JP6930436B2 - Travel control method for automatic guided vehicles - Google Patents

Travel control method for automatic guided vehicles Download PDF

Info

Publication number
JP6930436B2
JP6930436B2 JP2018006443A JP2018006443A JP6930436B2 JP 6930436 B2 JP6930436 B2 JP 6930436B2 JP 2018006443 A JP2018006443 A JP 2018006443A JP 2018006443 A JP2018006443 A JP 2018006443A JP 6930436 B2 JP6930436 B2 JP 6930436B2
Authority
JP
Japan
Prior art keywords
automatic guided
guided vehicle
transported object
traveling
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018006443A
Other languages
Japanese (ja)
Other versions
JP2019125246A (en
Inventor
寿和 坂口
寿和 坂口
剛志 久田
剛志 久田
亮一 北口
亮一 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakanishi Metal Works Co Ltd
Original Assignee
Nakanishi Metal Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakanishi Metal Works Co Ltd filed Critical Nakanishi Metal Works Co Ltd
Priority to JP2018006443A priority Critical patent/JP6930436B2/en
Publication of JP2019125246A publication Critical patent/JP2019125246A/en
Application granted granted Critical
Publication of JP6930436B2 publication Critical patent/JP6930436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、誘導手段を用いて誘導制御され、所定の走行経路に沿って無軌道で自走する、搬送物を載置する昇降テーブルを備えた無人搬送車の走行制御方法に関する。 The present invention relates to a traveling control method for an automatic guided vehicle provided with an elevating table on which a transported object is placed, which is guided and controlled by using a guiding means and self-propelled along a predetermined traveling path without a track.

無軌道で自走する無人搬送車(AGV:Automated Guided Vehicle)は、走行駆動する駆動輪の他に、曲線状の走行経路を走行可能にするため、荷重を受ける自在輪(キャスタ輪)を備えており、例えば所定の走行経路に沿って設置した電磁誘導線の発生する電磁波で誘導されながら前記走行経路を自走する(例えば、特許文献1参照)。 Automated guided vehicles (AGVs) that run on an untracked vehicle are equipped with free wheels (caster wheels) that receive a load in order to enable traveling on curved travel paths, in addition to the driving wheels that drive the vehicle. For example, the vehicle travels on the traveling path by itself while being guided by an electromagnetic wave generated by an electromagnetic induction line installed along a predetermined traveling path (see, for example, Patent Document 1).

特許文献1の無人搬送車(1)は、輪転機の給紙装置(2)に対して新たな新聞巻取紙(P)を供給したり、使用途中の新聞巻取紙(P)を回収するものであり、駆動輪(8)を回転させるモータと別のモータによって駆動輪(8)を垂直軸まわりに向きを変更可能とすることで、横行移動を可能にしている(特許文献1の[0024])。
そして、無人搬送車(1)を進入停止させた停止位置から戻り走行させる際に、給紙装置(2)のコーン(4A,4B)と干渉しないように、無人搬送車(1)の横揺れを防止するための走行制御方法を採用している。すなわち、無人搬送車(1)を、前記停止位置を外れた前方まで一旦進入させてから前記停止位置まで後退移動させ、それにより自在輪(7)の向きを逆転させ、その状態で無人搬送車(1)を前記停止位置から後退移動方向に走行させて前記停止位置から離脱させている。
The unmanned carrier (1) of Patent Document 1 supplies a new newspaper winder (P) to the paper feed device (2) of the rotary press, and collects the newspaper winder (P) in use. , By making it possible to change the direction of the drive wheel (8) around the vertical axis by a motor different from the motor that rotates the drive wheel (8), it is possible to move laterally (Patent Document 1 [0024]). ..
Then, when the automatic guided vehicle (1) is returned from the stopped position where the entry and stop are stopped, the automatic guided vehicle (1) rolls so as not to interfere with the cones (4A, 4B) of the paper feed device (2). A travel control method is used to prevent this. That is, the automatic guided vehicle (1) is once entered to the front outside the stop position and then moved backward to the stop position, whereby the direction of the free wheel (7) is reversed, and the automatic guided vehicle (7) is in that state. (1) is moved from the stop position in the backward movement direction to be separated from the stop position.

特許第3162661号公報Japanese Patent No. 3162661

無人搬送車の自在輪の方向は、無人搬送車の走行方向に追従し、停止前の進行方向により停止時の方向が決定される。
無人搬送車の発進時の進行方向が停止前の進行方向と異なる場合、自在輪は、無人搬送車の発進後に発進時の進行方向へ追従し、停止時の方向から方向転換する。このような自在輪の方向転換は、無人搬送車の発進時の抵抗となる。
The direction of the free wheel of the automatic guided vehicle follows the traveling direction of the automatic guided vehicle, and the direction at the time of stopping is determined by the traveling direction before the stop.
If the traveling direction of the automatic guided vehicle at the time of starting is different from the traveling direction before the stop, the automatic guided vehicle follows the traveling direction at the time of starting after the automatic guided vehicle starts and changes direction from the direction at the time of stopping. Such a change of direction of the free wheel becomes a resistance when the automatic guided vehicle starts.

従来より、自在輪の向きが乱れていてもふらつかずにスムーズに発進できるように、自在輪の径を大きくして、自在輪にかかる抵抗を小さくするという工夫が行われてきた。
しかしながら、搬送物の下に潜り込んで、搬送物を持ち上げて移動する、搬送物を載置する昇降テーブルを備えた低床の無人搬送車の場合は、自在輪の径を小さくする必要があるので、前記工夫を採用することができない。
その上、昇降テーブル上の搬送物の重量が大きい場合には、前記自在輪の方向転換による抵抗が増大するため、発進時のふらつきの問題が顕著になるとともに、無人搬送車の蛇行又は過負荷を引き起こす要因となる。
その上さらに、無人搬送車の走行経路が様々な向きに方向転換を行う経路を含む場合、方向転換の際に走行経路からの無人搬送車のずれがばらついて、無人搬送車が所定の停止位置に安定して精度良く停止できないという問題が生じる。
Conventionally, a device has been devised to increase the diameter of the free wheel and reduce the resistance applied to the free wheel so that the free wheel can start smoothly without wobbling even if the direction of the free wheel is disturbed.
However, in the case of a low-floor automatic guided vehicle equipped with an elevating table on which the transported object is placed, it is necessary to reduce the diameter of the free wheel by sneaking under the transported object and lifting and moving the transported object. , The above-mentioned device cannot be adopted.
In addition, when the weight of the transported object on the lifting table is large, the resistance due to the change of direction of the free wheel increases, so that the problem of wobbling at the time of starting becomes remarkable, and the automatic guided vehicle meanders or overloads. It becomes a factor that causes.
Furthermore, when the travel route of the automatic guided vehicle includes a route that changes direction in various directions, the deviation of the automatic guided vehicle from the travel route varies when the direction is changed, and the automatic guided vehicle is placed at a predetermined stop position. There is a problem that it cannot be stopped stably and accurately.

特許文献1における無人搬送車(1)は、駆動輪(8)を垂直軸まわりに向きを変更可能とするための専用モータが必要になるので、製造コストが増大する。
その上、特許文献1における無人搬送車(1)の走行制御方法は、前記のとおり1次元の直線経路における往復移動において自在輪(7)を揃える方法を開示しているのみである。
その上さらに、特許文献1のように、走行経路に沿って設置した電磁誘導線の発生する電磁波で無人搬送車(1)を誘導しながら自走させる走行制御では、方向転換の際に走行経路からの無人搬送車のずれがばらついて、無人搬送車が所定の停止位置に安定して精度良く停止できないという前記問題を解決できない。
Since the automatic guided vehicle (1) in Patent Document 1 requires a dedicated motor for changing the direction of the drive wheels (8) around the vertical axis, the manufacturing cost increases.
Moreover, the traveling control method of the automatic guided vehicle (1) in Patent Document 1 only discloses a method of aligning the free wheels (7) in the reciprocating movement in the one-dimensional linear path as described above.
Furthermore, as in Patent Document 1, in the traveling control in which the automatic guided vehicle (1) is guided by the electromagnetic waves generated by the electromagnetic induction wire installed along the traveling path and self-propelled, the traveling path is changed when the direction is changed. It is not possible to solve the above-mentioned problem that the automatic guided vehicle cannot be stopped stably and accurately at a predetermined stop position due to the deviation of the automatic guided vehicle from the above.

上述の背景に鑑み、本発明は、自在輪及び駆動輪、並びに、搬送物を載置する昇降テーブルを備えた低床の無人搬送車において、自在輪の向きが乱れていても重量の大きい搬送物を昇降テーブルに載置して発進する際にふらつくことがなく、方向転換の際に走行経路からのずれがばらついても、所定の停止位置に安定して精度良く停止できる無人搬送車の走行制御方法を提供することを目的とする。 In view of the above background, the present invention is a low-floor automatic guided vehicle equipped with a free wheel, a drive wheel, and an elevating table on which a transported object is placed, and the weight is large even if the direction of the free wheel is disturbed. An automatic guided vehicle that does not wobble when an object is placed on an elevating table and starts, and can stop stably and accurately at a predetermined stop position even if the deviation from the traveling path varies when changing direction. The purpose is to provide a control method.

本発明に係る無人搬送車の走行制御方法は、前記課題解決のために、
誘導手段を用いて誘導制御され、所定の走行経路に沿って無軌道で自走する無人搬送車の走行制御方法であって、
前記無人搬送車は、
自在輪及び左右の駆動輪、並びに、搬送物を載置する昇降テーブルを備え、
前記搬送物の下に潜り込んで、前記搬送物を持ち上げて移動するものであり、
前記走行経路は、
前記搬送物を前記昇降テーブルに載置する載置位置の上流側と下流側とで方向が異なる方向転換経路を含み、
前記無人搬送車を、前記載置位置から前記下流側の進行方向と逆方向へ一旦移動させた後に、前記載置位置へ向かって走行させることにより、前記自在輪を前記進行方向へ整列させる自在輪整列工程と、
前記無人搬送車が、地上の位置認識用情報に基づいて前記載置位置に停止するように制御する停止位置制御工程と、
前記自在輪整列工程を経て前記自在輪が前記進行方向へ整列するともに、前記停止位置制御工程を経て前記載置位置に停止した前記無人搬送車の前記昇降テーブルを上昇させ、前記昇降テーブル上に前記搬送物を載置する搬送物載置工程と、
前記昇降テーブル上に前記搬送物を載置した前記無人搬送車を、前記走行経路に沿って所定の位置まで搬送する搬送物搬送工程と、
を含み、
前記方向転換経路において、前記自在輪整列工程を行う前に、左右の前記駆動輪を等速で逆方向へ回転することにより、前記搬送物の向きは変えずに前記無人搬送車だけがその場方向転換する方向転換工程を有することを特徴とする。
The traveling control method for an automatic guided vehicle according to the present invention is to solve the above-mentioned problems.
It is a traveling control method for an automatic guided vehicle that is guided and controlled using a guiding means and self-propelled along a predetermined traveling route without a track.
The automatic guided vehicle
Equipped with free wheels, left and right drive wheels, and an elevating table on which the transported object is placed.
It sneaks under the transported object and lifts and moves the transported object.
The traveling route is
Includes a turning path in which the direction is different between the upstream side and the downstream side of the mounting position where the transported object is mounted on the lifting table.
The automatic guided vehicle is once moved from the previously described placement position in the direction opposite to the traveling direction on the downstream side, and then traveled toward the previously described placement position so that the free wheels can be aligned in the traveling direction. Wheel alignment process and
A stop position control step of controlling the automatic guided vehicle to stop at the previously described position based on the position recognition information on the ground.
The free wheels are aligned in the traveling direction through the free wheel alignment step, and the elevating table of the automatic guided vehicle stopped at the above-described placement position through the stop position control step is raised and placed on the elevating table. The transport object loading process for mounting the transported object and
The vehicle transporting step of transporting the automatic guided vehicle on which the transported object is placed on the lifting table to a predetermined position along the traveling path.
Including
In the direction change path, by rotating the left and right drive wheels in opposite directions at a constant speed before performing the universal wheel alignment step, only the automatic guided vehicle is on the spot without changing the direction of the transported object. It is characterized by having a direction changing step of changing direction.

このような無人搬送車の走行制御方法によれば、無人搬送車の昇降テーブルに搬送物を載置する載置位置の上流側と下流側とで方向が異なる方向転換経路において、搬送物を載置する前の無人搬送車の自在輪は、前記自在輪整列工程により、前記下流側の進行方向へ整列した状態となる。
よって、前記載置位置で昇降テーブルを上昇させて搬送物を昇降テーブルに載置した無人搬送車が前記下流側の進行方向へ向かって発進する際に、無人搬送車が低床で自在輪の径が小さく、搬送物の重量が大きくても、ふらつくことがなくスムーズに走行できる。
その上、搬送物を載置する前の無人搬送車は、前記停止位置制御工程により、地上の位置認識用情報に基づいて、方向転換によって走行経路からのずれがばらついても前記載置位置に精度よく停止できる。
よって、無人搬送車の昇降テーブルに対して搬送物を精度よく安定して載置できるとともに、異なる複数台の無人搬送車が何度も同じ経路を通過する場合であっても停止位置の誤差が出難くなる。
その上さらに、方向転換経路で無人搬送車だけがその場方向転換することから、搬送物を載置していない状態であるため比較的軽量である無人搬送車を、より精度よく載置位置に停止させることができるので、方向転換を繰り返す場合であっても停止位置の誤差が累積することがない。
その上、左右の駆動輪が摩耗した場合に、前記駆動輪の回転量が不足して前記その場方向転換の角度が90°未満であったとしても、前記方向転換工程の後に行う前記自在輪整列工程において、前記無人搬送車を、前記載置位置から前記下流側の進行方向と逆方向へ一旦移動させた後に、前記載置位置へ向かって走行させる際に、前記駆動輪の摩耗によるその場方向転換の角度のずれを補正することができる。
According to such a traveling control method of an automatic guided vehicle, the transported object is placed on a turning path in which the directions are different between the upstream side and the downstream side of the mounting position where the transported object is placed on the lifting table of the automatic guided vehicle. The free wheels of the automatic guided vehicle before being placed are in a state of being aligned in the traveling direction on the downstream side by the free wheel alignment step.
Therefore, when the automatic guided vehicle, which raises the lifting table at the above-mentioned placement position and places the transported object on the lifting table, starts in the traveling direction on the downstream side, the automatic guided vehicle has a low floor and a free wheel. Even if the diameter is small and the weight of the transported object is heavy, it can run smoothly without wobbling.
In addition, the automatic guided vehicle before loading the transported object will be placed in the previously described position even if the deviation from the traveling path varies due to the change of direction based on the position recognition information on the ground by the stop position control process. It can be stopped accurately.
Therefore, the transported object can be placed accurately and stably on the lifting table of the automatic guided vehicle, and even if a plurality of different automatic guided vehicles pass the same route many times, the error of the stop position is large. It becomes difficult to get out.
Furthermore, since only the automatic guided vehicle changes its direction on the spot in the direction change route, the automatic guided vehicle, which is relatively lightweight because the vehicle is not loaded, can be placed in the mounting position more accurately. Since it can be stopped, the error of the stop position does not accumulate even when the direction change is repeated.
Moreover, when the left and right drive wheels are worn, even if the amount of rotation of the drive wheels is insufficient and the angle of the in-situ direction change is less than 90 °, the free wheel performed after the direction change step. In the alignment step, when the automatic guided vehicle is once moved from the previously described mounting position in the direction opposite to the traveling direction on the downstream side and then traveled toward the previously described mounting position, the driving wheels are worn. It is possible to correct the deviation of the angle of field change.

ここで、前記自在輪整列工程の前記誘導制御におけるPID制御の比例ゲインを、前記搬送物搬送工程の前記誘導制御におけるPID制御の比例ゲインよりも大きくしてなるのが好ましい実施態様である。 Here, it is a preferable embodiment that the proportional gain of the PID control in the guidance control of the free wheel alignment step is made larger than the proportional gain of the PID control in the guidance control of the conveyed material transporting step.

このような構成によれば、無人搬送車に搬送物を載置していない前記自在輪整列工程の誘導制御におけるPID制御の比例ゲインを、無人搬送車に搬送物を載置した前記搬送物搬送工程の誘導制御におけるPID制御の比例ゲインよりも大きくしていることから、誘導制御の速応性が高くなるので、自在輪の整列後、車体の姿勢が乱れていても、短時間で誘導手段によって姿勢を補正することができ、載置位置に精度よく停止できる。
その上、無人搬送車に搬送物を載置した前記搬送物搬送工程の誘導制御におけるPID制御の比例ゲインは、無人搬送車に搬送物を載置していない前記自在輪整列工程の誘導制御におけるPID制御の比例ゲインよりも小さいので、前記搬送物搬送工程の誘導制御の安定性が高くなる。
その上さらに、前記搬送物搬送工程における誘導制御において、PID制御における比例ゲインを前記自在輪整列工程の誘導制御におけるPID制御の比例ゲインよりも小さくすることにより、前記自在輪整列工程よりも走行距離が長い前記搬送物搬送工程で、駆動輪の回転数を変化させるための加減速を少なくできるので、消費電力を低減できる。
なお、前記自在輪整列工程以外の搬送物を載置していない状態で無人搬送車が走行する工程における誘導制御においても、PID制御における比例ゲインを前記自在輪整列工程の誘導制御におけるPID制御の比例ゲインよりも小さくするのがより好ましい実施態様である。それにより、前記自在輪整列工程よりも走行距離が長い前記自在輪整列工程以外の搬送物を載置していない状態で無人搬送車が走行する工程で、走行輪の回転数を変化させるための加減速を少なくできるので、消費電力を一層低減できる。
According to such a configuration, the proportional gain of the PID control in the guidance control of the free wheel alignment step in which the transported object is not mounted on the automatic guided vehicle is set to the proportional gain of the PID control on which the transported object is mounted on the automatic guided vehicle. Since it is larger than the proportional gain of PID control in the process guidance control, the quick response of the guidance control is high. Therefore, even if the posture of the vehicle body is disturbed after the free wheels are aligned, the guidance means can be used in a short time. The posture can be corrected, and the vehicle can be stopped accurately at the mounting position.
Moreover, the proportional gain of the PID control in the guidance control of the transported object transporting process in which the transported object is mounted on the automatic guided vehicle is in the guiding control of the universal wheel alignment process in which the transported object is not mounted on the automatic guided vehicle. Since it is smaller than the proportional gain of the PID control, the stability of the induction control in the transported object transporting process is improved.
Furthermore, in the guidance control in the transported object transport process, the mileage is smaller than that in the free wheel alignment process by making the proportional gain in the PID control smaller than the proportional gain in the PID control in the guidance control in the free wheel alignment process. In the conveyed product transporting process, which has a long length, acceleration / deceleration for changing the rotation speed of the drive wheels can be reduced, so that power consumption can be reduced.
In addition, even in the guidance control in the process in which the automatic guided vehicle travels in a state where the conveyed object is not placed other than the free wheel alignment step, the proportional gain in the PID control is the PID control in the guidance control in the free wheel alignment step. It is a more preferable embodiment that the gain is smaller than the proportional gain. As a result, the number of rotations of the traveling wheels can be changed in the process in which the automatic guided vehicle travels in a state in which the transported object other than the universal wheel alignment process, which has a longer mileage than the universal wheel alignment process, is not placed. Since acceleration / deceleration can be reduced, power consumption can be further reduced.

また、前記位置認識用情報は座標読取式のバーコードであるのが好ましい実施態様である。 Further, it is a preferable embodiment that the position recognition information is a coordinate reading type barcode.

このような構成によれば、方向転換経路で無人搬送車が載置位置に停止するように制御する停止位置制御における無人搬送車の進行方向の停止位置精度を向上できる。 According to such a configuration, it is possible to improve the accuracy of the stop position in the traveling direction of the automatic guided vehicle in the stop position control for controlling the automatic guided vehicle to stop at the mounting position on the direction change path.

さらに、前記誘導手段は前記走行経路に沿って設置した誘導線であるのが好ましい実施態様である。 Further, it is a preferable embodiment that the guiding means is a guiding line installed along the traveling path.

このような構成によれば、走行経路に沿って設置した誘導線により誘導されながら無人搬送車が走行するので、無人搬送車の進行方向と直交する方向の位置精度を向上できるとともに、方向転換経路で無人搬送車が載置位置に停止するように制御する停止位置制御における無人搬送車の進行方向と直交する方向の停止位置精度を向上できる。 According to such a configuration, the automatic guided vehicle travels while being guided by the guide line installed along the traveling route, so that the position accuracy in the direction orthogonal to the traveling direction of the automatic guided vehicle can be improved and the direction change route can be improved. It is possible to improve the accuracy of the stop position in the direction orthogonal to the traveling direction of the automatic guided vehicle in the stop position control for controlling the automatic guided vehicle to stop at the mounting position.

また、前記搬送物は台車及びその上の荷物であり、
前記載置位置の地上、及び前記無人搬送車から前記台車を降ろす位置の地上に、前記台車の車輪を止める輪止めを備えるのがより一層好ましい実施態様である。
In addition, the transported object is a trolley and luggage on it.
It is a more preferable embodiment to provide a wheel chock for stopping the wheels of the trolley on the ground at the above-described placement position and on the ground at the position where the trolley is lowered from the automatic guided vehicle.

このような構成によれば、輪止めにより車輪が止められた台車が地上に確実に位置決めされることから、無人搬送車の昇降テーブルを上昇させて台車を無人搬送車に載置する際に、無人搬送車と台車との位置がずれないので、無人搬送車による台車の搬送をスムーズに行うことができる。 According to such a configuration, the dolly whose wheels are stopped by the wheel chock is reliably positioned on the ground, so that when the lifting table of the automatic guided vehicle is raised and the dolly is placed on the automatic guided vehicle, Since the positions of the automatic guided vehicle and the trolley do not shift, the trolley can be smoothly transported by the automatic guided vehicle.

さらに、前記無人搬送車の昇降テーブルは位置決めピンを備え、
前記搬送物は前記位置決めピンを受ける受部を備えるのがさらに一層好ましい実施態様である。
Further, the lifting table of the automatic guided vehicle is provided with a positioning pin.
It is an even more preferable embodiment that the transported object is provided with a receiving portion that receives the positioning pin.

このような構成によれば、前記搬送物載置工程で無人搬送車の昇降テーブルを上昇させて昇降テーブル上に搬送物を載置した際に、搬送物の受部が昇降テーブルの位置決めピンを受けることから、無人搬送車の昇降テーブルから搬送物がずれないので、無人搬送車により搬送物を安定かつ確実に搬送できる。 According to such a configuration, when the elevating table of the automatic guided vehicle is raised and the transported object is placed on the elevating table in the transported object loading step, the receiving portion of the transported object holds the positioning pin of the elevating table. Since it is received, the transported object does not shift from the lifting table of the automatic guided vehicle, so that the transported object can be stably and reliably transported by the automatic guided vehicle.

以上のように、本発明に係る無人搬送車の走行制御方法によれば、主に以下に示すような効果を奏する。
(1)無人搬送車の昇降テーブルに搬送物を載置する載置位置の上流側と下流側とで方向が異なる方向転換経路において、搬送物を載置する前の無人搬送車の自在輪は、前記自在輪整列工程により、載置位置の下流側の進行方向へ整列した状態となる。よって、前記載置位置で昇降テーブルを上昇させて搬送物を昇降テーブルに載置した無人搬送車が前記下流側の進行方向へ向かって発進する際に、無人搬送車が低床で自在輪の径が小さく、搬送物の重量が大きくても、ふらつくことがなくスムーズに走行できる。
(2)搬送物を載置する前の無人搬送車は、前記停止位置制御工程により、地上の位置認識用情報に基づいて、方向転換によって走行経路からのずれがばらついても前記載置位置に精度よく停止できる。よって、無人搬送車の昇降テーブルに対して搬送物を精度よく安定して載置できるとともに、異なる複数台の無人搬送車が何度も同じ経路を通過する場合であっても停止位置の誤差が出難くなる。
As described above, according to the traveling control method for the automatic guided vehicle according to the present invention, the following effects are mainly obtained.
(1) In the direction change path in which the directions are different between the upstream side and the downstream side of the loading position where the transported object is placed on the lifting table of the automatic guided vehicle, the free wheel of the automatic guided vehicle before the transported object is placed is By the free wheel alignment step, the vehicle is aligned in the traveling direction on the downstream side of the mounting position. Therefore, when the automatic guided vehicle, which raises the lifting table at the above-mentioned placement position and places the transported object on the lifting table, starts in the traveling direction on the downstream side, the automatic guided vehicle has a low floor and a free wheel. Even if the diameter is small and the weight of the transported object is heavy, it can run smoothly without wobbling.
(2) The automatic guided vehicle before loading the transported object will be placed in the previously described position even if the deviation from the traveling path varies due to the change of direction based on the position recognition information on the ground by the stop position control process. It can be stopped accurately. Therefore, the transported object can be placed accurately and stably on the lifting table of the automatic guided vehicle, and even if a plurality of different automatic guided vehicles pass the same route many times, the error of the stop position is large. It becomes difficult to get out.

本発明の実施の形態に係る無人搬送車の要部を示す概略平面図である。It is a schematic plan view which shows the main part of the automatic guided vehicle which concerns on embodiment of this invention. 同じく概略平面図であり、前記無人搬送車が90°その場方向転換を行った状態を示している。Similarly, it is a schematic plan view showing a state in which the automatic guided vehicle has made an in-situ change of direction by 90 °. 方向転換経路の載置位置で搬送物を載置していない前記無人搬送車(前記無人搬送車が図4A又は図5Bの載置位置Pにある状態)を示す部分縦断面正面図である。It is a partial vertical cross-sectional front view which shows the automatic guided vehicle (the state which the automatic guided vehicle is in the mounting position P of FIG. 4A or FIG. 昇降テーブルを上昇させて搬送物を載置した前記無人搬送車(無人搬送車が図5Aの位置にある状態)を示す部分縦断面正面図である。It is a partial vertical sectional front view which shows the said automatic guided vehicle (the state which the automatic guided vehicle is in the position of FIG. 5A) which raised the elevating table and put the transported object on it. 搬送物における、前記無人搬送車の位置決めピンを受ける受部を示す概略平面図である。It is a schematic plan view which shows the receiving part which receives the positioning pin of the automatic guided vehicle in the transported object. 前記無人搬送車の動作説明図であり、搬送物を載置していない前記無人搬送車の方向転換経路の上流側から載置位置への移動を示す概略平面図である。It is an operation explanatory view of the automatic guided vehicle, and is the schematic plan view which shows the movement from the upstream side of the direction change path of the automatic guided vehicle which does not place a transported object to the loading position. 同じく動作説明図であり、載置位置における前記無人搬送車の90°その場方向転換を示す概略平面図である。It is also an operation explanatory view, and is a schematic plan view showing a 90 ° in-situ direction change of the automatic guided vehicle at the mounting position. 同じく動作説明図であり、自在輪整列工程及び停止位置制御工程を示す概略平面図である。It is also an operation explanatory view, and is a schematic plan view which shows a free wheel alignment process and a stop position control process. 同じく動作説明図であり、搬送物載置工程を示す概略平面図である。Similarly, it is an operation explanatory view, and is a schematic plan view which shows the conveyed material placing process. 同じく動作説明図であり、搬送物搬送工程を示す概略平面図である。Similarly, it is an operation explanatory view, and is a schematic plan view which shows the conveyed material transport process. 前記無人搬送車の動作説明図であり、昇降テーブルを上昇させて搬送物を載置した前記無人搬送車の方向転換経路の上流側から載置位置への移動を示す概略平面図である。It is an operation explanatory view of the automatic guided vehicle, and is the schematic plan view which shows the movement from the upstream side of the direction change path of the automatic guided vehicle on which the transport object was placed by raising the elevating table to the mounting position. 同じく動作説明図であり、載置位置にある前記無人搬送車の昇降テーブルを下降させて搬送物を降ろした状態を示す概略平面図である。It is also an operation explanatory view, and is a schematic plan view showing a state in which the lifting table of the automatic guided vehicle at the mounting position is lowered to lower the transported object. 同じく動作説明図であり、載置位置における前記無人搬送車の90°その場方向転換を示す概略平面図である。It is also an operation explanatory view, and is a schematic plan view showing a 90 ° in-situ direction change of the automatic guided vehicle at the mounting position. 同じく動作説明図であり、自在輪整列工程及び停止位置制御工程を示す概略平面図である。It is also an operation explanatory view, and is a schematic plan view which shows a free wheel alignment process and a stop position control process. 同じく動作説明図であり、搬送物載置工程を示す概略平面図である。Similarly, it is an operation explanatory view, and is a schematic plan view which shows the conveyed material placing process. 同じく動作説明図であり、搬送物搬送工程を示す概略平面図である。Similarly, it is an operation explanatory view, and is a schematic plan view which shows the conveyed material transport process. 台車の車輪を止めるために地上に設置する輪止めの例を示す概略平面図である。It is a schematic plan view which shows the example of the wheel chock installed on the ground to stop the wheel of a bogie. 同じく要部拡大正面図である。Similarly, it is an enlarged front view of the main part. 本発明の実施の形態に係る無人搬送車の走行制御方法におけるPID制御の比例定数の選択の例を示す流れ図である。It is a flow chart which shows the example of selection of the proportionality constant of PID control in the traveling control method of the automatic guided vehicle which concerns on embodiment of this invention.

以下、本発明に係る実施形態を図面に基づいて説明する。
以下の実施形態において、誘導手段を用いて誘導制御され、所定の走行経路に沿って無軌道で自走する無人搬送車の進行方向(図1Aの矢印の方向)を前方とし、前方へ向かった状態で前後左右を定義し、右方から見た図を正面図とする。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
In the following embodiment, a state in which the automatic guided vehicle, which is guided and controlled by using a guiding means and self-propelled along a predetermined traveling path, is directed forward with the traveling direction (direction of the arrow in FIG. 1A) as the front. Define the front, back, left, and right with, and let the view from the right be the front view.

図1Aの概略平面図、及び図2Aの部分縦断面正面図に示すように、本発明に係る実施形態に係る無人搬送車1は、前後左右の自在輪2,2,…、及び左右の駆動輪3,3、並びに、搬送物Dを載置する昇降テーブル4を備える。
ここで、搬送物Dは、前後左右の車輪7,7,…を備えた台車6、及び台車6の上の荷物Wである。なお、無人搬送車1は、荷物Wを降ろした状態の空荷の台車6を搬送する場合もある。
As shown in the schematic plan view of FIG. 1A and the partial vertical sectional front view of FIG. 2A, the automatic guided vehicle 1 according to the embodiment of the present invention has front, rear, left and right free wheels 2, 2, ... The wheels 3 and 3 and the elevating table 4 on which the conveyed object D is placed are provided.
Here, the transported object D is a trolley 6 provided with front, rear, left and right wheels 7, 7, ..., And a luggage W on the trolley 6. The automatic guided vehicle 1 may carry an empty trolley 6 in a state where the cargo W is unloaded.

図1Aの概略平面図に示すように、無人搬送車1は、駆動輪3,3の図示しない走行駆動装置、及び昇降テーブル4の図示しない昇降駆動装置、前後の磁気センサーS1,S1、及び前部のバーコードセンサーS2、並びに図示しない制御装置を備える。 As shown in the schematic plan view of FIG. 1A, the automatic guided vehicle 1 includes a traveling drive device (not shown) of drive wheels 3 and 3, an elevating drive device (not shown) of an elevating table 4, front and rear magnetic sensors S1 and S1, and front. The bar code sensor S2 of the unit and a control device (not shown) are provided.

磁気センサーS1は、地上(例えば、図2Aの床面FL)に設置した誘導手段である磁気テープ(例えば、図4Aの磁気テープA)を検知し、中央位置に対して幅方向のズレ量を検出する。その検出情報をもとに、前記制御装置は、無人搬送車1が磁気テープの中央へ沿って走行できるように、左右の駆動輪3,3の回転数を変化させるように走行制御する。 The magnetic sensor S1 detects a magnetic tape (for example, the magnetic tape A in FIG. 4A) which is a guiding means installed on the ground (for example, the floor surface FL in FIG. 2A), and determines the amount of deviation in the width direction with respect to the center position. To detect. Based on the detection information, the control device controls traveling so as to change the rotation speeds of the left and right drive wheels 3 and 3 so that the automatic guided vehicle 1 can travel along the center of the magnetic tape.

本実施の形態において、誘導制御に用いる誘導手段は、誘導線である磁気テープであり、すなわち磁気誘導式である。このような誘導線は、磁性体の針金等である磁気誘導式であってもよく、電線からの誘導電流を用いる電磁誘導式、又は光学テープ若しくは描かれた線を用いる光学誘導式であってもよい。
あるいは、誘導線を用いずに、各種センサーで取得した情報から周囲の環境の形状を把握し、その形状データをもとに無人搬送車1の自己位置を推定し、修正しながら地図を作って動いていくSLAM(Simultaneously Localization And Mapping)等の自律誘導であってもよい。
In the present embodiment, the guiding means used for the guiding control is a magnetic tape which is a guiding wire, that is, a magnetic guiding type. Such an induction wire may be a magnetic induction type such as a wire of a magnetic material, an electromagnetic induction type using an induction current from an electric wire, or an optical induction type using an optical tape or a drawn wire. May be good.
Alternatively, without using a guide line, the shape of the surrounding environment is grasped from the information acquired by various sensors, the self-position of the automatic guided vehicle 1 is estimated based on the shape data, and a map is created while correcting it. It may be an autonomous guidance such as moving SLAM (Simultaneously Localization And Mapping).

ただし、誘導手段として誘導線を用いることにより、走行経路に沿って設置した誘導線により誘導されながら無人搬送車1が走行するので、無人搬送車1の進行方向と直交する方向の位置精度を向上できる。その上、後述する方向転換経路で無人搬送車1が載置位置に停止するように制御する停止位置制御における無人搬送車1の進行方向と直交する方向の停止位置精度を向上できる。 However, by using the guided vehicle as the guiding means, the automatic guided vehicle 1 travels while being guided by the guided vehicle installed along the traveling route, so that the position accuracy in the direction orthogonal to the traveling direction of the automatic guided vehicle 1 is improved. can. In addition, it is possible to improve the accuracy of the stop position in the direction orthogonal to the traveling direction of the automatic guided vehicle 1 in the stop position control for controlling the automatic guided vehicle 1 to stop at the mounting position in the direction change path described later.

バーコードセンサーS2は、地上に設置した位置認識用情報である座標読取式のバーコード(例えば、図4Aの座標読取式のバーコードE)を認識する。その認識情報をもとに、前記制御装置は、座標読取式のバーコードとの進行方向の距離を測定しながら、目標停止位置での停止を行うように走行制御する。
なお、前記位置認識情報は、座標読取式のバーコードに限定されるものではなく、例えば前記SLAM等の自律誘導である場合には、地上に元からあった目印(例えば柱や壁)等であってもよい。
The barcode sensor S2 recognizes a coordinate reading type barcode (for example, the coordinate reading type barcode E in FIG. 4A), which is position recognition information installed on the ground. Based on the recognition information, the control device controls traveling so as to stop at the target stop position while measuring the distance in the traveling direction from the coordinate reading type barcode.
The position recognition information is not limited to the coordinate reading type barcode. For example, in the case of autonomous guidance such as SLAM, the position recognition information is a mark (for example, a pillar or a wall) originally present on the ground. There may be.

前記位置認識用情報として座標読取式のバーコードを用いることにより、後述する方向転換経路で無人搬送車1が載置位置に停止するように制御する停止位置制御における無人搬送車1の進行方向の停止位置精度を向上できる。 By using a coordinate reading type barcode as the position recognition information, the direction of travel of the automatic guided vehicle 1 in the stop position control for controlling the automatic guided vehicle 1 to stop at the mounting position in the direction change path described later. The stop position accuracy can be improved.

無人搬送車1は、前記走行駆動装置により、左右の駆動輪3,3を等速で逆方向へ回転することにより、左右の駆動輪3,3の回転軸上の左右方向の中央まわりに、容易にその場方向転換できる。例えば、図1Bの概略平面図は、平面視で時計回りに90°その場方向転換を行った状態を示している。
なお、このようなその場方向転換は、左右の駆動輪3,3を等速で逆方向へ回転する構成ではなく、前後左右の四輪の駆動輪を操舵する構成としてもよい。
The automatic guided vehicle 1 uses the traveling drive device to rotate the left and right drive wheels 3 and 3 in opposite directions at a constant speed so that the left and right drive wheels 3 and 3 rotate around the center of the left and right drive wheels 3 and 3 in the left-right direction on the rotation axis. You can easily change direction on the spot. For example, the schematic plan view of FIG. 1B shows a state in which the in-situ direction is changed by 90 ° clockwise in a plan view.
It should be noted that such an in-situ change may not be a configuration in which the left and right drive wheels 3 and 3 are rotated in opposite directions at a constant speed, but a configuration in which the drive wheels of the four front, rear, left and right wheels are steered.

無人搬送車1の昇降テーブル4は、図2Aの部分縦断面正面図に示す下降位置から図2Bの部分縦断面正面図に示す上昇位置の間で昇降可能であり、位置決めピン5,5を昇降テーブル4の対角に備える。
また、台車6は、図3の概略平面図に示すように、位置決めピン5,5を受ける受部G,G,…を4箇所に備え、受部G,G,…は、90°回転対称(4回回転対称)である。
図2Bのように昇降テーブル4を上昇させることにより上昇した位置決めピン5,5は、台車6の受部G,Gに挿入されることから、無人搬送車1の昇降テーブル4から搬送物D(台車6及び荷物W)がずれないので、無人搬送車1により搬送物Dを安定かつ確実に搬送できる。
The elevating table 4 of the automatic guided vehicle 1 can be elevated from the descending position shown in the front view of the partial vertical section of FIG. 2A to the ascending position shown in the front view of the partial vertical section of FIG. Prepare for the diagonal of the table 4.
Further, as shown in the schematic plan view of FIG. 3, the carriage 6 is provided with receiving portions G, G, ... That receive the positioning pins 5, 5 at four locations, and the receiving portions G, G, ... Are rotationally symmetric by 90 °. (4 rotation symmetry).
Since the positioning pins 5 and 5 raised by raising the elevating table 4 as shown in FIG. 2B are inserted into the receiving portions G and G of the trolley 6, the transported object D (from the elevating table 4 of the automatic guided vehicle 1) Since the dolly 6 and the luggage W) do not shift, the automatic guided vehicle 1 can stably and reliably transport the transported object D.

無人搬送車1により搬送物Dを搬送し、昇降テーブル4を下降させて搬送物Dを降ろした後、無人搬送車1を平面視で時計回り又は反時計回りに90°その場方向転換を行った状態でも、受部G,G,…が90°回転対称であるので、昇降テーブル4を上昇させれば、位置決めピン5,5は、台車6の受部G,Gに挿入される。
同様に、無人搬送車1により搬送物Dを搬送し、昇降テーブル4を下降させて搬送物Dを降ろした後、無人搬送車1を平面視で時計回り又は反時計回りに180°その場方向転換を行った状態でも、受部G,G,…が90°回転対称であるので、昇降テーブル4を上昇させれば、位置決めピン5,5は、台車6の受部G,Gに挿入される。
After transporting the transported object D by the automatic guided vehicle 1 and lowering the elevating table 4 to lower the transported object D, the automatic guided vehicle 1 is turned 90 ° clockwise or counterclockwise in a plan view. Even in this state, the receiving portions G, G, ... Are rotationally symmetric by 90 °. Therefore, if the elevating table 4 is raised, the positioning pins 5 and 5 are inserted into the receiving portions G, G of the carriage 6.
Similarly, the automatic guided vehicle 1 transports the transported object D, lowers the elevating table 4 to lower the transported object D, and then rotates the automatic guided vehicle 1 clockwise or counterclockwise by 180 ° in-situ direction. Since the receiving portions G, G, ... Are rotationally symmetric by 90 ° even in the converted state, if the elevating table 4 is raised, the positioning pins 5 and 5 are inserted into the receiving portions G and G of the trolley 6. NS.

以下において、図4Aないし図4Eの動作説明用概略平面図、及び図5Aないし図5Fの動作説明用概略平面図を参照して、本発明の実施の形態に係る無人搬送車1の走行制御方法について説明する。
無人搬送車1が走行する走行経路Bには、地上に磁気テープAを設置しており、無人搬送車1が停止する載置位置Pには、地上に座標読取式のバーコードE,E,…を設置している。
走行経路Bは、搬送物Dを昇降テーブル4に載置する載置位置Pの上流側P1と下流側P2とで方向が異なる方向転換経路Cを含み、方向転換経路Cでは、搬送物Dの向きは変えずに無人搬送車1だけが方向転換する、
In the following, referring to the schematic plan view for explaining the operation of FIGS. 4A to 4E and the schematic plan view for explaining the operation of FIGS. 5A to 5F, the traveling control method of the automatic guided vehicle 1 according to the embodiment of the present invention. Will be described.
A magnetic tape A is installed on the ground in the traveling path B on which the automatic guided vehicle 1 travels, and the coordinate-reading barcodes E, E, etc. are located on the ground at the mounting position P where the automatic guided vehicle 1 stops. ... is installed.
The traveling path B includes a direction change path C in which the directions are different between the upstream side P1 and the downstream side P2 of the mounting position P on which the conveyed object D is placed on the elevating table 4. Only the automatic guided vehicle 1 changes direction without changing the direction.

図4Aないし図4Eの動作説明用概略平面図は、載置位置Pの上流側P1で搬送物Dを載置していない空荷の無人搬送車1を載置位置Pに停止させ、無人搬送車1の昇降テーブル4を上昇させて搬送物Dを無人搬送車1に載置して下流側P2へ搬送する例を示している。
載置位置Pの搬送物Dである台車6には、荷物を積んでいる場合、及び荷物を積んでいない場合がある。
In the schematic plan view for explaining the operation of FIGS. 4A to 4E, the automatic guided vehicle 1 on which the transported object D is not mounted is stopped at the loading position P at the upstream side P1 of the mounting position P, and the automatic guided vehicle 1 is transported. An example is shown in which the lifting table 4 of the vehicle 1 is raised, the transported object D is placed on the automatic guided vehicle 1, and the transported object D is transported to the downstream side P2.
The trolley 6, which is the transported object D at the loading position P, may or may not be loaded with cargo.

図4Aの概略平面図に示すように、空荷の無人搬送車1は、載置位置Pの上流側P1から載置位置Pに向かって走行し、載置位置Pに停止する。自在輪2,2,…は、停止前の進行方向である上流側P1の進行方向を向いている。
このような走行を行う際には、前記のとおり、無人搬送車1の磁気センサーS1が地上の磁気テープAを検知し、中央位置に対して幅方向のズレ量を検出し、その検出情報をもとに、無人搬送車1が磁気テープAの中央へ沿って走行できるように走行制御される。
また、無人搬送車1のバーコードセンサーS2が地上の座標読取式のバーコードEを認識すると、前記のとおり、座標読取式のバーコードEとの進行方向の距離を測定しながら、目標停止位置での停止を行うように走行制御される。
As shown in the schematic plan view of FIG. 4A, the automatic guided vehicle 1 with no load travels from the upstream side P1 of the mounting position P toward the mounting position P and stops at the mounting position P. The free wheels 2, 2, ... Are facing the traveling direction of the upstream side P1, which is the traveling direction before stopping.
When traveling in this way, as described above, the magnetic sensor S1 of the automatic guided vehicle 1 detects the magnetic tape A on the ground, detects the amount of deviation in the width direction with respect to the central position, and uses the detection information. Based on this, the automatic guided vehicle 1 is controlled to travel along the center of the magnetic tape A.
Further, when the barcode sensor S2 of the automatic guided vehicle 1 recognizes the coordinate reading type barcode E on the ground, the target stop position is measured while measuring the distance in the traveling direction from the coordinate reading type barcode E as described above. The running is controlled so as to stop at.

次に、図4Bの概略平面図に示すように、載置位置Pにある無人搬送車1を、平面視で時計回りに90°その場方向転換する(方向転換工程)。自在輪2,2,…は、停止前の進行方向である周方向を向いている。
次に、図4Cの概略平面図に示すように、無人搬送車1を、載置位置Pから下流側P2の進行方向Fと逆方向へ一旦移動させた後に、載置位置Pへ向かって走行させることにより、自在輪2,2,…を進行方向Fへ整列させるとともに(自在輪整列工程)、地上の座標読取式のバーコードEとの進行方向の距離を測定しながら、目標停止位置での停止を行うように走行制御する(停止位置制御工程)。
Next, as shown in the schematic plan view of FIG. 4B, the automatic guided vehicle 1 at the mounting position P is turned clockwise by 90 ° in the plan view (direction changing step). The free wheels 2, 2, ... Are facing the circumferential direction, which is the traveling direction before stopping.
Next, as shown in the schematic plan view of FIG. 4C, the automatic guided vehicle 1 is once moved from the mounting position P in the direction opposite to the traveling direction F of the downstream side P2, and then travels toward the mounting position P. By doing so, the free wheels 2, 2, ... Are aligned in the traveling direction F (flexible wheel alignment step), and at the target stop position while measuring the distance in the traveling direction from the coordinate-reading barcode E on the ground. Travel control is performed so as to stop the vehicle (stop position control process).

次に、図4Dの概略平面図に示すように載置位置Pに移動した無人搬送車1の昇降テーブル4を上昇させ、搬送物Dを昇降テーブル4上に載置する(搬送物載置工程)。
この状態では、前記のとおり、昇降テーブル4の位置決めピン5,5が、搬送物Dである台車6の受部G,Gに挿入されている。
次に、図4Eの概略平面図に示すように、昇降テーブル4上に搬送物Dを載置した無人搬送車1を、載置位置Pから下流側P2の進行方向Fへ、走行経路Bに沿って所定の位置まで搬送する(搬送物搬送工程)。
Next, as shown in the schematic plan view of FIG. 4D, the elevating table 4 of the automatic guided vehicle 1 moved to the mounting position P is raised, and the transported object D is placed on the elevating table 4 (conveyed object loading step). ).
In this state, as described above, the positioning pins 5 and 5 of the elevating table 4 are inserted into the receiving portions G and G of the carriage 6 which is the conveyed object D.
Next, as shown in the schematic plan view of FIG. 4E, the automatic guided vehicle 1 on which the transported object D is mounted on the elevating table 4 is moved from the mounting position P to the traveling direction F of the downstream side P2 in the traveling path B. It is transported to a predetermined position along the route (conveyed object transport process).

図5Aないし図5Fの動作説明用概略平面図は、載置位置Pの上流側P1で搬送物Dを載置している無人搬送車1を載置位置Pに停止させ、無人搬送車1の昇降テーブル4を下降させて無人搬送車1から搬送物Dを降ろした後、無人搬送車1の昇降テーブル4を上昇させて搬送物Dを無人搬送車1に載置して下流側P2へ搬送する例を示している。
載置位置Pでは、搬送物Dである台車6から荷物を降ろす場合、台車6に荷物を積み込む場合、台車6から荷物を降ろして新しい荷物を積み込む場合等がある。
In the schematic plan view for explaining the operation of FIGS. 5A to 5F, the automatic guided vehicle 1 on which the transported object D is mounted is stopped at the loading position P at the upstream side P1 of the mounting position P, and the automatic guided vehicle 1 After lowering the lifting table 4 to lower the transported object D from the automatic guided vehicle 1, the lifting table 4 of the automatic guided vehicle 1 is raised to place the transported object D on the automatic guided vehicle 1 and transport it to the downstream side P2. An example is shown.
At the loading position P, there are cases where the load is unloaded from the trolley 6, which is the transported object D, the load is loaded on the trolley 6, the load is unloaded from the trolley 6, and a new load is loaded.

図5Aの概略平面図に示すように、載置位置Pの上流側P1で搬送物Dを載置している無人搬送車1は、載置位置Pの上流側P1から載置位置Pに向かって走行し、載置位置Pに停止する。自在輪2,2,…は、停止前の進行方向である上流側P1の進行方向を向いている。
このような走行を行う際には、前記のとおり、無人搬送車1の磁気センサーS1が地上の磁気テープAを検知し、中央位置に対して幅方向のズレ量を検出し、その検出情報をもとに、無人搬送車1が磁気テープAの中央へ沿って走行できるように走行制御される。
また、無人搬送車1のバーコードセンサーS2が地上の座標読取式のバーコードEを認識すると、前記のとおり、座標読取式のバーコードEとの進行方向の距離を測定しながら、目標停止位置での停止を行うように走行制御される。
As shown in the schematic plan view of FIG. 5A, the automatic guided vehicle 1 on which the transported object D is mounted on the upstream side P1 of the mounting position P faces the mounting position P from the upstream side P1 of the mounting position P. And stop at the mounting position P. The free wheels 2, 2, ... Are facing the traveling direction of the upstream side P1, which is the traveling direction before stopping.
When traveling in this way, as described above, the magnetic sensor S1 of the automatic guided vehicle 1 detects the magnetic tape A on the ground, detects the amount of deviation in the width direction with respect to the central position, and uses the detection information. Based on this, the automatic guided vehicle 1 is controlled to travel along the center of the magnetic tape A.
Further, when the barcode sensor S2 of the automatic guided vehicle 1 recognizes the coordinate reading type barcode E on the ground, the target stop position is measured while measuring the distance in the traveling direction from the coordinate reading type barcode E as described above. The running is controlled so as to stop at.

次に、図5Bの概略平面図に示すように、載置位置Pに移動した無人搬送車1の昇降テーブル4を下降させ、搬送物Dを昇降テーブル4から降ろす。
次に、図5Cの概略平面図に示すように、載置位置Pにある無人搬送車1を、平面視で時計回りに90°その場方向転換する(方向転換工程)。自在輪2,2,…は、停止前の進行方向である周方向を向いている。
次に、図5Dの概略平面図に示すように、無人搬送車1を、載置位置Pから下流側P2の進行方向Fと逆方向へ一旦移動させた後に、載置位置Pへ向かって走行させることにより、自在輪2,2,…を進行方向Fへ整列させるとともに(自在輪整列工程)、地上の座標読取式のバーコードEとの進行方向の距離を測定しながら、目標停止位置での停止を行うように走行制御する(停止位置制御工程)。
Next, as shown in the schematic plan view of FIG. 5B, the elevating table 4 of the automatic guided vehicle 1 that has moved to the mounting position P is lowered, and the conveyed object D is lowered from the elevating table 4.
Next, as shown in the schematic plan view of FIG. 5C, the automatic guided vehicle 1 at the mounting position P is turned clockwise by 90 ° in the plan view (direction changing step). The free wheels 2, 2, ... Are facing the circumferential direction, which is the traveling direction before stopping.
Next, as shown in the schematic plan view of FIG. 5D, the automatic guided vehicle 1 is once moved from the mounting position P in the direction opposite to the traveling direction F of the downstream side P2, and then travels toward the mounting position P. By doing so, the free wheels 2, 2, ... Are aligned in the traveling direction F (flexible wheel alignment step), and at the target stop position while measuring the distance in the traveling direction from the coordinate-reading barcode E on the ground. Travel control is performed so as to stop the vehicle (stop position control process).

次に、図5Eの概略平面図に示すように載置位置Pに移動した無人搬送車1の昇降テーブル4を上昇させ、搬送物Dを昇降テーブル4上に載置する(搬送物載置工程)。
この状態では、前記のとおり、昇降テーブル4の位置決めピン5,5が、搬送物Dである台車6の受部G,Gに挿入されている。
次に、図5Fの概略平面図に示すように、昇降テーブル4上に搬送物Dを載置した無人搬送車1を、載置位置Pから下流側P2の進行方向Fへ、走行経路Bに沿って所定の位置まで搬送する(搬送物搬送工程)。
Next, as shown in the schematic plan view of FIG. 5E, the elevating table 4 of the automatic guided vehicle 1 moved to the mounting position P is raised, and the transported object D is placed on the elevating table 4 (conveyed object loading step). ).
In this state, as described above, the positioning pins 5 and 5 of the elevating table 4 are inserted into the receiving portions G and G of the carriage 6 which is the conveyed object D.
Next, as shown in the schematic plan view of FIG. 5F, the automatic guided vehicle 1 on which the transported object D is mounted on the elevating table 4 is moved from the mounting position P to the traveling direction F of the downstream side P2 in the traveling path B. It is transported to a predetermined position along the route (conveyed object transport process).

本実施の形態において、搬送物Dは、前後左右の車輪7,7,…を備えた台車6、及び台車6の上の荷物Wである。
したがって、無人搬送車1の昇降テーブル4に台車6を載置する載置位置P、又は無人搬送車1から台車6を降ろす位置の地上である床面FLに、例えば、図6Aの概略平面図、及び図6Bの要部拡大正面図に示すように、台車6が不意に移動しないように車輪7,7,…の回転を止める輪止めH,Hを設けている。
このような輪止めH,Hにより、車輪7,7,…が止められた台車6が床面FLに確実に位置決めされることから、無人搬送車1の昇降テーブル4を上昇させて台車6を無人搬送車1に載置する際に、無人搬送車1と台車6との位置がずれないので、無人搬送車1による台車6の搬送をスムーズに行うことができる。
In the present embodiment, the transported object D is a trolley 6 provided with front, rear, left and right wheels 7, 7, ..., And a luggage W on the trolley 6.
Therefore, for example, a schematic plan view of FIG. 6A can be seen on the mounting position P on which the carriage 6 is placed on the elevating table 4 of the automatic guided vehicle 1 or on the floor FL on the ground at the position where the carriage 6 is lowered from the automatic guided vehicle 1. And, as shown in the enlarged front view of the main part of FIG. 6B, wheel chocks H, H for stopping the rotation of the wheels 7, 7, ... Are provided so that the carriage 6 does not move unexpectedly.
Since the carriage 6 on which the wheels 7, 7, ... Are stopped is reliably positioned on the floor surface FL by such wheel chocks H, H, the lifting table 4 of the automatic guided vehicle 1 is raised to raise the carriage 6. Since the positions of the automatic guided vehicle 1 and the trolley 6 do not shift when the vehicle is mounted on the automatic guided vehicle 1, the trolley 6 can be smoothly transported by the automatic guided vehicle 1.

以上の無人搬送車1の走行制御方法において、前記方向転換工程で90°その場方向転換を行う場合、前記走行駆動装置により駆動輪3,3を所要回転分駆動するために設定するエンコーダのパルス数は、摩耗していない状態の駆動輪3,3の径を基準としている。
したがって、駆動輪3,3が摩耗した場合、前記走行駆動装置により駆動輪3,3を前記所要回転分駆動しても、その場方向転換の角度が90°未満になってしまう。
しかしながら、このように駆動輪3,3の回転量が不足してその場方向転換の角度が90°未満であったとしても、前記方向転換工程の後に行う前記自在輪整列工程において、無人搬送車1を、載置位置Pから下流側P2の進行方向Fと逆方向へ一旦移動させた後に、載置位置Pへ向かって走行させる際に、前記駆動輪3,3の摩耗によるその場方向転換の角度のずれを補正することができる。
In the above-mentioned traveling control method of the automatic guided vehicle 1, when the direction is changed by 90 ° in the direction changing step, the pulse of the encoder set to drive the drive wheels 3 and 3 by the required rotation by the traveling drive device. The number is based on the diameter of the drive wheels 3 and 3 in a non-weared state.
Therefore, when the drive wheels 3 and 3 are worn, even if the drive wheels 3 and 3 are driven by the required rotation amount by the traveling drive device, the angle of the field direction change becomes less than 90 °.
However, even if the amount of rotation of the drive wheels 3 and 3 is insufficient and the in-situ direction change angle is less than 90 °, the automatic guided vehicle is used in the universal wheel alignment step performed after the direction change step. When 1 is once moved from the mounting position P in the direction opposite to the traveling direction F of the downstream side P2 and then traveled toward the mounting position P, the in-situ direction is changed due to wear of the drive wheels 3 and 3. It is possible to correct the deviation of the angle of.

以上の無人搬送車1の走行制御方法において、前記方向転換工程は、その場方向転換に限定されるものではなく、左右の駆動輪3,3の回転数を変えて曲線状の経路を走行せることにより方向転換を行うようにしてもよい。 In the above-mentioned traveling control method of the automatic guided vehicle 1, the direction changing step is not limited to the in-situ change of direction, and the vehicle travels on a curved route by changing the rotation speeds of the left and right drive wheels 3 and 3. By doing so, the direction may be changed.

以上のような無人搬送車1の走行制御方法によれば、無人搬送車1の昇降テーブル4に搬送物Dを載置する載置位置Pの上流側P1と下流側P2とで方向が異なる方向転換経路Cにおいて、搬送物Dを載置する前の無人搬送車1の自在輪2,2,…は、前記自在輪整列工程により、載置位置Pの下流側P2の進行方向Fへ整列した状態となる。
よって、載置位置Pで昇降テーブル4を上昇させて搬送物Dを昇降テーブル4に載置した無人搬送車1が下流側P2の進行方向Fへ向かって発進する際に、無人搬送車1が低床で自在輪2,2,…の径が小さく、搬送物Dの重量が大きくても、ふらつくことがなくスムーズに走行できる。
According to the traveling control method of the automatic guided vehicle 1 as described above, the directions are different between the upstream side P1 and the downstream side P2 of the mounting position P on which the transported object D is placed on the elevating table 4 of the automatic guided vehicle 1. In the conversion path C, the free wheels 2, 2, ... Of the automatic guided vehicle 1 before mounting the transported object D are aligned in the traveling direction F of the downstream side P2 of the mounting position P by the free wheel alignment step. It becomes a state.
Therefore, when the automatic guided vehicle 1 in which the lifting table 4 is raised at the mounting position P and the transported object D is placed on the lifting table 4 starts in the traveling direction F of the downstream side P2, the automatic guided vehicle 1 moves. Even if the floor is low, the diameters of the free wheels 2, 2, ... Are small, and the weight of the transported object D is large, the vehicle can run smoothly without wobbling.

その上、搬送物Dを載置する前の無人搬送車1は、前記停止位置制御工程により、地上の位置認識用情報に基づいて、方向転換によって走行経路Bからのずれがばらついても載置位置Pに精度よく停止できる。
よって、無人搬送車1の昇降テーブル4に対して搬送物Dを精度よく安定して載置できるとともに、異なる複数台の無人搬送車1,1,…が何度も同じ経路を通過する場合であっても停止位置の誤差が出難くなる。
その上さらに、方向転換経路Cにおいて、搬送物Dの向きは変えずに無人搬送車1だけが方向転換することから、搬送物Dを載置していない状態であるため比較的軽量である無人搬送車1を、より精度よく載置位置Pに停止させることができるので、方向転換を繰り返す場合であっても停止位置の誤差が累積することがない。
In addition, the automatic guided vehicle 1 before mounting the transported object D is mounted even if the deviation from the traveling path B varies due to the direction change based on the position recognition information on the ground by the stop position control process. It can be stopped accurately at the position P.
Therefore, the transported object D can be accurately and stably placed on the elevating table 4 of the automatic guided vehicle 1, and when a plurality of different automatic guided vehicles 1, 1, ... Pass the same route many times. Even if there is, it becomes difficult for an error in the stop position to appear.
Furthermore, in the direction change path C, since only the automatic guided vehicle 1 changes direction without changing the direction of the transported object D, the unmanned vehicle D is relatively lightweight because the transported object D is not placed. Since the transport vehicle 1 can be stopped at the mounting position P with higher accuracy, the error of the stop position does not accumulate even when the direction change is repeated.

図7の流れ図は、本発明の実施の形態に係る無人搬送車の走行制御方法におけるPID制御の比例ゲインに相当する比例定数の選択の例を示しており、無人搬送車が走行を開始する前に、図7の流れ図のように前記比例定数を選択し、誘導制御を用いて走行する。
前記比例定数は、例えば、無人搬送車の磁気センサーが地上の磁気テープを検知し、中央位置に対して幅方向のズレ量を検出し、その検出情報をもとに、無人搬送車が磁気テープの中央へ沿って走行できるように走行制御する際における左右の駆動輪の回転数を変化させる比率である。
The flow chart of FIG. 7 shows an example of selecting a proportional constant corresponding to the proportional gain of PID control in the traveling control method of the automatic guided vehicle according to the embodiment of the present invention, and before the automatic guided vehicle starts traveling. In addition, the proportionality constant is selected as shown in the flow chart of FIG. 7, and the vehicle travels using the guidance control.
For the proportionality constant, for example, the magnetic sensor of the unmanned carrier detects the magnetic tape on the ground, detects the amount of deviation in the width direction with respect to the center position, and based on the detection information, the unmanned carrier detects the magnetic tape. It is a ratio to change the number of rotations of the left and right drive wheels when the traveling is controlled so that the vehicle can travel along the center of the.

すなわち、無人搬送車が搬送物を載置した状態で走行する際には、前記比例定数として、「搬送物有」の値(例えば、比例定数:90)を選択して走行する。
また、無人搬送車が搬送物を載置しないで前記自在輪整列工程の自在輪整列動作を行う際には、前記比例定数として、「自在輪整列」の値(例えば、比例定数:800)を選択して走行する。
さらに、無人搬送車が搬送物を載置しないで自在輪整列動作を行わずに走行する際には、前記比例定数として、「搬送物無」の値(「搬送物有」よりも大きく、「自在輪整列」よりも小さい値である、例えば、比例定数:200)を選択して走行する。
That is, when the automatic guided vehicle travels with the transported object placed on it, the value of "conveyed object present" (for example, proportional constant: 90) is selected and traveled as the proportional constant.
Further, when the automatic guided vehicle performs the free wheel alignment operation in the free wheel alignment step without mounting the transported object, the value of "universal wheel alignment" (for example, proportional constant: 800) is used as the proportional constant. Select and drive.
Further, when the automatic guided vehicle travels without mounting the transported object and without performing the free wheel alignment operation, the value of "without transported object" (larger than "with transported object", and " A value smaller than "alignment of free wheels", for example, a proportional constant: 200) is selected for traveling.

以上のように無人搬送車が走行を開始する前に、前記PID制御の比例ゲイン(前記比例定数)を選択し、誘導制御を用いて走行することにより、以下のような作用効果を奏する。
(1)無人搬送車に搬送物を載置していない前記自在輪整列工程の誘導制御におけるPID制御の比例ゲイン(例えば、比例定数:800)を、無人搬送車に搬送物を載置した前記搬送物搬送工程の誘導制御におけるPID制御の比例ゲイン(例えば、比例定数:90)よりも大きくしていることから、誘導制御の速応性が高くなるので、自在輪の整列後、車体の姿勢が乱れていても、短時間で誘導手段によって姿勢を補正することができ、載置位置に精度よく停止できる。
(2)無人搬送車に搬送物を載置した前記搬送物搬送工程の誘導制御におけるPID制御の比例ゲイン(例えば、比例定数:90)は、無人搬送車に搬送物を載置していない前記自在輪整列工程の誘導制御におけるPID制御の比例ゲイン(例えば、比例定数:800)よりも小さいので、前記搬送物搬送工程の誘導制御の安定性が高くなる。
(3)前記搬送物搬送工程における誘導制御において、PID制御における比例ゲイン(例えば、比例定数:90)を前記自在輪整列工程の誘導制御におけるPID制御の比例ゲイン(例えば、比例定数:800)よりも小さくすることにより、前記自在輪整列工程よりも走行距離が長い前記搬送物搬送工程で、駆動輪の回転数を変化させるための加減速を少なくできるので、消費電力を低減できる。
(4)前記自在輪整列工程以外の搬送物を載置していない状態で無人搬送車が走行する工程における誘導制御においても、PID制御における比例ゲイン(例えば、比例定数:200)を前記自在輪整列工程の誘導制御におけるPID制御の比例ゲイン(例えば、比例定数:800)よりも小さくしていることから、前記自在輪整列工程よりも走行距離が長い前記自在輪整列工程以外の搬送物を載置していない状態で無人搬送車が走行する工程で、走行輪の回転数を変化させるための加減速を少なくできるので、消費電力を一層低減できる。
As described above, before the automatic guided vehicle starts traveling, the proportional gain of the PID control (the proportional constant) is selected and the automatic guided vehicle travels by using the guidance control, thereby achieving the following effects.
(1) The proportional gain (for example, proportionality constant: 800) of PID control in the guidance control of the free wheel alignment process in which the conveyed object is not placed on the unmanned carrier is set on the unmanned carrier. Since it is larger than the proportional gain of PID control (for example, proportionality constant: 90) in the guidance control of the transportation process of the transported object, the quick response of the guidance control is high, so that the posture of the vehicle body changes after the free wheels are aligned. Even if it is disturbed, the posture can be corrected by the guiding means in a short time, and the vehicle can be stopped accurately at the mounting position.
(2) The proportional gain (for example, proportionality constant: 90) of PID control in the guidance control of the transported object transporting process in which the transported object is mounted on the unmanned transport vehicle is the said that the transported object is not mounted on the unmanned transport vehicle. Since it is smaller than the proportional gain (for example, proportionality constant: 800) of the PID control in the induction control of the free wheel alignment process, the stability of the induction control of the conveyed material transfer process is improved.
(3) In the induction control in the conveyed material conveying process, the proportional gain in the PID control (for example, proportional constant: 90) is obtained from the proportional gain in the PID control in the induction control in the free wheel alignment process (for example, proportional constant: 800). By reducing the size, acceleration / deceleration for changing the rotation speed of the drive wheels can be reduced in the transported object transporting step in which the mileage is longer than that in the universal wheel alignment step, so that power consumption can be reduced.
(4) Even in the guidance control in the process in which the unmanned carrier travels in a state where the conveyed object is not placed other than the universal wheel alignment step, the proportional gain (for example, proportional constant: 200) in the PID control is set to the universal wheel. Since it is smaller than the proportional gain of PID control in the induction control of the alignment process (for example, proportional constant: 800), the transported object other than the universal wheel alignment process having a longer mileage than the universal wheel alignment process is loaded. In the process in which the unmanned carrier travels in the unplaced state, acceleration / deceleration for changing the rotation speed of the traveling wheels can be reduced, so that power consumption can be further reduced.

以上の実施の形態の記載はすべてすべて例示であり、これに制限されるものではない。本発明の範囲から逸脱することなく種々の改良及び変更を施すことができる。 All the descriptions of the above embodiments are examples, and the present invention is not limited thereto. Various improvements and modifications can be made without departing from the scope of the present invention.

1 無人搬送車
2 自在車輪
3 駆動輪
4 昇降テーブル
5 位置決めピン
6 台車
7 車輪
A 磁気テープ(誘導手段)
B 走行経路
C 方向転換経路
D 搬送物
E 座標読取式のバーコード(位置認識用情報)
F 下流側の進行方向
FL 床面(地上)
G 受部
H 輪止め
P 載置位置
P1 上流側
P2 下流側
S1 磁気センサー
S2 バーコードセンサー
W 荷物
1 Automated guided vehicle 2 Free wheel 3 Drive wheel 4 Lifting table 5 Positioning pin 6 Bogie 7 Wheel A Magnetic tape (guidance means)
B Travel route C Direction change route D Conveyed object E Coordinate reading type barcode (position recognition information)
F Downstream direction of travel FL Floor surface (ground)
G Receiving part H Wheel chock P Mounting position P1 Upstream side P2 Downstream side S1 Magnetic sensor S2 Bar code sensor W Luggage

Claims (6)

誘導手段を用いて誘導制御され、所定の走行経路に沿って無軌道で自走する無人搬送車の走行制御方法であって、
前記無人搬送車は、
自在輪及び左右の駆動輪、並びに、搬送物を載置する昇降テーブルを備え、
前記搬送物の下に潜り込んで、前記搬送物を持ち上げて移動するものであり、
前記走行経路は、
前記搬送物を前記昇降テーブルに載置する載置位置の上流側と下流側とで方向が異なる方向転換経路を含み、
前記無人搬送車を、前記載置位置から前記下流側の進行方向と逆方向へ一旦移動させた後に、前記載置位置へ向かって走行させることにより、前記自在輪を前記進行方向へ整列させる自在輪整列工程と、
前記無人搬送車が、地上の位置認識用情報に基づいて前記載置位置に停止するように制御する停止位置制御工程と、
前記自在輪整列工程を経て前記自在輪が前記進行方向へ整列するともに、前記停止位置制御工程を経て前記載置位置に停止した前記無人搬送車の前記昇降テーブルを上昇させ、前記昇降テーブル上に前記搬送物を載置する搬送物載置工程と、
前記昇降テーブル上に前記搬送物を載置した前記無人搬送車を、前記走行経路に沿って所定の位置まで搬送する搬送物搬送工程と、
を含み、
前記方向転換経路において、前記自在輪整列工程を行う前に、左右の前記駆動輪を等速で逆方向へ回転することにより、前記搬送物の向きは変えずに前記無人搬送車だけがその場方向転換する方向転換工程を有することを特徴とする
無人搬送車の走行制御方法。
It is a traveling control method for an automatic guided vehicle that is guided and controlled using a guiding means and self-propelled along a predetermined traveling route without a track.
The automatic guided vehicle
Equipped with free wheels, left and right drive wheels, and an elevating table on which the transported object is placed.
It sneaks under the transported object and lifts and moves the transported object.
The traveling route is
Includes a turning path in which the direction is different between the upstream side and the downstream side of the mounting position where the transported object is mounted on the lifting table.
The automatic guided vehicle is once moved from the previously described placement position in the direction opposite to the traveling direction on the downstream side, and then traveled toward the previously described placement position so that the free wheels can be aligned in the traveling direction. Wheel alignment process and
A stop position control step of controlling the automatic guided vehicle to stop at the previously described position based on the position recognition information on the ground.
The free wheels are aligned in the traveling direction through the free wheel alignment step, and the elevating table of the automatic guided vehicle stopped at the above-described placement position through the stop position control step is raised and placed on the elevating table. The transport object loading process for mounting the transported object and
The vehicle transporting step of transporting the automatic guided vehicle on which the transported object is placed on the lifting table to a predetermined position along the traveling path.
Including
In the direction change path, by rotating the left and right drive wheels in opposite directions at a constant speed before performing the universal wheel alignment step, only the automatic guided vehicle is on the spot without changing the direction of the transported object. A traveling control method for an automatic guided vehicle, which comprises a direction-changing process for changing the direction.
前記自在輪整列工程の前記誘導制御におけるPID制御の比例ゲインを、前記搬送物搬送工程の前記誘導制御におけるPID制御の比例ゲインよりも大きくしてなる、
請求項1に記載の無人搬送車の走行制御方法。
The proportional gain of the PID control in the guidance control of the free wheel alignment step is made larger than the proportional gain of the PID control in the guidance control of the transported object transporting step.
The traveling control method for an automatic guided vehicle according to claim 1.
前記位置認識用情報は座標読取式のバーコードである、
請求項1又は2に記載の無人搬送車の走行制御方法。
The position recognition information is a coordinate reading type barcode.
The traveling control method for an automatic guided vehicle according to claim 1 or 2.
前記誘導手段は前記走行経路に沿って設置した誘導線である、
請求項1〜3の何れか1項に記載の無人搬送車の走行制御方法。
The guiding means is a guiding line installed along the traveling path.
The traveling control method for an automatic guided vehicle according to any one of claims 1 to 3.
前記搬送物は台車及びその上の荷物であり、
前記載置位置の地上、及び前記無人搬送車から前記台車を降ろす位置の地上に、前記台車の車輪を止める輪止めを備える、
請求項1〜の何れか1項に記載の無人搬送車の走行制御方法。
The transported object is a trolley and luggage on it.
A wheel chock for stopping the wheels of the trolley is provided on the ground at the above-mentioned placement position and on the ground at the position where the trolley is lowered from the automatic guided vehicle.
The traveling control method for an automatic guided vehicle according to any one of claims 1 to 4.
前記無人搬送車の昇降テーブルは位置決めピンを備え、
前記搬送物は前記位置決めピンを受ける受部を備える、
請求項1〜の何れか1項に記載の無人搬送車の走行制御方法。
The lifting table of the automatic guided vehicle is equipped with a positioning pin.
The transported object includes a receiving portion that receives the positioning pin.
The traveling control method for an automatic guided vehicle according to any one of claims 1 to 5.
JP2018006443A 2018-01-18 2018-01-18 Travel control method for automatic guided vehicles Active JP6930436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018006443A JP6930436B2 (en) 2018-01-18 2018-01-18 Travel control method for automatic guided vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018006443A JP6930436B2 (en) 2018-01-18 2018-01-18 Travel control method for automatic guided vehicles

Publications (2)

Publication Number Publication Date
JP2019125246A JP2019125246A (en) 2019-07-25
JP6930436B2 true JP6930436B2 (en) 2021-09-01

Family

ID=67398914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006443A Active JP6930436B2 (en) 2018-01-18 2018-01-18 Travel control method for automatic guided vehicles

Country Status (1)

Country Link
JP (1) JP6930436B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7218815B2 (en) * 2019-09-27 2023-02-07 日本電気株式会社 MOVEMENT CONTROL METHOD, MOVEMENT CONTROL DEVICE, MOVEMENT CONTROL SYSTEM, AND PROGRAM
CN111086572A (en) * 2020-01-16 2020-05-01 深圳市科昭科技有限公司 Intelligence lift post turns to AGV robot
JP7301409B2 (en) * 2021-01-08 2023-07-03 株式会社LexxPluss Transport system and transport control method
WO2022149285A1 (en) * 2021-01-08 2022-07-14 株式会社LexxPluss Transport system and transport control method
KR20230050164A (en) * 2021-10-07 2023-04-14 주식회사 엘지에너지솔루션 Automatic transportation control method and automatic transportation system using automatic guided vehicle
CN117651921A (en) * 2021-11-19 2024-03-05 村田机械株式会社 Conveying system, unmanned conveying vehicle and control method of unmanned conveying vehicle
CN116062031B (en) * 2023-04-06 2023-06-06 广东正合智能设备有限公司 Automatic deviation rectifying mechanism of AGV trolley transfer device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286008A (en) * 1991-03-14 1992-10-12 Shimizu Corp Direction control method for unmanned vehicle
JPH05221516A (en) * 1992-02-13 1993-08-31 Toyota Autom Loom Works Ltd Unmanned truck and attachment replacing system therefor
JPH06305414A (en) * 1993-04-28 1994-11-01 Fuji Electric Co Ltd Trackless unmanned carrier
JPH0789647A (en) * 1993-09-22 1995-04-04 Isowa Fuupaa Suifuto:Kk Unmanned transfer vehicle
JPH07251666A (en) * 1994-03-16 1995-10-03 Nobuhito Masuoka Transport carriage
JP3162661B2 (en) * 1997-09-19 2001-05-08 株式会社椿本チエイン Traveling control method of self-propelled bogie having free wheels
JP6289387B2 (en) * 2015-01-12 2018-03-07 ジヤトコ株式会社 Car parking system with slip box

Also Published As

Publication number Publication date
JP2019125246A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6930436B2 (en) Travel control method for automatic guided vehicles
US7991521B2 (en) Variable path automated guided vehicle
CN105775540B (en) A kind of access pallet control method of magnetic stripe guiding vehicle
JP7135416B2 (en) Rotation Angle Control Method in Spin Turn of Automated Guided Vehicle
TW200540089A (en) Automatic transport loading system and method
CN108529493B (en) Land transportation vehicle with improved sensor solution and land transportation system
JP2009298223A (en) Unmanned conveying vehicle
CN109095096A (en) A kind of control method of automatic loading/unloading AGV vehicle
WO2019159519A1 (en) Transportation vehicle travel control system and transportation vehicle travel control method
CN109368549A (en) A kind of magnetic stripe navigation fork truck system and its control method
CN116745226A (en) Transport vehicle and method for transporting a load unit to a vehicle
JP2014137710A (en) Control method of automatic guided vehicle
JPH05509069A (en) Stationary direction change device for trolley operation
JPH1053127A (en) Positioning device at time of loading
JP2019175036A (en) Unmanned running truck
WO2023084637A1 (en) Transport system and transport control method
CN213649753U (en) Loading and unloading carrying system
JP7283152B2 (en) Autonomous mobile device, program and steering method for autonomous mobile device
JP2011243129A (en) Transportation vehicle system
JP5300603B2 (en) Driving control method of automatic guided vehicle
WO2023233731A1 (en) Transport facility
JP2006235966A (en) Article conveyance facility
CN116878538B (en) AGV trolley operation data acquisition system for WMS
JP4089610B2 (en) Tracked bogie system and tracked bogie travel control method
JPH11245839A (en) Multiaxle automatic guided vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210726

R150 Certificate of patent or registration of utility model

Ref document number: 6930436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150