JP6931821B2 - Heat storage unit - Google Patents

Heat storage unit Download PDF

Info

Publication number
JP6931821B2
JP6931821B2 JP2016171828A JP2016171828A JP6931821B2 JP 6931821 B2 JP6931821 B2 JP 6931821B2 JP 2016171828 A JP2016171828 A JP 2016171828A JP 2016171828 A JP2016171828 A JP 2016171828A JP 6931821 B2 JP6931821 B2 JP 6931821B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
heat conductive
storage unit
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016171828A
Other languages
Japanese (ja)
Other versions
JP2017075773A5 (en
JP2017075773A (en
Inventor
龍太 畠中
龍太 畠中
富宏 金城
富宏 金城
雅規 斎藤
雅規 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Publication of JP2017075773A publication Critical patent/JP2017075773A/en
Publication of JP2017075773A5 publication Critical patent/JP2017075773A5/ja
Application granted granted Critical
Publication of JP6931821B2 publication Critical patent/JP6931821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Packages (AREA)

Description

この発明は、蓄熱ユニットに関するものであり、より詳細には、相変化蓄熱材(Phase change material, PCM)を用いた蓄熱ユニットに関する。 The present invention relates to a heat storage unit, and more particularly to a heat storage unit using a phase change material (PCM).

相変化蓄熱材を用いた蓄熱ユニットが従来知られている。図15は、従来の相変化蓄熱材を用いた蓄熱ユニットの例(下記非特許文献1、2参照)の断面図である。蓄熱ユニット5において、底板511と蓋部513で構成される剛な密閉容器51に相変化蓄熱材53が封入されており、底板には相変化蓄熱材53と接する伝熱フィン55が取り付けられている。 A heat storage unit using a phase change heat storage material is conventionally known. FIG. 15 is a cross-sectional view of an example of a heat storage unit using a conventional phase change heat storage material (see Non-Patent Documents 1 and 2 below). In the heat storage unit 5, the phase change heat storage material 53 is sealed in a rigid closed container 51 composed of a bottom plate 511 and a lid portion 513, and a heat transfer fin 55 in contact with the phase change heat storage material 53 is attached to the bottom plate. There is.

Thomas O. Leimkuehler and Ryan A. Stephan, “Experimental Investigation of Ice Phase Change Material Heat Exchangers”, 42nd International Conference on Environmental Systems (ICES2012), AIAA-2012-3520, 2012.Thomas O. Leimkuehler and Ryan A. Stephan, “Experimental Investigation of Ice Phase Change Material Heat Exchangers”, 42nd International Conference on Environmental Systems (ICES2012), AIAA-2012-3520, 2012. Michael K. Choi,“Using Paraffin with -10℃ to 10℃ Melting Point for Payload Thermal Energy Storage in SpaceX Dragon Trunk”, 11th International Energy Conversion Engineering Conference, AIAA 2013-4099, 2013.Michael K. Choi, “Using Paraffin with -10 ℃ to 10 ℃ Melting Point for Payload Thermal Energy Storage in SpaceX Dragon Trunk”, 11th International Energy Conversion Engineering Conference, AIAA 2013-4099, 2013.

しかしながら、真空環境下においては、密閉容器51は、容器内部から生じる圧力に耐える必要がある。また、密閉容器51の容積は、相変化蓄熱材53の相変化に伴う膨張/収縮に対処するために、相変化蓄熱材53の容積よりも大きくすることが必要である。そのため、密閉容器51の内部において、相変化蓄熱材53で満たされていない空間が生じる。その相変化蓄熱材53で満たされていない空間の圧力は、相変化蓄熱材53の蒸気圧と残留空気圧力の和となるので、大気圧下においては、真空環境下での使用を想定して真空排気後に相変化蓄熱材を充填している場合、相変化蓄熱材53で満たされていない空間と密閉容器51の外部の大気とで挟まれた密閉容器51の部分は外部から加わる大気圧と内部圧力の差圧に耐える必要があり、密閉容器51の重量が大きくなってしまう。一般に相変化蓄熱材は熱伝導率が非常に小さく、相変化蓄熱材が完全に融解する前に、発熱機器が上限温度を超過してしまう。そこで、伝熱フィン55が設けられるが、その重量が加わり更に蓄熱ユニット5の重量が大きくなってしまう。すなわち、従来の蓄熱ユニットは、密閉容器と伝熱フィンの重量が、蓄熱ユニットの総重量の半分以上を占め、蓄熱効率(単位質量辺りの蓄熱量)が非常に悪い。 However, in a vacuum environment, the closed container 51 needs to withstand the pressure generated from the inside of the container. Further, the volume of the closed container 51 needs to be larger than the volume of the phase change heat storage material 53 in order to cope with the expansion / contraction of the phase change heat storage material 53 due to the phase change. Therefore, a space that is not filled with the phase change heat storage material 53 is created inside the closed container 51. The pressure in the space not filled with the phase change heat storage material 53 is the sum of the vapor pressure of the phase change heat storage material 53 and the residual air pressure. When the phase change heat storage material is filled after vacuum exhaust, the portion of the closed container 51 sandwiched between the space not filled with the phase change heat storage material 53 and the atmosphere outside the closed container 51 is the atmospheric pressure applied from the outside. It is necessary to withstand the differential pressure of the internal pressure, and the weight of the closed container 51 becomes large. Generally, the phase change heat storage material has a very low thermal conductivity, and the heat generating device exceeds the upper limit temperature before the phase change heat storage material is completely melted. Therefore, the heat transfer fin 55 is provided, but the weight of the heat transfer fin 55 is added to the heat transfer fin 55, and the weight of the heat storage unit 5 is further increased. That is, in the conventional heat storage unit, the weight of the closed container and the heat transfer fin occupy more than half of the total weight of the heat storage unit, and the heat storage efficiency (heat storage amount per unit mass) is very poor.

また、伝熱フィン55は、密閉容器51の1つの面としか連結されておらず、荷重に耐えることを想定した形状になっていない。そのため、例えば、重量の大きい機器を蓄熱ユニット上に直接搭載することは困難である。 Further, the heat transfer fin 55 is connected to only one surface of the closed container 51, and is not shaped so as to withstand a load. Therefore, for example, it is difficult to directly mount a heavy device on the heat storage unit.

また、従来の蓄熱ユニットの形状に比して、蓄熱ユニットの熱制御の対象の形状は多種多様である。そのため、熱制御の対象からの熱を蓄熱ユニットに伝達するために、取付継手や流体ポンプ等による熱輸送が必要となり、更なる蓄熱効率の低下、そして各部品間の接触熱抵抗に起因する大幅な伝熱特性低下が生じる。 Further, as compared with the shape of the conventional heat storage unit, the shape of the object of heat control of the heat storage unit is various. Therefore, in order to transfer the heat from the object of heat control to the heat storage unit, heat transfer by a mounting joint, a fluid pump, etc. is required, the heat storage efficiency is further reduced, and the contact thermal resistance between each part is significantly reduced. The heat transfer characteristics are deteriorated.

そこで、本発明は、蓄熱ユニットの伝熱特性を改善することを目的の1つとする。 Therefore, one of the objects of the present invention is to improve the heat transfer characteristics of the heat storage unit.

また、本発明は、蓄熱ユニットの蓄熱効率を向上させることを目的の1つとする。 Another object of the present invention is to improve the heat storage efficiency of the heat storage unit.

また、本発明は、蓄熱ユニットの構造強度を向上させることを目的の1つとする。 Another object of the present invention is to improve the structural strength of the heat storage unit.

また、本発明は、蓄熱ユニットの形状の自由度を高め、蓄熱ユニットを多種多様な熱制御対象に直接取り付け可能にすることを目的の1つとする。 Another object of the present invention is to increase the degree of freedom in the shape of the heat storage unit so that the heat storage unit can be directly attached to a wide variety of heat control objects.

本発明の1つの態様は、フィルムを備える密閉容器と、前記密閉容器に封入された相変化蓄熱材と、前記相変化蓄熱材と接触する熱伝導性部材と、を含む蓄熱ユニットであって、前記密閉容器は、その一部が熱伝導材料層をも備え、前記熱伝導性部材の一部は前記フィルムに熱伝導可能に接合され、前記熱伝導性部材は、前記密閉容器の密閉空間の内方に突出するように設けられている、蓄熱ユニットを提供するものである。 One aspect of the present invention is a heat storage unit including a closed container provided with a film, a phase change heat storage material enclosed in the closed container, and a heat conductive member in contact with the phase change heat storage material. The closed container is partially provided with a heat conductive material layer, a part of the heat conductive member is thermally conductively bonded to the film, and the heat conductive member is a closed space of the closed container. It provides a heat storage unit that is provided so as to project inward.

前記熱伝導性部材は、第1の熱伝導性部材と第2の熱伝導性部材とを含み、前記第2の熱伝導性部材は、前記密閉空間で、前記第1の熱伝導性部材に対向して配置されることができる。 The heat conductive member includes a first heat conductive member and a second heat conductive member, and the second heat conductive member is attached to the first heat conductive member in the closed space. Can be placed facing each other.

前記第1の熱伝導性部材及び前記第2の熱伝導性部材は、波状部材であり、前記第1の熱伝導性部材の谷部は前記フィルムに熱伝導可能に接合され、前記第1の熱伝導性部材と前記第2の熱伝導性部材は互いに噛み合うように配置され、前記第1の熱伝導性部材及び前記第2の熱伝導性部材の谷部は、前記フィルムに熱伝導可能に接合されることができる。 The first heat conductive member and the second heat conductive member are wavy members, and the valley portion of the first heat conductive member is thermally conductively bonded to the film, and the first one. The heat conductive member and the second heat conductive member are arranged so as to mesh with each other, and the valley portion of the first heat conductive member and the second heat conductive member can be thermally conducted to the film. Can be joined.

本発明の1つの態様は、それらの間に密閉空間が形成されるように配置された第1のシート部材と第2のシート部材を備え、前記密閉空間の周囲において、前記第1のシート部材と前記第2のシート部材が互いにシールされた密閉容器と、前記密閉容器に封入された相変化蓄熱材と、前記相変化蓄熱材と接触する熱伝導性部材と、を含む蓄熱ユニットであって、前記第1のシート部材及び前記第2のシート部材は、熱伝導材料層を含むフィルムであり、前記熱伝導性部材の一部は前記第1のシート部材に熱伝導可能に接合され、前記熱伝導性部材は、前記密閉容器の密閉空間の内方に突出するように設けられている、蓄熱ユニットを提供するものである。 One aspect of the present invention includes a first seat member and a second seat member arranged so as to form a closed space between them, and the first seat member is provided around the closed space. A heat storage unit including a closed container in which the second sheet member is sealed to each other, a phase change heat storage material enclosed in the closed container, and a heat conductive member in contact with the phase change heat storage material. The first sheet member and the second sheet member are films containing a heat conductive material layer, and a part of the heat conductive member is thermally conductively bonded to the first sheet member. The heat conductive member provides a heat storage unit provided so as to project inward in the closed space of the closed container.

本発明の1つの態様は、それらの間に密閉空間が形成されるように配置された第1のシート部材と第2のシート部材を備え、前記密閉空間の周囲において、前記第1のシート部材と前記第2のシート部材が互いにシールされた密閉容器と、前記密閉容器に封入された相変化蓄熱材と、前記相変化蓄熱材と接触する熱伝導性部材と、を含む蓄熱ユニットであって、前記第1のシート部材は、熱伝導材料層を含むフィルムであり、前記第2のシート部材は、前記第1のシート部材よりも剛性が高く、熱伝導材料部を含み、前記熱伝導性部材の一部は前記第1のシート部材の熱伝導材料層及び/又は前記第2のシート部材の熱伝導材料部に熱伝導可能に接合され、前記熱伝導性部材は、前記密閉容器の密閉空間の内方に突出するように設けられている、蓄熱ユニットを提供するものである。 One aspect of the present invention includes a first seat member and a second seat member arranged so as to form a closed space between them, and the first seat member is provided around the closed space. A heat storage unit including a closed container in which the second sheet member is sealed to each other, a phase change heat storage material enclosed in the closed container, and a heat conductive member in contact with the phase change heat storage material. The first sheet member is a film containing a heat conductive material layer, and the second sheet member has higher rigidity than the first sheet member, includes a heat conductive material portion, and has the heat conductivity. A part of the member is thermally conductively joined to the heat conductive material layer of the first sheet member and / or the heat conductive material portion of the second sheet member, and the heat conductive member is hermetically sealed in the closed container. It provides a heat storage unit that is provided so as to project inward of the space.

前記熱伝導性部材は、第1の熱伝導性部材と第2の熱伝導性部材とを含み、前記第1の熱伝導性部材及び前記第2の熱伝導性部材は、波状部材であり、前記第1の熱伝導性部材の一部は前記第1のシート部材に熱伝導可能に接合され、前記第2の熱伝導性部材の一部は前記第2のシート部材に熱伝導可能に接合されることができる。 The heat conductive member includes a first heat conductive member and a second heat conductive member, and the first heat conductive member and the second heat conductive member are wavy members. A part of the first heat conductive member is thermally conductively bonded to the first sheet member, and a part of the second thermally conductive member is thermally conductively bonded to the second sheet member. Can be done.

前記第1の熱伝導性部材の谷部は前記第1のシート部材に熱伝導可能に接合され、前記第2の熱伝導性部材の谷部は前記第2のシート部材に熱伝導可能に接合され、前記第1の熱伝導性部材と前記第2の熱伝導性部材は互いに噛み合うように配置されてことができる。 The valley portion of the first heat conductive member is thermally conductively joined to the first sheet member, and the valley portion of the second heat conductive member is thermally conductively joined to the second sheet member. The first heat conductive member and the second heat conductive member can be arranged so as to mesh with each other.

前記第1の熱伝導性部材及び前記第2の熱伝導性部材の少なくとも一方の、山部と谷部を結ぶ斜面に開口部が設けられることができる。 An opening may be provided on the slope connecting the peak and the valley of at least one of the first thermally conductive member and the second thermally conductive member.

前記蓄熱ユニットが真空環境下にある場合、前記熱伝導性部材は、前記相変化蓄熱材と接触することができる。 When the heat storage unit is in a vacuum environment, the heat conductive member can come into contact with the phase change heat storage material.

前記相変化蓄熱材は、真空状態で前記密閉容器に封入されているものとすることができる。 The phase change heat storage material can be sealed in the closed container in a vacuum state.

前記第1のシート部材は、波状部材とすることができる。 The first sheet member can be a wavy member.

本発明の1つの態様は、密閉容器と、前記密閉容器に封入される相変化蓄熱材と、前記相変化蓄熱材に接触する複数の第1の熱伝導部とを含み、前記密閉容器の内壁部は、熱伝導性を有し、前記複数の第1の熱伝導部の一端が、前記密閉容器の熱源に接する第1の内壁部分に連結され、前記複数の第1の熱伝導部のうちの少なくとも一部の他端が、前記第1の内壁部分に対して前記相変化蓄熱材を挟んだ位置にある第2の内壁部分に連結されている蓄熱ユニットを提供するものである。 One aspect of the present invention includes a closed container, a phase change heat storage material sealed in the closed container, and a plurality of first heat conductive portions in contact with the phase change heat storage material, and an inner wall of the closed container. The portion has thermal conductivity, and one end of the plurality of first heat conductive portions is connected to a first inner wall portion in contact with the heat source of the closed container, and among the plurality of first heat conductive portions. The other end of at least a part of the above provides a heat storage unit connected to a second inner wall portion located at a position where the phase change heat storage material is sandwiched with respect to the first inner wall portion.

前記複数の第1の熱伝導部のほぼ全ての他端が、前記密閉容器の内壁部に連結されているものとすることができる。 It can be assumed that almost all the other ends of the plurality of first heat conductive portions are connected to the inner wall portion of the closed container.

少なくとも1つの第2の熱伝導部を更に含み、前記少なくとも1つの第2の熱伝導部の各々は、前記複数の第1の熱伝導部のうちの少なくとも一部と交点を有し、該交点で連結されているものとすることができる。 Further including at least one second heat conductive portion, each of the at least one second heat conductive portion has an intersection with at least a part of the plurality of first heat conductive portions, and the intersection. It can be assumed that they are connected by.

前記少なくとも1つの第2の熱伝導部のうちの少なくとも一部の一端及び/又は他端が、前記密閉容器の内壁部に連結されているものとすることができる。 It can be assumed that at least one end and / or the other end of at least a part of the at least one second heat conductive portion is connected to the inner wall portion of the closed container.

前記少なくとも1つの第2の熱伝導部のほぼ全ての一端及び/又は他端が、前記密閉容器の内壁部に連結されているものとすることができる。 It can be assumed that almost all one end and / or the other end of the at least one second heat conduction portion is connected to the inner wall portion of the closed container.

前記密閉容器、前記複数の第1の熱伝導部、及び前記少なくとも1つの第2の熱伝導部のうちの少なくとも2つは、一体的に形成されているものとすることができる。 At least two of the closed container, the plurality of first heat conductive portions, and the at least one second heat conductive portion can be integrally formed.

前記複数の第1の熱伝導部及び前記少なくとも1つの第2の熱伝導部のうちの少なくとも一部は、柱状又は線状の熱伝導部であるものとすることができる。 At least a part of the plurality of first heat conductive portions and the at least one second heat conductive portion may be columnar or linear heat conductive portions.

前記複数の第1の熱伝導部及び前記少なくとも1つの第2の熱伝導部は、柱状又は線状の熱伝導部であり、3次元網目構造体を形成しているものとすることができる。 The plurality of first heat conductive portions and at least one second heat conductive portion are columnar or linear heat conductive portions, and may form a three-dimensional network structure.

前記少なくとも1つの第2の熱伝導部の数密度が、前記前記複数の第1の熱伝導部の数密度よりも小さいものとすることができる。 The number density of the at least one second heat conductive portion may be smaller than the number density of the plurality of first heat conductive portions.

本発明の1つの態様は、密閉容器と、前記密閉容器に封入される相変化蓄熱材と、3次元網目構造体とを含み、前記密閉容器の内壁部は、熱伝導性を有し、前記3次元網目構造体は、複数の線状又は柱状の熱伝導部が互いに連結されることにより形成され、前記線状の熱伝導部の一部が、前記相変化蓄熱材に接触し、前記密閉容器の内壁部に連結される連結部を備えている蓄熱ユニットを提供するものである。 One aspect of the present invention includes a closed container, a phase change heat storage material sealed in the closed container, and a three-dimensional network structure, and the inner wall portion of the closed container has thermal conductivity. The three-dimensional network structure is formed by connecting a plurality of linear or columnar heat conductive portions to each other, and a part of the linear heat conductive portions comes into contact with the phase change heat storage material to seal the three-dimensional network structure. Provided is a heat storage unit including a connecting portion connected to an inner wall portion of the container.

上記構成を有する本発明によれば、蓄熱ユニットの伝熱特性を改善することができる。 According to the present invention having the above configuration, the heat transfer characteristics of the heat storage unit can be improved.

また、上記構成を有する本発明によれば、蓄熱ユニットの蓄熱効率を向上させることができる。 Further, according to the present invention having the above configuration, the heat storage efficiency of the heat storage unit can be improved.

また、上記構成を有する本発明によれば、蓄熱ユニットの構造強度を向上させることができる。 Further, according to the present invention having the above configuration, the structural strength of the heat storage unit can be improved.

また、上記構成を有する本発明によれば、蓄熱ユニットの形状の自由度を高め、蓄熱ユニットを多種多様な熱制御対象に直接取り付け可能となる。 Further, according to the present invention having the above configuration, the degree of freedom in the shape of the heat storage unit is increased, and the heat storage unit can be directly attached to a wide variety of heat control targets.

本発明の第1の実施形態に係る蓄熱ユニットの長手方向断面図である。It is a sectional view in the longitudinal direction of the heat storage unit which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る蓄熱ユニットの大気圧環境下と真空環境下の状態を示す図である。It is a figure which shows the state under the atmospheric pressure environment and the vacuum environment of the heat storage unit which concerns on 1st Embodiment of this invention. 第1の熱伝導性部材及び第2の熱伝導性部材がない場合において、アルミ薄板を加熱面とし、アルミ薄板を水平に、フィルムを鉛直方向上側、鉛直方向下側にそれぞれ配置した場合の蓄熱ユニットの状態を示す図である。Heat storage when the first heat conductive member and the second heat conductive member are not provided, the aluminum thin plate is used as the heating surface, the aluminum thin plate is horizontally arranged, and the film is arranged vertically on the upper side and the vertical side on the lower side, respectively. It is a figure which shows the state of a unit. 図3(a)の構成の蓄熱ユニットの所定の熱入力に対する時間−温度特性についての実験結果を示す図である。It is a figure which shows the experimental result about the time-temperature characteristic with respect to a predetermined heat input of the heat storage unit of the structure of FIG. 3A. 図3(b)の構成の蓄熱ユニットの所定の熱入力に対する時間−温度特性についての実験結果を示す図である。It is a figure which shows the experimental result about the time-temperature characteristic with respect to a predetermined heat input of the heat storage unit of the structure of FIG. 3 (b). 本発明の第1の実施形態に係る蓄熱ユニットの所定の熱入力に対する時間−温度特性についての実験結果を示す図である。It is a figure which shows the experimental result about the time-temperature characteristic with respect to a predetermined heat input of the heat storage unit which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態の変形例に係る蓄熱ユニットの長手方向断面図である。It is a longitudinal sectional view of the heat storage unit which concerns on the modification of 1st Embodiment of this invention. 本発明の第1の実施形態の変形例に係る蓄熱ユニットの長手方向断面図である。It is a longitudinal sectional view of the heat storage unit which concerns on the modification of 1st Embodiment of this invention. 本発明の第2の実施形態に係る蓄熱ユニットの斜視図である。It is a perspective view of the heat storage unit which concerns on 2nd Embodiment of this invention. 図7のVIII−VIII断面図である。FIG. 7 is a cross-sectional view taken along the line VIII-VIII of FIG. 本発明の第2の実施形態に係る蓄熱ユニットの効果の1つを説明する図である。It is a figure explaining one of the effects of the heat storage unit which concerns on 2nd Embodiment of this invention. 蓄熱ユニットの熱源に対する配置及び初期状態における相変化蓄熱材3の配置の典型例を示す図である。It is a figure which shows the typical example of the arrangement with respect to the heat source of a heat storage unit, and the arrangement of a phase change heat storage material 3 in an initial state. 本発明の第2の実施形態に係る図8の配置における蓄熱ユニットの所定の熱入力に対する時間−温度特性についての実験結果を示す図である。It is a figure which shows the experimental result about the time-temperature characteristic with respect to a predetermined heat input of the heat storage unit in the arrangement of FIG. 8 which concerns on 2nd Embodiment of this invention. 本発明の第1の実施形態に係る図10(c)の配置における蓄熱ユニットの所定の熱入力に対する時間−温度特性についての実験結果を示す図である。It is a figure which shows the experimental result about the time-temperature characteristic with respect to a predetermined heat input of the heat storage unit in the arrangement of FIG. 10C which concerns on 1st Embodiment of this invention. 本発明の第3の実施形態に係る蓄熱ユニットの断面模式図である。It is sectional drawing of the heat storage unit which concerns on 3rd Embodiment of this invention. 枝分かれ構造を有する第1の熱伝導部の例を示す図である。It is a figure which shows the example of the 1st heat conduction part which has a branched structure. 本発明の第4の実施形態に係る蓄熱ユニットの断面模式図である。It is sectional drawing of the heat storage unit which concerns on 4th Embodiment of this invention. 従来の相変化蓄熱材を用いた蓄熱ユニットの例の断面図である。It is sectional drawing of the example of the heat storage unit using the conventional phase change heat storage material.

以下、本発明の実施形態について図面を参照して説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る蓄熱ユニットの長手方向断面図である。図1に示されるように、本実施形態に係る蓄熱ユニット1は、密閉容器11、相変化蓄熱材13、第1の熱伝導性部材15、第2の熱伝導性部材17を備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First Embodiment)
FIG. 1 is a longitudinal sectional view of the heat storage unit according to the first embodiment of the present invention. As shown in FIG. 1, the heat storage unit 1 according to the present embodiment includes a closed container 11, a phase change heat storage material 13, a first heat conductive member 15, and a second heat conductive member 17.

密閉容器11は、第1のシート部材であるフィルム111と、第2のシート部材であるアルミ薄板113を備える。 The closed container 11 includes a film 111 which is a first sheet member and an aluminum thin plate 113 which is a second sheet member.

フィルム111は、多層フィルムであり、熱融着層であるポリプロピレン層と熱伝導材料層であるアルミ層を含む。フィルム111は、これに限定されるものではなく、単層フィルム/多層フィルムを問わず、他の適切な任意の熱伝導材料層を含むフィルム(例えば熱伝導材料層としてステンレス層を含むフィルムや高熱伝導グラファイト層を含むフィルム)を用いることができるし、熱伝導性材料層を含まないフィルムを用いることもできる。 The film 111 is a multilayer film and includes a polypropylene layer which is a heat-sealing layer and an aluminum layer which is a heat conductive material layer. The film 111 is not limited to this, and is not limited to a single-layer film / a multilayer film, and is a film containing any other suitable heat-conducting material layer (for example, a film containing a stainless steel layer as the heat-conducting material layer or a high heat film). A film containing a conductive graphite layer) can be used, or a film not containing a thermally conductive material layer can be used.

フィルム111とアルミ薄板113は、フィルム111とアルミ薄板113との間に密閉空間115が形成されるように配置され、密閉空間115の周囲において、互いにシールされ、密閉容器11を構成する。フィルム111とアルミ薄板113は、両面熱融着フィルムにより融着され、互いにシールされている。したがって、フィルム111とアルミ薄板113は、熱伝導可能に接合されている。互いにシールされるシート部材の一方を、アルミ薄板といったフィルムよりも剛性の高いシート部材とすることによって、相変化蓄熱材の膨張/収縮に伴う変形を一方の面に集中させ、他方の面の変形を抑えることによって、熱源との接触面積を大きくとることができる。第2のシート部材としては、アルミ薄板に限定されるものではなく、例えば金属層の厚さが大きい多層フィルムといった、第1のシート部材よりも剛性の高い他の適切な任意のシート部材を用いることができる。また、第2のシート部材として、第1のシート部材と同様の熱伝導材料層を含むフィルム又は熱伝導性材料層を含まないフィルムを用いてもよいし、密閉容器11を互いにシールされる2つのシート部材でなく1つのシート部材により構成してもよいことは、当業者に明らかであろう。 The film 111 and the aluminum thin plate 113 are arranged so that a closed space 115 is formed between the film 111 and the aluminum thin plate 113, and are sealed with each other around the closed space 115 to form a closed container 11. The film 111 and the thin aluminum plate 113 are fused by a double-sided heat-sealing film and are sealed to each other. Therefore, the film 111 and the aluminum thin plate 113 are joined so as to be thermally conductive. By making one of the sheet members to be sealed to each other a sheet member having a higher rigidity than a film such as an aluminum thin plate, the deformation due to the expansion / contraction of the phase change heat storage material is concentrated on one surface, and the deformation of the other surface is performed. The contact area with the heat source can be increased by suppressing the above. The second sheet member is not limited to the thin aluminum plate, and any other suitable sheet member having a higher rigidity than the first sheet member, such as a multilayer film having a large metal layer thickness, is used. be able to. Further, as the second sheet member, a film containing the same heat conductive material layer as the first sheet member or a film not containing the heat conductive material layer may be used, or the closed containers 11 are sealed to each other 2 It will be apparent to those skilled in the art that it may be composed of one sheet member instead of one sheet member.

密閉容器11には、相変化蓄熱材13が真空状態で封入されている。蓄熱ユニットを真空環境下で使用しないような場合には、相変化蓄熱材13が真空状態で封入される必要はない。また、相変化蓄熱材13としては、例えば、n−エイコサン、n−ウンデカン、n−ドデカン、n−トリデカン、n−テトラデカン、n−ペンタデカン、n−ヘキサデカン、n−ヘプタデカン、n−オクタデカン、n−ノナデカン、n−ドコサン、n−オクタコサン等のパラフィン、混合ワックス、水、水に添加剤を加えて諸物性を調整した水溶液を用いることができるが、これに限定されるものではなく、他の適切な任意の材料を用いることができる。 The phase change heat storage material 13 is sealed in the closed container 11 in a vacuum state. When the heat storage unit is not used in a vacuum environment, the phase change heat storage material 13 does not need to be sealed in a vacuum state. Examples of the phase change heat storage material 13 include n-icosane, n-undecane, n-dodecane, n-tridecane, n-tetradecane, n-pentadecane, n-hexadecane, n-heptadecane, n-octadecane, and n-. Paraffin such as nonadecane, n-docosane, n-octacosane, mixed wax, water, and an aqueous solution prepared by adding additives to water can be used, but the present invention is not limited to this, and other suitable ones are used. Any material can be used.

このように密閉容器を可撓性を有する材料で構成し、従来の剛な容器に対して柔軟な容器とすることで、蓄熱ユニットの蓄熱効率を向上させることができる。 By forming the closed container with a flexible material and making the container more flexible than the conventional rigid container, the heat storage efficiency of the heat storage unit can be improved.

すなわち、図2に示すように、大気圧環境下においては、密閉容器11が変形可能であるので、密閉容器11に封入されている相変化蓄熱材13が自己支持することができる。一方、上述のように、相変化蓄熱材13は、密閉容器11に真空状態で封入されているが、蓄熱ユニット1が真空環境下にある場合、残留空気や相変化蓄熱材13の蒸気により、密閉容器11が膨張し、残留空気や相変化蓄熱材13の蒸気から形成されるガス層による圧力が密閉容器11内部から生じる。しかしながら、従来の剛な容器では密閉容器に曲げの力が加わるのに対して、本実施形態の柔軟な容器では、可撓性部材に対する引っ張りの力が加わるが、可撓性部材は引っ張りの力に対して強いので、支持が可能となる。ここで、ガス層による圧力自体も、相変化蓄熱材13の封入時の残留空気の圧力が、真空引きに油回転ポンプを使用した場合で数Pa程度、相変化蓄熱材13の蒸気圧も、例えばオクタデカンで常温では数Pa程度と非常に小さく、これは、従来の剛な容器が耐えるべき大気圧に比べて1/10000である。したがって、密閉容器11を可撓性部材で構成できるので、従来の蓄熱ユニットの密閉容器と比べて、重量を格段に小さくすることができる。 That is, as shown in FIG. 2, since the closed container 11 is deformable in an atmospheric pressure environment, the phase change heat storage material 13 sealed in the closed container 11 can self-support. On the other hand, as described above, the phase change heat storage material 13 is sealed in the closed container 11 in a vacuum state, but when the heat storage unit 1 is in a vacuum environment, the residual air and the steam of the phase change heat storage material 13 cause the phase change heat storage material 13. The closed container 11 expands, and pressure from the gas layer formed from the residual air and the vapor of the phase change heat storage material 13 is generated from the inside of the closed container 11. However, in the conventional rigid container, a bending force is applied to the closed container, whereas in the flexible container of the present embodiment, a tensile force is applied to the flexible member, but the flexible member has a tensile force. Because it is strong against, it can be supported. Here, the pressure itself due to the gas layer is such that the pressure of the residual air at the time of filling the phase change heat storage material 13 is about several Pa when an oil rotary pump is used for evacuation, and the vapor pressure of the phase change heat storage material 13 is also. For example, octadecane is very small, about several Pa at room temperature, which is 1/10000 of the atmospheric pressure that a conventional rigid container should withstand. Therefore, since the closed container 11 can be made of a flexible member, the weight can be significantly reduced as compared with the closed container of the conventional heat storage unit.

第1の熱伝導性部材15及び第2の熱伝導性部材17は、樹脂強化グラファイトシートであり、波状の形状を有している。樹脂強化グラファイトシートとしては、ポリエチレンテレフタレート層の支持層として、その上にグラファイト層が形成された積層体を用いることができる。第1の熱伝導性部材15の谷部151は、両面熱融着フィルムにより、フィルム111に融着され、熱伝導可能に接合されている。また、第2の熱伝導性部材17の谷部171は、両面熱融着フィルムにより、アルミ薄板113に融着され、熱伝導可能に接合されている。第1の熱伝導性部材15及び第2の熱伝導性部材17は、樹脂強化グラファイトシートに限定されるものでなく、他の適切な任意の材料のものとすることができる。例えば、ポリプロピレン層と熱伝導層を含む多層フィルムとすることができ、この場合、フィルム111及びアルミ薄板113への融着は、両面熱融着フィルムを使うこと無く、自身が有するポリプロピレン層のみで熱融着することが可能である。第1の熱伝導性部材15と第2の熱伝導性部材17は、互いに噛み合うように配置されている。第1の熱伝導性部材15及び第2の熱伝導性部材17の、山部と谷部を結ぶ斜面には、融解した相変化蓄熱材13の流動を容易とするために、任意の数、形状の開口部をそれぞれ設けてもよい。 The first heat conductive member 15 and the second heat conductive member 17 are resin-reinforced graphite sheets and have a wavy shape. As the resin-reinforced graphite sheet, a laminate in which a graphite layer is formed can be used as a support layer for the polyethylene terephthalate layer. The valley portion 151 of the first heat conductive member 15 is fused to the film 111 by a double-sided heat-sealing film and is bonded so as to be heat conductive. Further, the valley portion 171 of the second heat conductive member 17 is fused to the aluminum thin plate 113 by a double-sided heat fusion film, and is bonded so as to be heat conductive. The first heat conductive member 15 and the second heat conductive member 17 are not limited to the resin reinforced graphite sheet, and may be made of any other suitable material. For example, it can be a multilayer film including a polypropylene layer and a heat conductive layer. In this case, the film 111 and the aluminum thin plate 113 can be fused only by the polypropylene layer owned by the film without using the double-sided heat fusion film. It can be heat-sealed. The first heat conductive member 15 and the second heat conductive member 17 are arranged so as to mesh with each other. On the slopes of the first heat conductive member 15 and the second heat conductive member 17 connecting the peaks and valleys, an arbitrary number, in order to facilitate the flow of the melted phase change heat storage material 13, Each may be provided with a shaped opening.

本実施形態においては、第1の熱伝導性部材15及び第2の熱伝導性部材17の形状は、断面が「く」の字形であるが、断面が台形状、矩形状等他の適切な波状の形状とすることができる。また、熱伝導性部材の数は少なくとも1つであればよく、その形状も波状に限定されるものではなく、他の適切な任意の形状とすることができる。更に、蓄熱ユニットを真空環境下で使用しないような場合には、容器が大きく膨張してフィルム111とアルミ薄板113との間の距離が大きくなる事象が発生しにくいため、熱伝導性部材は、密閉容器の密閉空間の内方に突出するように設けられていれば、相変化蓄熱材と接触が保たれるので、そのように構成してもよい。 In the present embodiment, the shapes of the first heat conductive member 15 and the second heat conductive member 17 have a "<" shape in cross section, but other suitable cross sections such as trapezoidal and rectangular. It can have a wavy shape. Further, the number of the heat conductive members may be at least one, and the shape thereof is not limited to a wavy shape, and any other suitable shape can be used. Furthermore, when the heat storage unit is not used in a vacuum environment, it is unlikely that the container will expand significantly and the distance between the film 111 and the aluminum thin plate 113 will increase. If it is provided so as to project inward of the closed space of the closed container, the contact with the phase change heat storage material is maintained, and thus it may be configured as such.

第1の熱伝導性部材15及び前記第2の熱伝導性部材17は、蓄熱ユニット1が真空環境下にある場合であっても、相変化蓄熱材13と接触するようにされている。これは、以下の理由による。 The first heat conductive member 15 and the second heat conductive member 17 are made to come into contact with the phase change heat storage material 13 even when the heat storage unit 1 is in a vacuum environment. This is due to the following reasons.

上述のように、蓄熱ユニット1が真空環境下にある場合、残留ガスや相変化蓄熱材13の蒸気により、密閉容器11が膨張し、残留ガスや相変化蓄熱材13の蒸気から形成されるガス層が生じることとなるが、このガス層により熱伝導が妨げられるので、蓄熱ユニット1の伝熱特性が悪化する。 As described above, when the heat storage unit 1 is in a vacuum environment, the closed container 11 expands due to the residual gas and the steam of the phase change heat storage material 13, and the gas formed from the residual gas and the steam of the phase change heat storage material 13. A layer is formed, but since heat conduction is hindered by this gas layer, the heat transfer characteristics of the heat storage unit 1 are deteriorated.

すなわち、第1の熱伝導性部材15及び第2の熱伝導性部材17がない場合、例えば、図3(a)、(b)に示されるように、アルミ薄板113を加熱面とし、アルミ薄板113を水平に、フィルム111を鉛直方向上側、鉛直方向下側にそれぞれ配置した場合を考える。フィルム111を鉛直方向上側に配置した図3(a)においては、アルミ薄板113の全面に相変化蓄熱材13が接触するため、相変化蓄熱材13に熱が効率よく伝えられ、また自然対流により伝熱が促進される。これに対して、フィルム111を鉛直方向下側に配置した図3(b)においては、アルミ薄板113に接触する相変化蓄熱材13の面積が減少し、ガス層に接触する面積が大きいため、相変化蓄熱材13に熱が伝わりにくくなっている。更に、相変化蓄熱材13の固相部分が重力によって沈降するので、対流による伝熱も行われなくなってしまう。 That is, when the first heat conductive member 15 and the second heat conductive member 17 are not present, for example, as shown in FIGS. 3A and 3B, the aluminum thin plate 113 is used as a heating surface and the aluminum thin plate is used as a heating surface. Consider a case where the 113 is arranged horizontally and the film 111 is arranged on the upper side in the vertical direction and the lower side in the vertical direction, respectively. In FIG. 3A in which the film 111 is arranged on the upper side in the vertical direction, the phase change heat storage material 13 comes into contact with the entire surface of the aluminum thin plate 113, so that heat is efficiently transferred to the phase change heat storage material 13 and by natural convection. Heat transfer is promoted. On the other hand, in FIG. 3B in which the film 111 is arranged on the lower side in the vertical direction, the area of the phase change heat storage material 13 in contact with the aluminum thin plate 113 is reduced, and the area in contact with the gas layer is large. It is difficult for heat to be transferred to the phase change heat storage material 13. Further, since the solid phase portion of the phase change heat storage material 13 is settled by gravity, heat transfer by convection is not performed.

そのため、本実施形態において、第1の熱伝導性部材15及び前記第2の熱伝導性部材17は、蓄熱ユニット1が真空環境下にある場合であっても、相変化蓄熱材13と接触するようにすることによって、蓄熱ユニット1の配置の向きにかかわらず、相変化蓄熱材13に熱を伝えやすくすることができる。 Therefore, in the present embodiment, the first heat conductive member 15 and the second heat conductive member 17 come into contact with the phase change heat storage material 13 even when the heat storage unit 1 is in a vacuum environment. By doing so, it is possible to easily transfer heat to the phase change heat storage material 13 regardless of the orientation of the arrangement of the heat storage unit 1.

図4(a)〜(c)は、所定の熱入力に対する時間−温度特性についての、図3(a)、(b)の構成の蓄熱ユニットと本実施形態による蓄熱ユニットの比較実験結果を示す図である。 4 (a) to 4 (c) show the results of a comparative experiment between the heat storage unit having the configuration of FIGS. 3 (a) and 3 (b) and the heat storage unit according to the present embodiment with respect to the time-temperature characteristics with respect to a predetermined heat input. It is a figure.

各実験において、熱源2として、ヒータを取り付けたアルミ板を用いた。そして、アルミ板のヒータが取り付けられた面とは反対側の面に蓄熱ユニット1を取り付け、相変化蓄熱材13のアルミ薄板113と接している部分の温度とほぼ等しいと考えられるアルミ板の温度と、相変化蓄熱材13の最も温度が低いと考えられる部分の温度とほぼ等しいと考えられるフィルム111の中央部の温度を測定した。相変化蓄熱材13はオクタデカンを用い、入力した熱量は各図に示されるように、約10Wであった。 In each experiment, an aluminum plate to which a heater was attached was used as the heat source 2. Then, the heat storage unit 1 is attached to the surface of the aluminum plate opposite to the surface to which the heater is attached, and the temperature of the aluminum plate considered to be substantially equal to the temperature of the portion of the phase change heat storage material 13 in contact with the aluminum thin plate 113. The temperature of the central portion of the film 111, which is considered to be substantially equal to the temperature of the portion of the phase change heat storage material 13 which is considered to have the lowest temperature, was measured. Octadecane was used as the phase change heat storage material 13, and the amount of heat input was about 10 W as shown in each figure.

上述のようにフィルム中央部の温度が相変化蓄熱材13の最も低い温度と考えられるので、フィルム中央部の温度の各グラフにおける変曲点が、相変化蓄熱材13が完全に融解したことを示す点と考えられる。図3(b)の構成に対応する図4(b)から、図3(b)の構成においては、相変化蓄熱材13が完全に融解する前に、アルミ板の温度が上昇してしまっていることが分かる。 Since the temperature at the center of the film is considered to be the lowest temperature of the phase change heat storage material 13 as described above, the inflection point in each graph of the temperature at the center of the film indicates that the phase change heat storage material 13 is completely melted. It is considered to be a point to show. From FIG. 4 (b) corresponding to the configuration of FIG. 3 (b), in the configuration of FIG. 3 (b), the temperature of the aluminum plate rises before the phase change heat storage material 13 is completely melted. You can see that there is.

これに対して、第1の熱伝導性部材15と第2の熱伝導性部材17を有する本実施形態によれば、アルミ板の温度が、図3(a)の構成に対応する図4(a)と同様の変化を示し、熱伝導が効率よく行われていることが分かる。また、相変化蓄熱材13の完全融解に対応する変曲点におけるアルミ板とオクタデカンの融点の温度差ΔTが、図3(b)の構成に対応する図4(b)に比べて、約40℃から約13℃まで抑制された。 On the other hand, according to the present embodiment having the first heat conductive member 15 and the second heat conductive member 17, the temperature of the aluminum plate corresponds to the configuration of FIG. 3 (a). It shows the same change as a), and it can be seen that heat conduction is performed efficiently. Further, the temperature difference ΔT between the melting points of the aluminum plate and the octadecane at the inflection point corresponding to the complete melting of the phase change heat storage material 13 is about 40 as compared with FIG. 4 (b) corresponding to the configuration of FIG. 3 (b). It was suppressed from ° C to about 13 ° C.

次に、本実施形態に係る蓄熱ユニットの製造方法について説明する。 Next, a method of manufacturing the heat storage unit according to the present embodiment will be described.

まず、2枚の樹脂強化グラファイトシートを波状に折り曲げる。 First, the two resin-reinforced graphite sheets are bent in a wavy shape.

続いて、波状に折り曲げた矩形の樹脂強化グラファイトシートと、予め凸型にプレス成型された、ポリプロピレン層とアルミ層を含む矩形の多層フィルムとの間に両面熱融着フィルムを挟み、局所熱融着装置で加熱/押し付けを行い融着する。もう1枚の波状に折り曲げた樹脂強化グラファイトシートとアルミ薄板についても、同様にして融着する。樹脂強化グラファイトシートと多層フィルムとの接合方法は、融着に限定されるものでなく、非常に厚みの小さい接着剤層による等、熱伝導可能な接合であれば、他の適切な任意の方法を使用することができる。また、樹脂強化グラファイトシートに換えてポリプロピレン層と熱伝導層を含む多層フィルムを使う場合は、両面熱融着フィルムを使うこと無く、自身が有するポリプロピレン層のみで熱融着することが可能である。 Subsequently, a double-sided heat-sealing film is sandwiched between a rectangular resin-reinforced graphite sheet bent in a wavy shape and a rectangular multilayer film containing a polypropylene layer and an aluminum layer, which is press-molded in a convex shape in advance, and locally heat-fused. Heat / press with a wearing device to fuse. The resin-reinforced graphite sheet and the aluminum thin plate, which are bent in a wavy shape, are also fused in the same manner. The method of joining the resin-reinforced graphite sheet and the multilayer film is not limited to fusion, and any other suitable method can be used as long as it is a heat-conducting bond such as by a very thin adhesive layer. Can be used. Further, when a multilayer film containing a polypropylene layer and a heat conductive layer is used instead of the resin-reinforced graphite sheet, it is possible to heat-fuse only the polypropylene layer of its own without using a double-sided heat-sealing film. ..

多層フィルムには、内部の真空排気を行うために真空排気チューブを取り付けて、リークしないように接着をしておくこともできる。 A vacuum exhaust tube can be attached to the multilayer film for internal vacuum exhaust and adhered to prevent leakage.

次に、多層フィルムとアルミ薄板を重ねて位置合わせを行い、相変化蓄熱材13の充填用に1辺を残して、インパルス熱融着装置で3辺を熱融着し、袋体を作成する。 Next, the multilayer film and the aluminum thin plate are overlapped and aligned, leaving one side for filling the phase change heat storage material 13, and heat-sealing the three sides with an impulse heat fusion device to create a bag body. ..

事前に融解させた相変化蓄熱材13を未融着の1辺から袋体に流し込み、冷蔵装置で冷却して相変化蓄熱材13を凝固させ、袋体を冷蔵装置から取り出す。 The phase change heat storage material 13 melted in advance is poured into the bag body from one side that has not been fused, cooled by a refrigerating device to solidify the phase change heat storage material 13, and the bag body is taken out from the refrigerating device.

その後、真空環境下で熱融着を行う真空熱融着装置内に、袋体をセットし、未融着の1辺を熱融着する。 After that, the bag body is set in the vacuum heat fusion apparatus that performs heat fusion in a vacuum environment, and one side of the unfused side is heat-sealed.

真空熱融着装置を用いることに換えて、以下のようにしてもよい。すなわち、袋体内部の相変化蓄熱材13が融解する前に、真空排気チューブを用いて袋体内部の真空引きを行い、必要な真空度(相変化蓄熱材の蒸気圧以下が望ましい)に到達したら、真空引きを継続したまま、相変化蓄熱材充填部と真空排気チューブ取り付け部の間を、インパルス熱融着装置で熱融着することによって密閉容器11を形成し、真空引きを停止する。その後、温度・圧力・時間を制御可能な熱板式熱融着装置で密閉容器11の全辺を、再シールする。このような方法によれば、より高い真空度で相変化蓄熱材13を密閉容器11に封入することができる。 Instead of using the vacuum heat fusion device, the following may be used. That is, before the phase change heat storage material 13 inside the bag body is melted, the inside of the bag body is evacuated using a vacuum exhaust tube to reach the required degree of vacuum (preferably less than the vapor pressure of the phase change heat storage material). Then, while continuing the evacuation, the closed container 11 is formed by heat-sealing between the phase change heat storage material filling portion and the vacuum exhaust tube mounting portion with an impulse heat fusion device, and the evacuation is stopped. After that, the entire side of the closed container 11 is resealed with a hot plate type heat fusion device capable of controlling the temperature, pressure, and time. According to such a method, the phase change heat storage material 13 can be sealed in the closed container 11 with a higher degree of vacuum.

上記実施形態においては、相変化蓄熱材13の融解/凝固による体積変化による力が、第1の熱伝導性部材15及び第2の熱伝導性部材17に加わる。そのため、相変化蓄熱材13の融解/凝固による体積変化による力によって第1の熱伝導性部材15及び第2の熱伝導性部材17の破壊を防止するために、第3の熱伝導性部材をフィルム111と第1の熱伝導性部材15との間に配置してもよい。 In the above embodiment, the force due to the volume change due to melting / solidification of the phase change heat storage material 13 is applied to the first heat conductive member 15 and the second heat conductive member 17. Therefore, in order to prevent the first heat conductive member 15 and the second heat conductive member 17 from being destroyed by the force due to the volume change due to the melting / solidification of the phase change heat storage material 13, the third heat conductive member is used. It may be arranged between the film 111 and the first heat conductive member 15.

例えば、図5に示されるように、第1の熱伝導性部材の凹凸の間隔が最も短くなる方向に長く、その長手方向両端部がコの字状に折り曲げられているアルミ薄板117を、両面熱融着フィルムにより、フィルム111に接合し、第1の熱伝導性部材15の谷部を、両面熱融着フィルムにより、アルミ薄板117に接合してもよい。このような構成により、第1の熱伝導性部材の凹凸の間隔が最も短くなる方向に対する柔軟性を保ちつつ、第1の熱伝導性部材の凹凸の間隔が最も短くなる方向と直交する方向に対しては曲がりにくくすることができる。第3の熱伝導性部材の長手方向両端部の折り曲げ形状は、コの字状に限定されるものではなく、第1の熱伝導性部材の凹凸の間隔が最も短くなる方向に対する柔軟性を保ちつつ、第1の熱伝導性部材の凹凸の間隔が最も短くなる方向と直交する方向に対しては曲がりにくくするものであれば、他の適切な任意の形状とすることができる。 For example, as shown in FIG. 5, both sides of an aluminum thin plate 117 having a long distance between the irregularities of the first heat conductive member in the direction of being the shortest and both ends in the longitudinal direction being bent in a U shape. It may be bonded to the film 111 by the heat-sealing film, and the valley portion of the first heat conductive member 15 may be bonded to the aluminum thin plate 117 by the double-sided heat-sealing film. With such a configuration, while maintaining flexibility in the direction in which the distance between the irregularities of the first heat conductive member is the shortest, in the direction orthogonal to the direction in which the distance between the irregularities of the first heat conductive member is the shortest. On the other hand, it can be made difficult to bend. The bent shape of both ends of the third heat conductive member in the longitudinal direction is not limited to a U shape, and maintains flexibility in the direction in which the distance between the irregularities of the first heat conductive member is the shortest. On the other hand, any other suitable shape can be used as long as it is difficult to bend in the direction orthogonal to the direction in which the distance between the irregularities of the first heat conductive member is the shortest.

また、図6に示されるように、第1の熱伝導性部材の凹凸の間隔が最も短くなる方向に長く、山部と谷部の間の深さが、第1の熱伝導性部材15の山部と谷部の間の深さよりも浅い波状のアルミ薄板119を、両面熱融着フィルムにより、フィルム111に接合し、第1の熱伝導性部材15の谷部を、両面熱融着フィルムにより、アルミ薄板119に接合してもよい。このような構成により、第1の熱伝導性部材の凹凸の間隔が最も短くなる方向に対する柔軟性を保ちつつ、第1の熱伝導性部材の凹凸の間隔が最も短くなる方向と直交する方向に対しては曲がりにくくすることができる。このような構成に換えて、フィルム111自体を第1の熱伝導性部材15の山部と谷部の間の深さよりも浅い波状の形状とし、フィルム111の谷部に第1の熱伝導性部材15の谷部を接合してもよい。 Further, as shown in FIG. 6, the distance between the irregularities of the first heat conductive member is long in the direction of being the shortest, and the depth between the peak and the valley is the depth of the first heat conductive member 15. A wavy aluminum thin plate 119 shallower than the depth between the peaks and valleys is bonded to the film 111 by a double-sided heat-sealing film, and the valleys of the first heat conductive member 15 are bonded to the double-sided heat-sealing film. May be joined to the thin aluminum plate 119. With such a configuration, while maintaining flexibility in the direction in which the distance between the irregularities of the first heat conductive member is the shortest, in the direction orthogonal to the direction in which the distance between the irregularities of the first heat conductive member is the shortest. On the other hand, it can be made difficult to bend. Instead of such a configuration, the film 111 itself has a wavy shape shallower than the depth between the peaks and valleys of the first heat conductive member 15, and the first heat conductivity is formed in the valleys of the film 111. The valley portion of the member 15 may be joined.

また、第3の熱伝導性部材をフィルム111と第1の熱伝導性部材15との間に配置する構成に換えて、第1の熱伝導性部材15を用いずに、フィルム111自体を波状の形状としてもよい。このような構成により、密閉容器11に収容可能な相変化蓄熱材13の量は少なくなるものの、第1の熱伝導性部材の凹凸の間隔が最も短くなる方向に対する柔軟性を保ちつつ、第1の熱伝導性部材の凹凸の間隔が最も短くなる方向と直交する方向に対しては曲がりにくくすることができる。 Further, instead of arranging the third heat conductive member between the film 111 and the first heat conductive member 15, the film 111 itself is wavy without using the first heat conductive member 15. It may be in the shape of. With such a configuration, the amount of the phase change heat storage material 13 that can be accommodated in the closed container 11 is reduced, but the first is flexible in the direction in which the interval between the irregularities of the first heat conductive member is the shortest. It is possible to make it difficult to bend in the direction orthogonal to the direction in which the distance between the irregularities of the heat conductive member is the shortest.

(第2の実施形態)
図7は、本発明の第2の実施形態に係る蓄熱ユニットの斜視図である。また、図8は、図7のVIII−VIII断面図である。ここでこの斜視図において、蓄熱ユニットの内部を見やすくするために、蓄積ユニットの側壁と相変化蓄熱材は除いている。この図7、図8を参照して、本発明の第2の実施形態の構成及び動作原理を説明する。第1の実施形態と重複する説明は省略する。
(Second Embodiment)
FIG. 7 is a perspective view of the heat storage unit according to the second embodiment of the present invention. 8 is a cross-sectional view taken along the line VIII-VIII of FIG. Here, in this perspective view, the side wall of the storage unit and the phase change heat storage material are excluded in order to make it easier to see the inside of the heat storage unit. The configuration and operating principle of the second embodiment of the present invention will be described with reference to FIGS. 7 and 8. The description overlapping with the first embodiment will be omitted.

本実施形態に係る蓄熱ユニット3は、密閉容器31、相変化蓄熱材33、3次元網目構造体35を含む。 The heat storage unit 3 according to the present embodiment includes a closed container 31, a phase change heat storage material 33, and a three-dimensional network structure 35.

密閉容器31は、直方体の形状を有し、熱伝導性を有する材料で構成されている。密閉容器31の形状は直方体に限定されるものではなく、任意の形状とすることができる。また、この密閉容器31を構成する熱伝導性を有する材料としては、例えば、アルミ、銅、アルミや銅の合金を用いることができるが、これに限定されるものではなく、他の適切な任意の材料を用いることができる。密閉容器31には、相変化蓄熱材33を真空状態で封入されている。相変化蓄熱材33は、大気圧状態で封入されてもよい。相変化蓄熱材33としては、例えば、n−エイコサン、n−ウンデカン、n−ドデカン、n−トリデカン、n−テトラデカン、n−ペンタデカン、n−ヘキサデカン、n−ヘプタデカン、n−オクタデカン、n−ノナデカン、n−ドコサン、n−オクタコサン等のパラフィン、混合ワックス、エリスリトール、ペンタエリスリトール、高密度ポリエチレン、硝酸リチウム水、水に添加剤を加えて諸物性を調整した水溶液を用いることができるが、これに限定されるものではなく、他の適切な任意の材料を用いることができる。 The closed container 31 has a rectangular parallelepiped shape and is made of a material having thermal conductivity. The shape of the closed container 31 is not limited to a rectangular parallelepiped, and can be any shape. Further, as the material having thermal conductivity constituting the closed container 31, for example, aluminum, copper, an alloy of aluminum or copper can be used, but the material is not limited to this, and any other suitable material can be used. Materials can be used. The phase change heat storage material 33 is sealed in the closed container 31 in a vacuum state. The phase change heat storage material 33 may be sealed in an atmospheric pressure state. Examples of the phase change heat storage material 33 include n-icosane, n-undecane, n-dodecane, n-tridecane, n-tetradecane, n-pentadecane, n-hexadecane, n-heptadecane, n-octadecane, and n-nonadecane. Paraffin such as n-docosane and n-octacosane, mixed wax, erythritol, pentadecane, high-density polyethylene, lithium nitrate water, and an aqueous solution prepared by adding additives to water can be used, but the limitation is limited to this. Any other suitable material can be used, not the one that is used.

密閉容器31の1つの面上には、真空排気や相変化蓄熱材33を密閉容器31に充填するための中空の円筒状のポート357が設けられ、真空排気や相変化蓄熱材33の充填後、封止されている。 A hollow cylindrical port 357 for filling the closed container 31 with the vacuum exhaust or the phase change heat storage material 33 is provided on one surface of the closed container 31, after the vacuum exhaust or the phase change heat storage material 33 is filled. , Is sealed.

3次元網目構造体35は、断面が円形の複数の線状の第1の熱伝導部351a及び第2の熱伝導部351bが互いに連結されることにより形成されている。具体的には、互いに垂直な3つの方向に所定の間隔で配置された線状の第1の熱伝導部351a及び第2の熱伝導部が互いにその交点353で連結されており、3次元網目構造体35が形成されている。各線状の熱伝導部351a及び第2の熱伝導部の方向は、互いに垂直な3つの方向に限定されるものではなく、3次元網目構造体を形成するものであれば、他の適切な任意の方向とすることができ、また線状の熱伝導部351a及び第2の熱伝導部間の間隔は、一定の間隔に限定されるものではなく、変動するものであってもよい。また、線状の熱伝導部351の断面形状は、円形に限定されるものではなく、矩形、多角形、星形等の他の適切な任意の形状とすることができる。また、線状の熱伝導部351a、351bの太さ(断面の寸法)は、一定の太さに限定されるものではなく、変動するものであってもよい。複数の第1の熱伝導部351a'−1、351a'−2は、線状、柱状、板状等の適切な任意の形状とすることができる。また、複数の第1の熱伝導部351a'−1、351a'−2は、異なる形状の熱伝導部の組合せ(例えば、異なる太さの線状の熱伝導部と異なる厚さの板状の熱伝導部の組合せ)で構成してもよい。 The three-dimensional network structure 35 is formed by connecting a plurality of linear first heat conductive portions 351a and second heat conductive portions 351b having a circular cross section to each other. Specifically, the linear first heat conductive portions 351a and the second heat conductive portions arranged at predetermined intervals in three directions perpendicular to each other are connected to each other at their intersections 353, and are a three-dimensional network. The structure 35 is formed. The directions of the linear heat conductive portions 351a and the second heat conductive portion are not limited to the three directions perpendicular to each other, and any other suitable one as long as it forms a three-dimensional network structure. The distance between the linear heat conductive portion 351a and the second heat conductive portion is not limited to a fixed distance, but may vary. Further, the cross-sectional shape of the linear heat conductive portion 351 is not limited to a circle, but may be any other suitable shape such as a rectangle, a polygon, and a star. Further, the thicknesses (cross-sectional dimensions) of the linear heat conductive portions 351a and 351b are not limited to a constant thickness, but may vary. The plurality of first heat conductive portions 351a'-1 and 351a'-2 can have any suitable shape such as linear, columnar, and plate-like. Further, the plurality of first heat conductive portions 351a'-1 and 351a'-2 are a combination of heat conductive portions having different shapes (for example, a linear heat conductive portion having a different thickness and a plate shape having a different thickness). It may be composed of a combination of heat conductive portions).

線状の第1の熱伝導部351a及び第2の熱伝導部351bのうちの一部は、相変化蓄熱材33に接触している。線状の第1の熱伝導部351a及び第2の熱伝導部351bは、ポート357の開口部に相当する部分を除いて、密閉容器31の内壁部311に連結される連結部355を備えている。具体的には、線状の第1の熱伝導部351aは、ポート357の開口部に相当する部分を除いて、その一端が、密閉容器31の熱源4に接する部分である第1の壁に対応する内壁部311である第1の内壁部分311aに連結され、その他端が、第1の内壁部分311aに対して相変化蓄熱材33を挟んで対向する第2の壁に対応する内壁部311である第2の内壁部分311bに連結されている。また、線状の第2の熱伝導部351bは、その両端が、密閉容器31の側壁31c、31dに対応する第3の内壁部分311c及び第4の内壁部分311dに連結されている。ここで、複数の線状の第1の熱伝導部351aのうちの一部を、その一端が第1の内壁部分311aに連結され、その他端は第2の内壁部分311bに連結されていないものとしてもよい。この場合、他端が第2の内壁部分311bに連結しているものと、連結していないものの数やその比は、任意に決定することができる。また、線状の第2の熱伝導部351bの一端及び/又は両端は、第3の内壁部分311c及び/又は第4の内壁部分311dに連結されていなくてもよい。この線状の第1の熱伝導部351a及び第2の熱伝導部351bを構成する熱伝導性を有する材料としては、例えば、アルミ、銅、アルミや銅の合金を用いることができるが、これに限定されるものではなく、他の適切な任意の材料を用いることができる。 A part of the linear first heat conductive portion 351a and the second heat conductive portion 351b is in contact with the phase change heat storage material 33. The linear first heat conductive portion 351a and the second heat conductive portion 351b include a connecting portion 355 connected to the inner wall portion 311 of the closed container 31 except for the portion corresponding to the opening of the port 357. There is. Specifically, the linear first heat conductive portion 351a is provided on the first wall, one end of which is in contact with the heat source 4 of the closed container 31, except for the portion corresponding to the opening of the port 357. The inner wall portion 311 which is connected to the first inner wall portion 311a which is the corresponding inner wall portion 311 and whose other end corresponds to the second wall which faces the first inner wall portion 311a with the phase change heat storage material 33 interposed therebetween. It is connected to the second inner wall portion 311b. Further, both ends of the linear second heat conductive portion 351b are connected to the third inner wall portion 311c and the fourth inner wall portion 311d corresponding to the side walls 31c and 31d of the closed container 31. Here, a part of the plurality of linear first heat conductive portions 351a is connected to one end of the first inner wall portion 311a and the other end is not connected to the second inner wall portion 311b. May be. In this case, the number and the ratio of those whose other ends are connected to the second inner wall portion 311b and those whose other ends are not connected can be arbitrarily determined. Further, one end and / or both ends of the linear second heat conductive portion 351b may not be connected to the third inner wall portion 311c and / or the fourth inner wall portion 311d. As the material having thermal conductivity constituting the linear first thermal conductive portion 351a and the second thermal conductive portion 351b, for example, aluminum, copper, an alloy of aluminum or copper can be used. Any other suitable material can be used, not limited to.

密閉容器31、3次元網目構造体35、ポート357は一体的に形成されており、この一体的な構成は、3Dプリンタを用いて製造することができる。本実施形態による蓄熱ユニットは、3Dプリンタを用いて製造することができるので、蓄熱ユニットを配置可能なスペースに応じた密閉容器の形状の蓄熱ユニットを個別に製造することができる。このように、密閉容器を3次元網目構造体と一体化して形成しているので、従来のように密閉容器に対して別部品の熱伝導部を取り付けた場合に比べて、密閉容器と熱伝導部の間の接触熱抵抗に起因する伝熱特性低下を回避することができ、蓄熱ユニットへの効率の高い伝熱が可能となる。 The closed container 31, the three-dimensional network structure 35, and the port 357 are integrally formed, and this integrated configuration can be manufactured using a 3D printer. Since the heat storage unit according to the present embodiment can be manufactured by using a 3D printer, it is possible to individually manufacture the heat storage unit in the shape of a closed container according to the space in which the heat storage unit can be arranged. In this way, since the closed container is integrally formed with the three-dimensional network structure, the closed container and the heat transfer are different from the case where the heat transfer portion of another part is attached to the closed container as in the conventional case. It is possible to avoid deterioration of heat transfer characteristics due to contact heat resistance between the parts, and it is possible to transfer heat to the heat storage unit with high efficiency.

本実施形態においては、線状の第1の熱伝導部351a及び第2の熱伝導部351bが、熱伝導性を有する密閉容器31の内壁311に連結され、互いに垂直な3つの方向に所定の間隔で配置された線状の第1の熱伝導部351a及び第2の熱伝導部351bが互いに連結されているので、密閉容器31の熱源4に接している第1の壁の壁面からだけでなく、密閉容器の側壁31c、31dや側壁31c、31d及び第1の壁に対向する第2の壁を介して上方と側面方向からも熱が流入し、相変化蓄熱材33全体に熱を伝えることが可能となる。また、図9、図15に示されるように、従来の蓄熱ユニットにおいては、容器と伝熱フィンが構造的に結合されていないため、蓄熱ユニットが真空環境下にある場合、ガス層の圧力に対して、容器の稜部のみで支持する必要があり、また、蓄熱ユニットが大気圧下にある場合や蓄熱ユニットにその他の荷重がかかっている場合、大気圧や荷重に対して、容器の稜部のみで支持する必要があったが、本実施形態によれば、線状の第1の熱伝導部351a及び第2の熱伝導部351bが密閉容器31と連結する連結部355を有し、該連結部355が支持点となり、支持点が増加する。また、座屈の観点からは、線状の第1の熱伝導部351a及び第2の熱伝導部351bの柱の長さが、線状の第1の熱伝導部351a及び第2の熱伝導部351bの各交点355間の間隔まで減少するので、座屈が生じにくくなる。よって、耐圧性や耐荷重性が向上し、容器の軽量化を図ることができる。また、従来の蓄熱ユニットの伝熱フィンは、板状の形状であったため、密閉容器の内容積に対して伝熱フィンの占める体積が大きく、相変化蓄熱材の充填率が小さかったが、本実施形態による蓄熱ユニットは、線状の熱伝導部が互いに連結されることにより形成される3次元網目構造体を伝熱部材としているので、相変化蓄熱材の充填率を大きくすることが可能となった。このように、本実施形態による蓄熱ユニットは、蓄熱ユニットの伝熱特性、蓄熱効率、耐圧性、耐荷重性を大きく改善するものである。 In the present embodiment, the linear first heat conductive portion 351a and the second heat conductive portion 351b are connected to the inner wall 311 of the airtight container 31 having heat conductivity, and are predetermined in three directions perpendicular to each other. Since the linear first heat conductive portions 351a and the second heat conductive portions 351b arranged at intervals are connected to each other, only from the wall surface of the first wall in contact with the heat source 4 of the closed container 31. Instead, heat flows in from above and from the side surface through the side walls 31c and 31d and the side walls 31c and 31d of the closed container and the second wall facing the first wall, and heat is transferred to the entire phase change heat storage material 33. It becomes possible. Further, as shown in FIGS. 9 and 15, in the conventional heat storage unit, since the container and the heat transfer fin are not structurally connected, when the heat storage unit is in a vacuum environment, the pressure of the gas layer is increased. On the other hand, it is necessary to support only the ridge of the container, and when the heat storage unit is under atmospheric pressure or when other load is applied to the heat storage unit, the ridge of the container is exposed to the atmospheric pressure or load. Although it was necessary to support only the portion, according to the present embodiment, the linear first heat conductive portion 351a and the second heat conductive portion 351b have a connecting portion 355 for connecting with the closed container 31. The connecting portion 355 serves as a support point, and the support point increases. Further, from the viewpoint of buckling, the lengths of the columns of the linear first heat conductive portion 351a and the second heat conductive portion 351b are linear, and the lengths of the linear first heat conductive portion 351a and the second heat conductive portion 351a are different. Since it is reduced to the interval between each intersection 355 of the portion 351b, buckling is less likely to occur. Therefore, the pressure resistance and the load capacity are improved, and the weight of the container can be reduced. Further, since the heat transfer fins of the conventional heat storage unit have a plate-like shape, the volume occupied by the heat transfer fins is large with respect to the internal volume of the closed container, and the filling rate of the phase change heat storage material is small. Since the heat storage unit according to the embodiment uses a three-dimensional network structure formed by connecting linear heat conductive portions to each other as a heat transfer member, it is possible to increase the filling rate of the phase change heat storage material. became. As described above, the heat storage unit according to the present embodiment greatly improves the heat transfer characteristics, heat storage efficiency, pressure resistance, and load bearing capacity of the heat storage unit.

本実施形態において、熱流の支配的な流れは、密閉容器31の熱源4に接している第1の壁から、側壁31c、31dや側壁31c、31d及び第1の壁に対向する第2の壁を介さずに、直接線状の第1の熱伝導部351aを介して相変化蓄熱材33に流れる流れである。一方、密閉容器31の第1の壁に連結している線状の熱伝導部351aの方向とは異なる方向の線状の熱伝導部である、密閉容器31の側壁31c、31dに連結している線状の第2の熱伝導部351bは、密閉容器31の強度を大きくする役割も担っている。したがって、必要な強度が担保される範囲において、相変化蓄熱材の充填率を大きくするために、密閉容器31の第1の壁に連結している線状の第1の熱伝導部351aの方向とは異なる方向の線状の第2の熱伝導部351bの数密度を、密閉容器31の第1の壁に連結している線状の第1の熱伝導部351aの数密度よりも小さくしてもよい。本実施形態においては、密閉容器31の第1の壁に連結している線状の第1の熱伝導部351aの方向に直交する方向の線状の第2の熱伝導部351bのピッチを、密閉容器31の第1の壁に連結している線状の第1の熱伝導部351aのピッチよりも大きくしている。 In the present embodiment, the dominant flow of heat flow is from the first wall in contact with the heat source 4 of the closed container 31, the side walls 31c, 31d, the side walls 31c, 31d, and the second wall facing the first wall. This is a flow that flows directly to the phase change heat storage material 33 via the linear first heat conductive portion 351a without passing through. On the other hand, it is connected to the side walls 31c and 31d of the closed container 31, which are linear heat conductive portions in a direction different from the direction of the linear heat conductive portion 351a connected to the first wall of the closed container 31. The linear second heat conductive portion 351b also plays a role of increasing the strength of the closed container 31. Therefore, in order to increase the filling rate of the phase change heat storage material within the range where the required strength is guaranteed, the direction of the linear first heat conductive portion 351a connected to the first wall of the closed container 31. The number density of the linear second heat conductive portion 351b in a direction different from the above is made smaller than the number density of the linear first heat conductive portion 351a connected to the first wall of the closed container 31. You may. In the present embodiment, the pitch of the linear second heat conductive portion 351b in the direction orthogonal to the direction of the linear first heat conductive portion 351a connected to the first wall of the closed container 31 is set. The pitch is made larger than the pitch of the linear first heat conductive portion 351a connected to the first wall of the closed container 31.

このように、熱の流れや、所望の耐圧性や耐荷重性等に応じて、密閉容器の内壁部の各部分毎に、連結される熱伝導部の数密度を変動させることができる。また、熱の流れや、所望の耐圧性や耐荷重性等に応じて、連結される熱伝導部の断面積を変動させたり、相変化蓄熱材との接触面積を増加させるために連結される熱伝導部の断面形状を変えたりしてもよい。また、相変化蓄熱材が溶けにくいと想定される部分に対して同様の構成を適用してもよい。 In this way, the number density of the heat conductive portions to be connected can be varied for each portion of the inner wall portion of the closed container according to the heat flow, the desired pressure resistance, the load bearing capacity, and the like. Further, it is connected in order to change the cross-sectional area of the heat conductive portion to be connected or to increase the contact area with the phase change heat storage material according to the heat flow, the desired pressure resistance, the load bearing capacity, and the like. The cross-sectional shape of the heat conductive portion may be changed. Further, the same configuration may be applied to a portion where the phase change heat storage material is expected to be difficult to melt.

蓄熱ユニット3の熱源4に対する配置及び初期状態における相変化蓄熱材33の配置は、図8に示されるように、蓄熱ユニット3が熱源4に対して鉛直方向上側に配置され、初期状態において相変化蓄熱材33が第1の壁に接して配置される場合の他に、図10(a)〜(c)に示されるように、蓄熱ユニット3が熱源4に対して鉛直方向上側に配置され、初期状態において相変化蓄熱材33が第2の壁に接して配置される場合、蓄熱ユニット3が熱源4に対して鉛直方向下側に配置され、初期状態において相変化蓄熱材33が第1の壁に接して配置される場合、蓄熱ユニット3が熱源4に対して鉛直方向下側に配置され、初期状態において相変化蓄熱材33が第2の壁に接して配置される場合が、典型的な場合として考えられる。 Arrangement of the heat storage unit 3 with respect to the heat source 4 and phase change in the initial state As shown in FIG. 8, the heat storage unit 3 is arranged on the upper side in the vertical direction with respect to the heat source 4, and the phase change in the initial state. In addition to the case where the heat storage material 33 is arranged in contact with the first wall, the heat storage unit 3 is arranged vertically upward with respect to the heat source 4 as shown in FIGS. 10A to 10C. When the phase change heat storage material 33 is arranged in contact with the second wall in the initial state, the heat storage unit 3 is arranged vertically downward with respect to the heat source 4, and the phase change heat storage material 33 is the first in the initial state. When arranged in contact with the wall, it is typical that the heat storage unit 3 is arranged vertically downward with respect to the heat source 4, and the phase change heat storage material 33 is arranged in contact with the second wall in the initial state. It can be considered as a case.

このうち、第1の実施形態において述べたと同様に、図10(a)及び(c)の配置においては、熱源4側にガス層が存在するため、相変化蓄熱材33に熱が伝わりにくくなっている。また、図10(b)、(c)の配置においては、相変化蓄熱材13の固相部分が重力によって沈降するので、対流による伝熱が行われない。よって、図10(c)の配置の場合が最も伝熱特性や蓄熱効率が悪いと考えられる。 Of these, as described in the first embodiment, in the arrangement of FIGS. 10A and 10C, since the gas layer exists on the heat source 4 side, it becomes difficult for heat to be transferred to the phase change heat storage material 33. ing. Further, in the arrangements shown in FIGS. 10B and 10C, since the solid phase portion of the phase change heat storage material 13 is settled by gravity, heat transfer by convection is not performed. Therefore, it is considered that the arrangement shown in FIG. 10C has the worst heat transfer characteristics and heat storage efficiency.

図11a、11bは、所定の熱入力に対する時間−温度特性についての、図8の配置と、最も伝熱特性や蓄熱効率が悪いと考えられる図10(c)の配置の蓄熱ユニット実験結果を示す図である。 11a and 11b show the experimental results of the heat storage unit in the arrangement of FIG. 8 and the arrangement of FIG. 10C, which is considered to have the worst heat transfer characteristics and heat storage efficiency, with respect to the time-temperature characteristics with respect to a predetermined heat input. It is a figure.

各実験において、熱源4として、ヒータを取り付けたアルミ板を用いた。そして、アルミ板のヒータが取り付けられた面とは反対側の面に蓄熱ユニット3を取り付け、相変化蓄熱材33の第1の壁と対向している部分の温度とほぼ等しいと考えられるアルミ板の温度と、相変化蓄熱材33の最も温度が低いと考えられる部分の温度とほぼ等しいと考えられる第2の壁の中央部の温度を測定した。相変化蓄熱材33はオクタデカンを用い、入力した熱量は、0.3W/cm2であった。 In each experiment, an aluminum plate to which a heater was attached was used as the heat source 4. Then, the heat storage unit 3 is attached to the surface of the aluminum plate opposite to the surface on which the heater is attached, and the temperature of the portion of the phase change heat storage material 33 facing the first wall is considered to be substantially equal to that of the aluminum plate. The temperature of the central portion of the second wall, which is considered to be substantially equal to the temperature of the portion of the phase change heat storage material 33 which is considered to have the lowest temperature, was measured. Octadecane was used as the phase change heat storage material 33, and the input heat amount was 0.3 W / cm 2 .

第2の壁の中央部の温度が相変化蓄熱材33の最も低い温度と考えられるので、第1の実施形態において述べたと同様に、第2の壁の中央部の温度の各グラフにおける変曲点が、相変化蓄熱材33が完全に融解したことを示す点と考えられる。本実施形態の図8の配置及び図10(c)の配置のいずれにおいても、アルミ板の温度が、第1の実施形態の図4(a)と同様の変化を示し、熱伝導が効率よく行われていることが分かる。また、相変化蓄熱材33の完全融解に対応する変曲点におけるアルミ板とオクタデカンの融点の温度差ΔTは、図8の配置では11.5°、図10(c)の配置では11.3°と、第1の実施形態と同様に小さい値に抑制された。 Since the temperature at the center of the second wall is considered to be the lowest temperature of the phase change heat storage material 33, the inflection in each graph of the temperature at the center of the second wall is similar to that described in the first embodiment. It is considered that the point indicates that the phase change heat storage material 33 is completely melted. In both the arrangement of FIG. 8 and the arrangement of FIG. 10 (c) of the present embodiment, the temperature of the aluminum plate shows the same change as that of FIG. 4 (a) of the first embodiment, and the heat conduction is efficient. You can see that it is being done. Further, the temperature difference ΔT between the melting points of the aluminum plate and octadecane at the inflection point corresponding to the complete melting of the phase change heat storage material 33 is 11.5 ° in the arrangement shown in FIG. 8 and 11.3 in the arrangement shown in FIG. 10 (c). ° Was suppressed to a small value as in the first embodiment.

図10(a)及び(b)の配置についても、図8及び図10(c)と同様の実験結果が得られ、蓄熱ユニット3や相変化蓄熱材33の配置にかかわらず、三次元網目構造体35によって、伝熱特性や蓄熱効率が大きく改善されていることが分かる。 Regarding the arrangement of FIGS. 10 (a) and 10 (b), the same experimental results as those of FIGS. 8 and 10 (c) were obtained, and the three-dimensional network structure was obtained regardless of the arrangement of the heat storage unit 3 and the phase change heat storage material 33. It can be seen that the body 35 greatly improves the heat transfer characteristics and the heat storage efficiency.

次に、本実施形態の蓄熱ユニットの設計手法について述べる。 Next, the design method of the heat storage unit of this embodiment will be described.

(1)まず、(i)密閉容器の使用可能なフットプリント面積及び形状、並びに許容最大高さ、(ii)熱源から蓄熱ユニットに入力される熱量又は熱流束(入力熱量又は入力熱流速)、(iii)熱源の発熱の継続時間(発熱継続時間)、(iv)その他の各種制約(重量など)を規定する。 (1) First, (i) the usable footprint area and shape of the closed container, and the maximum allowable height, (ii) the amount of heat or heat flux (input heat amount or input heat flow velocity) input from the heat source to the heat storage unit, (Iii) The duration of heat generation of the heat source (heat generation duration), (iv) and various other restrictions (weight, etc.) are specified.

(2)続いて、密閉容器の高さを算出する。まず、密閉容器に充填すべき相変化蓄熱材の質量を、相変化蓄熱材の質量[kg]=入力熱量[W]×発熱継続時間[sec]/相変化蓄熱材の融解潜熱[J/kg]から算出する。次いで、最低限必要な密閉容器の内容積を、最低限必要な密閉容器の内容積[m3]=充填すべき相変化蓄熱材の質量[kg]/相変化蓄熱材の密度[kg/m3]から算出する。ここで、相変化蓄熱材の密度は、固体状態・液状態を含めた密度の最小値を用いる。そして、密閉容器の高さを、密閉容器の高さ[m]=最低限必要な密閉容器の内容積[m3]/フットプリント面積[m2]から算出する。 (2) Subsequently, the height of the closed container is calculated. First, the mass of the phase change heat storage material to be filled in the closed container is the mass of the phase change heat storage material [kg] = input heat amount [W] x heat generation duration [sec] / latent heat of melting of the phase change heat storage material [J / kg]. ] To calculate. Next, the minimum required internal volume of the closed container is the minimum required internal volume of the closed container [m 3 ] = mass of the phase change heat storage material to be filled [kg] / density of the phase change heat storage material [kg / m]. 3 ] to calculate. Here, as the density of the phase change heat storage material, the minimum value of the density including the solid state and the liquid state is used. Then, the height of the closed container is calculated from the height of the closed container [m] = the minimum required internal volume of the closed container [m 3 ] / footprint area [m 2].

(3)線状の熱伝導部の径及びピッチの設定
本実施形態においては、密閉容器の熱源に接している第1の壁からだけでなく、密閉容器の側壁や側壁及び第2の壁を介して第2の壁の壁面と側面方向からも熱が流入するが、その寄与度は、フットプリントの大きさが大きくなるほど小さくなる。そのため、フットプリントの大きさが大きい場合、密閉容器の壁面から遠い位置である、密閉容器の中央部では、密閉容器の第2の壁の壁面や側面方向からの熱の流入が非常に小さくなる。
(3) Setting the diameter and pitch of the linear heat conductive portion In this embodiment, not only from the first wall in contact with the heat source of the closed container, but also the side wall, side wall and second wall of the closed container. Heat also flows in from the wall surface and the side surface direction of the second wall, but the contribution becomes smaller as the size of the footprint increases. Therefore, when the size of the footprint is large, the inflow of heat from the wall surface or the side surface direction of the second wall of the closed container becomes very small at the central portion of the closed container, which is located far from the wall surface of the closed container. ..

そこで、熱の流入が最も少ない場合として、密閉容器の第2の壁の壁面と側面方向からの熱の流入がない場合を考えて、密閉容器の第1の壁及び第2の壁とそれらを連結する1つの線状の熱伝導部フィン、並びに1つの線状の熱伝導部と周囲の相変化蓄熱材(1つの線状の熱伝導部が受け持つ領域)のみをモデル化した簡易的な熱解析を行い、相変化蓄熱材が最も高温になる部分(加熱される下壁に接する部分)と、最も低温になる部分(線状の熱伝導部から最も遠い部分)の最大温度差ΔTを評価する。ここで、ΔTは、加熱時間に対する温度変化特性において、相変化蓄熱材の最も低温になる部分の温度が融点付近から急上昇する瞬間(変曲点の位置)における相変化蓄熱材の最も高温になる部分と最も低温になる部分の温度差とする。ΔTは、対象の熱制御要求により決まるため、許容される値以下になるまで、線状の熱伝導部の径やピッチを調整する。 Therefore, as a case where the heat inflow is the smallest, consider the case where there is no heat inflow from the wall surface and the side surface direction of the second wall of the closed container, and consider the case where the first wall and the second wall of the closed container and them are used. Simple heat that models only one linear heat conductive part fin to be connected, and one linear heat conductive part and surrounding phase change heat storage material (region that one linear heat conductive part is in charge of) Perform analysis and evaluate the maximum temperature difference ΔT between the hottest part of the phase change heat storage material (the part in contact with the heated lower wall) and the coldest part (the part farthest from the linear heat conductive part). do. Here, ΔT becomes the highest temperature of the phase change heat storage material at the moment when the temperature of the lowest temperature portion of the phase change heat storage material rises sharply from the vicinity of the melting point (position of the turning point) in the temperature change characteristic with respect to the heating time. The temperature difference between the part and the part with the lowest temperature. Since ΔT is determined by the target thermal control requirement, the diameter and pitch of the linear heat conductive portion are adjusted until it becomes equal to or less than the allowable value.

線状の熱伝導部の径とピッチが決まると、相変化蓄熱材の充填率(体積比率又は重量比率)が決まる。 When the diameter and pitch of the linear heat conductive portion are determined, the filling rate (volume ratio or weight ratio) of the phase change heat storage material is determined.

(1)のステップでは線状の熱伝導部を無視して密閉容器の外形寸法を決定しており、線状の熱伝導部が増加した分だけ、密閉容器に充填できる相変化蓄熱材の量が減少するため、必要に応じて(1)、(2)のステップを反復して線状の熱伝導部の径及びやピッチを決定する。 In step (1), the external dimensions of the closed container are determined by ignoring the linear heat conductive part, and the amount of phase change heat storage material that can be filled in the closed container by the amount of the increase in the linear heat conductive part. If necessary, the steps (1) and (2) are repeated to determine the diameter and the pitch of the linear heat conductive portion.

このような手順で設計を行えば、側壁や側壁及び第2の壁経由での伝熱を無視しているため、実際に製作された密閉容器は、側壁や側壁及び第2の壁を介した伝熱の効果の分だけ予測よりも優れた伝熱性能を発揮する(ΔTが小さくなる)ことが期待される。 Since the heat transfer through the side wall, the side wall and the second wall is ignored when the design is performed in such a procedure, the actually manufactured closed container is passed through the side wall, the side wall and the second wall. It is expected that the heat transfer performance will be better than expected (ΔT will be smaller) by the amount of the heat transfer effect.

本実施形態においては、線状の熱伝導部は、ポートの断面に相当する部分を除いて、密閉容器の内壁部に連結される連結部を備えているが、線状の熱伝導部の一部が、密閉容器の内壁部に連結される連結部を備えていれば、熱源からの熱が伝達され、また支持点も増加するので、そのように構成することもできる。 In the present embodiment, the linear heat conductive portion includes a connecting portion connected to the inner wall portion of the closed container except for the portion corresponding to the cross section of the port, but is one of the linear heat conductive portions. If the portion includes a connecting portion that is connected to the inner wall portion of the closed container, heat from the heat source is transferred and the number of support points is increased, so that the portion can be configured as such.

(第3の実施形態)
図12は、本発明の第3の実施形態に係る蓄熱ユニットの断面模式図である。この図12を参照して、本発明の第3の実施形態の構成及び動作原理を説明する。第1及び第2の実施形態と重複する説明は省略する。
(Third Embodiment)
FIG. 12 is a schematic cross-sectional view of the heat storage unit according to the third embodiment of the present invention. The configuration and operating principle of the third embodiment of the present invention will be described with reference to FIG. Descriptions that overlap with the first and second embodiments will be omitted.

本実施形態に係る蓄熱ユニット3は、円筒状の熱源に適応したものである。 The heat storage unit 3 according to the present embodiment is adapted to a cylindrical heat source.

本実施形態に係る蓄熱ユニット3'は、2つの密閉容器31'−1、31'−2、相変化蓄熱材33'−1、33'−2、複数の第1の熱伝導部351a'−1、351a'−2を含む。 The heat storage unit 3'according to the present embodiment includes two closed containers 31'-1, 31'-2, phase change heat storage materials 33'-1, 33'-2, and a plurality of first heat conductive portions 351a'-. Includes 1,351a'-2.

2つの密閉容器31'−1、31'−2は、それぞれ、円筒状の熱源4'に接する半円筒状の第1の壁31a'−1、31a'−2、第1の壁31a'−2、31a'−2に対して相変化蓄熱材33'−1、33'−2を挟んで対向する半円筒状の第2の壁31b'−1、31b'−2、第1の壁31a'−1、31a'−2と第2の壁31b'−1、31b'−2の間に密閉空間が形成されるように第1の壁31a'−1、31a'−2と第2の壁31b'−1、31b'−2の外縁部に接続される矩形状の板状の第3の壁31c'−1、31c'−2を備える。そして、2つの密閉容器31'−1、31'−2は、それぞれの第3の壁31c'−1、31c'−2が互いに接するようにボルトで連結されている。 The two closed containers 31'-1 and 31'-2 have a semi-cylindrical first wall 31a'-1, 31a'-2 and a first wall 31a'-, respectively, which are in contact with the cylindrical heat source 4'. Semi-cylindrical second walls 31b'-1, 31b'-2 and first wall 31a facing the phase change heat storage materials 33'-1 and 33'-2 with respect to 2, 31a'-2. The first wall 31a'-1, 31a'-2 and the second wall 31a'-1, 31a'-2 so that a closed space is formed between the'-1 and 31a'-2 and the second wall 31b'-1 and 31b'-2. A rectangular plate-shaped third wall 31c'-1, 31c'-2 connected to the outer edge of the walls 31b'-1 and 31b'-2 is provided. The two closed containers 31'-1 and 31'-2 are bolted so that the third walls 31c'-1 and 31c'-2 are in contact with each other.

2つの密閉容器31'−1、31'−2の内部には、相変化蓄熱材33'−1、33'−2が充填されている。 The insides of the two closed containers 31'-1 and 31'-2 are filled with the phase change heat storage materials 33'-1 and 33'-2.

複数の第1の熱伝導部351a'−1、351a'−2は、径方向に放射状に設けられ、その一端が第1の壁31a'−1、31a'−2の内壁部に連結され、その他端が第2の壁の内壁部31b'−1、31b'−2に連結され、相変化蓄熱材33'−1、33'−2と接触している。 The plurality of first heat conductive portions 351a'-1 and 351a'-2 are provided radially in the radial direction, and one end thereof is connected to the inner wall portions of the first walls 31a'-1 and 31a'-2. The other end is connected to the inner wall portions 31b'-1 and 31b'-2 of the second wall and is in contact with the phase change heat storage materials 33'-1 and 33'-2.

密閉容器31'−1、31'−2、複数の第1の熱伝導部351a'−1、351a'−2は一体的に形成されており、この一体的な構成は、3Dプリンタを用いて製造することができる。 The closed containers 31'-1, 31'-2, and the plurality of first heat conductive portions 351a'-1 and 351a'-2 are integrally formed, and this integrated configuration uses a 3D printer. Can be manufactured.

上記構成に加えて、図12に破線で示されるように、複数の第1の熱伝導部351a'−1、351a'−2と連結する複数の第2の熱伝導部351b'−1、351b'−2を複数の第一の熱伝導部熱伝導部351a'−1、351a'−2の間を橋渡しする形に設けてもよい。第2の熱伝導部351b'−1、351b'−2は単数としてもよい。 In addition to the above configuration, as shown by the broken line in FIG. 12, a plurality of second heat conductive portions 351b'-1, 351b connected to the plurality of first heat conductive portions 351a'-1 and 351a'-2. '-2 may be provided in a form of bridging between a plurality of first heat conductive parts, heat conductive parts 351a'-1 and 351a'-2. The second heat conductive portions 351b'-1 and 351b'-2 may be singular.

上記実施形態においては、複数の第1の熱伝導部351a'−1、351a'−2同士の間隔は、第2の壁31b'−1、31b'−2に近づくほど大きくなり、相変化蓄熱材に熱を伝えにくくなる。そこで、図13に示されるように、複数の第1の熱伝導部351a'−1の構造を枝分かれ構造とすれば、第2の壁31b'−1、31b'−2側でも熱伝導部の各枝部同士の間隔が小さくなり、相変化蓄熱材33'−1、33'−2に熱を伝えやすくなる。このとき、熱伝導部の各枝部の太さを、第1の壁31a'−1、31a'−2に近いほど太く、第2の壁31b'−1、31b'−2に近いほど細くすると、効率よく相変化蓄熱材に熱を伝えることができる。 In the above embodiment, the distance between the plurality of first heat conductive portions 351a'-1 and 351a'-2 increases as they approach the second wall 31b'-1 and 31b'-2, and phase change heat storage. It becomes difficult to transfer heat to the material. Therefore, as shown in FIG. 13, if the structure of the plurality of first heat conductive portions 351a'-1 is a branched structure, the heat conductive portions can also be located on the second walls 31b'-1 and 31b'-2. The distance between the branches becomes smaller, and heat can be easily transferred to the phase change heat storage materials 33'-1 and 33'-2. At this time, the thickness of each branch of the heat conductive portion is thicker as it is closer to the first walls 31a'-1 and 31a'-2, and thinner as it is closer to the second walls 31b'-1 and 31b'-2. Then, heat can be efficiently transferred to the phase change heat storage material.

このような構成により、蓄熱ユニットを熱源の形状に合わせて直接取り付けることができ、熱源からの熱を蓄熱ユニットに効率よく伝えることができる。 With such a configuration, the heat storage unit can be directly attached according to the shape of the heat source, and the heat from the heat source can be efficiently transferred to the heat storage unit.

(第4の実施形態)
図14は、本発明の第4の実施形態に係る蓄熱ユニットの断面模式図である。この図14を参照して、本発明の第4の実施形態の構成及び動作原理を説明する。第1〜第3の実施形態と重複する説明は省略する。
(Fourth Embodiment)
FIG. 14 is a schematic cross-sectional view of the heat storage unit according to the fourth embodiment of the present invention. With reference to FIG. 14, the configuration and operating principle of the fourth embodiment of the present invention will be described. The description overlapping with the first to third embodiments will be omitted.

本実施形態に係る蓄熱ユニットは、熱流体が流れる配管に適応したものである。 The heat storage unit according to the present embodiment is adapted to a pipe through which a hot fluid flows.

本実施形態に係る蓄熱ユニット3''は、配管31''a、配管31''aとの間に密閉空間が形成されるように両端部が配管31''aに接続された円筒状の外殻31''b、相変化蓄熱材33''、複数の第1の熱伝導部351a''を含む。 The heat storage unit 3 ″ according to the present embodiment has a cylindrical shape in which both ends are connected to the pipe 31 ″ a so that a closed space is formed between the pipe 31 ″ a and the pipe 31 ″ a. It includes an outer shell 31 ″ b, a phase change heat storage material 33 ″, and a plurality of first heat conductive portions 351a ″.

本実施形態においては、配管31''a、外殻31''b、複数の第1の熱伝導部351a''が一体的に形成されており、配管31''aと外殻31''bにより密閉容器が構成される。 In the present embodiment, the pipe 31 ″ a, the outer shell 31 ″ b, and the plurality of first heat conductive portions 351a ″ are integrally formed, and the pipe 31 ″ a and the outer shell 31 ″ are integrally formed. A closed container is constructed by b.

配管31''aと外殻31''bにより構成される密閉容器の内部には、相変化蓄熱材33''が充填されている。 The inside of the closed container composed of the pipe 31 ″ a and the outer shell 31 ″ b is filled with the phase change heat storage material 33 ″.

複数の第1の熱伝導部351a''は、径方向に放射状に設けられ、その一端が第1の壁の内壁部に連結され、その他端が第2の壁の内壁部に連結され、相変化蓄熱材33''と接触している。 The plurality of first heat conductive portions 351a'' are provided radially in the radial direction, one end thereof is connected to the inner wall portion of the first wall, and the other end is connected to the inner wall portion of the second wall. It is in contact with the change heat storage material 33''.

本実施形態によれば、配管を蓄熱ユニットと一体化して形成しているので、配管に対して蓄熱ユニットを取り付けた場合に比べて、配管と蓄熱ユニットの間の接触熱抵抗に起因する伝熱特性低下を回避することができ、蓄熱ユニットへの効率の高い伝熱が可能となる。 According to this embodiment, since the pipe is integrally formed with the heat storage unit, heat transfer due to the contact heat resistance between the pipe and the heat storage unit is compared with the case where the heat storage unit is attached to the pipe. Deterioration of characteristics can be avoided, and highly efficient heat transfer to the heat storage unit becomes possible.

上述のように、本実施形態による蓄熱ユニットは、3Dプリンタを用いて製造することができるので、配置可能なスペースに応じた密閉容器の形状の蓄熱ユニットを個別に製造することができる。また、上述のように、本実施形態による蓄熱ユニットは、耐荷重性を有するので、蓄熱ユニット上に直接機器を搭載することも可能である。したがって、蓄積ユニットを配置可能なスペースに蓄積ユニットを配置する場合に、蓄積ユニットの上に機器を搭載する必要があっても、機器を載置する台を別に設けることなく、直接蓄熱ユニット上に機器を搭載することができる。 As described above, since the heat storage unit according to the present embodiment can be manufactured by using a 3D printer, it is possible to individually manufacture the heat storage unit in the shape of a closed container according to the space in which it can be arranged. Further, as described above, since the heat storage unit according to the present embodiment has load bearing capacity, it is possible to mount the device directly on the heat storage unit. Therefore, when arranging the storage unit in a space where the storage unit can be placed, even if it is necessary to mount the equipment on the storage unit, it is not necessary to separately provide a stand on which the equipment is placed, and the equipment is directly placed on the heat storage unit. Equipment can be installed.

上記実施形態の構成に加えて、グラファイトシートを密閉容器の外表面に貼り付けてもよい。このような構成によれば、グラファイトシートを介して、熱源からの熱を、側壁や熱源から遠い第2の壁に伝えることができるので、密閉容器の全方向から相変化蓄熱材に熱を伝えることができる。よって、熱源から第2の壁の距離が大きい場合、特に有利である。そして、グラファイトシートは、例えばアルミに比べて10倍近くの単位質量当たりの熱伝導率を有するので、蓄熱ユニットを軽量化することができる。 In addition to the configuration of the above embodiment, a graphite sheet may be attached to the outer surface of the closed container. According to such a configuration, the heat from the heat source can be transferred to the side wall or the second wall far from the heat source through the graphite sheet, so that the heat is transferred to the phase change heat storage material from all directions of the closed container. be able to. Therefore, it is particularly advantageous when the distance from the heat source to the second wall is large. Since the graphite sheet has a thermal conductivity per unit mass that is nearly 10 times that of aluminum, for example, the weight of the heat storage unit can be reduced.

以上、本発明について、例示のためにいくつかの実施形態に関して説明してきたが、本発明はこれに限定されるものでなく、本発明の範囲及び精神から逸脱することなく、形態及び詳細について、様々な変形及び修正を行うことができることは、当業者に明らかであろう。 Although the present invention has been described above with respect to some embodiments for illustration purposes, the present invention is not limited thereto, and the forms and details will be described without departing from the scope and spirit of the present invention. It will be apparent to those skilled in the art that various modifications and modifications can be made.

1 蓄熱ユニット
11 密閉容器
111 フィルム
113 アルミ薄板
115 密閉空間
117 アルミ薄板
119 アルミ薄板
13 相変化蓄熱材
15 第1の熱伝導性部材
151 谷部
153 山部
17 第2の熱伝導性部材
171 谷部
173 山部
2 熱源
3 蓄熱ユニット
31、31'−1、31'−2 密閉容器
31a、31a'−1、31a'−2 第1の壁
31b、31b'−1、31b'−2 第2の壁
31c、31d 側壁
31c'−1、31c'−2 第3の壁31''a 配管
31''b 外殻
311 内壁部
311a 第1の内壁部分
311b 第2の内壁部分
311c 第3の内壁部分
311d 第4の内壁部分
33、33'−1、33'−2、33'' 相変化蓄熱材
35 3次元網目構造体
351a、351a'−1、351a'−2、351a'' 第1のの熱伝導部
351b、351b'−1、351b'−2、351b'' 第2のの熱伝導部
353 交点
355 連結部
357 ポート
4、4' 熱源
5 蓄熱ユニット
51 密閉容器
511 底板
513 蓋部
53 相変化蓄熱材
55 伝熱フィン
6 熱源
1 Heat storage unit 11 Sealed container 111 Film 113 Aluminum thin plate 115 Sealed space 117 Aluminum thin plate 119 Aluminum thin plate 13 Phase change heat storage material 15 First heat conductive member 151 Tanibe 153 Mountain part 17 Second heat conductive member 171 Tanibe 173 Yamabe 2 Heat source 3 Heat storage unit 31, 31'-1, 31'-2 Sealed container 31a, 31a'-1, 31a'-2 First wall 31b, 31b'-1, 31b'-2 Second Wall 31c, 31d Side wall 31c'-1, 31c'-2 Third wall 31''a Piping 31''b Outer shell 311 Inner wall part 311a First inner wall part 311b Second inner wall part 311c Third inner wall part 311d Fourth inner wall portion 33, 33'-1, 33'-2, 33 "" Phase change heat storage material 35 Three-dimensional network structure 351a, 351a'-1, 351a'-2, 351a "" First Heat transfer part 351b, 351b'-1, 351b'-2, 351b'' Second heat transfer part 353 Intersection 355 Connection part 357 Port 4, 4'Heat source 5 Heat storage unit 51 Sealed container 511 Bottom plate 513 Lid 53 phase Change heat storage material 55 Heat transfer fin 6 Heat source

Claims (16)

熱源と接触する熱伝導性の第1の壁と前記熱源と非接触の第2の壁とを有する密閉容器と、
前記密閉容器に封入される相変化蓄熱材と、
一端が前記第1の壁に対応する第1の内壁部と連結し、他端が前記第2の壁に対応する第2の内壁部と連結し、かつ前記相変化蓄熱材に接触する第1の熱伝導部と、
を有し、
前記第1の熱伝導部を複数有し、
前記密閉容器のすべての内壁部と前記第1の熱伝導部は、一体的に形成され
前記第1の熱伝導部と交差する交点で連結する第2の熱伝導部を有する蓄熱ユニット。
A closed container having a first wall of thermal conductivity in contact with the heat source and a second wall of non-contact with the heat source.
The phase change heat storage material enclosed in the closed container and
A first that has one end connected to the first inner wall portion corresponding to the first wall and the other end connected to the second inner wall portion corresponding to the second wall and is in contact with the phase change heat storage material. Heat conduction part and
Have,
It has a plurality of the first heat conductive portions, and has a plurality of the first heat conductive portions.
All the inner wall portions of the closed container and the first heat conductive portion are integrally formed .
A heat storage unit having a second heat conductive portion connected at an intersection intersecting with the first heat conductive portion.
前記密閉容器のすべての内壁部と前記第1の熱伝導部は、金属で形成されている請求項1に記載の蓄熱ユニット。 The heat storage unit according to claim 1, wherein all the inner wall portions and the first heat conduction portion of the closed container are made of metal. 前記第2の熱伝導部の一端及び他端の少なくとも一方が、前記密閉容器の内壁部と連結し、一体的に形成されている請求項1又は2に記載の蓄熱ユニット。 The heat storage unit according to claim 1 or 2 , wherein at least one end and the other end of the second heat conduction portion are connected to the inner wall portion of the closed container and integrally formed. 前記第1の熱伝導部及び前記第2の熱伝導部は、3次元網目構造体を形成している請求項1〜3のいずれか1項に記載の蓄熱ユニット。 The heat storage unit according to any one of claims 1 to 3, wherein the first heat conductive portion and the second heat conductive portion form a three-dimensional network structure. 前記第2の熱伝導部を複数有し、複数の前記第1の熱伝導部はそれぞれ、複数の前記第2の熱伝導部と交差する交点で連結する請求項のいずれか1項に記載の蓄熱ユニット。 Any one of claims 1 to 4 , which has a plurality of the second heat conductive portions, and each of the plurality of the first heat conductive portions is connected at an intersection intersecting with the plurality of the second heat conductive portions. The heat storage unit described in. 前記第2の熱伝導部の少なくとも一部は、柱状又は線状であり、柱状又は線状の前記第1の熱伝導部と柱状又は線状の前記第2の熱伝導部は、互いの中心軸が交差するように連結されている請求項のいずれか1項に記載の蓄熱ユニット。 At least a part of the second heat conductive portion is columnar or linear, and the columnar or linear first heat conductive portion and the columnar or linear second heat conductive portion are centered on each other. The heat storage unit according to any one of claims 1 to 5 , which is connected so that the axes intersect. 複数の前記第2の熱伝導部の数密度が、複数の前記第1の熱伝導部の数密度よりも小さい請求項に記載の蓄熱ユニット。 The number density of the plurality of said second heat conductive portion, the heat storage unit according to a small claim 6 than the number density of the plurality of the first heat conductive portion. 熱源と接触する熱伝導性の第1の壁と前記熱源と非接触の第2の壁とを有する密閉容器と、
前記密閉容器に封入される相変化蓄熱材と、
一端が前記第1の壁に対応する第1の内壁部と連結し、他端が前記第2の壁に対応する第2の内壁部と連結し、かつ前記相変化蓄熱材に接触する第1の熱伝導部と、
を有し、
前記第1の熱伝導部を複数有し、
前記第1の内壁部、前記第1の熱伝導部及び前記第2の内壁部は、一体的に形成されており、
前記第1の熱伝導部の少なくとも一部は、複数の柱状又は線状の熱伝導部である蓄熱ユニット。
A closed container having a first wall of thermal conductivity in contact with the heat source and a second wall of non-contact with the heat source.
The phase change heat storage material enclosed in the closed container and
A first that has one end connected to the first inner wall portion corresponding to the first wall and the other end connected to the second inner wall portion corresponding to the second wall and is in contact with the phase change heat storage material. Heat conduction part and
Have,
It has a plurality of the first heat conductive portions, and has a plurality of the first heat conductive portions.
The first inner wall portion, the first heat conduction portion, and the second inner wall portion are integrally formed.
At least a part of the first heat conductive portion is a heat storage unit which is a plurality of columnar or linear heat conductive portions.
柱状又は線状の前記第1の熱伝導部を多数有する請求項に記載の蓄熱ユニット。 The heat storage unit according to claim 8 , which has a large number of columnar or linear first heat conductive portions. 前記第1の内壁部、前記第1の熱伝導部及び前記第2の内壁部は、金属で形成されている請求項又はに記載の蓄熱ユニット。 The heat storage unit according to claim 8 or 9 , wherein the first inner wall portion, the first heat conduction portion, and the second inner wall portion are made of metal. 前記第1の熱伝導部と交差する交点で連結する第2の熱伝導部を有する請求項10のいずれか1項に記載の蓄熱ユニット。 The heat storage unit according to any one of claims 8 to 10 , further comprising a second heat conductive portion connected at an intersection intersecting with the first heat conductive portion. 前記第2の熱伝導部の一端及び他端の少なくとも一方が、前記密閉容器の内壁部と連結し、一体的に形成されている請求項11に記載の蓄熱ユニット。 The heat storage unit according to claim 11 , wherein at least one end and the other end of the second heat conductive portion are integrally formed by being connected to the inner wall portion of the closed container. 前記第1の熱伝導部及び前記第2の熱伝導部は、3次元網目構造体を形成している請求項11又は12に記載の蓄熱ユニット。 The heat storage unit according to claim 11 or 12 , wherein the first heat conductive portion and the second heat conductive portion form a three-dimensional network structure. 前記第2の熱伝導部を複数有し、複数の前記第1の熱伝導部はそれぞれ、複数の前記第2の熱伝導部と交差する交点で連結する請求項1113のいずれか1項に記載の蓄熱ユニット。 One of claims 11 to 13 , which has a plurality of the second heat conductive portions, and each of the plurality of the first heat conductive portions is connected at an intersection intersecting with the plurality of the second heat conductive portions. The heat storage unit described in. 前記第2の熱伝導部の少なくとも一部は、柱状又は線状であり、柱状又は線状の前記第1の熱伝導部と柱状又は線状の前記第2の熱伝導部は、互いの中心軸が交差するように連結されている請求項1114のいずれか1項に記載の蓄熱ユニット。 At least a part of the second heat conductive portion is columnar or linear, and the columnar or linear first heat conductive portion and the columnar or linear second heat conductive portion are centered on each other. The heat storage unit according to any one of claims 11 to 14 , which is connected so that the axes intersect. 複数の前記第2の熱伝導部の数密度が、複数の前記第1の熱伝導部の数密度よりも小さい請求項15に記載の蓄熱ユニット。 Heat storage unit according to the plurality of the number density of the second conductive portion is smaller Claim 15 than the number density of the plurality of the first heat conductive portion.
JP2016171828A 2015-10-16 2016-09-02 Heat storage unit Active JP6931821B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015204839 2015-10-16
JP2015204839 2015-10-16

Publications (3)

Publication Number Publication Date
JP2017075773A JP2017075773A (en) 2017-04-20
JP2017075773A5 JP2017075773A5 (en) 2019-10-10
JP6931821B2 true JP6931821B2 (en) 2021-09-08

Family

ID=58550203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171828A Active JP6931821B2 (en) 2015-10-16 2016-09-02 Heat storage unit

Country Status (1)

Country Link
JP (1) JP6931821B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107760274A (en) * 2017-10-11 2018-03-06 上海阿莱德实业股份有限公司 A kind of flexible light weight sizing phase-change energy-storing sheet and preparation method thereof
CN108344318B (en) * 2018-05-14 2024-06-14 深圳市帝洋科技有限公司 Temperature-control heat storage device and temperature-control heat storage container
CN109654929B (en) * 2019-02-27 2023-08-15 新乡市特美特热控技术股份有限公司 Efficient heat storage device and manufacturing method thereof
JPWO2020218216A1 (en) 2019-04-23 2020-10-29
EP3978230A4 (en) * 2019-05-30 2022-07-13 Panasonic Intellectual Property Management Co., Ltd. Structural body, system, and structure
RU2753067C1 (en) * 2020-12-08 2021-08-11 Акционерное общество "Научно-производственное предприятие "Пульсар" Heat storage device

Also Published As

Publication number Publication date
JP2017075773A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6931821B2 (en) Heat storage unit
US20210215445A1 (en) Heat exchanger array system and method for an air thermal conditioner
KR101810167B1 (en) A device for three dimensional heat absorption
CN101932898B (en) Improved latent heat storage device
JP4231518B2 (en) Heat exchanger
CN109792013A (en) Battery case for automobile batteries temperature management
CN109791027B (en) Heat storage type heat exchanger structure adopting phase change material
KR20130143007A (en) Articles and devices for thermal energy storage and methods thereof
US11009298B2 (en) Thermal energy storage apparatus
JP6750093B2 (en) Regenerative heat exchanger structure using phase change material
JP6662239B2 (en) Thermal switch device
CN105277025B (en) Hollow heat-pipe radiator
US20240167726A1 (en) Thermal energy storage
CN115615227B (en) Albizia flower-shaped efficient phase-change heat storage ball
JP2008089239A (en) Thin planar heat storage member
JP6939066B2 (en) Cooling system
Kabir et al. Investigation of An Additively Manufactured Two-Phase Heat Exchanger with Built-In Thermal Storage
Ando et al. Fabrication and Evaluation of an Oscillating Heat Pipe with Check Valves by Metal Additive Manufacturing
JP3069781U (en) Bubble circulation heat exchange structure
JP2010255723A (en) Gas storage device
Kariya et al. Modeling a Loop Heat Pipe With a Capillary Wick in the Condenser
JPS5953478B2 (en) flexible heat pipe panel
US20160313068A1 (en) Heat Pipe Having Displacement Bodies

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200716

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210730

R150 Certificate of patent or registration of utility model

Ref document number: 6931821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250