガリウム砒素(GaAs)基板、サファイア(Al)基板、ステンレス(SUS)等の金属材料により形成された金属基板を用いることもできる。単結晶Si基板1aの厚さは例えば300〜1000μm、表面酸化膜1bの厚さは例えば5〜3000nmとすることができる。
The substrate 1 is a single crystal silicon (Si) substrate 1a on which a surface oxide film (SiO 2 film) 1b such as a thermal oxide film or a CVD (Chemical Vapor Deposition) oxide film is formed, that is, a Si substrate having a surface oxide film. Can be preferably used. Further, as the substrate 1, as shown in FIG. 2, a Si substrate 1a having an insulating film 1d formed of an insulating material other than SiO 2 on its surface can also be used. Further, as the substrate 1, a Si substrate 1a in which a Si (100) surface, a Si (111) surface, or the like is exposed on the surface, that is, a Si substrate having no surface oxide film 1b or insulating film 1d can also be used. The substrate 1 is formed of a metal material such as an SOI (Silicon On Insulator) substrate, a quartz glass (SiO 2 ) substrate, a gallium arsenide (GaAs) substrate, a sapphire (Al 2 O 3 ) substrate, and stainless steel (SUS). It is also possible to use a metal substrate. The thickness of the single crystal Si substrate 1a can be, for example, 300 to 1000 μm, and the thickness of the surface oxide film 1b can be, for example, 5 to 3000 nm.

下部電極膜2は、例えば、白金(Pt)を用いて製膜することができる。下部電極膜2は、単結晶膜や多結晶膜(以下、これらをPt膜とも称する)となる。Pt膜を構成する結晶は、基板1の表面に対して(111)面方位に優先配向していることが好ましい。すなわち、Pt膜の表面(圧電膜3の下地となる面)は、主にPt(111)面により構成されていることが好ましい。Pt膜は、スパッタリング法、蒸着法等の手法を用いて製膜することができる。下部電極膜2は、Pt以外に、金(Au)やルテニウム(Ru)やイリジウム(Ir)等の各種金属、これらを主成分とする合金、ルテニウム酸ストロンチウム(SrRuO)やニッケル酸ランタン(LaNiO)等の金属酸化物等を用いて製膜することもできる。なお、基板1と下部電極膜2との間には、これらの密着性を高めるため、例えば、チタン(Ti)、タンタル(Ta)、酸化チタン(TiO)、ニッケル(Ni)等を主成分とする密着層6が設けられている。密着層6は、スパッタリング法、蒸着法等の手法を用いて製膜することができる。下部電極膜2の厚さは例えば100〜400nm、密着層6の厚さは例えば1〜200nmとすることができる。 The lower electrode film 2 can be formed by using, for example, platinum (Pt). The lower electrode film 2 is a single crystal film or a polycrystalline film (hereinafter, these are also referred to as Pt films). The crystals constituting the Pt film are preferably preferentially oriented in the (111) plane orientation with respect to the surface of the substrate 1. That is, it is preferable that the surface of the Pt film (the surface serving as the base of the piezoelectric film 3) is mainly composed of the Pt (111) surface. The Pt film can be formed by using a method such as a sputtering method or a vapor deposition method. In addition to Pt, the lower electrode film 2 includes various metals such as gold (Au), ruthenium (Ru), and iridium (Ir), alloys containing these as main components, strontium ruthenate (SrRuO 3 ), and lanthanum nickelate (LaNiO). It is also possible to form a film using a metal oxide such as 3). In order to improve the adhesion between the substrate 1 and the lower electrode film 2, for example, titanium (Ti), tantalum (Ta), titanium oxide (TIO 2 ), nickel (Ni) and the like are the main components. The adhesion layer 6 is provided. The adhesion layer 6 can be formed into a film by using a method such as a sputtering method or a vapor deposition method. The thickness of the lower electrode film 2 can be, for example, 100 to 400 nm, and the thickness of the adhesion layer 6 can be, for example, 1 to 200 nm.

圧電膜3は、圧電材料で形成される第1圧電薄膜3aと、第1圧電薄膜3aとは異なる圧電材料で形成される第2圧電薄膜3bと、が積層されてなる積層体(複合膜)である。本実施形態では、圧電膜3は、最下層が第1圧電薄膜3aとなるように形成されている。すなわち、下部電極膜2上には、第1圧電薄膜3aが配されている。また、本実施形態では、下部電極膜2(基板1)の側から、第1圧電薄膜3a、第2圧電薄膜3b、第1圧電薄膜3aがこの順に積層されている。すなわち、圧電膜3は、第2圧電薄膜3b(の上下)が第1圧電薄膜3aによって挟まれている。圧電膜3の厚さ(第1圧電薄膜3aと第2圧電薄膜3bとの合計厚さ)は例えば0.5〜5μmとすることができる。 The piezoelectric film 3 is a laminate (composite film) in which a first piezoelectric thin film 3a formed of a piezoelectric material and a second piezoelectric thin film 3b formed of a piezoelectric material different from the first piezoelectric thin film 3a are laminated. Is. In the present embodiment, the piezoelectric film 3 is formed so that the lowermost layer is the first piezoelectric thin film 3a. That is, the first piezoelectric thin film 3a is arranged on the lower electrode film 2. Further, in the present embodiment, the first piezoelectric thin film 3a, the second piezoelectric thin film 3b, and the first piezoelectric thin film 3a are laminated in this order from the side of the lower electrode film 2 (substrate 1). That is, in the piezoelectric film 3, the second piezoelectric thin film 3b (above and below) is sandwiched between the first piezoelectric thin films 3a. The thickness of the piezoelectric film 3 (total thickness of the first piezoelectric thin film 3a and the second piezoelectric thin film 3b) can be, for example, 0.5 to 5 μm.

第1圧電薄膜3aは、例えば窒化アルミニウム(AlN)を用いて製膜することができる。第1圧電薄膜3aは、AlNの単結晶膜や多結晶膜(以下、これらをAlN膜3aとも称する)となる。AlN膜3aは、周波数1kHzの条件下で±1Vの電圧を印加して測定した際の比誘電率が例えば10程度であり、圧電定数の絶対値|d31|が例えば5pm/V程度である。以下、本明細書では、「周波数1kHzの条件下で±1Vの電圧を印加して測定した際の比誘電率」を、単に「比誘電率」ともいう。 The first piezoelectric thin film 3a can be formed by using, for example, aluminum nitride (AlN). The first piezoelectric thin film 3a is an AlN single crystal film or a polycrystalline film (hereinafter, these are also referred to as an AlN film 3a). The AlN film 3a has a relative permittivity of, for example, about 10 when measured by applying a voltage of ± 1 V under the condition of a frequency of 1 kHz, and an absolute value | d 31 | of the piezoelectric constant is, for example, about 5 pm / V. .. Hereinafter, in the present specification, the "relative permittivity when measured by applying a voltage of ± 1 V under the condition of a frequency of 1 kHz" is also simply referred to as "relative permittivity".

AlN膜3aを構成する結晶は、基板1の表面に対して(001)面方位に優先配向していることが好ましい。すなわち、AlN膜3aの表面(第2圧電薄膜3b、上部電極膜4の下地となる面)は、主にAlN(001)面により構成されていることが好ましい。基板1の表面に対して(111)面方位に優先配向させたPt膜(下部電極膜2)上や、後述のように基板1の表面に対して(001)面方位に優先配向させたKNN膜3b上に
AlN膜3aを直接製膜することで、AlN膜3aを構成する結晶を、基板1の表面に対して(001)面方位に優先配向させることが容易となる。AlN膜3aは、スパッタリング法等の手法を用いて製膜することができる。
The crystals constituting the AlN film 3a are preferably preferentially oriented in the (001) plane orientation with respect to the surface of the substrate 1. That is, it is preferable that the surface of the AlN film 3a (the surface serving as the base of the second piezoelectric thin film 3b and the upper electrode film 4) is mainly composed of the AlN (001) surface. KNN on the Pt film (lower electrode film 2) preferentially oriented in the (111) plane orientation with respect to the surface of the substrate 1 and in the (001) plane orientation preferentially oriented with respect to the surface of the substrate 1 as described later. By directly forming the AlN film 3a on the film 3b, it becomes easy to preferentially orient the crystals constituting the AlN film 3a in the (001) plane direction with respect to the surface of the substrate 1. The AlN film 3a can be formed by using a method such as a sputtering method.

AlN膜3aの厚さは例えば5〜500nmとすることができる。なお、圧電膜3が複数のAlN膜3aを有する場合、各AlN膜3aの厚さは、同一の厚さであってもよいし、異なる厚さであってもよい。以下では、圧電膜3において、KNN膜3bの下面(下部電極膜2側)に配されるAlN膜3aを下部AlN膜とも称し、KNN膜3bの上面(上部電極膜4側)に配されるAlN膜3aを上部AlN膜とも称する。 The thickness of the AlN film 3a can be, for example, 5 to 500 nm. When the piezoelectric film 3 has a plurality of AlN films 3a, the thickness of each AlN film 3a may be the same or different. In the following, in the piezoelectric film 3, the AlN film 3a arranged on the lower surface (lower electrode film 2 side) of the KNN film 3b is also referred to as a lower AlN film, and is arranged on the upper surface (upper electrode film 4 side) of the KNN film 3b. The AlN film 3a is also referred to as an upper AlN film.

第2圧電薄膜3bは、例えば、カリウム(K)、ナトリウム(Na)、ニオブ(Nb)を含み、組成式(K1−xNa)NbOで表されるアルカリニオブ酸化物、すなわち、ニオブ酸カリウムナトリウム(KNN)を用いて製膜することができる。上述の組成式中の係数x[=Na/(K+Na)]は、0<x<1、好ましくは0.4≦x≦0.7の範囲内の大きさとする。第2圧電薄膜3bは、KNNの多結晶膜(以下、KNN膜3bとも称する)となる。KNNの結晶構造は、ペロブスカイト構造となる。KNN膜3bは、周波数1kHzの条件下で±1Vの電圧を印加して測定した際の比誘電率が例えば350〜2000程度であり、圧電定数の絶対値|d31|が例えば100〜200pm/V程度である。 The second piezoelectric thin film 3b contains, for example, potassium (K), sodium (Na), and niobium (Nb), and is an alkaline niobium oxide represented by the composition formula (K 1-x Na x ) NbO 3, that is, niobium. A film can be formed using sodium potassium acid (KNN). The coefficient x [= Na / (K + Na)] in the above composition formula has a magnitude within the range of 0 <x <1, preferably 0.4 ≦ x ≦ 0.7. The second piezoelectric thin film 3b becomes a KNN polycrystalline film (hereinafter, also referred to as a KNN film 3b). The crystal structure of KNN is a perovskite structure. The KNN film 3b has a relative permittivity of, for example, about 350 to 2000 when measured by applying a voltage of ± 1 V under the condition of a frequency of 1 kHz, and an absolute value | d 31 | of the piezoelectric constant is, for example, 100 to 200 pm /. It is about V.

KNN膜3bは、銅(Cu)、マンガン(Mn)、リチウム(Li)、Ta、アンチモン(Sb)等のK、Na、Nb以外の元素を、5at%以下の範囲内で含んでいてもよい。 The KNN film 3b may contain elements other than K, Na, Nb such as copper (Cu), manganese (Mn), lithium (Li), Ta, and antimony (Sb) within a range of 5 at% or less. ..

KNN膜3bを構成する結晶は、基板1の表面に対して(001)面方位に優先配向していることが好ましい。すなわち、KNN膜3bの表面(AlN膜3a(上部AlN膜)の下地となる面)は、主にKNN(001)面により構成されていることが好ましい。基板1の表面に対して(001)面方位に優先配向させたAlN膜3a(下部AlN膜)上にKNN膜3bを直接製膜することで、KNN膜3bを構成する結晶を、基板1の表面に対して(001)面方位に優先配向させることが容易となる。例えば、KNN膜3bを構成する結晶群のうち80%以上の結晶を基板1の表面に対して(001)面方位に配向させ、KNN膜3bの表面のうち80%以上の領域をKNN(001)面とすることが可能となる。KNN膜3bは、スパッタリング法、PLD(Pulsed Laser Deposition)法、
ゾルゲル法等の手法を用いて製膜することができる。
The crystals constituting the KNN film 3b are preferably preferentially oriented in the (001) plane orientation with respect to the surface of the substrate 1. That is, it is preferable that the surface of the KNN film 3b (the surface serving as the base of the AlN film 3a (upper AlN film)) is mainly composed of the KNN (001) surface. By directly forming the KNN film 3b on the AlN film 3a (lower AlN film) which is preferentially oriented in the (001) plane direction with respect to the surface of the substrate 1, the crystals constituting the KNN film 3b are formed on the substrate 1. It becomes easy to preferentially orient the surface in the (001) plane direction. For example, 80% or more of the crystals constituting the KNN film 3b are oriented in the (001) plane orientation with respect to the surface of the substrate 1, and 80% or more of the surface of the KNN film 3b is KNN (001). ) It becomes possible to make a surface. The KNN film 3b is prepared by a sputtering method, a PLD (Pulsed Laser Deposition) method, or the like.
The film can be formed by using a method such as the sol-gel method.

上述のように、圧電膜3は、AlN膜3aとKNN膜3bとの積層体である。このため、圧電膜3全体では、AlN膜3aの特性とKNN膜3bの特性との間(中間帯)の特性を有することとなる。 As described above, the piezoelectric film 3 is a laminate of the AlN film 3a and the KNN film 3b. Therefore, the entire piezoelectric film 3 has a characteristic between the characteristics of the AlN film 3a and the characteristics of the KNN film 3b (intermediate band).

具体的には、圧電膜3は、AlN膜3aとKNN膜3bとのそれぞれの膜厚比に応じて、AlN膜3aの比誘電率とKNN膜3bの比誘電率との間の範囲内(中間帯)の所定の比誘電率を有している。すなわち、圧電膜3は、例えば10以上2000以下の範囲内の所定の比誘電率を有している。 Specifically, the piezoelectric film 3 is within the range between the relative permittivity of the AlN film 3a and the relative permittivity of the KNN film 3b according to the respective film thickness ratios of the AlN film 3a and the KNN film 3b ( It has a predetermined relative permittivity (intermediate band). That is, the piezoelectric film 3 has a predetermined relative permittivity in the range of, for example, 10 or more and 2000 or less.

また、圧電膜3は、AlN膜3aとKNN膜3bとのそれぞれの膜厚比に応じて、AlN膜3aの圧電定数の絶対値|d31|とKNN膜3bの圧電定数の絶対値|d31|との間の範囲内(中間帯)の所定の圧電定数の絶対値|d31|を有している。すなわち、圧電膜3の圧電定数の絶対値|d31|は、例えば5pm/V以上200pm/V以下の範囲内の所定の値である。 Further, the piezoelectric film 3 has an absolute value of the piezoelectric constant of the AlN film 3a | d 31 | and an absolute value of the piezoelectric constant of the KNN film 3b | d according to the respective film thickness ratios of the AlN film 3a and the KNN film 3b. It has an absolute value | d 31 | of a predetermined piezoelectric constant within a range (intermediate band) between 31 |. That is, the absolute value | d 31 | of the piezoelectric constant of the piezoelectric film 3 is, for example, a predetermined value within the range of 5 pm / V or more and 200 pm / V or less.

なお、圧電膜3の圧電定数は、圧電膜3の比誘電率を用いて導き出されることから、圧電定数と比誘電率とは一定の相関がある。例えば、圧電膜3の比誘電率が高くなると、圧電膜3の圧電定数の絶対値|d31|も高くなり、圧電膜3の比誘電率が低くなると、圧電膜3の圧電定数の絶対値|d31|も低くなるという相関がある。 Since the piezoelectric constant of the piezoelectric film 3 is derived using the relative permittivity of the piezoelectric film 3, there is a certain correlation between the piezoelectric constant and the relative permittivity. For example, when the specific dielectric constant of the piezoelectric film 3 is high, the absolute value | d 31 | of the piezoelectric constant of the piezoelectric film 3 is also high, and when the specific dielectric constant of the piezoelectric film 3 is low, the absolute value of the piezoelectric constant of the piezoelectric film 3 is high. There is a correlation that | d 31 | is also low.

上部電極膜4は、例えば、Pt、Au、アルミニウム(Al)、Cu等の各種金属やこれらの合金を用いて製膜することができる。上部電極膜4は、スパッタリング法、蒸着法、メッキ法、金属ペースト法等の手法を用いて製膜することができる。上部電極膜4は、下部電極膜2のように圧電膜3の結晶構造に大きな影響を与えるものではない。そのため、上部電極膜4の材料、結晶構造、製膜手法は特に限定されない。なお、圧電膜3と上部電極膜4との間には、これらの密着性を高めるため、例えば、Ti、Ta、TiO、Ni等を主成分とする密着層が設けられていてもよい。上部電極膜4の厚さは例えば100〜5000nm、密着層を設ける場合にはその厚さは例えば1〜200nmとすることができる。 The upper electrode film 4 can be formed by using various metals such as Pt, Au, aluminum (Al), and Cu, and alloys thereof. The upper electrode film 4 can be formed by using a method such as a sputtering method, a vapor deposition method, a plating method, or a metal paste method. The upper electrode film 4 does not have a great influence on the crystal structure of the piezoelectric film 3 like the lower electrode film 2. Therefore, the material, crystal structure, and film forming method of the upper electrode film 4 are not particularly limited. In addition, in order to enhance the adhesion between the piezoelectric film 3 and the upper electrode film 4, for example, an adhesion layer containing Ti, Ta, TiO 2 , Ni or the like as a main component may be provided. The thickness of the upper electrode film 4 can be, for example, 100 to 5000 nm, and when the adhesion layer is provided, the thickness can be, for example, 1 to 200 nm.

(2)圧電膜デバイスの構成
図3に、本実施形態における圧電膜を有するデバイス30(以下、圧電膜デバイス30とも称する)の概略構成図を示す。圧電膜デバイス30は、上述の積層基板10を所定の形状に成形して得られる圧電膜を有する素子20(以下、圧電膜素子20とも称する)と、圧電膜素子20に接続される電圧検出手段11aまたは電圧印加手段11bと、を少なくとも備えて構成される。
(2) Configuration of Piezoelectric Membrane Device FIG. 3 shows a schematic configuration diagram of a device 30 having a piezoelectric membrane (hereinafter, also referred to as a piezoelectric membrane device 30) in the present embodiment. The piezoelectric film device 30 includes an element 20 having a piezoelectric film obtained by molding the above-mentioned laminated substrate 10 into a predetermined shape (hereinafter, also referred to as a piezoelectric film element 20) and a voltage detecting means connected to the piezoelectric film element 20. It is configured to include at least 11a or a voltage applying means 11b.

電圧検出手段11aを、圧電膜素子20の下部電極膜2と上部電極膜4との間に接続することで、圧電膜デバイス30をセンサとして機能させることができる。圧電膜3が何らかの物理量の変化に伴って変形すると、その変形によって下部電極膜2と上部電極膜4との間に電圧が発生する。この電圧を電圧検出手段11aによって検出することで、圧電膜3に印加された物理量の大きさを測定することができる。この場合、圧電膜デバイス30の用途としては、例えば、角速度センサ、超音波センサ、圧カセンサ、加速度センサ等が挙げられる。 By connecting the voltage detecting means 11a between the lower electrode film 2 and the upper electrode film 4 of the piezoelectric film element 20, the piezoelectric film device 30 can function as a sensor. When the piezoelectric film 3 is deformed due to some change in physical quantity, a voltage is generated between the lower electrode film 2 and the upper electrode film 4 due to the deformation. By detecting this voltage with the voltage detecting means 11a, the magnitude of the physical quantity applied to the piezoelectric film 3 can be measured. In this case, applications of the piezoelectric film device 30 include, for example, an angular velocity sensor, an ultrasonic sensor, a pressure sensor, an acceleration sensor, and the like.

電圧印加手段11bを、圧電膜素子20の下部電極膜2と上部電極膜4との間に接続することで、圧電膜デバイス30をアクチュエータとして機能させることができる。電圧印加手段11bにより下部電極膜2と上部電極膜4との間に電圧を印加することで、圧電膜3を変形させることができる。この変形動作により、圧電膜デバイス30に接続された各種部材を作動させることができる。この場合、圧電膜デバイス30の用途としては、例えば、インクジェットプリンタ用のヘッド、スキャナー用のMEMSミラー、超音波発生装置用の振動子等が挙げられる。 By connecting the voltage applying means 11b between the lower electrode film 2 and the upper electrode film 4 of the piezoelectric film element 20, the piezoelectric film device 30 can function as an actuator. The piezoelectric film 3 can be deformed by applying a voltage between the lower electrode film 2 and the upper electrode film 4 by the voltage applying means 11b. By this deformation operation, various members connected to the piezoelectric film device 30 can be operated. In this case, applications of the piezoelectric film device 30 include, for example, a head for an inkjet printer, a MEMS mirror for a scanner, a vibrator for an ultrasonic generator, and the like.

(3)積層基板、圧電膜素子、圧電膜デバイスの製造方法
続いて、上述の積層基板10の製造方法について説明する。まず、基板1のいずれかの主面上に下部電極膜2を製膜する。なお、いずれかの主面上に下部電極膜2が予め製膜された基板1を用意してもよい。続いて、下部電極膜2上に、AlN膜3a(下部AlN膜)と、KNN膜3bと、AlN膜3a(上部AlN膜)と、をこの順に例えばスパッタリング法を用いて製膜し、AlN膜3aとKNN膜3bとが積層されてなる圧電膜3を形成する。KNN膜3bの厚さT2に対するAlN膜3aの厚さT1の比率(T1/T2)を調整することで、圧電膜3の比誘電率、さらには圧電膜3の圧電定数の絶対値|d31|を所定の値に設定することができる。なお、本実施形態のように圧電膜3が複数のAlN膜3aを有する場合、AlN膜3aの厚さT1とは、圧電膜3が有する全てのAlN膜3aの合計厚さを意味する。その後、圧電膜3(上部AlN膜)上に上部電極膜4を製膜することで、積層基板10が得られる。そして、この積層基板10を所定の形状に成形する
ことで、圧電膜素子20が得られ、圧電膜素子20に電圧検出手段11aまたは電圧印加手段11bを接続することで、圧電膜デバイス30が得られる。
(3) Manufacturing Method of Laminated Substrate, Piezoelectric Film Element, and Piezoelectric Film Device Next, the manufacturing method of the above-mentioned laminated substrate 10 will be described. First, the lower electrode film 2 is formed on one of the main surfaces of the substrate 1. A substrate 1 in which the lower electrode film 2 is formed in advance on any of the main surfaces may be prepared. Subsequently, the AlN film 3a (lower AlN film), the KNN film 3b, and the AlN film 3a (upper AlN film) are formed on the lower electrode film 2 in this order by, for example, a sputtering method, and the AlN film is formed. A piezoelectric film 3 formed by laminating 3a and a KNN film 3b is formed. By adjusting the ratio of the thickness T1 of the AlN film 3a to the thickness T2 of the KNN film 3b (T1 / T2), the relative permittivity of the piezoelectric film 3 and the absolute value of the piezoelectric constant of the piezoelectric film 3 | d 31 | Can be set to a predetermined value. When the piezoelectric film 3 has a plurality of AlN films 3a as in the present embodiment, the thickness T1 of the AlN film 3a means the total thickness of all the AlN films 3a of the piezoelectric film 3. After that, the laminated substrate 10 is obtained by forming the upper electrode film 4 on the piezoelectric film 3 (upper AlN film). Then, the piezoelectric film element 20 is obtained by molding the laminated substrate 10 into a predetermined shape, and the piezoelectric film device 30 is obtained by connecting the voltage detecting means 11a or the voltage applying means 11b to the piezoelectric film element 20. Be done.

(4)本実施形態により得られる効果
本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(4) Effects obtained by the present embodiment According to the present embodiment, one or more of the following effects can be obtained.

(a)本実施形態では、AlN膜3aとKNN膜3bとを積層して圧電膜3を形成し、圧電膜3を、AlN膜3aの特性とKNN膜3bの特性との間の特性を有する膜としている。具体的には、圧電膜3を、AlN膜3aの比誘電率とKNN膜3bの比誘電率との間の比誘電率を有する膜、例えば、周波数1kHzの条件下で±1Vの電圧を印加して測定した際の比誘電率が例えば10以上2000以下の範囲内の所定の値である膜としている。また、圧電膜3を、AlN膜3aの圧電定数とKNN膜3bの圧電定数との間の圧電定数を有する膜、例えば、圧電膜3を、圧電定数の絶対値|d31|が5pm/V以上200pm/Vの範囲内の所定の値である膜としている。このため、上述の積層基板10を加工することで作製される圧電膜デバイス30の汎用性を高めることができる。例えば、上述の積層基板10を用いて作製した圧電膜デバイス30を、センサやフィルタ、アクチュエータ等、広範囲な用途に適用することができる。 (A) In the present embodiment, the AlN film 3a and the KNN film 3b are laminated to form the piezoelectric film 3, and the piezoelectric film 3 has characteristics between the characteristics of the AlN film 3a and the characteristics of the KNN film 3b. It is a film. Specifically, the piezoelectric film 3 is applied with a film having a relative permittivity between the relative permittivity of the AlN film 3a and the relative permittivity of the KNN film 3b, for example, a voltage of ± 1 V under the condition of a frequency of 1 kHz. The film has a relative permittivity of 10 or more and 2000 or less, which is a predetermined value. Further, the piezoelectric film 3 is a film having a piezoelectric constant between the piezoelectric constant of the AlN film 3a and the piezoelectric constant of the KNN film 3b, for example, the piezoelectric film 3 has an absolute value | d 31 | of the piezoelectric constant of 5 pm / V. The film has a predetermined value within the range of 200 pm / V. Therefore, the versatility of the piezoelectric film device 30 produced by processing the above-mentioned laminated substrate 10 can be enhanced. For example, the piezoelectric membrane device 30 manufactured by using the above-mentioned laminated substrate 10 can be applied to a wide range of applications such as sensors, filters, and actuators.

(b)圧電膜3をAlN膜3aとKNN膜3bとの複合膜で構成することで、すなわち、圧電膜3が鉛(Pb)を含む膜を有さないことで、公害防止の点からも有利である。本実施形態では、このようにPbを含まない圧電膜(鉛フリーな圧電膜)を達成しつつ、圧電膜デバイス30の汎用性を高めることができる。 (B) The piezoelectric film 3 is composed of a composite film of an AlN film 3a and a KNN film 3b, that is, the piezoelectric film 3 does not have a film containing lead (Pb), so that from the viewpoint of pollution prevention. It is advantageous. In the present embodiment, the versatility of the piezoelectric film device 30 can be enhanced while achieving the piezoelectric film (lead-free piezoelectric film) containing no Pb in this way.

(c)下部電極膜2上にAlN膜3aを設けることで、KNN膜3bを(001)面方位に優先配向させることが容易となる。というのも、AlN膜3aは、その下地となる面や製膜温度等の製膜条件を、KNN膜3bの製膜条件よりも緩い条件とした場合であっても、(001)面方位に優先配向させることができる。例えば、AlN膜3aは、SUS等の表面上に製膜したり、室温条件下で製膜したりする場合であっても、(001)面方位に優先配向させることができる。このため、本実施形態のように、下部電極膜2上にAlN膜3a(下部AlN膜)を設け、このAlN膜3aをKNN膜3bの下地(シード層)としても機能させることで、下部電極膜2上にKNN膜3bを直接製膜する場合よりも、KNN膜3bを(001)面方位に優先配向させることが容易となる。 (C) By providing the AlN film 3a on the lower electrode film 2, it becomes easy to preferentially orient the KNN film 3b in the (001) plane orientation. This is because the AlN film 3a has a (001) plane orientation even when the film forming conditions such as the underlying surface and the film forming temperature are looser than the film forming conditions of the KNN film 3b. It can be preferentially oriented. For example, the AlN film 3a can be preferentially oriented in the (001) plane orientation even when the film is formed on the surface of SUS or the like or under room temperature conditions. Therefore, as in the present embodiment, an AlN film 3a (lower AlN film) is provided on the lower electrode film 2, and the AlN film 3a also functions as a base (seed layer) for the KNN film 3b, thereby causing the lower electrode. It becomes easier to preferentially orient the KNN film 3b in the (001) plane orientation than when the KNN film 3b is directly formed on the film 2.

(d)KNN膜3bの上下をAlN膜3aで挟むことで、KNN膜3bを含む圧電膜3の耐圧を高めることができ、圧電膜3の絶縁性(リーク耐性)を高めることができる。圧電膜3の絶縁性を向上させることで、圧電膜デバイス30の性能を高め、汎用性をさらに高めることができる。 (D) By sandwiching the upper and lower parts of the KNN film 3b with the AlN film 3a, the withstand voltage of the piezoelectric film 3 including the KNN film 3b can be increased, and the insulating property (leak resistance) of the piezoelectric film 3 can be increased. By improving the insulating property of the piezoelectric film 3, the performance of the piezoelectric film device 30 can be enhanced, and the versatility can be further enhanced.

本実施形態では、例えば、圧電膜に対してその厚さ方向に300kV/cmの電界を印加した際におけるリーク電流密度を、例えば1μA/cm以下とすることが可能となる。このため、本実施形態にかかる積層基板10は、高耐圧が要求されるアクチュエータ等の用途に特に好適に用いることができる。 In the present embodiment, for example, the leakage current density when an electric field of 300 kV / cm is applied to the piezoelectric film in the thickness direction can be set to, for example, 1 μA / cm 2 or less. Therefore, the laminated substrate 10 according to the present embodiment can be particularly preferably used for applications such as actuators that require high withstand voltage.

(e)KNN膜3bの厚さT2に対するAlN膜3aの厚さT1の比率(T1/T2)を調整することで、上述の効果を得ながら、圧電膜3の比誘電率、圧電定数を所定の値に設定することが可能となる。例えば、上述の比率(T1/T2)を小さくすることで、すなわちKNN膜3bの厚さを厚くすることで、圧電膜3の圧電定数を高くすることができる。また、上述の比率を大きくすることで、すなわちAlN膜3aの厚さを厚くすることで、圧電膜3の比誘電率を低くすることができる。 (E) By adjusting the ratio (T1 / T2) of the thickness T1 of the AlN film 3a to the thickness T2 of the KNN film 3b, the relative permittivity and the piezoelectric constant of the piezoelectric film 3 are determined while obtaining the above effects. It is possible to set the value of. For example, by reducing the above ratio (T1 / T2), that is, by increasing the thickness of the KNN film 3b, the piezoelectric constant of the piezoelectric film 3 can be increased. Further, the relative permittivity of the piezoelectric film 3 can be lowered by increasing the above-mentioned ratio, that is, by increasing the thickness of the AlN film 3a.

なお、圧電膜デバイス30をアクチュエータとして作用させる場合、上述の比率が0.2以下となるように、AlN膜3aの厚さT1、KNN膜3bの厚さT2をそれぞれ調整することが好ましい。というのも、上述の比率が0.2を超える、すなわちAlN膜3aの厚さT1が厚くなると、圧電膜3の圧電定数の絶対値|d31|が低くなるため、アクチュエータの高速駆動が困難となることがあるからである。 When the piezoelectric film device 30 is operated as an actuator, it is preferable to adjust the thickness T1 of the AlN film 3a and the thickness T2 of the KNN film 3b so that the above ratio is 0.2 or less. This is because when the above ratio exceeds 0.2, that is, when the thickness T1 of the AlN film 3a becomes thicker, the absolute value | d 31 | of the piezoelectric constant of the piezoelectric film 3 becomes lower, which makes it difficult to drive the actuator at high speed. This is because it may become.

(f)AlN膜3a、KNN膜3bはともに、一般的なスパッタ装置を用い、スパッタリング法により製膜することができる膜である。このため、本実施形態にかかる圧電膜3を製膜する際、一つのスパッタ装置の製膜室内にAlNターゲットとKNNターゲットとをセット(設置)することにより、AlN膜3a、KNN膜3bを一つの装置内で連続して製膜することができる。その結果、圧電膜3の生産性を向上させることができる。 (F) Both the AlN film 3a and the KNN film 3b are films that can be formed by a sputtering method using a general sputtering device. Therefore, when the piezoelectric film 3 according to the present embodiment is formed, the AlN film 3a and the KNN film 3b are combined by setting (installing) the AlN target and the KNN target in the film forming chamber of one sputtering apparatus. The film can be continuously formed in one device. As a result, the productivity of the piezoelectric film 3 can be improved.

(g)上述のように、本実施形態にかかる積層基板10を用いて作製した圧電膜デバイス30は、高い圧電定数、高耐圧が要求されるアクチュエータ等の幅広い用途に好適に用いることができる。 (G) As described above, the piezoelectric film device 30 produced by using the laminated substrate 10 according to the present embodiment can be suitably used for a wide range of applications such as actuators that require high piezoelectric constants and high withstand voltage.

ここで、上述の本実施形態の手法に対し、第2圧電薄膜を、組成式Pb(ZrTi1−x)O(0<x<1)で表されるチタン酸ジルコン酸鉛(PZT)を用いて製膜する手法も考えられる。しかしながら、この手法により製膜した圧電膜(PZT膜)は、鉛を60〜70wt%程度含有しているため、公害防止の面等から好ましくないという課題がある。 Here, in contrast to the method of the present embodiment described above, the second piezoelectric thin film is subjected to lead zirconate titanate (PZT) represented by the composition formula Pb (Zr x Ti 1-x ) O 3 (0 <x <1). ) Can be used to form a film. However, since the piezoelectric film (PZT film) formed by this method contains about 60 to 70 wt% of lead, there is a problem that it is not preferable from the viewpoint of pollution prevention.

また、第2圧電薄膜を、酸化亜鉛(ZnO)を用いて製膜する手法も考えられる。しかしながらこの手法により製膜した圧電膜(ZnO膜)は、圧電定数の絶対値|d31|が低く、例えば10pm/V程度である。このように、ZnO膜の圧電定数の絶対値|d31|は、第1圧電薄膜としてのAlN膜の絶対値|d31|とほぼ同程度であることから、圧電膜を、AlN膜とZnO膜との積層体で構成するメリットが殆どない。 Further, a method of forming a second piezoelectric thin film using zinc oxide (ZnO) is also conceivable. However, the piezoelectric film (ZnO film) formed by this method has a low absolute value | d 31 | of the piezoelectric constant, for example, about 10 pm / V. As described above, since the absolute value | d 31 | of the piezoelectric constant of the ZnO film is almost the same as the absolute value | d 31 | of the AlN film as the first piezoelectric thin film, the piezoelectric film can be the AlN film and ZnO. There is almost no merit of forming a laminated body with a film.

(5)変形例
本実施形態は上述の態様に限定されず、例えば以下のように変形することもできる。
(5) Modification Example This embodiment is not limited to the above-described embodiment, and can be modified as follows, for example.

(変形例1)
第1圧電薄膜としてのAlN膜3aは、KNN膜3bの下面または上面の少なくともいずれかに設けられていればよい。すなわち、圧電膜3は、上部AlN膜および下部AlN膜のうち少なくともいずれかを有していればよい。これによっても、上述の少なくとも(a)(b)等の効果を得ることができる。但し、少なくともKNN膜3bの下面にAlN膜3aを設ける方が上述の(c)の効果を得ることができる点で、好ましい。また、KNN膜3bの上下にそれぞれAlN膜3aを設ける方が、上述の(d)の効果を得ることができる点で、好ましい。
(Modification example 1)
The AlN film 3a as the first piezoelectric thin film may be provided on at least one of the lower surface or the upper surface of the KNN film 3b. That is, the piezoelectric film 3 may have at least one of an upper AlN film and a lower AlN film. Also by this, the above-mentioned effects such as at least (a) and (b) can be obtained. However, it is preferable to provide the AlN film 3a on at least the lower surface of the KNN film 3b in that the above-mentioned effect (c) can be obtained. Further, it is preferable to provide the AlN film 3a above and below the KNN film 3b, respectively, in that the above-mentioned effect (d) can be obtained.

(変形例2)
圧電膜3の最下層を第2圧電薄膜(すなわちKNN膜3b)としてもよい。すなわち、下部電極膜2上にKNN膜3bを製膜し、このKNN膜3b上に第1圧電薄膜としてのAlN膜3aを製膜してもよい。KNN膜3bを製膜する際の条件を厳しくすることで、下部電極膜2上に(001)面方位に優先配向させたKNN膜3bを製膜することができ、これによっても、上述の少なくとも(a)(b)等の効果を得ることができる。但し、上述の実施形態のように圧電膜3の最下層をAlN膜3aとし、このAlN膜3a上にKNN膜を製膜した方が、上述の(c)の効果を得ることができる点で、好ましい。
(Modification 2)
The lowermost layer of the piezoelectric film 3 may be a second piezoelectric thin film (that is, KNN film 3b). That is, the KNN film 3b may be formed on the lower electrode film 2, and the AlN film 3a as the first piezoelectric thin film may be formed on the KNN film 3b. By tightening the conditions for forming the KNN film 3b, it is possible to form the KNN film 3b preferentially oriented in the (001) plane direction on the lower electrode film 2, which also causes at least the above-mentioned at least. The effects of (a) and (b) can be obtained. However, the effect of (c) described above can be obtained by forming the lowermost layer of the piezoelectric film 3 as the AlN film 3a and forming the KNN film on the AlN film 3a as in the above-described embodiment. ,preferable.

(変形例3)
第1圧電薄膜を、水晶、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)を用いて形成してもよい。これによっても、上述の実施形態とほぼ同様の効果が得られる。但し、水晶、LiNbOおよびLiTaOからなる膜は、AlN膜3aのようにスパッタリング法による製膜が難しく、貼り合わせ等の方法により製膜が行われることが多い。このため、第1圧電薄膜の厚さが厚くなることで圧電膜の厚さが厚くなる等の課題が生じることがある。また、第1圧電薄膜の製膜と第2圧電薄膜の製膜とを同一の装置内で連続して行うことができず、圧電膜の生産性が低下することもある。したがって、第1圧電薄膜としてAlN膜を製膜する方が、製膜処理の簡便化、圧電膜の薄膜化(圧電膜素子20の小型化)等の点から、好ましい。
(Modification example 3)
The first piezoelectric thin film may be formed using quartz, lithium niobate (LiNbO 3 ), or lithium tantalate (LiTaO 3). This also has almost the same effect as that of the above-described embodiment. However, unlike the AlN film 3a, it is difficult to form a film made of quartz, LiNbO 3 and LiTaO 3 by a sputtering method, and the film is often formed by a method such as bonding. Therefore, as the thickness of the first piezoelectric thin film increases, problems such as an increase in the thickness of the piezoelectric film may occur. Further, the film formation of the first piezoelectric thin film and the film formation of the second piezoelectric thin film cannot be continuously performed in the same apparatus, and the productivity of the piezoelectric film may decrease. Therefore, it is preferable to form an AlN film as the first piezoelectric thin film from the viewpoints of simplification of the film forming process, thinning of the piezoelectric film (miniaturization of the piezoelectric film element 20), and the like.

(変形例4)
第2圧電薄膜を、PZTを用いて製膜してもよい。これによっても、少なくとも上述の(b)以外の効果が得られる。但し、上述のように第2圧電薄膜としてKNN膜を製膜する方が、公害防止の点、製膜処理の簡便化を図る点、圧電膜の生産性を向上させる点等から、好ましい。
(Modification example 4)
The second piezoelectric thin film may be formed using PZT. This also provides at least an effect other than the above-mentioned (b). However, as described above, it is preferable to form a KNN film as the second piezoelectric thin film from the viewpoints of preventing pollution, simplifying the film forming process, improving the productivity of the piezoelectric film, and the like.

(変形例5)
上述の積層基板10を圧電膜素子20に成形する際、積層基板10(圧電膜素子20)を用いて作製した圧電膜デバイス30をセンサやアクチュエータ等の所望の用途に適用することができる限り、積層基板10から基板1を除去してもよい。
(Modification 5)
When molding the above-mentioned laminated substrate 10 into the piezoelectric film element 20, as long as the piezoelectric film device 30 manufactured by using the laminated substrate 10 (piezoelectric film element 20) can be applied to a desired application such as a sensor or an actuator. The substrate 1 may be removed from the laminated substrate 10.

<他の実施形態>
以上、本発明の実施形態を具体的に説明した。但し、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other embodiments>
The embodiment of the present invention has been specifically described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist thereof.

<本発明の好ましい態様>
以下、本発明の好ましい態様について付記する。
<Preferable Aspect of the Present Invention>
Hereinafter, preferred embodiments of the present invention will be added.

(付記1)
本発明の一態様によれば、
基板と、前記基板上に製膜された電極膜と、前記電極膜上に製膜された圧電膜と、を備え、
前記圧電膜は、
第1圧電薄膜と、前記第1圧電薄膜とは異なる材料で形成される第2圧電薄膜と、が積層されてなり、
前記第1圧電薄膜の比誘電率と前記第2圧電薄膜の比誘電率との間の比誘電率を有する、圧電膜を有する積層基板が提供される。
(Appendix 1)
According to one aspect of the invention
A substrate, an electrode film formed on the substrate, and a piezoelectric film formed on the electrode film are provided.
The piezoelectric film is
The first piezoelectric thin film and the second piezoelectric thin film formed of a material different from the first piezoelectric thin film are laminated.
Provided is a laminated substrate having a piezoelectric film having a relative permittivity between the relative permittivity of the first piezoelectric thin film and the relative permittivity of the second piezoelectric thin film.

(付記2)
本発明の他の態様によれば、
基板と、前記基板上に製膜された電極膜と、前記電極膜上に製膜された圧電膜と、を備え、
前記圧電膜は、
第1圧電薄膜と、前記第1圧電薄膜とは異なる材料で形成される第2圧電薄膜と、が積層されてなり、
前記第1圧電薄膜の圧電定数の絶対値|d31|と前記第2圧電薄膜の圧電定数の絶対値|d31|との間の圧電定数の絶対値|d31|を有する、圧電膜を有する積層基板が提供される。
(Appendix 2)
According to another aspect of the invention
A substrate, an electrode film formed on the substrate, and a piezoelectric film formed on the electrode film are provided.
The piezoelectric film is
The first piezoelectric thin film and the second piezoelectric thin film formed of a material different from the first piezoelectric thin film are laminated.
The having the piezoelectric film | absolute value of the first piezoelectric thin film of the piezoelectric constant | d 31 | and the absolute value of the second piezoelectric thin film of the piezoelectric constant | d 31 | and the absolute value of the piezoelectric constant between | d 31 A laminated substrate having a structure is provided.

(付記3)
付記1または2の基板であって、好ましくは、
前記第1圧電薄膜は、前記第2圧電薄膜よりも耐電圧が高い膜である。
(Appendix 3)
The substrate of Appendix 1 or 2, preferably
The first piezoelectric thin film is a film having a higher withstand voltage than the second piezoelectric thin film.

(付記4)
付記1〜3のいずれかの基板であって、好ましくは、
前記第1圧電薄膜は、AlNからなる膜であり、
前記第2圧電薄膜は、組成式(K1−xNa)NbO(0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる膜である。
(Appendix 4)
The substrate is any of the above-mentioned appendices 1 to 3, preferably the substrate.
The first piezoelectric thin film is a film made of AlN.
The second piezoelectric thin film is a film made of an alkaline niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1).

(付記5)
付記1〜4のいずれかの基板であって、好ましくは、
前記圧電膜は、前記電極膜上に前記第1圧電薄膜が配されてなる。
(Appendix 5)
The substrate according to any one of Supplementary note 1 to 4, preferably.
The piezoelectric film is formed by disposing the first piezoelectric thin film on the electrode film.

(付記6)
付記1〜5のいずれかの基板であって、好ましくは、
前記圧電膜は、
前記電極膜(基板)の側から、前記第1圧電薄膜と、前記第2圧電薄膜と、前記第1圧電薄膜と、がこの順に積層されてなる。
(Appendix 6)
The substrate according to any one of Supplementary note 1 to 5, preferably.
The piezoelectric film is
From the side of the electrode film (substrate), the first piezoelectric thin film, the second piezoelectric thin film, and the first piezoelectric thin film are laminated in this order.

(付記7)
付記1〜6のいずれかの基板であって、好ましくは、
前記圧電膜は、周波数1kHzの条件下で±1Vの電圧を印加して測定した際の比誘電率が10以上2000以下の範囲内の所定の値であり、
前記圧電膜の圧電定数の絶対値|d31|が5pm/V以上200pm/V以下の範囲内の所定の値である。
(Appendix 7)
The substrate according to any one of Supplementary note 1 to 6, preferably.
The piezoelectric film has a predetermined value within a range of 10 or more and 2000 or less in relative permittivity when measured by applying a voltage of ± 1 V under the condition of a frequency of 1 kHz.
The absolute value | d 31 | of the piezoelectric constant of the piezoelectric film is a predetermined value within the range of 5 pm / V or more and 200 pm / V or less.

(付記8)
本発明の他の態様によれば、
下部電極膜と、前記下部電極膜上に製膜された圧電膜と、前記圧電膜上に製膜された上部電極膜と、を備え、
前記圧電膜は、
第1圧電薄膜と、前記第1圧電薄膜とは異なる材料で形成される第2圧電薄膜と、が積層されてなり、
前記第1圧電薄膜の比誘電率(または圧電定数の絶対値|d31|)と前記第2圧電薄膜の比誘電率(または圧電定数の絶対値|d31|)との間の比誘電率(または圧電定数の絶対値|d31|)を有する、圧電膜を有する素子が提供される。
(Appendix 8)
According to another aspect of the invention
A lower electrode film, a piezoelectric film formed on the lower electrode film, and an upper electrode film formed on the piezoelectric film are provided.
The piezoelectric film is
The first piezoelectric thin film and the second piezoelectric thin film formed of a material different from the first piezoelectric thin film are laminated.
The relative permittivity between the relative permittivity of the first piezoelectric thin film (or the absolute value of the piezoelectric constant | d 31 |) and the relative permittivity of the second piezoelectric thin film (or the absolute value of the piezoelectric constant | d 31 |). An element having a piezoelectric film having (or an absolute value of the piezoelectric constant | d 31 |) is provided.

(付記9)
本発明の他の態様によれば、
基板と、前記基板上に製膜された下部電極膜と、前記下部電極膜上に製膜された圧電膜と、前記圧電膜上に製膜された上部電極膜と、を備え、
前記圧電膜は、
第1圧電薄膜と、前記第1圧電薄膜とは異なる材料で形成される第2圧電薄膜と、が積層されてなり、
前記第1圧電薄膜の比誘電率(または圧電定数の絶対値|d31|)と前記第2圧電薄膜の比誘電率(または圧電定数の絶対値|d31|)との間の比誘電率(または圧電定数の絶対値|d31|)を有する、圧電膜を有する素子が提供される。
(Appendix 9)
According to another aspect of the invention
A substrate, a lower electrode film formed on the substrate, a piezoelectric film formed on the lower electrode film, and an upper electrode film formed on the piezoelectric film are provided.
The piezoelectric film is
The first piezoelectric thin film and the second piezoelectric thin film formed of a material different from the first piezoelectric thin film are laminated.
The relative permittivity between the relative permittivity of the first piezoelectric thin film (or the absolute value of the piezoelectric constant | d 31 |) and the relative permittivity of the second piezoelectric thin film (or the absolute value of the piezoelectric constant | d 31 |). An element having a piezoelectric film having (or an absolute value of the piezoelectric constant | d 31 |) is provided.

(付記10)
本発明のさらに他の態様によれば、
いずれかの主面上に電極膜が製膜された基板を用意し、前記電極膜上に、第1圧電薄膜と、前記第1圧電薄膜とは異なる材料で形成される第2圧電薄膜と、を積層し、前記第1圧電薄膜の比誘電率(または圧電定数の絶対値|d31|)と前記第2圧電薄膜の比誘電率(または圧電定数の絶対値|d31|)との間の比誘電率(または圧電定数の絶対値|d31|)を備える圧電膜を製膜する工程を有する、圧電膜を有する積層基板の製造方法が提供される。
(Appendix 10)
According to yet another aspect of the invention.
A substrate having an electrode film formed on one of the main surfaces is prepared, and a first piezoelectric thin film and a second piezoelectric thin film formed of a material different from the first piezoelectric thin film are provided on the electrode film. Between the specific dielectric constant of the first piezoelectric thin film (or the absolute value of the piezoelectric constant | d 31 |) and the specific dielectric constant of the second piezoelectric thin film (or the absolute value of the piezoelectric constant | d 31 |). Provided is a method for manufacturing a laminated substrate having a piezoelectric film, which comprises a step of forming a piezoelectric film having a specific dielectric constant (or an absolute value of a piezoelectric constant | d 31 |).

(付記11)
付記10の方法であって、好ましくは、
前記圧電膜を製膜する工程では、
前記第2圧電薄膜の厚さ(T2)に対する前記第1圧電薄膜の厚さ(T1)の比率(T1/T2)を調整することで、前記圧電膜の比誘電率(または圧電定数の絶対値|d31|)を調整する。
(Appendix 11)
The method of Appendix 10, preferably
In the step of forming the piezoelectric film,
By adjusting the ratio (T1 / T2) of the thickness (T1) of the first piezoelectric thin film to the thickness (T2) of the second piezoelectric thin film, the relative permittivity (or absolute value of the piezoelectric constant) of the piezoelectric film is adjusted. | D 31 |) is adjusted.

(付記12)
本発明のさらに他の態様によれば、
第1圧電薄膜と、前記第1圧電薄膜とは異なる材料で形成される第2圧電薄膜と、を積層し、前記第1圧電薄膜の比誘電率(または圧電定数の絶対値|d31|)と前記第2圧電薄膜の比誘電率(または圧電定数の絶対値|d31|)との間の比誘電率(または圧電定数の絶対値|d31|)を有する圧電膜を備える積層基板を用意する工程を有する、圧電膜を有する素子の製造方法が提供される。
(Appendix 12)
According to yet another aspect of the invention.
The first piezoelectric thin film and the second piezoelectric thin film formed of a material different from the first piezoelectric thin film are laminated, and the specific dielectric constant of the first piezoelectric thin film (or the absolute value of the piezoelectric constant | d 31 |). A laminated substrate provided with a piezoelectric film having a specific dielectric constant (or absolute value of the piezoelectric constant | d 31 |) between and the specific dielectric constant (or absolute value of the piezoelectric constant | d 31 |) of the second piezoelectric thin film. Provided is a method of manufacturing an element having a piezoelectric film, which comprises a step of preparing.

1 基板
2 下部電極膜
3 圧電膜
10 積層基板
1 Substrate 2 Lower electrode film 3 Piezoelectric film 10 Laminated substrate

Claims (7)

基板と、前記基板上に製膜された電極膜と、前記電極膜上に製膜された圧電膜と、を備え、
前記圧電膜は、
AlNからなる第1圧電薄膜と、組成式(K 1−x Na )NbO (0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる第2圧電薄膜と、が連続して積層されてなり、
前記第1圧電薄膜の比誘電率と前記第2圧電薄膜の比誘電率との間の比誘電率を有する、圧電膜を有する積層基板。
A substrate, an electrode film formed on the substrate, and a piezoelectric film formed on the electrode film are provided.
The piezoelectric film is
A first piezoelectric thin film made of AlN and a second piezoelectric thin film made of an alkali niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1) are continuous. And are laminated
A laminated substrate having a piezoelectric film having a relative permittivity between the relative permittivity of the first piezoelectric thin film and the relative permittivity of the second piezoelectric thin film.
前記第1圧電薄膜の厚さは5〜500nmである請求項1に記載の圧電膜を有する積層基板。The laminated substrate having the piezoelectric film according to claim 1, wherein the thickness of the first piezoelectric thin film is 5 to 500 nm. 前記圧電膜は、前記電極膜上に前記第1圧電薄膜が配されてなる請求項1または2に記載の圧電膜を有する積層基板。 The piezoelectric film is a laminated substrate having the piezoelectric film according to claim 1 or 2, wherein the first piezoelectric thin film is arranged on the electrode film. 前記圧電膜は、前記電極膜の側から、前記第1圧電薄膜と、前記第2圧電薄膜と、前記第1圧電薄膜と、がこの順に積層されてなる請求項1〜3のいずれかに記載の圧電膜を有する積層基板。 The piezoelectric film according to any one of claims 1 to 3, wherein the first piezoelectric thin film, the second piezoelectric thin film, and the first piezoelectric thin film are laminated in this order from the side of the electrode film. Laminated substrate having a piezoelectric film of. 下部電極膜と、前記下部電極膜上に製膜された圧電膜と、前記圧電膜上に製膜された上部電極膜と、を備え、
前記圧電膜は、
AlNからなる第1圧電薄膜と、組成式(K 1−x Na )NbO (0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる第2圧電薄膜と、が連続して積層されてなり、
前記第1圧電薄膜の比誘電率と前記第2圧電薄膜の比誘電率との間の比誘電率を有する、圧電膜を有する素子。
A lower electrode film, a piezoelectric film formed on the lower electrode film, and an upper electrode film formed on the piezoelectric film are provided.
The piezoelectric film is
A first piezoelectric thin film made of AlN and a second piezoelectric thin film made of an alkali niobium oxide having a perovskite structure represented by the composition formula (K 1-x Na x ) NbO 3 (0 <x <1) are continuous. And are laminated
An element having a piezoelectric film having a relative permittivity between the relative permittivity of the first piezoelectric thin film and the relative permittivity of the second piezoelectric thin film.
いずれかの主面上に電極膜が製膜された基板を用意し、前記電極膜上に、AlNからなる第1圧電薄膜と、組成式(K 1−x Na )NbO (0<x<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる第2圧電薄膜と、が連続して積層されてなり、前記第1圧電薄膜の比誘電率と前記第2圧電薄膜の比誘電率との間の比誘電率を備える圧電膜を製膜する工程を有する、圧電膜を有する積層基板の製造方法。 A substrate having an electrode film formed on one of the main surfaces is prepared, and a first piezoelectric thin film made of AlN and a composition formula (K 1-x Na x ) NbO 3 (0 <x) are prepared on the electrode film. A second piezoelectric thin film made of an alkaliniobium oxide having a perovskite structure represented by <1) is continuously laminated, and the specific dielectric constant of the first piezoelectric thin film and the specific dielectric constant of the second piezoelectric thin film. A method for manufacturing a laminated substrate having a piezoelectric film, which comprises a step of forming a piezoelectric film having a specific dielectric constant between the two. 前記圧電膜を製膜する工程では、
前記第2圧電薄膜の厚さに対する前記第1圧電薄膜の厚さの比率を調整することで、前記圧電膜の比誘電率を調整する請求項6に記載の圧電膜を有する積層基板の製造方法。
In the step of forming the piezoelectric film,
The method for manufacturing a laminated substrate having a piezoelectric film according to claim 6, wherein the relative permittivity of the piezoelectric film is adjusted by adjusting the ratio of the thickness of the first piezoelectric thin film to the thickness of the second piezoelectric thin film. ..
JP2017093959A 2017-05-10 2017-05-10 A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film. Active JP6934746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017093959A JP6934746B2 (en) 2017-05-10 2017-05-10 A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017093959A JP6934746B2 (en) 2017-05-10 2017-05-10 A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film.

Publications (2)

Publication Number Publication Date
JP2018190890A JP2018190890A (en) 2018-11-29
JP6934746B2 true JP6934746B2 (en) 2021-09-15

Family

ID=64480404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017093959A Active JP6934746B2 (en) 2017-05-10 2017-05-10 A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film.

Country Status (1)

Country Link
JP (1) JP6934746B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023147857A (en) 2022-03-30 2023-10-13 沖電気工業株式会社 Piezoelectric-body film joint substrate and manufacturing method thereof
JP7338082B1 (en) 2023-01-10 2023-09-04 住友精密工業株式会社 Piezoelectric film substrate manufacturing method and piezoelectric film substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104106A (en) * 2002-08-21 2004-04-02 Matsushita Electric Ind Co Ltd Piezoelectric actuator, method of manufacturing the same, ink jet head, and ink jet recorder
JP2015137405A (en) * 2014-01-23 2015-07-30 スタンレー電気株式会社 Film deposition method and ferroelectric film
WO2016175013A1 (en) * 2015-04-30 2016-11-03 株式会社村田製作所 Piezoelectric device, piezoelectric transformer, and piezoelectric device manufacturing method

Also Published As

Publication number Publication date
JP2018190890A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
EP2579347B1 (en) Piezoelectric device and method of manufacturing piezoelectric device
JP6239566B2 (en) Multilayer substrate with piezoelectric thin film, piezoelectric thin film element, and manufacturing method thereof
WO2021205768A1 (en) Piezoelectric laminate, production method for piezoelectric laminate, and piezoelectric element
US11805700B2 (en) Laminated substrate having piezoelectric film, element having piezoelectric film and method for manufacturing this laminated substrate
US11081637B2 (en) Laminate structure, piezoelectric element, and method of manufacturing piezoelectric element
US8994251B2 (en) Piezoelectric device having first and second non-metal electroconductive intermediate films
JP7352347B2 (en) Piezoelectric laminate, piezoelectric element, and piezoelectric laminate manufacturing method
US20230115136A1 (en) Laminated substrate having piezoelectric film, element having piezoelectric film and method for manufacturing this laminated substrate
JP6196797B2 (en) Piezoelectric thin film multilayer substrate and piezoelectric thin film element
JP6934746B2 (en) A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film.
JP2013229510A (en) Piezoelectric element and manufacturing method of the same
JP7044600B2 (en) Piezoelectric laminates, methods for manufacturing piezoelectric laminates and piezoelectric devices
JP6502460B2 (en) Laminated substrate with piezoelectric thin film and piezoelectric thin film element
JP7037892B2 (en) A method for manufacturing a laminated substrate having a piezoelectric film, a method for manufacturing an element having a piezoelectric film, and a laminated body having a piezoelectric film.
EP3540797B1 (en) Piezoelectric laminate, method of manufacturing piezoelectric laminate, and piezoelectric element
JP6961770B2 (en) Laminated substrate with piezoelectric thin film and piezoelectric thin film element
JP6758444B2 (en) Laminated substrate with piezoelectric thin film and piezoelectric thin film element
JP6804615B2 (en) A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film.
JP7022853B2 (en) Sputtering target material, manufacturing method of sputtering target material, and manufacturing method of laminated substrate with piezoelectric thin film
JP7320098B2 (en) Piezoelectric laminate, method for manufacturing piezoelectric laminate, and piezoelectric device
WO2023195413A1 (en) Nitride, piezoelectric body, piezoelectric element, ferroelectric body, and ferroelectric element
WO2022202381A1 (en) Piezoelectric film, piezoelectric element and method for producing piezoelectric film
JP2021027133A (en) Piezoelectric laminate, piezoelectric element, and manufacturing method of piezoelectric laminate
JP2022065018A (en) Lamination substrate with piezoelectric thin film, method of manufacturing the same, piezoelectric thin-film element, sputtering target material, and method of manufacturing the sputtering target material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210824

R150 Certificate of patent or registration of utility model

Ref document number: 6934746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350