JP6804615B2 - A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film. - Google Patents

A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film. Download PDF

Info

Publication number
JP6804615B2
JP6804615B2 JP2019191825A JP2019191825A JP6804615B2 JP 6804615 B2 JP6804615 B2 JP 6804615B2 JP 2019191825 A JP2019191825 A JP 2019191825A JP 2019191825 A JP2019191825 A JP 2019191825A JP 6804615 B2 JP6804615 B2 JP 6804615B2
Authority
JP
Japan
Prior art keywords
film
piezoelectric
piezoelectric film
substrate
laminated substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019191825A
Other languages
Japanese (ja)
Other versions
JP2020014024A (en
Inventor
柴田 憲治
憲治 柴田
渡辺 和俊
和俊 渡辺
文正 堀切
文正 堀切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2019191825A priority Critical patent/JP6804615B2/en
Publication of JP2020014024A publication Critical patent/JP2020014024A/en
Application granted granted Critical
Publication of JP6804615B2 publication Critical patent/JP6804615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、圧電膜を有する積層基板、圧電膜を有する素子および圧電膜を有する積層基板の製造方法に関する。 The present invention relates to a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a method for manufacturing a laminated substrate having a piezoelectric film.

圧電体は、センサやアクチュエータ等の機能性電子部品(デバイス)に広く利用されている。圧電体の材料としては、例えばニオブ酸カリウムナトリウム(KNN)が用いられている(例えば特許文献1,2参照)。近年、デバイスに用いられた際、絶縁破壊に至るまでの時間がより長い、すなわち寿命をより長くした圧電体が強く求められるようになっている。 Piezoelectric bodies are widely used in functional electronic components (devices) such as sensors and actuators. As the material of the piezoelectric material, for example, sodium potassium niobate (KNN) is used (see, for example, Patent Documents 1 and 2). In recent years, when used in devices, there is a strong demand for piezoelectric materials having a longer time to dielectric breakdown, that is, a longer life.

特開2007−184513号公報JP-A-2007-184513 特開2008−159807号公報Japanese Unexamined Patent Publication No. 2008-159807

本発明の目的は、デバイスに用いられた際、絶縁破壊に至るまでの時間をより長くした圧電膜を有する積層基板およびその関連技術を提供することにある。 An object of the present invention is to provide a laminated substrate having a piezoelectric film having a longer time until dielectric breakdown when used in a device, and related techniques thereof.

本発明の一態様によれば、
基板と、前記基板上に製膜された第1電極膜と、前記第1電極膜上に製膜された圧電膜と、を備える、圧電膜を有する積層基板であって、
前記圧電膜上には、組成式RuOまたはIrOで表される酸化物からなる酸化膜が形成されている、圧電膜を有する積層基板およびその関連技術が提供される。
According to one aspect of the invention
A laminated substrate having a piezoelectric film, comprising a substrate, a first electrode film formed on the substrate, and a piezoelectric film formed on the first electrode film.
Provided are a laminated substrate having a piezoelectric film and a related technique thereof, wherein an oxide film made of an oxide represented by the composition formula RuO x or IrO x is formed on the piezoelectric film.

本発明によれば、デバイスに用いられた際、絶縁破壊に至るまでの時間を長くした圧電膜を有する積層基板およびその関連技術を提供することが可能となる。 According to the present invention, it is possible to provide a laminated substrate having a piezoelectric film having a long time until dielectric breakdown when used in a device, and related techniques thereof.

本発明の一実施形態にかかる積層基板10の断面構造の一例を示す図である。It is a figure which shows an example of the cross-sectional structure of the laminated substrate 10 which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる積層基板10の断面構造の変形例を示す図である。It is a figure which shows the modification of the cross-sectional structure of the laminated substrate 10 which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる積層基板10の断面構造の変形例を示す図である。It is a figure which shows the modification of the cross-sectional structure of the laminated substrate 10 which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる圧電膜デバイス30の概略構成図である。It is a schematic block diagram of the piezoelectric membrane device 30 which concerns on one Embodiment of this invention. (a)〜(f)は、それぞれ、KNN膜の強誘電性に関する評価結果を示す図である。(A) to (f) are diagrams showing the evaluation results regarding the ferroelectricity of the KNN film, respectively. (a)、(b)は、それぞれ、KNN膜の強誘電性に関する評価結果を示す図である。(A) and (b) are diagrams showing the evaluation results regarding the ferroelectricity of the KNN film, respectively.

<本発明の一実施形態>
以下、本発明の一実施形態について図面を参照しながら説明する。
<One Embodiment of the present invention>
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(1)積層基板の構成
図1に示すように、本実施形態にかかる積層基板10は、基板1と、基板1上に製膜された第1電極膜としての下部電極膜2と、下部電極膜2上に製膜された圧電膜(圧電薄膜)3と、圧電膜3上に密着層を介して製膜された第2電極膜としての上部電極膜4と、を備えた積層体として構成されている。
(1) Configuration of Laminated Substrate As shown in FIG. 1, the laminated substrate 10 according to the present embodiment includes a substrate 1, a lower electrode film 2 as a first electrode film formed on the substrate 1, and a lower electrode. It is configured as a laminate including a piezoelectric film (piezoelectric thin film) 3 formed on the film 2 and an upper electrode film 4 as a second electrode film formed on the piezoelectric film 3 via an adhesion layer. Has been done.

基板1としては、熱酸化膜やCVD(Chemical Vapor Deposition)酸化膜等の表面酸化膜(SiO膜)1bが形成された単結晶シリコン(Si)基板1a、すなわち、表面酸化膜を有するSi基板を好適に用いることができる。また、基板1としては、図2に示すように、その表面にSiO以外の絶縁性材料により形成された絶縁膜1dを有するSi基板1aを用いることもできる。また、基板1としては、表面にSi(100)面やSi(111)面等が露出したSi基板1a、すなわち、表面酸化膜1bや絶縁膜1dを有さないSi基板を用いることもできる。また、基板1としては、SOI(Silicon On Insulator)基板、石英ガラス(SiO)基板、ガリウム砒素(GaAs)基板、サファイア(Al)基板、ステンレス等の金属材料により形成された金属基板を用いることもできる。単結晶Si基板1aの厚さは例えば300〜1000μm、表面酸化膜1bの厚さは例えば5〜3000nmとすることができる。 The substrate 1 is a single crystal silicon (Si) substrate 1a on which a surface oxide film (SiO 2 film) 1b such as a thermal oxide film or a CVD (Chemical Vapor Deposition) oxide film is formed, that is, a Si substrate having a surface oxide film. Can be preferably used. Further, as the substrate 1, as shown in FIG. 2, a Si substrate 1a having an insulating film 1d formed of an insulating material other than SiO 2 on its surface can also be used. Further, as the substrate 1, a Si substrate 1a in which a Si (100) surface, a Si (111) surface, or the like is exposed on the surface, that is, a Si substrate having no surface oxide film 1b or insulating film 1d can also be used. The substrate 1 includes an SOI (Silicon On Insulator) substrate, a quartz glass (SiO 2 ) substrate, a gallium arsenide (GaAs) substrate, a sapphire (Al 2 O 3 ) substrate, and a metal substrate formed of a metal material such as stainless steel. Can also be used. The thickness of the single crystal Si substrate 1a can be, for example, 300 to 1000 μm, and the thickness of the surface oxide film 1b can be, for example, 5 to 3000 nm.

下部電極膜2は、例えば、白金(Pt)を用いて製膜することができる。下部電極膜2は、単結晶膜や多結晶膜(以下、これらをPt膜とも称する)となる。Pt膜を構成する結晶は、基板1の表面に対して(111)面方位に優先配向していることが好ましい。すなわち、Pt膜の表面(圧電膜3の下地となる面)は、主にPt(111)面により構成されていることが好ましい。Pt膜は、スパッタリング法、蒸着法等の手法を用いて製膜することができる。下部電極膜2は、Pt以外に、金(Au)やルテニウム(Ru)やイリジウム(Ir)等の各種金属、これらを主成分とする合金、ルテニウム酸ストロンチウム(SrRuO)やニッケル酸ランタン(LaNiO)等の金属酸化物等を用いて製膜することもできる。なお、基板1と下部電極膜2との間には、これらの密着性を高めるため、例えば、チタン(Ti)、タンタル(Ta)、酸化チタン(TiO)、ニッケル(Ni)等を主成分とする密着層6が設けられている。密着層6は、スパッタリング法、蒸着法等の手法を用いて製膜することができる。下部電極膜2の厚さは例えば100〜400nm、密着層6の厚さは例えば1〜200nmとすることができる。 The lower electrode film 2 can be formed by using, for example, platinum (Pt). The lower electrode film 2 is a single crystal film or a polycrystalline film (hereinafter, these are also referred to as Pt films). The crystals constituting the Pt film are preferably preferentially oriented in the (111) plane orientation with respect to the surface of the substrate 1. That is, it is preferable that the surface of the Pt film (the surface serving as the base of the piezoelectric film 3) is mainly composed of the Pt (111) surface. The Pt film can be formed by using a method such as a sputtering method or a thin film deposition method. In addition to Pt, the lower electrode film 2 includes various metals such as gold (Au), ruthenium (Ru), and iridium (Ir), alloys containing these as main components, strontium ruthenate (SrRuO 3 ), and lanthanum nickelate (LaNiO). It is also possible to form a film using a metal oxide such as 3 ). In order to improve the adhesion between the substrate 1 and the lower electrode film 2, for example, titanium (Ti), tantalum (Ta), titanium oxide (TIO 2 ), nickel (Ni) and the like are the main components. The adhesion layer 6 is provided. The adhesion layer 6 can be formed into a film by using a method such as a sputtering method or a thin film deposition method. The thickness of the lower electrode film 2 can be, for example, 100 to 400 nm, and the thickness of the adhesion layer 6 can be, for example, 1 to 200 nm.

圧電膜3は、例えば、カリウム(K)、ナトリウム(Na)、ニオブ(Nb)を含み、組成式(K1−yNa)NbOで表されるアルカリニオブ酸化物、すなわち、ニオブ酸カリウムナトリウム(KNN)を用いて製膜することができる。上述の組成式中の係数y[=Na/(K+Na)]は、0<y<1、好ましくは0.4≦y≦0.7の範囲内の大きさとする。圧電膜3は、KNNの多結晶膜(以下、KNN膜3とも称する)となる。KNNの結晶構造は、ペロブスカイト構造となる。 The piezoelectric film 3 contains, for example, potassium (K), sodium (Na), and niobium (Nb), and is an alkaline niobium oxide represented by the composition formula (K 1-y N y ) NbO 3 , that is, potassium niobate. A film can be formed using sodium (KNN). The coefficient y [= Na / (K + Na)] in the above composition formula has a magnitude within the range of 0 <y <1, preferably 0.4 ≦ y ≦ 0.7. The piezoelectric film 3 is a KNN polycrystalline film (hereinafter, also referred to as KNN film 3). The crystal structure of KNN is a perovskite structure.

KNN膜3を構成する結晶は、基板1の表面に対して(001)面方位に優先配向していることが好ましい。すなわち、KNN膜3の表面(後述のRuO膜7aの下地となる面)は、主にKNN(001)面により構成されていることが好ましい。基板1の表面に対して(111)面方位に優先配向させたPt膜(下部電極膜2)上にKNN膜3を直接製膜することで、KNN膜3を構成する結晶を、基板1の表面に対して(001)面方位に優先配向させることが容易となる。例えば、KNN膜3を構成する結晶群のうち80%以上の結晶を基板1の表面に対して(001)面方位に配向させ、KNN膜3の表面のうち80%以上の領域をKNN(001)面とすることが可能となる。 The crystals constituting the KNN film 3 are preferably preferentially oriented in the (001) plane orientation with respect to the surface of the substrate 1. That is, it is preferable that the surface of the KNN film 3 (the surface serving as the base of the RuO x film 7a described later) is mainly composed of the KNN (001) surface. By directly forming the KNN film 3 on the Pt film (lower electrode film 2) preferentially oriented in the (111) plane direction with respect to the surface of the substrate 1, the crystals constituting the KNN film 3 are formed on the substrate 1. It becomes easy to preferentially orient the surface in the (001) plane direction. For example, 80% or more of the crystals constituting the KNN film 3 are oriented in the (001) plane orientation with respect to the surface of the substrate 1, and 80% or more of the surface of the KNN film 3 is KNN (001). ) It becomes possible to make a surface.

KNN膜3は、スパッタリング法、PLD(Pulsed Laser Deposition)法、ゾルゲル法等の手法を用いて製膜することができる。KNN膜3の厚さは例えば0.5〜5μmとすることができる。KNN膜3の組成比は、例えば、スパッタリング製膜時に用いるターゲット材の組成を制御することで調整可能である。ターゲット材は、例えば、KCO粉末、NaCO粉末、Nb粉末等を混合させて焼成すること等により作製することができる。この場合、ターゲット材の組成は、KCO粉末、NaCO粉末、Nb粉末等の混合比率を調整することで制御することができる。 The KNN film 3 can be formed by using a method such as a sputtering method, a PLD (Pulsed Laser Deposition) method, or a sol-gel method. The thickness of the KNN film 3 can be, for example, 0.5 to 5 μm. The composition ratio of the KNN film 3 can be adjusted, for example, by controlling the composition of the target material used during sputtering film formation. The target material can be produced, for example, by mixing K 2 CO 3 powder, Na 2 CO 3 powder, Nb 2 O 5 powder and the like and firing them. In this case, the composition of the target material can be controlled by adjusting the mixing ratio of K 2 CO 3 powder, Na 2 CO 3 powder, Nb 2 O 5 powder and the like.

KNN膜3は、銅(Cu)、マンガン(Mn)、リチウム(Li)、Ta、アンチモン(Sb)等のK、Na、Nb以外の元素を、5at%以下の範囲内で含んでいてもよい。 The KNN film 3 may contain elements other than K, Na, Nb such as copper (Cu), manganese (Mn), lithium (Li), Ta, and antimony (Sb) within a range of 5 at% or less. ..

上部電極膜4は、例えば、Pt、Au、アルミニウム(Al)、Cu等の各種金属やこれらの合金を用いて製膜することができる。上部電極膜4は、スパッタリング法、蒸着法、メッキ法、金属ペースト法等の手法を用いて製膜することができる。上部電極膜4は、下部電極膜2のようにKNN膜3の結晶構造に大きな影響を与えるものではない。そのため、上部電極膜4の材料、結晶構造、製膜手法は特に限定されない。上部電極膜4の厚さは例えば100〜5000nmとすることができる。 The upper electrode film 4 can be formed by using various metals such as Pt, Au, aluminum (Al), and Cu, and alloys thereof. The upper electrode film 4 can be formed by using a method such as a sputtering method, a vapor deposition method, a plating method, or a metal paste method. The upper electrode film 4 does not have a great influence on the crystal structure of the KNN film 3 like the lower electrode film 2. Therefore, the material, crystal structure, and film forming method of the upper electrode film 4 are not particularly limited. The thickness of the upper electrode film 4 can be, for example, 100 to 5000 nm.

KNN膜3と上部電極膜4との間、すなわちKNN膜3上には、これらの間の密着性を高める密着層として、組成式RuOで表される酸化物からなる膜(酸化膜)7a(以下、RuO膜7aとも称する)が製膜されている。また、この密着層として、図3に示すように、組成式IrOで表される酸化物からなる膜7b(以下、IrO膜7bとも称する)が製膜されていてもよい。 Between the KNN layer 3 and the upper electrode film 4, i.e. on the KNN layer 3, as an adhesion layer to improve the adhesion between them, made of an oxide represented by the composition formula RuO x film (oxide film) 7a (Hereinafter, also referred to as RuO x film 7a) is formed. Further, as this adhesion layer, as shown in FIG. 3, a film 7b made of an oxide represented by the composition formula IrO x (hereinafter, also referred to as IrO x film 7b) may be formed.

RuO膜7aは、スパッタリング法、化学気相成長(CVD)法、蒸着法等の手法を用いて製膜することができる。RuO膜7aは、下部電極膜2のようにKNN膜3の結晶構造に大きな影響を与えるものではない。そのため、RuO膜7aの結晶構造、製膜手法は特に限定されない。RuO膜7aの組成比、すなわち上述の組成式中の係数xの値は、スパッタリング製膜時の雰囲気ガス、例えばアルゴン(Ar)ガスと酸素(O)ガスとの混合ガス(Ar/O混合ガス)中におけるOガス比率を制御すること等により調整可能である。上述のOガス比率が高くなるほど、係数xの値が大きくなり、Oガス比率が小さくなるほど、係数xの値が小さくなる傾向がある。また、スパッタリング製膜時に用いるターゲット材として、係数xが0<x<2の範囲内であるRuO膜7aを製膜する際は、ルテニウム(Ru)の金属材料により形成されたターゲット材を用いることが好ましく、係数xが2≦x、好ましくは2<xの範囲内であるRuO膜7aを製膜する際は、RuO粉末を焼成すること等により作製したターゲット材を用いることが好ましい。RuO膜7aの厚さは例えば2〜30nm、好ましくは5〜30nmとすることができる。これらの点については、IrO膜7bについても同様のことが言える。なお、係数xが0<x<2の範囲内であるIrO膜7bを製膜する際は、イリジウム(Ir)の金属材料により形成されたターゲット材を用いることが好ましく、係数xが2≦x、好ましくは2<xの範囲内であるIrO膜7bを製膜する際は、IrO粉末を焼成すること等により作製したターゲット材を用いることが好ましい。 The RuO x film 7a can be formed by using a method such as a sputtering method, a chemical vapor deposition (CVD) method, or a thin film deposition method. The RuO x film 7a does not have a great influence on the crystal structure of the KNN film 3 like the lower electrode film 2. Therefore, the crystal structure of the RuO x film 7a and the film forming method are not particularly limited. The composition ratio of the RuO x film 7a, that is, the value of the coefficient x in the above composition formula is the atmospheric gas at the time of sputtering film formation, for example, a mixed gas (Ar / O) of an argon (Ar) gas and an oxygen (O 2 ) gas. It can be adjusted by controlling the O 2 gas ratio in ( 2 mixed gas). The higher the O 2 gas ratio described above, the larger the value of the coefficient x, and the smaller the O 2 gas ratio, the smaller the value of the coefficient x tends to be. Further, as the target material used for sputtering film formation, when the RuO x film 7a having a coefficient x within the range of 0 <x <2 is formed, a target material formed of a ruthenium (Ru) metal material is used. It is preferable to use a target material prepared by firing RuO 2 powder or the like when forming a RuO x film 7a having a coefficient x in the range of 2 ≦ x, preferably 2 <x. .. The thickness of the RuO x film 7a can be, for example, 2 to 30 nm, preferably 5 to 30 nm. Regarding these points, the same can be said for IrO x film 7b. When forming the IrO x film 7b in which the coefficient x is in the range of 0 <x <2, it is preferable to use a target material formed of a metal material of iridium (Ir), and the coefficient x is 2 ≦. When forming the IrO x film 7b in the range of x, preferably 2 <x, it is preferable to use a target material prepared by firing IrO 2 powder or the like.

(2)圧電膜デバイスの構成
図4に、本実施形態における圧電膜を有するデバイス30(以下、圧電膜デバイス30とも称する)の概略構成図を示す。圧電膜デバイス30は、上述の積層基板10を所定の形状に成形して得られる圧電膜を有する素子20(以下、圧電膜素子20とも称する)と、圧電膜素子20に接続される電圧検出手段11aまたは電圧印加手段11bと、を少なくとも備えて構成される。
(2) Configuration of Piezoelectric Membrane Device FIG. 4 shows a schematic configuration diagram of a device 30 having a piezoelectric membrane (hereinafter, also referred to as a piezoelectric membrane device 30) in the present embodiment. The piezoelectric film device 30 includes an element 20 having a piezoelectric film obtained by molding the above-mentioned laminated substrate 10 into a predetermined shape (hereinafter, also referred to as a piezoelectric film element 20) and a voltage detecting means connected to the piezoelectric film element 20. It is configured to include at least 11a or a voltage applying means 11b.

電圧検出手段11aを、圧電膜素子20の下部電極膜2と上部電極膜4との間に接続することで、圧電膜デバイス30をセンサとして機能させることができる。KNN膜3が何らかの物理量の変化に伴って変形すると、その変形によって下部電極膜2と上部電極膜4との間に電圧が発生する。この電圧を電圧検出手段11aによって検出することで、KNN膜3に印加された物理量の大きさを測定することができる。この場合、圧電膜デバイス30の用途としては、例えば、角速度センサ、超音波センサ、圧カセンサ、加速度センサ等が挙げられる。 By connecting the voltage detecting means 11a between the lower electrode film 2 and the upper electrode film 4 of the piezoelectric film element 20, the piezoelectric film device 30 can function as a sensor. When the KNN film 3 is deformed due to some change in physical quantity, a voltage is generated between the lower electrode film 2 and the upper electrode film 4 due to the deformation. By detecting this voltage with the voltage detecting means 11a, the magnitude of the physical quantity applied to the KNN film 3 can be measured. In this case, applications of the piezoelectric film device 30 include, for example, an angular velocity sensor, an ultrasonic sensor, a pressure sensor, an acceleration sensor, and the like.

電圧印加手段11bを、圧電膜素子20の下部電極膜2と上部電極膜4との間に接続することで、圧電膜デバイス30をアクチュエータとして機能させることができる。電圧印加手段11bにより下部電極膜2と上部電極膜4との間に電圧を印加することで、KNN膜3を変形させることができる。この変形動作により、圧電膜デバイス30に接続された各種部材を作動させることができる。この場合、圧電膜デバイス30の用途としては、例えば、インクジェットプリンタ用のヘッド、スキャナー用のMEMSミラー、超音波発生装置用の振動子等が挙げられる。 By connecting the voltage applying means 11b between the lower electrode film 2 and the upper electrode film 4 of the piezoelectric film element 20, the piezoelectric film device 30 can function as an actuator. The KNN film 3 can be deformed by applying a voltage between the lower electrode film 2 and the upper electrode film 4 by the voltage applying means 11b. By this deformation operation, various members connected to the piezoelectric film device 30 can be operated. In this case, applications of the piezoelectric film device 30 include, for example, a head for an inkjet printer, a MEMS mirror for a scanner, an oscillator for an ultrasonic generator, and the like.

(3)積層基板、圧電膜素子、圧電膜デバイスの製造方法
続いて、上述の積層基板10の製造方法について説明する。まず、基板1のいずれかの主面上に下部電極膜2を製膜する。なお、いずれかの主面上に下部電極膜2が予め製膜された基板1を用意してもよい。続いて、下部電極膜2上に、例えばスパッタリング法を用いてKNN膜3を製膜した後、KNN膜3(KNN膜3を有する積層体)に対して、所定温度(例えば500℃)の条件下で所定時間(例えば2時間)、アニール(熱処理)を行う。その後、KNN膜3上に、例えばスパッタリング法を用いてRuO膜7aまたはIrO膜7bを製膜し、RuO膜7aまたはIrO膜7b上に上部電極膜4を製膜することで、積層基板10が得られる。
(3) Manufacturing Method of Laminated Substrate, Piezoelectric Film Element, and Piezoelectric Film Device Next, the manufacturing method of the above-mentioned laminated substrate 10 will be described. First, the lower electrode film 2 is formed on one of the main surfaces of the substrate 1. A substrate 1 in which the lower electrode film 2 is formed in advance on any of the main surfaces may be prepared. Subsequently, after forming a KNN film 3 on the lower electrode film 2 by using, for example, a sputtering method, the KNN film 3 (a laminate having the KNN film 3) is subject to a predetermined temperature (for example, 500 ° C.). Underneath, annealing (heat treatment) is performed for a predetermined time (for example, 2 hours). Then, a RuO x film 7a or IrO x film 7b is formed on the KNN film 3 by, for example, a sputtering method, and an upper electrode film 4 is formed on the RuO x film 7a or IrO x film 7b. The laminated substrate 10 is obtained.

RuO膜7aまたはIrO膜7bおよび上部電極膜4の製膜後に積層基板10に対してアニールを行ってもよい。 After forming the RuO x film 7a or IrO x film 7b and the upper electrode film 4, the laminated substrate 10 may be annealed.

上述の積層基板10に対して行うアニール条件としては、
アニール温度(積層基板10の温度):600℃以上、好ましくは600℃以上800℃以下、より好ましくは700℃
アニール時間:0.5〜12時間、好ましくは1〜6時間、より好ましくは2〜3時間
アニール雰囲気:大気または酸素雰囲気
が例示される。ただし、このアニールは行わなくてもよい。
The annealing conditions for the above-mentioned laminated substrate 10 include
Annealing temperature (temperature of laminated substrate 10): 600 ° C. or higher, preferably 600 ° C. or higher and 800 ° C. or lower, more preferably 700 ° C.
Annealing time: 0.5-12 hours, preferably 1-6 hours, more preferably 2-3 hours Annealing atmosphere: Air or oxygen atmosphere is exemplified. However, this annealing does not have to be performed.

そして、この積層基板10を所定の形状に成形することで、圧電膜素子20が得られ、圧電膜素子20に電圧検出手段11aまたは電圧印加手段11bを接続することで、圧電膜デバイス30が得られる。 Then, the piezoelectric film element 20 is obtained by molding the laminated substrate 10 into a predetermined shape, and the piezoelectric film device 30 is obtained by connecting the voltage detecting means 11a or the voltage applying means 11b to the piezoelectric film element 20. Be done.

(4)本実施形態により得られる効果
本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(4) Effects obtained by the present embodiment According to the present embodiment, one or more of the following effects can be obtained.

(a)KNN膜3と上部電極膜4との間に、RuO膜7aまたはIrO膜7bを設けることで、本実施形態にかかる積層基板10を用いて作製した圧電膜デバイス30において、KNN膜3が絶縁破壊に至るまでの時間を長くすること、すなわちKNN膜3の寿命を長くすることが可能となる。例えば、積層基板10の温度が200℃となるように加熱した状態で、下部電極膜2と上部電極膜4との間に−300kV/cmの電界(−60Vの電圧)を印加する高加速寿命試験(Highly Accelerated Life Test、略称:HALT)を行った際、電界印加開始からKNN膜3が絶縁破壊に至るまでの時間を3300秒以上とすることが可能となる。なお、本実施形態では、KNN膜3に流れるリーク電流密度が30mA/cmを超えた時点でKNN膜3が絶縁破壊に至ったとみなしている。 (A) By providing the RuO x film 7a or the IrO x film 7b between the KNN film 3 and the upper electrode film 4, in the piezoelectric film device 30 produced by using the laminated substrate 10 according to the present embodiment, the KNN It is possible to prolong the time until the film 3 reaches dielectric breakdown, that is, to prolong the life of the KNN film 3. For example, with the laminated substrate 10 heated to a temperature of 200 ° C., a high acceleration life is applied by applying an electric field of −300 kV / cm (voltage of −60 V) between the lower electrode film 2 and the upper electrode film 4. When the test (Highly Accelerated Life Test, abbreviated as HALT) is performed, the time from the start of electric field application to the dielectric breakdown of the KNN film 3 can be set to 3300 seconds or more. In this embodiment, it is considered that the KNN film 3 has undergone dielectric breakdown when the leakage current density flowing through the KNN film 3 exceeds 30 mA / cm 2 .

特に、RuO膜7aを形成することで、IrO膜7bを形成する場合よりも、KNN膜3の寿命をさらに長くすることが可能となる。例えば、上述のHALTによるKNN膜3の寿命を7600秒以上とすることが可能となる。 In particular, by forming the RuO x film 7a, it is possible to further extend the life of the KNN film 3 as compared with the case of forming the IrO x film 7b. For example, the lifetime of the KNN film 3 by HALT described above can be set to 7600 seconds or more.

ここで、上述の本実施形態の手法に対し、KNN膜と上部電極膜との間に、チタン(Ti)からなる膜(Ti膜)や組成式TiOで表される酸化物からなる膜(TiO膜)を設ける手法も考えられる。しかしながら、この手法により得られた積層基板を加工して作製した圧電膜デバイスでは、本実施形態にかかる圧電膜デバイス30よりも、上述のHALTによるKNN膜の寿命が短くなる。これは、何らかの要因によりTiがKNN膜中に拡散(移動)し、このTiがKNN膜の寿命に悪影響を及ぼしているものと考えられる。 Here, in contrast to the method of the present embodiment described above, between the KNN film and the upper electrode film, a film made of titanium (Ti) (Ti film) or a film made of an oxide represented by the composition formula TiO x ( A method of providing a TiO x film) is also conceivable. However, in the piezoelectric film device produced by processing the laminated substrate obtained by this method, the life of the KNN film by HALT described above is shorter than that of the piezoelectric film device 30 according to the present embodiment. It is considered that this is because Ti diffuses (moves) into the KNN film due to some factor, and this Ti adversely affects the life of the KNN film.

(b)本実施形態にかかる積層基板10を用いて作製した圧電膜デバイス30は、従来の圧電膜デバイスよりも、良好な強誘電性を有する。例えば、KNN膜3に電界を印加した際の飽和分極量(Pmax−)の絶対値が23μC/cm以上(|Pmax−|≧23μC/cm)であり、残留分極量(Pr−)の絶対値が14μC/cm以上(|Pr−|≧14μC/cm)である。なお、飽和分極量とは電界を印加し続けても分極量が増加しなくなったときの分極量であり、残留分極量とは、飽和分極量に達した後、印加電界をゼロに戻したときの分極量である。 (B) The piezoelectric film device 30 produced by using the laminated substrate 10 according to the present embodiment has better ferroelectricity than the conventional piezoelectric film device. For example, the absolute value of the saturated polarization amount (P max− ) when an electric field is applied to the KNN film 3 is 23 μC / cm 2 or more (| P max− | ≧ 23 μC / cm 2 ), and the residual polarization amount (P r). - the absolute value of) the 14μC / cm 2 or more (| a ≧ 14μC / cm 2) | P r-. The saturated polarization amount is the polarization amount when the polarization amount does not increase even if the electric field is continuously applied, and the residual polarization amount is when the applied electric field is returned to zero after reaching the saturation polarization amount. The amount of polarization of.

(c)KNN膜3と上部電極膜4との間に、RuO膜7aまたはIrO膜7bを設けることで、KNN膜3の強誘電性を高めることが可能となる。これに対し、Ti膜やTiO膜を有する積層基板を加工して作製した上述の従来の圧電膜デバイスは、本実施形態にかかる圧電膜デバイス30よりも強誘電性が低くなることを、本願発明者は確認している。 (C) By providing the RuO x film 7a or the IrO x film 7b between the KNN film 3 and the upper electrode film 4, the ferroelectricity of the KNN film 3 can be enhanced. On the other hand, the present application states that the above-mentioned conventional piezoelectric film device produced by processing a laminated substrate having a Ti film or a TiO x film has a lower ferroelectricity than the piezoelectric film device 30 according to the present embodiment. The inventor has confirmed.

(d)RuO膜7aの厚さを2〜30nm、好ましくは5〜30nmとすることで、上述の寿命向上効果、強誘電性向上効果を得ることができるとともに、圧電膜デバイス30の性能の低下を抑制することが可能となる。なお、IrO膜7bについても同様のことが言える。 (D) By setting the thickness of the RuO x film 7a to 2 to 30 nm, preferably 5 to 30 nm, the above-mentioned life improving effect and ferroelectricity improving effect can be obtained, and the performance of the piezoelectric film device 30 can be obtained. It is possible to suppress the decrease. The same can be said for IrO x film 7b.

RuO膜7aの厚さが2nm未満であると、RuO膜7aの面内膜厚が不均一となったり、不連続な膜となったりすることがある。このため、上述の寿命向上効果や強誘電性向上効果が充分に得られないことがある。RuO膜7aの厚さを2nm以上とすることで、これらの課題を解決でき、上述の寿命向上効果、強誘電性向上効果を得ることができる。RuO膜7aの厚さを5nm以上とすることで、上述の課題を確実に解決でき、上述の寿命向上効果、強誘電性向上効果を確実に得ることができる。 If the thickness of the RuO x film 7a is less than 2 nm, the in-plane film thickness of the RuO x film 7a may be non-uniform or the film may be discontinuous. Therefore, the above-mentioned effect of improving the life and the effect of improving the ferroelectricity may not be sufficiently obtained. By setting the thickness of the RuO x film 7a to 2 nm or more, these problems can be solved, and the above-mentioned life improving effect and ferroelectricity improving effect can be obtained. By setting the thickness of the RuO x film 7a to 5 nm or more, the above-mentioned problems can be surely solved, and the above-mentioned life improving effect and ferroelectricity improving effect can be surely obtained.

RuO膜7aの厚さが30nmを超えると、上述のHALTによるKNN膜3の寿命が3300秒未満となることがある。また、RuO膜7aの厚さが厚くなると、RuO膜7a自体が有する膜応力が大きくなり、RuO膜7aが剥がれやすくなる。さらに、RuやIrは硬い金属材料であることから、RuやIrを含むRuO膜7aやIrO膜7bは硬い膜となる。このような硬いRuO膜7aの厚さが厚くなると、KNN膜3を含む振動部が振動(共振)しにくくなり、積層基板10がセンサに適用された際に感度の低下を招いたり、アクチュエータに適用された際に消費電力の増加を招いたりすることもある。これらの理由から、RuO膜7aの厚さは30nm以下とすることが好ましい。 If the thickness of the RuO x film 7a exceeds 30 nm, the life of the KNN film 3 by HALT described above may be less than 3300 seconds. If the thickness of the RuO x film 7a is increased, the film stress of the RuO x film 7a itself is increased, it becomes easily peeled off RuO x film 7a. Further, since Ru and Ir are hard metal materials, the RuO x film 7a and IrO x film 7b containing Ru and Ir are hard films. When the thickness of such a hard RuO x film 7a is increased, the vibrating portion including the KNN film 3 is less likely to vibrate (resonate), which causes a decrease in sensitivity when the laminated substrate 10 is applied to the sensor, or an actuator. When applied to, it may lead to an increase in power consumption. For these reasons, the thickness of the RuO x film 7a is preferably 30 nm or less.

(e)RuO膜7aとして、組成式RuO(0<x<2)で表される膜を設けることが、RuO膜7aの製膜レートの低下を抑制できる点で、好ましい。 (E) As the RuO x film 7a, it is preferable to provide a film represented by the composition formula RuO x (0 <x <2) in that a decrease in the film formation rate of the RuO x film 7a can be suppressed.

上述のように、RuO膜7aのスパッタリング製膜時の雰囲気ガス(Ar/O混合ガス)中におけるOガス比率が高くなるほど、係数xの値が大きくなり、Oガス比率が小さくなるほど、係数xの値が小さくなる傾向がある。しかしながら、スパッタリングターゲット材からのRu原子の叩き出しはArガス(イオン化したAr原子(Ar))により行われる。このため、上述のOガス比率が高くなると、すなわちArガス比率が低くなると、ターゲットから叩き出されるRu原子の量(単位時間あたりの量)が少なくなることから、RuO膜7aの製膜レートが低下する。Oガス比率を例えば50%以下とすることで、実用的な製膜レートを得ることができ、この場合、係数xの値は2未満となる。 As described above, the higher the O 2 gas ratio in the atmospheric gas (Ar / O 2 mixed gas) during sputtering of the RuO x film 7a, the larger the value of the coefficient x, and the smaller the O 2 gas ratio. , The value of the coefficient x tends to be small. However, the ejection of Ru atoms from the sputtering target material is performed by Ar gas (ionized Ar atoms (Ar + )). Therefore, when the above-mentioned O 2 gas ratio is high, that is, when the Ar gas ratio is low, the amount of Ru atoms ejected from the target (amount per unit time) is small, so that the RuO x film 7a is formed. The rate drops. O 2 gas ratio by, for example to 50% or less, it is possible to obtain a practical deposition rate, in this case, the value of the coefficient x is less than 2.

(f)RuO膜7aとして、組成式RuO(2<x)で表される膜を設けることが、KNN膜3の寿命を確実に長くすることができる点で、好ましい。 (F) As the RuO x film 7a, it is preferable to provide a film represented by the composition formula RuO x (2 <x) in that the life of the KNN film 3 can be reliably extended.

組成式RuO(2<x)で表される膜を設けることで、RuO膜7aからKNN膜3中へと拡散する酸素(O)の量を増やすことができる。これにより、KNN膜3が絶縁破壊に至る一因であるKNN膜3中の酸素欠陥を、RuO膜7aから拡散した酸素により埋めることができる。その結果、KNN膜3の寿命を確実に延ばすことが可能となる。なお、ここでいう「酸素欠陥」とは、例えばKNN膜3を製膜した後にアニールを行うことでKNN膜3を構成する結晶内に生じた酸素が抜けた箇所を意味する。 By providing the film represented by the composition formula RuO x (2 <x), the amount of oxygen (O) diffused from the RuO x film 7a into the KNN film 3 can be increased. As a result, oxygen defects in the KNN film 3, which is one of the causes of the KNN film 3 leading to dielectric breakdown, can be filled with oxygen diffused from the RuO x film 7a. As a result, the life of the KNN film 3 can be reliably extended. The term "oxygen defect" as used herein means, for example, a portion where oxygen generated in the crystal constituting the KNN film 3 is released by annealing after forming the KNN film 3.

(g)RuO膜7aおよび上部電極膜4の製膜後に、600℃以上の温度条件下で積層基板10をアニールするか、あるいは、RuO膜7aおよび上部電極膜4の製膜後に、積層基板10のアニールを不実施とすることで、KNN膜3の寿命を確実に長くすることが可能となる。なお、アニールを行っても、KNN膜3の強誘電性には影響を及ぼさないことを、本願発明者は確認済みである。 (G) After the formation of the RuO x film 7a and the upper electrode film 4, the laminated substrate 10 is annealed under a temperature condition of 600 ° C. or higher, or the laminated substrate 10 is laminated after the formation of the RuO x film 7a and the upper electrode film 4. By not performing annealing of the substrate 10, it is possible to surely extend the life of the KNN film 3. The inventor of the present application has confirmed that annealing does not affect the ferroelectricity of the KNN film 3.

これに対し、RuO膜および上部電極膜の製膜後に600℃未満(例えば500℃)の温度条件下で積層基板をアニールする手法も考えられる。しかしながら、積層基板を600℃未満の温度条件下でアニールすると、RuO膜および上部電極膜の製膜後に積層基板のアニールを不実施とした場合や、600℃以上の温度条件下で積層基板をアニールした場合よりも、KNN膜の寿命が短くなる。 On the other hand, a method of annealing the laminated substrate under a temperature condition of less than 600 ° C. (for example, 500 ° C.) after forming the RuO x film and the upper electrode film is also conceivable. However, when annealing the laminated substrate at a temperature below 600 ° C., and when the non-implementation annealing of the laminated substrate after the film of RuO x film and an upper electrode film, a layered substrate at a temperature of above 600 ° C. The life of the KNN film is shorter than that in the case of annealing.

(5)変形例
本実施形態は上述の態様に限定されず、例えば以下のように変形することもできる。
(5) Modification Example This embodiment is not limited to the above-described embodiment, and can be modified as follows, for example.

(変形例1)
例えば、基板1と下部電極膜2との間に、RuO膜7aまたはIrO膜7bを設けてもよい。すなわち、密着層6として、組成式RuOまたはIrOで表される酸化物からなる膜を形成してもよい。また例えば、下部電極膜2とKNN膜3との間に、RuO膜7aまたはIrO膜7bを設けてもよい。なお、これらの場合、KNN膜3と上部電極膜4との間に、RuO膜7aまたはIrO膜7bを設けてもよく、設けなくてもよい。これらによっても、上述の実施形態と同様の効果を得ることができる。
(Modification example 1)
For example, a RuO x film 7a or an IrO x film 7b may be provided between the substrate 1 and the lower electrode film 2. That is, as the adhesion layer 6, a film made of an oxide represented by the composition formula RuO x or IrO x may be formed. Further, for example, a RuO x film 7a or an IrO x film 7b may be provided between the lower electrode film 2 and the KNN film 3. In these cases, the RuO x film 7a or the IrO x film 7b may or may not be provided between the KNN film 3 and the upper electrode film 4. With these, the same effect as that of the above-described embodiment can be obtained.

(変形例2)
上述の積層基板10を圧電膜素子20に成形する際、積層基板10(圧電膜素子20)を用いて作製した圧電膜デバイス30をセンサやアクチュエータ等の所望の用途に適用することができる限り、積層基板10から基板1を除去してもよい。
(Modification 2)
When molding the above-mentioned laminated substrate 10 into the piezoelectric film element 20, as long as the piezoelectric film device 30 manufactured by using the laminated substrate 10 (piezoelectric film element 20) can be applied to a desired application such as a sensor or an actuator. The substrate 1 may be removed from the laminated substrate 10.

<他の実施形態>
以上、本発明の実施形態を具体的に説明した。但し、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other embodiments>
The embodiments of the present invention have been specifically described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist thereof.

以下、上述の実施形態の効果を裏付ける実験結果について説明する。 Hereinafter, the experimental results supporting the effects of the above-described embodiments will be described.

基板として、表面が(100)面方位、厚さ610μm、直径6インチ、表面に熱酸化膜(厚さ200nm)が形成されたSi基板を用意した。そして、この基板の熱酸化膜上に、第1密着層としてのTi膜(厚さ2nm)、下部電極膜としてのPt膜(基板の表面に対して(111)面方位に優先配向、厚さ200nm)、圧電膜としてのKNN膜(基板の表面に対して(001)面方位に優先配向、厚さ2μm)、第2密着層としてのRuO膜、IrO膜、TiO膜(厚さ2nm)またはTi膜(厚さ2nm)のいずれかの膜、上部電極膜としてのPt膜(厚さ100nm)を順に製膜することで積層基板を作製した。RuO膜、IrO膜の厚さは、2.5〜30nmの範囲内で変化させた。また、KNN膜の製膜後であって第2密着層の製膜前に、KNN膜を有する積層体を500℃の条件下で2時間アニールした。また、上部電極膜の製膜後の積層基板のアニールは、不実施とするか、500℃の温度条件下で2時間、600℃の温度条件下で2時間、700℃の温度条件下で2時間の各条件で行った。 As a substrate, a Si substrate having a surface (100) plane orientation, a thickness of 610 μm, a diameter of 6 inches, and a thermal oxide film (thickness of 200 nm) formed on the surface was prepared. Then, on the thermal oxide film of this substrate, a Ti film (thickness 2 nm) as the first adhesion layer and a Pt film as the lower electrode film (priority orientation and thickness in the (111) plane orientation with respect to the surface of the substrate). 200 nm), KNN film as a piezoelectric film (priority orientation in the (001) plane orientation with respect to the surface of the substrate, thickness 2 μm), RuO x film, IrO x film, TiO x film (thickness) as the second adhesion layer. A laminated substrate was produced by sequentially forming either a 2 nm) or Ti film (thickness 2 nm) and a Pt film (thickness 100 nm) as an upper electrode film. The thickness of the RuO x film and the IrO x film was changed in the range of 2.5 to 30 nm. Further, after the formation of the KNN film and before the formation of the second adhesion layer, the laminate having the KNN film was annealed under the condition of 500 ° C. for 2 hours. In addition, annealing of the laminated substrate after the formation of the upper electrode film is not performed, or it is performed under a temperature condition of 500 ° C. for 2 hours, a temperature condition of 600 ° C. for 2 hours, and a temperature condition of 700 ° C. for 2 hours. It was done under each condition of time.

Ti膜、Pt膜、KNN膜、RuO膜、IrO膜、TiO膜の製膜は、いずれも、RFマグネトロンスパッタリング法により行った。 The Ti film, Pt film, KNN film, RuO x film, IrO x film, and TiO x film were all formed by the RF magnetron sputtering method.

Ti膜、Pt膜を製膜する際の処理条件は、それぞれ、下記の通りとした。
基板温度:300℃
放電パワー:1200W
導入ガス:Arガス
Ar雰囲気の圧力:0.3Pa
製膜時間:5分
The treatment conditions for forming the Ti film and the Pt film were as follows.
Substrate temperature: 300 ° C
Discharge power: 1200W
Introduced gas: Ar gas Ar atmosphere pressure: 0.3Pa
Film formation time: 5 minutes

KNN膜を製膜する際の処理条件は、下記の通りとした。
基板温度:600℃
放電パワー:2200W
導入ガス:Ar/O混合ガス
Ar/O混合ガス雰囲気の圧力:0.3Pa
Arガスの分圧/Oガスの分圧:25/1
製膜速度:1μm/hr
The treatment conditions for forming the KNN film were as follows.
Substrate temperature: 600 ° C
Discharge power: 2200W
Introduced gas: Ar / O 2 mixed gas Ar / O 2 mixed gas Atmospheric pressure: 0.3 Pa
Partial pressure of Ar gas / O 2 Partial pressure of gas: 25/1
Film formation speed: 1 μm / hr

RuO膜、IrO膜、TiO膜を製膜する際の処理条件は、それぞれ、下記の通りとした。
基板温度:室温(25℃)
放電パワー:300W
導入ガス:Ar/O混合ガス
Ar+O混合雰囲気の圧力:0.3Pa
Arガスの分圧/Oガスの分圧:1/1
製膜速度:0.1μm/hr
The treatment conditions for forming the RuO x film, IrO x film, and TiO x film were as follows.
Substrate temperature: Room temperature (25 ° C)
Discharge power: 300W
Introduced gas: Ar / O 2 mixed gas Ar + O 2 mixed atmosphere pressure: 0.3 Pa
Partial pressure of Ar gas / Partial pressure of O 2 gas: 1/1
Film formation rate: 0.1 μm / hr

そして、積層基板が有するKNN膜の寿命、強誘電性をそれぞれ評価した。表1および表2は、KNN膜の寿命に関する評価結果を示しており、図5(a)〜(f)、図6(a)(b)は、それぞれ、KNN膜の強誘電性に関する評価結果を示す図であり、電圧−分極量のヒステリシスカーブ、および印加電圧に対する圧電変位特性をそれぞれ示している。 Then, the life and the ferroelectricity of the KNN film contained in the laminated substrate were evaluated. Tables 1 and 2 show the evaluation results regarding the lifetime of the KNN film, and FIGS. 5 (a) to 5 (f) and 6 (a) and (b) show the evaluation results regarding the ferroelectricity of the KNN film, respectively. The figure shows the hysteresis curve of the voltage-polarization amount and the piezoelectric displacement characteristic with respect to the applied voltage, respectively.

(寿命に関する評価)
寿命に関する評価は、上述の実施形態に記載の条件のHALTにより、KNN膜が絶縁破壊するまでの時間(sec)を測定することで行った。表1、表2中の数値は、1サンプルにつき0.5mmφ内の7箇所で測定した寿命の値の平均値である。また、表1、表2中、「アニールなし」とは上部電極膜の製膜後のアニールを不実施としたことを示し、「600℃アニール」とは、上部電極膜の製膜後に積層基板を600℃の温度条件下で2時間アニールしたことを示す。表2中の「500℃アニール」、「700℃アニール」の表記も「600℃アニール」と同様の意味である。
(Evaluation of life)
The evaluation of the life was performed by measuring the time (sec) until the dielectric breakdown of the KNN film by HALT under the conditions described in the above-described embodiment. The numerical values in Tables 1 and 2 are average values of life values measured at 7 points within 0.5 mmφ per sample. Further, in Tables 1 and 2, "no annealing" means that the annealing after the film formation of the upper electrode film was not performed, and "600 ° C. annealing" means that the laminated substrate was formed after the film formation of the upper electrode film. Is annealed for 2 hours under a temperature condition of 600 ° C. The notations of "500 ° C. annealing" and "700 ° C. annealing" in Table 2 have the same meaning as "600 ° C. annealing".

表1に示すように、KNN膜と上部電極膜との間に、RuO膜またはIrO膜を設けた積層基板では、KNN膜の寿命が3300秒以上となることが確認できた。これに対し、KNN膜と上部電極膜との間にTiO膜を設けた積層基板では、KNN膜の寿命が3300秒未満となることが確認できた。 As shown in Table 1, it was confirmed that the life of the KNN film was 3300 seconds or more in the laminated substrate in which the RuO x film or the IrO x film was provided between the KNN film and the upper electrode film. On the other hand, it was confirmed that the life of the KNN film was less than 3300 seconds in the laminated substrate in which the TiO x film was provided between the KNN film and the upper electrode film.

表1、表2に示すように、RuO膜の膜厚とIrO膜の膜厚とが同じ場合、RuO膜を設けた積層基板の方が、IrO膜を設けた積層基板よりも、KNN膜の寿命が長くなることが確認できた。 As shown in Tables 1 and 2, when the film thickness of the RuO x film and the film thickness of the IrO x film are the same, the laminated substrate provided with the RuO x film is more suitable than the laminated substrate provided with the IrO x film. , It was confirmed that the life of the KNN film was extended.

表2に示すように、上部電極膜の製膜後のアニールを不実施とした積層基板では、KNN膜の寿命が3300秒以上となることが確認できた。また、上部電極膜の製膜後に600℃アニール、700℃アニールを行った積層基板では、KNN膜の寿命が3300秒以上となることが確認できた。これに対し、上部電極膜の製膜後に500℃アニールを行った積層基板では、KNN膜の寿命が3300秒未満となることが確認できた。 As shown in Table 2, it was confirmed that the life of the KNN film was 3300 seconds or more in the laminated substrate in which the annealing after the formation of the upper electrode film was not performed. Further, it was confirmed that the life of the KNN film was 3300 seconds or more in the laminated substrate obtained by annealing at 600 ° C. and annealing at 700 ° C. after forming the upper electrode film. On the other hand, it was confirmed that the life of the KNN film was less than 3300 seconds in the laminated substrate obtained by annealing at 500 ° C. after forming the upper electrode film.

すなわち、KNN膜と上部電極膜との間に、RuO膜またはIrO膜を設けることで、TiO膜を設ける場合よりも、KNN膜の寿命を長くすることができることを確認できた。また、RuO膜を設けることで、IrO膜を設ける場合よりも、KNN膜の寿命をさらに長くすることができることを確認できた。さらにまた、上部電極膜の製膜後にアニールを行わないか、600℃以上の温度条件下でアニールを行うことで、KNN膜の寿命を確実に長くすることができることを確認できた。 That is, it was confirmed that by providing the RuO x film or the IrO x film between the KNN film and the upper electrode film, the life of the KNN film can be extended as compared with the case where the TiO x film is provided. Further, it was confirmed that the life of the KNN film can be further extended by providing the RuO x film as compared with the case where the IrO x film is provided. Furthermore, it was confirmed that the life of the KNN film can be reliably extended by not performing annealing after forming the upper electrode film or by performing annealing under a temperature condition of 600 ° C. or higher.

(強誘電性に関する評価)
強誘電性の評価は、KNN膜に対して、±100kV/cmの電界を1kHzの周波数で印加して、電圧と分極量との関係を示すヒステリシスカーブを得た。
(Evaluation of ferroelectricity)
For the evaluation of ferroelectricity, an electric field of ± 100 kV / cm was applied to the KNN film at a frequency of 1 kHz to obtain a hysteresis curve showing the relationship between the voltage and the amount of polarization.

図5(a)〜(e)に示すように、KNN膜と上部電極膜との間に、RuO膜またはIrO膜を設けた積層基板では、|Pmax−|≧23μC/cmであり、|Pr−|≧14μC/cmであることを確認できた。これに対し、図5(f)に示すように、KNN膜と上部電極膜との間にTi膜を設けた積層基板では、|Pmax−|が17.6μC/cmであり、|Pr−|が10.4μC/cmであることを確認できた。なお、図5(a)〜(e)に示す積層基板では、上部電極膜の製膜後にアニールを行っておらず、図5(f)に示す積層基板では500℃の温度条件下で2時間アニールを行っている。 As shown in FIGS. 5 (a) to 5 (e), in a laminated substrate in which a RuO x film or an IrO x film is provided between the KNN film and the upper electrode film, | P max − | ≧ 23 μC / cm 2 Yes, | it was able to confirm that it is ≧ 14μC / cm 2 | P r- . On the other hand, as shown in FIG. 5 (f), in the laminated substrate in which the Ti film is provided between the KNN film and the upper electrode film, | P max- | is 17.6 μC / cm 2 , and | P. It was confirmed that r- | was 10.4 μC / cm 2 . The laminated substrates shown in FIGS. 5 (a) to 5 (e) were not annealed after the upper electrode film was formed, and the laminated substrate shown in FIG. 5 (f) was used under a temperature condition of 500 ° C. for 2 hours. Annealing is performed.

図5(a)に示すように、第2密着層として厚さが10nmのRuO膜を設け、上部電極膜の製膜後にアニールを不実施とした積層基板では、|Pmax−|が23.8μC/cmであり、|Pr−|が15.7μC/cmであった。また、図6(a)に示すように、第2密着層として厚さが10nmのRuO膜を設け、上部電極膜の製膜後に700℃の温度条件下で2時間アニールを行った積層基板では、|Pmax−|が23.8μC/cmであり、|Pr−|が17.9μC/cmであった。また、図5(d)に示すように、第2密着層として厚さが20nmのIrO膜を設け、上部電極膜の製膜後にアニールを不実施とした積層基板では、|Pmax−|が24.2μC/cmであり、|Pr−|が14.5μC/cmであった。また、図6(b)に示すように、第2密着層として厚さが20nmのIrO膜を設け、上部電極膜の製膜後に500℃の温度条件下で2時間アニールを行った積層基板では、|Pmax−|が24.0μC/cmであり、|Pr−|が14.8μC/cmであった。 As shown in FIG. 5A, in a laminated substrate in which a RuO x film having a thickness of 10 nm was provided as a second adhesion layer and annealing was not performed after the formation of the upper electrode film, | P max- | was 23. is a .8μC / cm 2, | P r- | was 15.7μC / cm 2. Further, as shown in FIG. 6 (a), the thickness of the second adhesive layer is provided RuO x film 10 nm, the laminated substrate was annealed for two hours at a temperature of 700 ° C. after the film of the upper electrode film in, | P max- | is 23.8μC / cm 2, | P r- | was 17.9μC / cm 2. Further, as shown in FIG. 5 (d), the thickness of the second adhesive layer is provided IrO x film 20 nm, a laminated board was not an annealing after the film of the upper electrode film, | P max- | there is a 24.2μC / cm 2, | P r- | was 14.5μC / cm 2. Further, as shown in FIG. 6 (b), the thickness of the second adhesive layer is provided IrO x film 20 nm, the laminated substrate was annealed for two hours at a temperature of 500 ° C. after the film of the upper electrode film in, | P max- | is 24.0μC / cm 2, | P r- | was 14.8μC / cm 2.

すなわち、図5(a)と図6(a)との比較、図5(d)と図6(b)との比較から、第2密着層としてRuO膜またはIrO膜のいずれの膜を設けた場合であっても、上部電極膜の製膜後にアニールを行った積層基板の|Pmax−|、|Pr−|の値は、上部電極膜の製膜後のアニールを不実施とした積層基板の|Pmax−|、|Pr−|の値と、殆ど変わらないことを確認できた。すなわち、いずれの場合も、上部電極膜の製膜後に積層基板に対して行うアニールは、KNN膜の強誘電性には影響を及ぼさないことを確認できた。 That is, from the comparison between FIGS. 5 (a) and 6 (a) and the comparison between FIGS. 5 (d) and 6 (b), either the RuO x film or the IrO x film was used as the second adhesion layer. even when provided, the laminated substrate was annealed after the film of the upper electrode film | P max- |, | P r- | values and not an annealing after film of the upper electrode film was of the laminated substrate | P max- |, | P r- | and of value, it was confirmed that almost no change. That is, in any case, it was confirmed that the annealing performed on the laminated substrate after the formation of the upper electrode film did not affect the ferroelectricity of the KNN film.

<本発明の好ましい態様>
以下、本発明の好ましい態様について付記する。
<Preferable Aspect of the Present Invention>
Hereinafter, preferred embodiments of the present invention will be added.

(付記1)
本発明の一態様によれば、
基板と、前記基板上に製膜された第1電極膜と、前記第1電極膜上に製膜された圧電膜と、を備える、圧電膜を有する積層基板であって、
前記圧電膜上には、組成式RuOまたはIrOで表される酸化物からなる酸化膜が形成されている。
(Appendix 1)
According to one aspect of the invention
A laminated substrate having a piezoelectric film, comprising a substrate, a first electrode film formed on the substrate, and a piezoelectric film formed on the first electrode film.
An oxide film made of an oxide represented by the composition formula RuO x or IrO x is formed on the piezoelectric film.

(付記2)
付記1の基板であって、好ましくは、
前記基板と前記第1電極膜との間、または前記第1電極膜と前記圧電膜との間の少なくともいずれかには、組成式RuOまたはIrOで表される酸化物からなる酸化膜が形成されている。
(Appendix 2)
The substrate of Appendix 1, preferably
An oxide film made of an oxide represented by the composition formula RuO x or IrO x is formed between the substrate and the first electrode film, or at least between the first electrode film and the piezoelectric film. It is formed.

(付記3)
付記1または2の基板であって、好ましくは、
前記酸化膜は、組成式RuOで表される酸化物からなる膜である。
(Appendix 3)
The substrate of Appendix 1 or 2, preferably
The oxide film is a film made of an oxide represented by the composition formula RuO x .

(付記4)
付記1〜3のいずれかの基板であって、好ましくは、
前記酸化膜は、組成式RuO(0<x<2)で表される酸化物からなる膜である。
(Appendix 4)
It is any one of the substrates of Appendix 1 to 3, preferably
The oxide film is a film made of an oxide represented by the composition formula RuO x (0 <x <2).

(付記5)
付記1〜3のいずれかの基板であって、好ましくは、
前記酸化膜は、組成式RuO(2<x)で表される酸化物からなる膜である。
(Appendix 5)
It is any one of the substrates of Appendix 1 to 3, preferably
The oxide film is a film made of an oxide represented by the composition formula RuO x (2 <x).

(付記6)
付記1〜5のいずれかの基板であって、好ましくは、
前記酸化膜の厚さは、2nm以上30nm以下、好ましくは5nm以上30nm以下である。
(Appendix 6)
The substrate according to any one of Appendix 1 to 5, preferably.
The thickness of the oxide film is 2 nm or more and 30 nm or less, preferably 5 nm or more and 30 nm or less.

(付記7)
付記1〜6のいずれかの基板であって、好ましくは、
前記圧電膜は、組成式(K1−yNa)NbO(0<y<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる膜である。
(Appendix 7)
The substrate according to any one of Supplementary note 1 to 6, preferably.
The piezoelectric film is a film made of an alkaline niobium oxide having a perovskite structure represented by the composition formula (K 1-y N y ) NbO 3 (0 <y <1).

(付記8)
付記1〜7のいずれかの基板であって、好ましくは、
前記圧電膜は、
飽和分極量(Pmax−)の絶対値が23μC/cm以上であり、
残留分極量(Pr−)の絶対値が14μC/cm以上である。
(Appendix 8)
The substrate according to any one of Supplementary note 1 to 7, preferably
The piezoelectric film is
The absolute value of the saturated polarization amount (P max- ) is 23 μC / cm 2 or more.
The absolute value of the residual polarization (P r-) is 14μC / cm 2 or more.

(付記9)
付記1〜8のいずれかの基板であって、好ましくは、
前記酸化膜は、アニール(熱処理)が行われていない。
(Appendix 9)
The substrate according to any one of Appendix 1 to 8, preferably.
The oxide film has not been annealed (heat treated).

(付記10)
付記1〜8のいずれかの基板であって、好ましくは、
前記酸化膜は、600℃以上800℃以下の温度条件下でアニールが行われている。
(Appendix 10)
The substrate according to any one of Appendix 1 to 8, preferably.
The oxide film is annealed under a temperature condition of 600 ° C. or higher and 800 ° C. or lower.

(付記11)
本発明の他の態様によれば、
基板と、前記基板上に製膜された第1電極膜と、前記第1電極膜上に製膜された圧電膜と、を備える、圧電膜を有する積層基板であって、
前記圧電膜は、組成式(K1−yNa)NbO(0<y<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる膜であり、
前記圧電膜上に第2電極膜を製膜し、前記積層基板の温度が200℃となるように加熱した状態で、前記第1電極膜と前記第2電極膜との間に−300kV/cmの電界(−60Vの電圧)を印加した際、電界印加開始から前記圧電膜に流れるリーク電流密度が30mA/cmを超えるまでの時間が3300秒以上である、圧電膜を有する積層基板が提供される。
(Appendix 11)
According to another aspect of the invention
A laminated substrate having a piezoelectric film, comprising a substrate, a first electrode film formed on the substrate, and a piezoelectric film formed on the first electrode film.
The piezoelectric film is a film made of an alkaline niobium oxide having a perovskite structure represented by the composition formula (K 1-y N y ) NbO 3 (0 <y <1).
A second electrode film is formed on the piezoelectric film and heated so that the temperature of the laminated substrate becomes 200 ° C., and between the first electrode film and the second electrode film is −300 kV / cm. Provided is a laminated substrate having a piezoelectric film, wherein when an electric field (voltage of -60 V) is applied, the time from the start of applying the electric field to the leakage current density flowing through the piezoelectric film exceeds 30 mA / cm 2 is 3300 seconds or more. Will be done.

(付記12)
付記11の基板であって、好ましくは、
前記圧電膜上には、組成式RuOまたはIrOで表される酸化物からなる酸化膜が形成されている。
(Appendix 12)
The substrate of Appendix 11, preferably
An oxide film made of an oxide represented by the composition formula RuO x or IrO x is formed on the piezoelectric film.

(付記13)
本発明のさらに他の態様によれば、
基板と、前記基板上に製膜された第1電極膜と、前記第1電極膜上に製膜された圧電膜と、前記圧電膜上に製膜された第2電極膜と、を備え、
前記圧電膜と前記第2電極膜との間には、組成式RuOまたはIrOで表される酸化物からなる酸化膜が設けられている圧電膜を有する素子、または、圧電膜を有するデバイスが提供される。
(Appendix 13)
According to yet another aspect of the invention.
A substrate, a first electrode film formed on the substrate, a piezoelectric film formed on the first electrode film, and a second electrode film formed on the piezoelectric film are provided.
An element having a piezoelectric film or a device having a piezoelectric film in which an oxide film made of an oxide represented by the composition formula RuO x or IrO x is provided between the piezoelectric film and the second electrode film. Is provided.

(付記14)
本発明のさらに他の態様によれば、
基板上に電極膜を製膜する工程と、
前記電極膜上に圧電膜を製膜する工程と、
前記圧電膜上に組成式RuOまたはIrOで表される酸化物からなる酸化膜を製膜する工程と、を備える、圧電膜を有する積層基板の製造方法が提供される。
(Appendix 14)
According to yet another aspect of the invention.
The process of forming an electrode film on a substrate and
The process of forming a piezoelectric film on the electrode film and
Provided is a method for producing a laminated substrate having a piezoelectric film, comprising a step of forming an oxide film made of an oxide represented by the composition formula RuO x or IrO x on the piezoelectric film.

(付記15)
付記14の方法であって、好ましくは、
前記酸化膜を製膜する工程を行った後、前記積層基板をアニールする工程を有しない。
(Appendix 15)
The method of Appendix 14, preferably
It does not have a step of annealing the laminated substrate after performing the step of forming the oxide film.

(付記16)
付記14の方法であって、好ましくは、
前記酸化膜を製膜する工程を行った後、600℃以上、好ましくは600℃以上800℃以下の温度条件下で前記積層基板をアニールする工程をさらに有する。
(Appendix 16)
The method of Appendix 14, preferably
After performing the step of forming the oxide film, there is further a step of annealing the laminated substrate under a temperature condition of 600 ° C. or higher, preferably 600 ° C. or higher and 800 ° C. or lower.

1 基板
3 圧電膜
7a RuO
7b IrO
10 積層基板
1 Substrate 3 Piezoelectric film 7a RuO x film 7b IrO x film 10 Laminated substrate

Claims (9)

基板と、前記基板上に製膜された第1電極膜と、前記第1電極膜上に製膜された圧電膜と、を備える、圧電膜を有する積層基板であって、
前記圧電膜は、組成式(K1−yNa)NbO(0<y<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる膜であり、
前記圧電膜上には、組成式RuOまたはIrOで表される酸化物からなる酸化膜であって、前記酸化膜上に第2電極膜が設けられた際に前記圧電膜と前記第2電極膜との間の密着性を高める酸化膜が設けられており、
前記圧電膜に対して±100kV/cmの電界を1kHzの周波数で印加した際、飽和分極量(Pmax−)の絶対値が23.6μC/cm以上27.1μC/cm以下であり、残留分極量(Pr−)の絶対値が14.2μC/cm以上17.5μC/cm以下である、圧電膜を有する積層基板。
A laminated substrate having a piezoelectric film, comprising a substrate, a first electrode film formed on the substrate, and a piezoelectric film formed on the first electrode film.
The piezoelectric film is a film made of an alkaline niobium oxide having a perovskite structure represented by the composition formula (K 1-y N y ) NbO 3 (0 <y <1).
The piezoelectric film is an oxide film made of an oxide represented by the composition formula RuO x or IrO x , and when the second electrode film is provided on the oxide film, the piezoelectric film and the second electrode film are provided. An oxide film is provided to improve the adhesion between the electrode film and the electrode film .
Wherein when an electric field of ± 100 kV / cm was applied at 1kHz frequency for the piezoelectric film, the saturation polarization (P max-) of absolute value be 23.6 [mu] C / cm 2 or more 27.1μC / cm 2 or less , the absolute value of the residual polarization (P r-) is 14.2 [mu] C / cm 2 or more 17.5μC / cm 2 or less, a laminated substrate having a piezoelectric film.
前記酸化膜の厚さが2.5nm以上30nm以下である請求項1に記載の圧電膜を有する積層基板。 The laminated substrate having the piezoelectric film according to claim 1, wherein the thickness of the oxide film is 2.5 nm or more and 30 nm or less. 前記酸化膜はアニールが行われていない膜である請求項1または2に記載の圧電膜を有する積層基板。 The laminated substrate having the piezoelectric film according to claim 1 or 2, wherein the oxide film is a film that has not been annealed. 前記酸化膜は600℃以上700℃以下の温度条件下でのアニールが行われている膜である請求項1または2に記載の圧電膜を有する積層基板。 The laminated substrate having the piezoelectric film according to claim 1 or 2, wherein the oxide film is a film that has been annealed under a temperature condition of 600 ° C. or higher and 700 ° C. or lower. 基板と、前記基板上に製膜された第1電極膜と、前記第1電極膜上に製膜された圧電膜と、前記圧電膜上に製膜された第2電極膜と、を有する積層基板を備え、
前記圧電膜は、組成式(K1−yNa)NbO(0<y<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる膜であり、
前記圧電膜と前記第2電極膜との間には、前記圧電膜と前記第2電極膜との間の密着性を高め、組成式RuOまたはIrOで表される酸化物からなる酸化膜が設けられており、
前記圧電膜に対して±100kV/cmの電界を1kHzの周波数で印加した際、飽和分極量(Pmax−)の絶対値が23.6μC/cm以上27.1μC/cm以下であり、残留分極量(Pr−)の絶対値が14.2μC/cm以上17.5μC/cm以下である、圧電膜を有する素子。
A laminate having a substrate, a first electrode film formed on the substrate, a piezoelectric film formed on the first electrode film, and a second electrode film formed on the piezoelectric film. Equipped with a board
The piezoelectric film is a film made of an alkaline niobium oxide having a perovskite structure represented by the composition formula (K 1-y N y ) NbO 3 (0 <y <1).
Between the piezoelectric film and the second electrode film, an oxide film made of an oxide represented by the composition formula RuO x or IrO x is provided to enhance the adhesion between the piezoelectric film and the second electrode film. Is provided,
Wherein when an electric field of ± 100 kV / cm was applied at 1kHz frequency for the piezoelectric film, the saturation polarization (P max-) of absolute value be 23.6 [mu] C / cm 2 or more 27.1μC / cm 2 or less , the absolute value of the residual polarization (P r-) is 14.2 [mu] C / cm 2 or more 17.5μC / cm 2 or less, element having a piezoelectric film.
基板上に第1電極膜を製膜する工程と、
前記第1電極膜上に、組成式(K1−yNa)NbO(0<y<1)で表されるペロブスカイト構造のアルカリニオブ酸化物からなる圧電膜を製膜する工程と、
前記圧電膜上に、組成式RuOまたはIrOで表される酸化物からなる酸化膜であって、前記酸化膜上に第2電極膜が設けられた際に前記圧電膜と前記第2電極膜との間の密着性を高める酸化膜を製膜する工程と、
を行うことで、前記圧電膜に対して±100kV/cmの電界を1kHzの周波数で印加した際、飽和分極量(Pmax−)の絶対値が23.6μC/cm以上27.1μC/cm以下であり、残留分極量(Pr−)の絶対値が14.2μC/cm以上17.5μC/cm以下である積層体を作製する、圧電膜を有する積層基板の製造方法。
The process of forming the first electrode film on the substrate and
A step of forming a piezoelectric film made of an alkaline niobium oxide having a perovskite structure represented by the composition formula (K 1-y N y ) NbO 3 (0 <y <1) on the first electrode film.
An oxide film made of an oxide represented by the composition formula RuO x or IrO x on the piezoelectric film, and when the second electrode film is provided on the oxide film, the piezoelectric film and the second electrode The process of forming an oxide film that enhances the adhesion between the film and
When an electric field of ± 100 kV / cm is applied to the piezoelectric film at a frequency of 1 kHz, the absolute value of the saturated polarization amount (P max- ) is 23.6 μC / cm 2 or more and 27.1 μC /. cm 2 or less, the absolute value of the residual polarization (P r-) to produce a 14.2 [mu] C / cm 2 or more 17.5MyuC / cm 2 or less is stack manufacturing method of a multilayer substrate having a piezoelectric film ..
前記酸化膜を製膜する工程を行った後、前記積層基板をアニールする工程を有さない請求項6に記載の圧電膜を有する積層基板の製造方法。 The method for manufacturing a laminated substrate having a piezoelectric film according to claim 6, which does not include a step of annealing the laminated substrate after performing the step of forming the oxide film. 前記酸化膜を製膜する工程を行った後、600℃以上700℃以下の温度条件下で、前記積層基板をアニールする工程をさらに有する請求項6に記載の圧電膜を有する積層基板の製造方法。 The method for producing a laminated substrate having a piezoelectric film according to claim 6, further comprising a step of annealing the laminated substrate under a temperature condition of 600 ° C. or higher and 700 ° C. or lower after performing the step of forming the oxide film. .. 前記酸化膜を製膜する工程では、前記酸化膜として厚さが2.5nm以上30nm以下である膜を製膜する請求項6〜8のいずれか1項に記載の圧電膜を有する積層基板の製造方法。 In the step of forming the oxide film, the laminated substrate having the piezoelectric film according to any one of claims 6 to 8 for forming a film having a thickness of 2.5 nm or more and 30 nm or less as the oxide film. Production method.
JP2019191825A 2019-10-21 2019-10-21 A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film. Active JP6804615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019191825A JP6804615B2 (en) 2019-10-21 2019-10-21 A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019191825A JP6804615B2 (en) 2019-10-21 2019-10-21 A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018089109A Division JP6607993B2 (en) 2018-05-07 2018-05-07 Multilayer substrate having piezoelectric film, element having piezoelectric film, and method of manufacturing multilayer substrate having piezoelectric film

Publications (2)

Publication Number Publication Date
JP2020014024A JP2020014024A (en) 2020-01-23
JP6804615B2 true JP6804615B2 (en) 2020-12-23

Family

ID=69170065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019191825A Active JP6804615B2 (en) 2019-10-21 2019-10-21 A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film.

Country Status (1)

Country Link
JP (1) JP6804615B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106902A (en) * 2010-10-25 2012-06-07 Fujifilm Corp Perovskite-type oxide film, ferroelectric film using the same, ferroelectric device, and method for manufacturing perovskite-type oxide film
JP5774399B2 (en) * 2011-07-15 2015-09-09 株式会社サイオクス Method for manufacturing piezoelectric film element
JP5858385B2 (en) * 2012-08-07 2016-02-10 住友化学株式会社 Piezoelectric element, piezoelectric device and manufacturing method thereof
JP6266987B2 (en) * 2013-03-19 2018-01-24 住友化学株式会社 Piezoelectric thin film element, piezoelectric sensor and vibration generator
US9614463B2 (en) * 2014-02-10 2017-04-04 Tdk Corporation Piezoelectric device, piezoelectric actuator, hard disk drive, and inkjet printer apparatus

Also Published As

Publication number Publication date
JP2020014024A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP6342040B1 (en) Multilayer substrate having piezoelectric film, element having piezoelectric film, and method of manufacturing multilayer substrate having piezoelectric film
JP6239566B2 (en) Multilayer substrate with piezoelectric thin film, piezoelectric thin film element, and manufacturing method thereof
JP6502460B2 (en) Laminated substrate with piezoelectric thin film and piezoelectric thin film element
JP7362339B2 (en) Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate
JP6607993B2 (en) Multilayer substrate having piezoelectric film, element having piezoelectric film, and method of manufacturing multilayer substrate having piezoelectric film
JP6804615B2 (en) A method for manufacturing a laminated substrate having a piezoelectric film, an element having a piezoelectric film, and a laminated substrate having a piezoelectric film.
JP2012253109A (en) Piezoelectric film element and piezoelectric film device
US11744159B2 (en) Piezoelectric laminate, method of manufacturing piezoelectric laminate and piezoelectric element
JP2019161075A (en) Piezoelectric laminate, method for manufacturing the same, and piezoelectric device
JP6758444B2 (en) Laminated substrate with piezoelectric thin film and piezoelectric thin film element
JP6961770B2 (en) Laminated substrate with piezoelectric thin film and piezoelectric thin film element
JP7320091B2 (en) Laminated substrate with piezoelectric thin film, method for manufacturing laminated substrate with piezoelectric thin film, piezoelectric thin film element, sputtering target material, and method for manufacturing sputtering target material
JP7022853B2 (en) Sputtering target material, manufacturing method of sputtering target material, and manufacturing method of laminated substrate with piezoelectric thin film
WO2022004068A1 (en) Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate
JP7319848B2 (en) Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate
JP7464360B2 (en) Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate
WO2021177091A1 (en) Piezoelectric film, piezoelectric multilayer body, piezoelectric element and method for producing piezoelectric multilayer body
WO2021002434A1 (en) Piezoelectric film, piezoelectric layered body, piezoelectric element, and method for manufacturing piezoelectric layered body
JP2021027133A (en) Piezoelectric laminate, piezoelectric element, and manufacturing method of piezoelectric laminate
JP2021141186A (en) Piezoelectric film, piezoelectric laminate, piezoelectric element, and manufacturing method of piezoelectric laminate
JP2022084768A (en) Piezoelectric laminate, manufacturing method of piezoelectric laminate, and piezoelectric device
JP2021027134A (en) Piezoelectric laminate, manufacturing method of piezoelectric laminate, and piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191021

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201202

R150 Certificate of patent or registration of utility model

Ref document number: 6804615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350