JP6933994B2 - Resin composite - Google Patents

Resin composite Download PDF

Info

Publication number
JP6933994B2
JP6933994B2 JP2018069310A JP2018069310A JP6933994B2 JP 6933994 B2 JP6933994 B2 JP 6933994B2 JP 2018069310 A JP2018069310 A JP 2018069310A JP 2018069310 A JP2018069310 A JP 2018069310A JP 6933994 B2 JP6933994 B2 JP 6933994B2
Authority
JP
Japan
Prior art keywords
resin
fiber
reinforced resin
foam
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018069310A
Other languages
Japanese (ja)
Other versions
JP2019177648A (en
Inventor
拓寛 小玉
拓寛 小玉
洋一郎 福永
洋一郎 福永
真章 中村
真章 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2018069310A priority Critical patent/JP6933994B2/en
Publication of JP2019177648A publication Critical patent/JP2019177648A/en
Application granted granted Critical
Publication of JP6933994B2 publication Critical patent/JP6933994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、樹脂複合体に関し、より詳しくは、樹脂発泡体からなる芯材と、該芯材を覆う繊維強化樹脂層とを備えた樹脂複合体に関する。 The present invention relates to a resin composite, and more particularly to a resin composite including a core material made of a resin foam and a fiber reinforced resin layer covering the core material.

従来、優れた軽量性と強度とを兼ね備えることからFRPなどと称される繊維強化樹脂材が広く用いられている。
この種の繊維強化樹脂材としては、短繊維を樹脂中に分散させたタイプのものや、織布などの繊維基材に樹脂を含浸させたタイプのものが知られている。
Conventionally, a fiber reinforced resin material called FRP or the like has been widely used because it has both excellent lightness and strength.
As this type of fiber-reinforced resin material, a type in which short fibers are dispersed in a resin and a type in which a fiber base material such as a woven fabric is impregnated with a resin are known.

近年、芯材となる樹脂発泡体に繊維強化樹脂材を積層して繊維強化樹脂層を芯材上に形成させた樹脂複合体がその用途を拡大させている。
この種の樹脂複合体は、表面が硬質で平滑性に優れた繊維強化樹脂層で形成され、繊維強化樹脂層の内部に軽量性に優れた樹脂発泡体が備えられることから強度と軽量性との両方が求められるような用途に広く用いられている。
このような樹脂複合体に関し、例えば、下記特許文献1(実施例など参照)には、炭素繊維が一方向に引き揃えられている繊維シートを基材としたUDプリプレグを複数枚重ね合せて樹脂発泡体上に繊維強化樹脂層を形成することが記載されている。
In recent years, a resin composite in which a fiber-reinforced resin material is laminated on a resin foam as a core material to form a fiber-reinforced resin layer on the core material has expanded its use.
This type of resin composite is formed of a fiber-reinforced resin layer having a hard surface and excellent smoothness, and a resin foam having excellent lightness is provided inside the fiber-reinforced resin layer to provide strength and lightness. It is widely used in applications where both are required.
Regarding such a resin composite, for example, in Patent Document 1 below (see Examples and the like), a resin is obtained by stacking a plurality of UD prepregs based on a fiber sheet in which carbon fibers are aligned in one direction. It is described that a fiber reinforced resin layer is formed on the foam.

特開2006−35671号公報Japanese Unexamined Patent Publication No. 2006-35671

上記のような樹脂複合体は、樹脂発泡体と繊維強化樹脂材とを接着させる際に空気を巻き込んで繊維強化樹脂層の表面にボイドが形成されることがあり、十分良好な美観を発揮させることが難しくなる場合があるという問題を有する。 When the resin foam and the fiber-reinforced resin material are adhered to each other, the resin composite as described above may entrain air to form voids on the surface of the fiber-reinforced resin layer, thereby exhibiting a sufficiently good aesthetic appearance. It has the problem that it can be difficult.

そこで本発明は、このような問題点を解決することを課題としており、美観に優れた樹脂複合体の提供を課題としている。 Therefore, the present invention has an object of solving such a problem, and an object of providing a resin composite having an excellent aesthetic appearance.

本発明は、上記課題を解決すべく、
樹脂発泡体で構成された芯材と、
該芯材を覆う繊維強化樹脂層と、を備え、
繊維基材及び該繊維基材に含浸された樹脂を有するシート状の繊維強化樹脂材によって前記繊維強化樹脂層が構成されており、
5%圧縮応力の値をP(MPa)とし、前記芯材及び前記繊維強化樹脂層を含めた全体の平均密度をD(g/cm)としたときに下記式(1)を満たす樹脂複合体を提供する。

1 ≦ (P/D) ≦ 5 ・・・(1)
The present invention solves the above problems.
A core material made of resin foam and
A fiber reinforced resin layer covering the core material is provided.
The fiber reinforced resin layer is composed of a fiber base material and a sheet-shaped fiber reinforced resin material having a resin impregnated in the fiber base material.
A resin composite that satisfies the following formula (1) when the value of 5% compressive stress is P (MPa) and the average density of the whole including the core material and the fiber reinforced resin layer is D (g / cm 3). Provide the body.

1 ≤ (P / D) ≤ 5 ... (1)

本発明によれば、ボイドが少なく、外観美麗な樹脂複合体を提供し得る。 According to the present invention, it is possible to provide a resin composite having few voids and a beautiful appearance.

一実施形態の樹脂複合体を示した概略斜視図である。It is the schematic perspective view which showed the resin composite of one Embodiment. 樹脂複合体の断面図(図1のII−II線矢視断面図)。Cross-sectional view of the resin composite (cross-sectional view taken along the line II-II of FIG. 1). 樹脂複合体の要部拡大断面図(図2のIII部の拡大図)。An enlarged cross-sectional view of a main part of the resin composite (enlarged view of Part III in FIG. 2).

以下に本発明の実施形態に係る樹脂複合体について、当該樹脂複合体がパネル材である場合を例にして説明する。
まず、本実施形態に係る樹脂複合体について図1を参照しつつ説明する。
Hereinafter, the resin composite according to the embodiment of the present invention will be described by taking the case where the resin composite is a panel material as an example.
First, the resin composite according to the present embodiment will be described with reference to FIG.

図1は、パネル100を示した図であり、図にも示されているように本実施形態に係るパネル100は、底壁部101と、該底壁部101の外周縁からやや外広がりに立上る周側壁部102と、該周側壁部102の上端から外向きに延びる鍔部103とを有している。
本実施形態でのパネル100は、図2にも示されているように底壁部101だけに樹脂発泡体からなる芯材1が備えられている。
FIG. 1 is a view showing the panel 100, and as shown in the figure, the panel 100 according to the present embodiment is slightly outwardly spread from the bottom wall portion 101 and the outer peripheral edge of the bottom wall portion 101. It has a peripheral side wall portion 102 that rises up, and a flange portion 103 that extends outward from the upper end of the peripheral side wall portion 102.
As shown in FIG. 2, the panel 100 in the present embodiment is provided with a core material 1 made of a resin foam only in the bottom wall portion 101.

本実施形態における前記芯材1は板状であり、外表面の全てが繊維強化樹脂材で覆われて、全ての面に繊維強化樹脂層2が積層されている。
具体的には、前記芯材1は、一面側にシート状の繊維強化樹脂材20が一又は複数積層されているとともに前記一面側とは反対側となる他面側にも一又は複数の繊維強化樹脂材20が積層されている。
本実施形態においては、前記芯材1の一面側及び他面側には、それぞれ複数枚の繊維強化樹脂材20が積層されている。
即ち、本実施形態の繊維強化樹脂層2は、積層構造を有している。
The core material 1 in the present embodiment has a plate shape, the entire outer surface is covered with the fiber reinforced resin material, and the fiber reinforced resin layer 2 is laminated on all the surfaces.
Specifically, in the core material 1, one or a plurality of sheet-shaped fiber reinforced resin materials 20 are laminated on one surface side, and one or a plurality of fibers are also laminated on the other surface side opposite to the one surface side. The reinforced resin material 20 is laminated.
In the present embodiment, a plurality of fiber reinforced resin materials 20 are laminated on one surface side and the other surface side of the core material 1, respectively.
That is, the fiber reinforced resin layer 2 of the present embodiment has a laminated structure.

複数の繊維強化樹脂材20で構成されている本実施形態での前記繊維強化樹脂層2は、パネル100の表層部に配されてパネル100の表面100aを構成する繊維強化樹脂材21と、前記芯材1に最も近く、前記表面100aから最も離れた位置に配されている繊維強化樹脂材26とが、種類を異ならせている。
即ち、これらは繊維基材及び該繊維基材に含浸された樹脂を有する点において共通しているが、これらは前記繊維基材の種類が異なる。
The fiber-reinforced resin layer 2 in the present embodiment, which is composed of a plurality of fiber-reinforced resin materials 20, is arranged on the surface layer portion of the panel 100 to form the surface 100a of the panel 100, and the fiber-reinforced resin material 21 and the above. The fiber reinforced resin material 26, which is closest to the core material 1 and is arranged at the position farthest from the surface 100a, is of a different type.
That is, they are common in that they have a fiber base material and a resin impregnated in the fiber base material, but these are different in the type of the fiber base material.

本実施形態のパネル100の表層部を構成する繊維強化樹脂材21の繊維基材は、マルチフィラメント糸で構成された織布21aで、前記マルチフィラメント糸が複数本のガラス繊維で構成されており、前記芯材1の最も近くに配された繊維強化樹脂材26は、一方向に引き揃えられた炭素繊維で構成された繊維シート(図示せず)を前記繊維基材として備えている。 The fiber base material of the fiber reinforced resin material 21 constituting the surface layer portion of the panel 100 of the present embodiment is a woven fabric 21a composed of multifilament yarns, and the multifilament yarns are composed of a plurality of glass fibers. The fiber-reinforced resin material 26 arranged closest to the core material 1 includes a fiber sheet (not shown) composed of carbon fibers aligned in one direction as the fiber base material.

本実施形態のパネル100の前記繊維強化樹脂層2は、上記のように、積層構造を有し、前記織布21aを有する前記繊維強化樹脂材21によって構成された層を最も表層側に有し、該層と前記芯材1との間には、前記繊維強化樹脂材とは異なる第2の繊維強化樹脂材26によって構成された別の層が備えられており、前記第2の繊維強化樹脂材26の繊維基材が炭素繊維で構成されている。
より詳しくは、前記繊維強化樹脂層2は、一方向に引き揃えられた炭素繊維で構成されている繊維シート(以下「カーボンUD」ともいう)に熱硬化性の樹脂が含浸された繊維強化樹脂材23,24,25,26で構成された層を4層備え、ガラス繊維で構成された織布21a,22a(以下「ガラスクロス」ともいう)に熱硬化性の樹脂が含浸された繊維強化樹脂材21,22で構成された層を2層備えている。
即ち、本実施形態の繊維強化樹脂層2は、6層構造を有している。
カーボンUDを備えた第2の繊維強化樹脂材23,24,25,26は、炭素繊維が引き揃えられている方向が互いに45度ずれた状態で積層されて前記芯材側の4層を構成し、ガラスクロスを備えた第1の繊維強化樹脂材21,22は、パネル100の表面側の2層を構成している。
As described above, the fiber-reinforced resin layer 2 of the panel 100 of the present embodiment has a laminated structure and has a layer made of the fiber-reinforced resin material 21 having the woven fabric 21a on the most surface layer side. Between the layer and the core material 1, another layer composed of a second fiber reinforced resin material 26 different from the fiber reinforced resin material is provided, and the second fiber reinforced resin is provided. The fiber base material of the material 26 is composed of carbon fibers.
More specifically, the fiber-reinforced resin layer 2 is a fiber-reinforced resin in which a fiber sheet (hereinafter, also referred to as “carbon UD”) composed of carbon fibers aligned in one direction is impregnated with a heat-curable resin. Fiber reinforced with four layers composed of materials 23, 24, 25 and 26, and woven fabrics 21a and 22a (hereinafter also referred to as "glass cloth") composed of glass fibers impregnated with a heat-curable resin. It is provided with two layers composed of resin materials 21 and 22.
That is, the fiber reinforced resin layer 2 of the present embodiment has a six-layer structure.
The second fiber-reinforced resin materials 23, 24, 25, and 26 provided with carbon UD are laminated in a state in which the directions in which the carbon fibers are aligned are offset by 45 degrees from each other to form four layers on the core material side. However, the first fiber-reinforced resin materials 21 and 22 provided with the glass cloth form two layers on the surface side of the panel 100.

前記のように本実施形態では前記底壁部101が樹脂発泡体で構成された芯材1を有している一方で、該周側壁部102や鍔部103は芯材1を有していない。
周側壁部102や鍔部103は、底壁部101において芯材1に積層されている繊維強化樹脂材と一続きとなった繊維強化樹脂材で構成されている。
即ち、本実施形態においては、前記芯材1と、前記繊維強化樹脂材とが接着される領域よりも面積の大きな繊維強化樹脂材を前記芯材1に接着させることにより、前記領域の外側に前記繊維強化樹脂材が延出されてなる延出部を備えさせ、該延出部によって周側壁部102や鍔部103を構成させている。
従って、周側壁部102や鍔部103は、芯材1の一面側に積層されている6枚の繊維強化樹脂材と芯材1の他面側に積層されている6枚の繊維強化樹脂材とが直接的に貼り合されてなる12層構造を有している。
即ち、周側壁部102や鍔部103は、ガラスクロスを備えた繊維強化樹脂材でカーボンUDを備えた繊維強化樹脂材を挟み込んだ構造を有している。
As described above, in the present embodiment, the bottom wall portion 101 has the core material 1 made of the resin foam, while the peripheral side wall portion 102 and the flange portion 103 do not have the core material 1. ..
The peripheral side wall portion 102 and the flange portion 103 are composed of a fiber-reinforced resin material laminated on the core material 1 on the bottom wall portion 101 and a continuous fiber-reinforced resin material.
That is, in the present embodiment, the fiber reinforced resin material having a larger area than the region where the core material 1 and the fiber reinforced resin material are adhered is adhered to the core material 1 to the outside of the region. An extension portion formed by extending the fiber-reinforced resin material is provided, and the extension portion constitutes a peripheral side wall portion 102 and a flange portion 103.
Therefore, the peripheral side wall portion 102 and the flange portion 103 are composed of six fiber-reinforced resin materials laminated on one surface side of the core material 1 and six fiber-reinforced resin materials laminated on the other surface side of the core material 1. It has a 12-layer structure in which and is directly bonded to each other.
That is, the peripheral side wall portion 102 and the flange portion 103 have a structure in which the fiber reinforced resin material provided with the carbon UD is sandwiched between the fiber reinforced resin material provided with the glass cloth.

上記のように本実施形態のパネル100の繊維強化樹脂層2は、底壁部101を構成すべく芯材1と接着している第1領域2aと、この第1領域2aの外側で周側壁部102や鍔部103を構成すべく繊維強化樹脂材どうしが接着している第2領域2bとを有する。 As described above, the fiber-reinforced resin layer 2 of the panel 100 of the present embodiment has a first region 2a that is adhered to the core material 1 to form the bottom wall portion 101, and a peripheral side wall outside the first region 2a. It has a second region 2b in which fiber-reinforced resin materials are adhered to each other so as to form a portion 102 and a flange portion 103.

ガラス繊維は、通常、炭素繊維に比べて剛性が低い。
そのため、ガラスクロスを備えた繊維強化樹脂材21で表面100aが構成された本実施形態のパネル100は、表面状態が比較的調整容易であり、美麗な外観を有するものとなり得る。
一方で炭素繊維は、ガラス繊維に比べて軽量で剛性に優れる。
従って、カーボンUDを備えた繊維強化樹脂材26が芯材1に最も近い箇所に配されている本実施形態のパネル100は、前記繊維強化樹脂材26や、これに続く3層によって芯材1の表面の凹凸が外観に影響することを抑制できる。
しかもガラスクロスを備えた繊維強化樹脂材21と芯材1との間にカーボンUDを備えた4つの繊維強化樹脂材23,24,25,26が配されることで本実施形態のパネル100には、優れた軽量性が発揮され得る。
Glass fiber is usually less rigid than carbon fiber.
Therefore, the panel 100 of the present embodiment in which the surface 100a is made of the fiber-reinforced resin material 21 provided with the glass cloth can have a beautiful appearance because the surface state is relatively easy to adjust.
On the other hand, carbon fiber is lighter and more rigid than glass fiber.
Therefore, in the panel 100 of the present embodiment in which the fiber reinforced resin material 26 provided with the carbon UD is arranged at the position closest to the core material 1, the core material 1 is formed by the fiber reinforced resin material 26 and the three layers following the fiber reinforced resin material 26. It is possible to suppress that the unevenness of the surface of the surface affects the appearance.
Moreover, four fiber-reinforced resin materials 23, 24, 25, and 26 having carbon UD are arranged between the fiber-reinforced resin material 21 provided with the glass cloth and the core material 1, so that the panel 100 of the present embodiment can be used. Can exhibit excellent lightness.

パネル100は、後段において詳述するように樹脂21bが未硬化な状態の繊維強化樹脂材(以下「プリプレグシート」ともいう)と、芯材1となる樹脂発泡体とを接着することによって作製されるが、この接着工程においてプリプレグシートどうしの間やプリプレグシートと芯材1との間に空気が巻き込まれることを完全に防止することは難しい。
また、プリプレグシート自体が繊維間に空気を含んでいるような場合もある。
そして、このような空気が接着工程後の繊維強化樹脂層2に気泡(ボイド)となって残留する場合がある。
The panel 100 is manufactured by adhering a fiber-reinforced resin material (hereinafter, also referred to as “prepreg sheet”) in which the resin 21b is uncured and a resin foam to be the core material 1 as described in detail later. However, it is difficult to completely prevent air from being entrained between the prepreg sheets or between the prepreg sheets and the core material 1 in this bonding process.
In some cases, the prepreg sheet itself contains air between the fibers.
Then, such air may remain as bubbles (voids) in the fiber reinforced resin layer 2 after the bonding step.

パネル100は、表面100aを構成する繊維強化樹脂材21にボイドを存在させてしまうと十分な美観を発揮させることが難しくなるおそれがある。
前記パネル100は、外観を下記に示すような方法で観察し、以下の判定基準によって繊維強化樹脂層2の表面品質を4段階に評価した際に、判定が3以上となることが好ましく、4となることがさらに好ましい。
尚、以下においてはこの判定結果について「ボイド数指標」などと称することがあり、例えば、「判定4」となる場合を「ボイド数指標4」などと称することがある。

(外観観察方法)
・樹脂複合体の表面に真球状微粒子ポリマーであるテクポリマー(積水化成品工業、MBX−8、粒径:8μm)をまぶし、ボイド部に粒子が押し込まれるようにウエス等でなじませる。
・ボイド部に残存する粒子以外はウエス等で除去する。
・マイクロスコープ(KEYENCE,VHX−1000)にて×20倍で樹脂複合体の表面を観察し、色抽出によりボイド部を判別し、ボイド数を自動計測する。(ボイド部には白色粒子があり、ボイド部以外は黒色であるため色差による判別可能)

(判定方法)
判定1:50mm×50mmの面積内のボイド数が101個以上。
判定2:50mm×50mmの面積内のボイド数が51−100個。
判定3:50mm×50mmの面積内のボイド数が6−50個。
判定4:50mm×50mmの面積内のボイド数が0−5個。
If voids are present in the fiber-reinforced resin material 21 constituting the surface 100a of the panel 100, it may be difficult to exhibit a sufficient aesthetic appearance.
When the appearance of the panel 100 is observed by a method as shown below and the surface quality of the fiber reinforced resin layer 2 is evaluated in four stages according to the following criteria, the determination is preferably 3 or more. Is more preferable.
In the following, this determination result may be referred to as a "void number index" or the like, and for example, a case where the determination result is "determination 4" may be referred to as a "void number index 4" or the like.

(Appearance observation method)
-Sprinkle a techpolymer (Sekisui Plastics Co., Ltd., MBX-8, particle size: 8 μm), which is a spherical fine particle polymer, on the surface of the resin composite, and blend it with a waste cloth or the like so that the particles are pushed into the void portion.
-Remove the particles other than the particles remaining in the void part with a waste cloth or the like.
-Observe the surface of the resin composite at × 20 times with a microscope (KEYENCE, VHX-1000), determine the void portion by color extraction, and automatically measure the number of voids. (There are white particles in the void part, and since the parts other than the void part are black, it can be distinguished by the color difference)

(Judgment method)
Judgment 1: The number of voids in an area of 50 mm × 50 mm is 101 or more.
Judgment 2: The number of voids in the area of 50 mm × 50 mm is 51-100.
Judgment 3: The number of voids in the area of 50 mm × 50 mm is 6-50.
Judgment 4: The number of voids in the area of 50 mm × 50 mm is 0-5.

本実施形態における前記樹脂発泡体は、圧縮強度(5%圧縮応力)が0.5MPa以上であることが好ましい。
芯材1に用いる樹脂発泡体の圧縮強度は、0.6MPa以上であることがより好ましく、1.0MPa以上であることがさらに好ましい。
前記圧縮強度は、接着工程で圧力が加えられる方向(通常、表面と直交する方向)において発揮されることが好ましい。
尚、樹脂発泡体に過度に高い圧縮強度を発揮させようとすると、発泡倍率を低下させて軽量性を犠牲にしなければならなくなるおそれがある。
そのような点において、樹脂発泡体に過度に高い圧縮強度は、通常、4MPa以下とされる。
The resin foam in the present embodiment preferably has a compressive strength (5% compressive stress) of 0.5 MPa or more.
The compressive strength of the resin foam used for the core material 1 is more preferably 0.6 MPa or more, further preferably 1.0 MPa or more.
It is preferable that the compressive strength is exerted in the direction in which pressure is applied in the bonding step (usually, in the direction orthogonal to the surface).
If the resin foam is to exhibit an excessively high compressive strength, the foaming ratio may be lowered to sacrifice lightness.
In such a respect, the compressive strength excessively high for the resin foam is usually 4 MPa or less.

樹脂発泡体の圧縮強度(5%圧縮応力)は、例えば、樹脂発泡体から縦50mm×横50mm×厚さ12.6mmの大きさの試験体を切り出して測定することができる。
圧縮強度は、JIS K 7220:2006「硬質発泡プラスチック−圧縮特性の求め方」記載の方法により測定することができる。
樹脂発泡体の圧縮強度は、オリエンテック「テンシロンUCT−10T」万能試験機、ソフトブレーン「UTPS−458X」万能試験機データ処理を用いて、前記試験体を厚さ方向に1.5mm/minの速度で圧縮し5%圧縮時の圧縮強度を測定することで求められる。
試験体の数は、通常、5個として平均値を求めることとする。
尚、測定は、試験体をJIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調整した後、同じ標準雰囲気下で行う。
圧縮強度は、変位の原点を回帰点として求める。

・圧縮強度σm(MPa)は次式により算出できる。

σm =Fm/A0

Fm:変形率5%以内に到達した最大の力(N)
A0:試験片の初めの断面積(mm
The compressive strength (5% compressive stress) of the resin foam can be measured, for example, by cutting out a test piece having a size of 50 mm in length × 50 mm in width × 12.6 mm in thickness from the resin foam.
Compressive strength can be measured by the method described in JIS K 7220: 2006 "Hard foamed plastic-How to determine compressive properties".
The compressive strength of the resin foam is 1.5 mm / min in the thickness direction of the test piece using Orientec "Tencilon UCT-10T" universal tester and soft brain "UTPS-458X" universal tester data processing. It is obtained by compressing at a rate and measuring the compressive strength at the time of 5% compression.
The number of test specimens is usually set to 5 and the average value is calculated.
For the measurement, the test piece was adjusted to the JIS K 7100: 1999 symbol "23/50" (temperature 23 ° C., relative humidity 50%) for 16 hours under a second-class standard atmosphere, and then the same standard atmosphere. Do it below.
The compressive strength is obtained by using the origin of displacement as a regression point.

-The compressive strength σm (MPa) can be calculated by the following formula.

σm = Fm / A0

Fm: Maximum force (N) reached within 5% of deformation rate
A0: Initial cross-sectional area of the test piece (mm 2 )

繊維強化樹脂材が接着される前の樹脂発泡体の圧縮強度は、通常、前記パネル100を構成した後の芯材1にも発揮される。
従って、前記パネル100も、通常、樹脂発泡体と同等以上の圧縮強度(5%圧縮強度)を示す。
前記パネル100のような樹脂複合体の圧縮強度を確かめるには、樹脂複合体から試験体を切り出して樹脂発泡体と同様の方法で圧縮強度を測定すればよい。
このときの試験体は、縦50mm、横50mmで高さが樹脂複合体の厚さとなる四角柱形状とされ、しかも、この四角柱が樹脂複合体の中央部を貫通するような状態になるよう切り出される。
従って、切り出された試験体は、通常、上下2面が繊維強化樹脂層となり、しかも、4つの側面には上下に存在する繊維強化樹脂層以外に繊維強化樹脂材が存在しない状態になる。
このようにして作製された試験体を使って上記の圧縮強度を測定すれば樹脂複合体の圧縮強度を測定することができる。
The compressive strength of the resin foam before the fiber-reinforced resin material is adhered is usually exhibited in the core material 1 after the panel 100 is formed.
Therefore, the panel 100 also usually exhibits a compressive strength (5% compressive strength) equal to or higher than that of the resin foam.
In order to confirm the compressive strength of the resin composite such as the panel 100, a test piece may be cut out from the resin composite and the compressive strength may be measured by the same method as that of the resin foam.
At this time, the test body has a quadrangular prism shape having a length of 50 mm and a width of 50 mm and a height of which is the thickness of the resin composite, and the quadrangular prism penetrates the central portion of the resin composite. It is cut out.
Therefore, in the cut-out test piece, the upper and lower two surfaces are usually fiber-reinforced resin layers, and the four side surfaces are in a state in which no fiber-reinforced resin material is present other than the upper and lower fiber-reinforced resin layers.
The compressive strength of the resin composite can be measured by measuring the above-mentioned compressive strength using the test body produced in this manner.

尚、前記樹脂発泡体や樹脂複合体の圧縮強度は、通常、発泡倍率を低下(見掛け密度を増大)させることで上昇する。
また、樹脂発泡体や樹脂複合体の圧縮強度は、通常、独立気泡性を向上(連続気泡率を低減)させることで上昇する。
さらに、樹脂発泡体や樹脂複合体の圧縮強度は、通常、ポリエチレンテレフタレート樹脂のような硬質樹脂をその原材料とすることで上昇する。
そして、樹脂発泡体や樹脂複合体の圧縮強度は、平均気泡径(気泡膜の厚み)などによっても調整を図ることができる。
The compressive strength of the resin foam or the resin composite is usually increased by lowering the foaming ratio (increasing the apparent density).
Further, the compressive strength of the resin foam or the resin composite is usually increased by improving the closed cell property (reducing the open cell ratio).
Further, the compressive strength of the resin foam or the resin composite is usually increased by using a hard resin such as polyethylene terephthalate resin as a raw material.
The compressive strength of the resin foam or the resin composite can also be adjusted by the average cell diameter (thickness of the cell film) or the like.

本実施形態における前記パネル100は、5%圧縮応力の値を「P(MPa)」とし、前記芯材1及び前記繊維強化樹脂層2を含めた全体の質量(M)と容積(V)とによって求められる平均密度(M/V)を「D(g/cm)」としたときに下記式(1)を満たしている。

1 ≦ (P/D) ≦ 5 ・・・(1)
In the panel 100 of the present embodiment, the value of 5% compressive stress is set to "P (MPa)", and the total mass (M) and volume (V) including the core material 1 and the fiber reinforced resin layer 2 are included. When the average density (M / V) obtained by is "D (g / cm 3 )", the following formula (1) is satisfied.

1 ≤ (P / D) ≤ 5 ... (1)

パネル100を構成する前記樹脂発泡体の見掛け密度は、0.01g/cm以上0.4g/cm以下であることが好ましい。
前記芯材1とすべく用いられる樹脂発泡体の見掛け密度は、0.1g/cm以上であることがより好ましく、0.3g/cm以上であることがさらに好ましい。
前記樹脂発泡体のこのような見掛け密度は、パネル100を構成した後の樹脂発泡体にも備わっていることが好ましい。
The apparent density of the resin foam constituting the panel 100 is preferably 0.01 g / cm 3 or more and 0.4 g / cm 3 or less.
The apparent density of the resin foam used as the core material 1 is more preferably 0.1 g / cm 3 or more, and further preferably 0.3 g / cm 3 or more.
It is preferable that such an apparent density of the resin foam is also provided in the resin foam after the panel 100 is formed.

樹脂発泡体の見掛け密度は、JIS K7222:2005「発泡プラスチック及びゴム−見掛け密度の求め方」記載の方法で測定することができる。
即ち、見掛け密度は、原則的には次のようにして求めることができる。
(見掛け密度測定方法)
100cm以上の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出することができる。

密度(g/cm)=試験片質量(g)/試験片体積(cm

尚、測定用試験片は、成形が施された後、72時間以上経過した試料から切り取り、温度23±2℃、湿度50±5%の雰囲気条件に16時間以上放置したものとする。
The apparent density of the resin foam can be measured by the method described in JIS K7222: 2005 "Foam plastics and rubber-How to determine the apparent density".
That is, the apparent density can be obtained in principle as follows.
(Apparent density measurement method)
A test piece of 100 cm 3 or more can be cut so as not to change the original cell structure of the material, its mass is measured, and it can be calculated by the following formula.

Density (g / cm 3 ) = test piece mass (g) / test piece volume (cm 3 )

The test piece for measurement shall be cut out from a sample 72 hours or more after being molded and left in an atmospheric condition of a temperature of 23 ± 2 ° C. and a humidity of 50 ± 5% for 16 hours or more.

樹脂発泡体の上記のような見掛け密度は、パネル100を構成した後の芯材1となった状態においても備わっていることが好ましい。 It is preferable that the apparent density of the resin foam as described above is provided even in the state where the core material 1 is formed after the panel 100 is formed.

前記樹脂発泡体は、切削加工や熱成形などの二次加工を施した後に芯材1として用いることもできる。
例えば、本実施形態の芯材1は、前記の通り板状形状を有するものであるが、該芯材1として用いる樹脂発泡体は、芯材1の形状に対応した成形型を使って形成されたものであっても、芯材1よりも厚い塊状の樹脂発泡体をスライス加工して作製されたものであってもよい。
The resin foam can also be used as the core material 1 after being subjected to secondary processing such as cutting or thermoforming.
For example, the core material 1 of the present embodiment has a plate-like shape as described above, but the resin foam used as the core material 1 is formed by using a molding die corresponding to the shape of the core material 1. It may be made by slicing a massive resin foam thicker than the core material 1.

本実施形態において前記芯材1の表面に前記繊維強化樹脂層2を形成させるための繊維強化樹脂材は、樹脂発泡体と貼り合わされる以前の状態において未硬化状態の熱硬化性樹脂が繊維基材に含浸されたプリプレグシートである。
従って、本実施形態のパネル100は、前記繊維強化樹脂材(プリプレグシート)と前記樹脂発泡体とを加熱加圧条件下で接着させる接着工程を備えた方法によって製造される。
In the present embodiment, the fiber-reinforced resin material for forming the fiber-reinforced resin layer 2 on the surface of the core material 1 is a fiber base of a thermosetting resin in an uncured state before being bonded to the resin foam. It is a prepreg sheet impregnated in the material.
Therefore, the panel 100 of the present embodiment is manufactured by a method including an adhesion step of adhering the fiber-reinforced resin material (prepreg sheet) and the resin foam under heating and pressurizing conditions.

本実施形態のパネル100は、雄型、雌型の両方を用いた熱プレス成形や一方のみを用いたオートクレーブ成形などの加熱成形によって作製することができる。
このような加熱成形では繊維強化樹脂材に含浸されている樹脂を製品外となる領域に流動させ、それに伴って空気を製品外に追い出してボイドの形成を抑制することが好ましい。
そこで、繊維基材及び該繊維基材に含浸された樹脂を有するシート状の繊維強化樹脂材と、樹脂発泡体とを加熱加圧条件下で接着させる前記接着工程では、前記繊維強化樹脂材と、前記樹脂発泡体との間に接着フィルムを挟んで前記接着を実施し、該接着フィルムの熱溶融物によって接着工程で流動させ得る樹脂量を増大させることが好ましい。
The panel 100 of the present embodiment can be produced by heat molding such as hot press molding using both male and female molds and autoclave molding using only one of them.
In such heat molding, it is preferable to flow the resin impregnated in the fiber-reinforced resin material to a region outside the product, and to expel air to the outside of the product to suppress the formation of voids.
Therefore, in the bonding step of adhering the fiber base material and the sheet-shaped fiber reinforced resin material having the resin impregnated in the fiber base material and the resin foam under heating and pressurizing conditions, the fiber reinforced resin material is used. It is preferable that the adhesive film is sandwiched between the resin foam and the resin foam to carry out the adhesion, and the amount of resin that can be flowed in the bonding step by the thermal melt of the adhesive film is increased.

尚、以上のように本実施形態の樹脂複合体は、
樹脂発泡体で構成された芯材と、
該芯材を覆う繊維強化樹脂層と、を備え、
繊維基材及び該繊維基材に含浸された樹脂を有するシート状の繊維強化樹脂材によって前記繊維強化樹脂層が構成されており、
5%圧縮応力の値をP(MPa)とし、前記芯材及び前記繊維強化樹脂層を含めた全体の平均密度をD(g/cm)としたときに下記式(1)を満たすものである。

1 ≦ (P/D) ≦ 5 ・・・(1)
As described above, the resin composite of the present embodiment is
A core material made of resin foam and
A fiber reinforced resin layer covering the core material is provided.
The fiber reinforced resin layer is composed of a fiber base material and a sheet-shaped fiber reinforced resin material having a resin impregnated in the fiber base material.
When the value of 5% compressive stress is P (MPa) and the average density of the whole including the core material and the fiber reinforced resin layer is D (g / cm 3 ), the following formula (1) is satisfied. be.

1 ≤ (P / D) ≤ 5 ... (1)

本実施形態の樹脂複合体は、密度の割に高い圧縮強度を有することで製造時においてボイドが生じることを抑制できる。
即ち、本実施形態ではボイド数指標の点数が高い良好な外観を有する樹脂複合体を得ることができる。
樹脂複合体は、軽量であることが求められており、樹脂複合体の平均密度D(g/cm)が0.7g/cm以下であることが好ましい。
Since the resin composite of the present embodiment has high compressive strength for its density, it is possible to suppress the formation of voids during production.
That is, in the present embodiment, it is possible to obtain a resin composite having a good appearance with a high score of the void number index.
The resin composite is required to be lightweight, and the average density D (g / cm 3 ) of the resin composite is preferably 0.7 g / cm 3 or less.

本実施形態における樹脂複合体は、前記樹脂発泡体がビーズ発泡成形体であってもよい。
このことにより上記のような効果がより顕著に発揮され得る。
In the resin composite in the present embodiment, the resin foam may be a bead foam molded product.
As a result, the above effects can be more prominently exhibited.

尚、本実施形態の樹脂複合体やその製造方法には、上記のようなこと以外に各種の改良を加え得る。
即ち、本発明は、上記例示に何等限定されるものではない。
In addition to the above, various improvements may be added to the resin composite of the present embodiment and the method for producing the same.
That is, the present invention is not limited to the above examples.

次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

(実施例1)
ポリエチレンテレフタレート樹脂(PET)によって形成された矩形板状の樹脂発泡体(ビーズ発泡成形体)を用意した。
これとは別にカーボンUDに樹脂が含浸・担持されたプリプレグシートを複数枚用意した。
尚、用意したプリプレグシートは、樹脂発泡体の片面全体を覆うのに十分な面積を有するものであった。
プリプレグシートをそれぞれ複数枚ずつ積層して2枚の積層シートを構成させた。
この2枚の積層シートを樹脂発泡体の両面に仮接着してサンドイッチ構造の予備成形体を作製した。
該予備成形体を構成している積層シートと樹脂発泡体とを加熱加圧条件下で接着させる接着工程をプレス製法によって実施し、厚さ10mmの板状の芯材の両面にそれぞれ1.2mm厚さの繊維強化樹脂層を有する樹脂複合体を作製した。
得られた樹脂複合体については、繊維強化樹脂層の表面状態を観察し、ボイド数指標を調査した。
また、得られた樹脂複合体の平均密度(D:g/cm)を測定するとともに樹脂複合体の中央部より試験体を切り出して5%圧縮強度(P:MPa)を測定した。
結果、ここで得られた樹脂複合体は、ボイド数指標が「4」で、平均密度が「0.6g/cm」で、5%圧縮強度が「0.6MPa」であることがわかった。
また、芯材となっている樹脂発泡体の見掛け密度を測定した。
結果、樹脂複合体において芯材を構成している樹脂発泡体の見掛け密度は0.23g/cmであることがわかった。
尚、樹脂複合体の平均密度から軽量性の判定を行った。
判定は、0.7g/cm以下の低密度であると「○」、0.7g/cmよりも高い平均密度であると「×」とした。
前記の通りここで得られた樹脂複合体の平均密度は0.6g/cmであったため、この樹脂複合体の軽量性は「○」判定とした。
(Example 1)
A rectangular plate-shaped resin foam (bead foam molded product) formed of polyethylene terephthalate resin (PET) was prepared.
Separately from this, a plurality of prepreg sheets in which resin was impregnated and supported on carbon UD were prepared.
The prepared prepreg sheet had a sufficient area to cover the entire one side of the resin foam.
A plurality of prepreg sheets were laminated to form two laminated sheets.
These two laminated sheets were temporarily adhered to both sides of the resin foam to prepare a preformed body having a sandwich structure.
The bonding step of adhering the laminated sheet constituting the preformed body and the resin foam under heating and pressurizing conditions was carried out by a press manufacturing method, and 1.2 mm each on both sides of a plate-shaped core material having a thickness of 10 mm. A resin composite having a fiber-reinforced resin layer having a thickness was prepared.
For the obtained resin composite, the surface condition of the fiber-reinforced resin layer was observed and the void number index was investigated.
In addition, the average density (D: g / cm 3 ) of the obtained resin composite was measured, and a test piece was cut out from the central portion of the resin composite to measure 5% compressive strength (P: MPa).
As a result, it was found that the resin composite obtained here had a void number index of "4", an average density of "0.6 g / cm 3 ", and a 5% compressive strength of "0.6 MPa". ..
In addition, the apparent density of the resin foam used as the core material was measured.
As a result, it was found that the apparent density of the resin foam constituting the core material in the resin composite was 0.23 g / cm 3.
The lightness was determined from the average density of the resin composite.
The judgment was "○" when the density was 0.7 g / cm 3 or less, and "x" when the average density was higher than 0.7 g / cm 3.
As described above, since the average density of the resin composite obtained here was 0.6 g / cm 3 , the lightness of this resin composite was judged as “◯”.

(実施例2)
樹脂発泡体をポリエチレンテレフタレート樹脂製のビーズ発泡成形体に代えてアクリル樹脂発泡体に変更したこと以外は実施例1と同様に樹脂複合体を作製し、実施例1と同様に評価した。
(Example 2)
A resin composite was produced in the same manner as in Example 1 except that the resin foam was changed to an acrylic resin foam instead of the bead foam molded product made of polyethylene terephthalate resin, and evaluated in the same manner as in Example 1.

(実施例3)
樹脂発泡体をビーズ発泡成形体ではなく塊状発泡体より切り出したアクリル樹脂発泡体に変更したこと以外はこれまでと同様に樹脂複合体を作製し、これまでと同様に評価した。
(Example 3)
A resin composite was produced in the same manner as before, except that the resin foam was changed to an acrylic resin foam cut out from a lumpy foam instead of a bead foam molded product, and evaluated in the same manner as before.

(実施例4、比較例1、比較例2)
実施例1とは見掛け密度の異なる樹脂発泡体を用い、実施例1とは5%圧縮強度や平均密度の異なる樹脂複合体を作製した。
作製した樹脂複合体についてはこれまでと同様に評価した。
結果を下記表に示す。
(Example 4, Comparative Example 1, Comparative Example 2)
Using resin foams having different apparent densities from Example 1, resin composites having different 5% compressive strength and average density from Example 1 were prepared.
The prepared resin composite was evaluated in the same manner as before.
The results are shown in the table below.

Figure 0006933994
Figure 0006933994

以上のことからも、本発明によれば美観に優れた樹脂複合体が提供され得ることがわかる。 From the above, it can be seen that according to the present invention, a resin composite having an excellent aesthetic appearance can be provided.

1:芯材
2:繊維強化樹脂層
20(21,22,23,24,25,26):繊維強化樹脂材
21a,22a:織布(ガラスクロス)
21b:樹脂
100:パネル(樹脂複合体)
100a:表面
101:底壁部
102:周側壁部
103:鍔部
X:平面方向
Y:深さ方向
1: Core material 2: Fiber reinforced resin layer 20 (21, 22, 23, 24, 25, 26): Fiber reinforced resin material 21a, 22a: Woven fabric (glass cloth)
21b: Resin 100: Panel (resin composite)
100a: Surface 101: Bottom wall 102: Peripheral wall 103: Brim X: Plane direction Y: Depth direction

Claims (6)

樹脂発泡体で構成された芯材と、
該芯材の外表面の全てを覆う繊維強化樹脂層と、を備え、
繊維基材及び該繊維基材に含浸された樹脂を有するシート状の繊維強化樹脂材によって前記繊維強化樹脂層が構成され、該繊維強化樹脂層では複数の前記繊維強化樹脂材が積層されており、
前記樹脂発泡体の上下2面が前記繊維強化樹脂層となるように切り出した試験体を該繊維強化樹脂層の表面に対して直交する方向に5%圧縮した際の応力である5%圧縮応力の値をP(MPa)とし、前記芯材及び前記繊維強化樹脂層を含めた全体の平均密度をD(g/cm)としたときに下記式(1)を満たす樹脂複合体。

1.0 ≦ (P/D) ≦ 3.1 ・・・(1)
A core material made of resin foam and
A fiber reinforced resin layer that covers the entire outer surface of the core material is provided.
The fiber-reinforced resin layer is composed of a fiber base material and a sheet-shaped fiber-reinforced resin material having a resin impregnated in the fiber base material , and a plurality of the fiber-reinforced resin materials are laminated in the fiber-reinforced resin layer. ,
5% compressive stress, which is the stress when a test piece cut out so that the upper and lower two surfaces of the resin foam form the fiber reinforced resin layer is compressed by 5% in a direction orthogonal to the surface of the fiber reinforced resin layer. A resin composite satisfying the following formula (1) when the value of is P (MPa) and the average density of the whole including the core material and the fiber reinforced resin layer is D (g / cm 3).

1.0 ≤ (P / D) ≤ 3.1 ... (1)
前記繊維基材は、繊維が一方向に引き揃えられた繊維シートか、織布かの何れかである請求項1記載の樹脂複合体。The resin composite according to claim 1, wherein the fiber base material is either a fiber sheet in which fibers are aligned in one direction or a woven fabric. 前記繊維基材を構成する繊維が、ガラス繊維か、炭素繊維かの何れかである請求項1又は2記載の樹脂複合体。The resin composite according to claim 1 or 2, wherein the fibers constituting the fiber base material are either glass fibers or carbon fibers. 前記繊維基材を構成する繊維が、炭素繊維である請求項3記載の樹脂複合体。The resin composite according to claim 3, wherein the fibers constituting the fiber base material are carbon fibers. 前記樹脂発泡体がポリエチレンテレフタレート樹脂製である請求項1乃至4の何れか1項に記載の樹脂複合体。The resin composite according to any one of claims 1 to 4, wherein the resin foam is made of polyethylene terephthalate resin. 前記樹脂発泡体がビーズ発泡成形体である請求項1乃至5の何れか1項に記載の樹脂複合体。 The resin composite according to any one of claims 1 to 5, wherein the resin foam is a bead foam molded product.
JP2018069310A 2018-03-30 2018-03-30 Resin composite Active JP6933994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018069310A JP6933994B2 (en) 2018-03-30 2018-03-30 Resin composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018069310A JP6933994B2 (en) 2018-03-30 2018-03-30 Resin composite

Publications (2)

Publication Number Publication Date
JP2019177648A JP2019177648A (en) 2019-10-17
JP6933994B2 true JP6933994B2 (en) 2021-09-08

Family

ID=68277263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018069310A Active JP6933994B2 (en) 2018-03-30 2018-03-30 Resin composite

Country Status (1)

Country Link
JP (1) JP6933994B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3091468U (en) * 2002-07-16 2003-01-31 株式会社ジエイエスピー Polypropylene resin foam laminate
JP4113445B2 (en) * 2003-03-11 2008-07-09 積水化学工業株式会社 Slope fill method
JP6161563B2 (en) * 2014-03-31 2017-07-12 積水化成品工業株式会社 Fiber reinforced composite
JP6395896B2 (en) * 2017-04-28 2018-09-26 積水化成品工業株式会社 Foamed particles for in-mold foam molding, in-mold foam molded body and fiber reinforced composite

Also Published As

Publication number Publication date
JP2019177648A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP6325193B2 (en) Carbon fiber reinforced composite material and method for producing the same
JP5578290B1 (en) Molded body having hollow structure and method for producing the same
US20230271389A1 (en) Composite-material aircraft part and method of manufacturing same
TW201827203A (en) Integrally molded body and method for producing same
WO2016159118A1 (en) Molding and manufacturing method therefor
KR20190100184A (en) Composite Structure and Manufacturing Method Thereof
JP6163971B2 (en) Decorative molded product and method for producing decorative molded product
KR20180097499A (en) Base laminate and method for manufacturing fiber-reinforced plastic
TWI798405B (en) Manufacturing method of molded products
JP4381941B2 (en) Laminate for automotive interior ceiling materials
JP5236840B1 (en) Carbon fiber reinforced composite material and method for producing the same
JP6933994B2 (en) Resin composite
CN105584058B (en) The technique that composite makes high ferro equipment ceiling board
JPWO2019188195A1 (en) Manufacturing method of fiber reinforced plastic
JP7042172B2 (en) Resin complex
JP2019177646A (en) Method for producing resin composite
US20200001550A1 (en) Method for producing fiber-reinforced plastic
WO2020202903A1 (en) Fiber reinforced plastic molded body
JP2020037263A (en) Resin composite
KR20220001413A (en) Forming method of carbon fiber reinforced plastic
JP7441741B2 (en) Resin composite and method for manufacturing resin composite
JP6858541B2 (en) Manufacturing method of composite material molded product
JP2020001335A (en) Resin composite
CN108068411B (en) Lightweight low-odor low-VOC high-impact-strength high-temperature-resistant PP honeycomb composite board and preparation method thereof
JP6917504B2 (en) Method for manufacturing resin complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210820

R150 Certificate of patent or registration of utility model

Ref document number: 6933994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150