JP5300603B2 - Driving control method of automatic guided vehicle - Google Patents

Driving control method of automatic guided vehicle Download PDF

Info

Publication number
JP5300603B2
JP5300603B2 JP2009133887A JP2009133887A JP5300603B2 JP 5300603 B2 JP5300603 B2 JP 5300603B2 JP 2009133887 A JP2009133887 A JP 2009133887A JP 2009133887 A JP2009133887 A JP 2009133887A JP 5300603 B2 JP5300603 B2 JP 5300603B2
Authority
JP
Japan
Prior art keywords
steering angle
target value
wheels
speed
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009133887A
Other languages
Japanese (ja)
Other versions
JP2010282330A (en
Inventor
広幸 田池
忠 森田
眞 植平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsubakimoto Chain Co
Original Assignee
Tsubakimoto Chain Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsubakimoto Chain Co filed Critical Tsubakimoto Chain Co
Priority to JP2009133887A priority Critical patent/JP5300603B2/en
Publication of JP2010282330A publication Critical patent/JP2010282330A/en
Application granted granted Critical
Publication of JP5300603B2 publication Critical patent/JP5300603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、走行路面上に敷設したガイドテープによって誘導され、所望の搬送経路に沿って工場や倉庫内を走行する無人搬送車(Automatic Guided Vehicle:いわゆるAGV)の走行制御方法に関するものである。   The present invention relates to a traveling control method for an automated guided vehicle (so-called AGV) guided by a guide tape laid on a traveling road surface and traveling in a factory or warehouse along a desired transportation route.

従来から、新聞印刷工場などにおいては、紙庫から輪転機へ巻取紙を搬送するとともに輪転機から残芯を回収する手段としてAGVと略称される無人搬送車が多く利用されている。   2. Description of the Related Art Conventionally, in a newspaper printing factory or the like, an automatic guided vehicle abbreviated as AGV is often used as a means for conveying a web from a paper storage to a rotary press and collecting the remaining core from the rotary press.

無人搬送車の誘導方式としては、
(1)走行路面に電磁誘導線を埋設し、そこに交流電流を流すことによって生じる磁界を車体側の磁気センサで検出することによって走行ルートを検出する電磁誘導方式(誘導線埋設方式)、
(2)走行路面上に磁気テープを誘導線として貼り付け、車体側の磁気センサで磁気テープが発生する磁束を検出することによって、走行ルートを検出する磁気誘導方式、
(3)走行路面上に光反射テープを誘導線として貼り付け、車体側の光センサで光反射テープを検知して、走行ルートを検出する光誘導方式などが主に用いられている。
As a guide method for automated guided vehicles,
(1) An electromagnetic induction method (guidance wire burying method) that detects a travel route by burying an electromagnetic induction wire on the road surface and detecting a magnetic field generated by flowing an alternating current therewith by a magnetic sensor on the vehicle body side,
(2) A magnetic induction method for detecting a traveling route by sticking a magnetic tape as a guide line on a traveling road surface and detecting a magnetic flux generated by the magnetic tape by a magnetic sensor on the vehicle body side;
(3) A light guiding method is mainly used in which a light reflecting tape is attached as a guide line on a traveling road surface, the light reflecting tape is detected by a light sensor on the vehicle body side, and a traveling route is detected.

このような無人搬送車は、巻取紙の搬送現場における自動化・省人化・作業環境の改善などに大きく寄与してきた。   Such automatic guided vehicles have greatly contributed to automation, labor saving, and improvement of the working environment at the site where the web is conveyed.

特に近年、輪転機の給紙作業の合理化などに対する要求が高まりつつあり、そのため、積極的により高性能な無人搬送車の導入が図られている。そして、このような無人搬送車の誘導方式としては、保守管理や据付現場への適応性、経済性などの観点から、前述した磁気誘導方式及び光誘導方式が多く採用される傾向にある。   In particular, in recent years, there has been an increasing demand for rationalization of the paper feeding operation of the rotary press, and for this reason, introduction of a higher-performance automatic guided vehicle has been actively promoted. And as a guidance method of such an automated guided vehicle, the magnetic guidance method and the light guidance method described above tend to be adopted from the viewpoint of maintenance management, adaptability to the installation site, economy, and the like.

通常、磁気誘導方式又は光誘導方式の無人搬送車は、磁気テープ又は光反射テープからなるガイドテープの位置を無人搬送車にガイドテープと直交する方向に一列に設置された複数の磁気センサ又は光センサにより認識することによって、自動操舵・走行制御がなされている(例えば、特許文献1参照)。   Usually, a magnetic induction type or a light induction type automatic guided vehicle has a plurality of magnetic sensors or optical devices installed in a line in a direction perpendicular to the guide tape at the position of a guide tape made of a magnetic tape or a light reflecting tape. Automatic steering / running control is performed by recognizing with a sensor (see, for example, Patent Document 1).

そして、無人搬送車をガイドテープに沿って安定して走行させるために、前輪速度制御・後輪トルク制御が一般に行われている(例えば、特許文献1参照)。   And in order to make an automatic guided vehicle drive stably along a guide tape, front-wheel speed control and rear-wheel torque control are generally performed (for example, refer to patent documents 1).

特開2004−86453号公報JP 2004-86453 A

ところが、前述したような従来の無人搬送車は、前後輪の間隔に比べ小さい半径の軌道を走行する場合、前輪が曲線軌道上で後輪が直線軌道上、あるいは、その逆になる。図6に示すように、前輪が曲線軌道を抜けて直線軌道上を走行すると、後輪は曲線軌道上となり前輪より相当速い速度になる。すなわち、Vf<Vrとなる。このため、操舵制御が追従できず後輪が不安定となるという課題があった。   However, when the conventional automatic guided vehicle as described above travels on a track having a radius smaller than the distance between the front and rear wheels, the front wheels are on a curved track and the rear wheels are on a straight track, or vice versa. As shown in FIG. 6, when the front wheels pass the curved track and travel on the straight track, the rear wheels are on the curved track and the speed is considerably faster than the front wheels. That is, Vf <Vr. Therefore, there is a problem that the steering control cannot follow and the rear wheels become unstable.

そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、小さい半径の軌道も安定して走行することが可能な無人搬送車の走行制御方法を提供することである。   Therefore, a technical problem to be solved by the present invention, that is, an object of the present invention is to provide a traveling control method for an automatic guided vehicle capable of stably traveling on a track with a small radius.

本請求項1に係る発明は、走行台車と、前記走行台車の前後に設置されそれぞれ独立に操舵・駆動される駆動輪と、走行路面上のガイドテープを検出する走行台車の前後に設置されたガイドセンサとを有する無人搬送車の走行制御方法において、前記走行台車の前後に設置された前記ガイドセンサの出力に基づき前輪及び後輪と前記ガイドテープとの偏差を検出し、前記偏差から前輪及び後輪の操舵角の目標値を演算し、前記駆動輪が前輪速度制御・後輪トルク制御され、前輪の操舵角の前記目標値及び後輪の操舵角の前記目標値の少なくとも一方が設定操舵角よりも大きく、かつ後輪の操舵角の前記目標値が前輪の操舵角の前記目標値を超えた場合、前輪の速度を減速制御することにより、前記課題を解決したものである。   The invention according to claim 1 is installed before and after the traveling carriage, driving wheels that are installed before and after the traveling carriage and are steered and driven independently, and a guide tape on the traveling road surface. In a travel control method for an automatic guided vehicle having a guide sensor, a deviation between a front wheel and a rear wheel and the guide tape is detected based on an output of the guide sensor installed before and after the traveling carriage. The target value of the steering angle of the rear wheel is calculated, the driving wheel is subjected to front wheel speed control and rear wheel torque control, and at least one of the target value of the steering angle of the front wheel and the target value of the steering angle of the rear wheel is set steering. When the target value of the steering angle of the rear wheels exceeds the target value of the steering angle of the front wheels, the problem is solved by controlling the speed of the front wheels to be decelerated.

また、本請求項2に係る発明は、走行台車と、前記走行台車の前後に設置されそれぞれ独立に操舵・駆動される駆動輪と、走行路面上のガイドテープを検出する走行台車の前後に設置されたガイドセンサとを有する無人搬送車の走行制御方法において、前記走行台車の前後に設置された前記ガイドセンサの出力に基づき前輪及び後輪と前記ガイドテープとの偏差を検出し、前記偏差から前輪及び後輪の操舵角の目標値を演算し、前記駆動輪が前輪・後輪速度制御され、前輪の操舵角の前記目標値及び後輪の操舵角の前記目標値の少なくとも一方が設定操舵角よりも大きく、かつ後輪の操舵角の前記目標値が前輪の操舵角の前記目標値を超えた場合、前輪の速度を減速制御とするとともに後輪の速度を設定速度とし、前輪の操舵角の前記目標値及び後輪の操舵角の前記目標値の少なくとも一方が前記設定操舵角よりも大きく、かつ前輪の操舵角の前記目標値が後輪の操舵角の前記目標値以上である場合、前輪の速度を設定速度とするとともに後輪の速度を減速制御することにより、前記課題を解決したものである。   Further, the invention according to claim 2 is installed before and after the traveling carriage, the driving wheels installed before and after the traveling carriage and independently steered and driven, and the guide tape on the traveling road surface. In the traveling control method of the automatic guided vehicle having the guided sensor, a deviation between the front wheel and the rear wheel and the guide tape is detected based on an output of the guide sensor installed before and after the traveling carriage, and the deviation is calculated from the deviation. The target value of the steering angle of the front wheel and the rear wheel is calculated, the speed of the driving wheel is controlled for the front and rear wheels, and at least one of the target value of the steering angle of the front wheel and the target value of the steering angle of the rear wheel is set steering If the target value of the steering angle of the rear wheels exceeds the target value of the steering angle of the front wheels, the front wheel speed is set to deceleration control and the rear wheel speed is set to the set speed to steer the front wheels. The target value of the corner If at least one of the target values of the steering angle of the rear wheels is larger than the set steering angle and the target value of the steering angle of the front wheels is equal to or greater than the target value of the steering angle of the rear wheels, the speed of the front wheels is The above-mentioned problem is solved by setting the set speed and reducing the speed of the rear wheels.

そして、本請求項3に係る発明は、請求項2に係る無人搬送車の走行制御方法において、前記前輪の操舵角の前記目標値と後輪の操舵角の前記目標値がともに前記設定操舵角以下である場合、後輪トルク制御に切り換えることにより、前記課題をさらに解決したものである。   The invention according to claim 3 is the travel control method of the automatic guided vehicle according to claim 2, wherein both the target value of the steering angle of the front wheel and the target value of the steering angle of the rear wheel are both set steering angles. In the following cases, the problem is further solved by switching to the rear wheel torque control.

そして、本請求項4に係る発明は、請求項1乃至請求項3のいずれかに係る無人搬送車の走行制御方法において、減速制御するときの前輪の速度を、次の式
Vf=V・cos(Sr)/cos(Sf)
ここで、Vf=前輪の速度
V =設定速度
Sf=前輪の操舵角の目標値
Sr=前輪の操舵角の目標値
により得ることにより、前記課題をさらに解決したものである。
According to the fourth aspect of the present invention, in the traveling control method for the automatic guided vehicle according to any one of the first to third aspects, the speed of the front wheels when the deceleration control is performed is expressed by the following equation: Vf = V · cos (Sr) / cos (Sf)
Where Vf = front wheel speed
V = set speed
Sf = target value of the steering angle of the front wheels
By obtaining Sr = target value of the steering angle of the front wheels, the above problem is further solved.

本請求項1に係る発明によれば、走行台車と、走行台車の前後に設置されそれぞれ独立に操舵・駆動される駆動輪と、走行路面上のガイドテープを検出する走行台車の前後に設置されたガイドセンサとを有する無人搬送車の走行制御方法において、走行台車の前後に設置されたガイドセンサの出力に基づき前輪及び後輪とガイドテープとの偏差を検出し、偏差から前輪及び後輪の操舵角の目標値を演算し、駆動輪が前輪速度制御・後輪トルク制御され、前輪の操舵角の目標値及び後輪の操舵角の目標値の少なくとも一方が設定操舵角よりも大きく、かつ後輪の操舵角の目標値が前輪の操舵角の目標値を超えた場合、前輪の速度を減速制御することにより、半径の小さな軌道を走行した場合においても前輪と後輪の速度が大きく異なることが防止されるので、走行安定性が向上する。
また、走行台車の前後に設置されたガイドセンサの出力に基づきガイドテープからの偏差を検出し、偏差から前輪及び後輪の操舵角の目標値を演算することにより、前輪の操舵角の目標値と後輪の操舵角の目標値が正確に把握できるので、走行安定性がより一層向上する。
According to the first aspect of the present invention, the vehicle is installed before and after the traveling carriage, the drive wheels installed before and after the traveling carriage and independently steered and driven, and the guide tape on the traveling road surface. In the traveling control method of the automatic guided vehicle having the guide sensor, the deviation between the front wheel and the rear wheel and the guide tape is detected based on the output of the guide sensor installed before and after the traveling carriage, and the front wheel and the rear wheel are detected from the deviation. The target value of the steering angle is calculated, the driving wheel is subjected to front wheel speed control and rear wheel torque control, and at least one of the front wheel steering angle target value and the rear wheel steering angle target value is greater than the set steering angle, and When the target value of the steering angle of the rear wheel exceeds the target value of the steering angle of the front wheel, the speed of the front wheel and the rear wheel are greatly different even when traveling on a track with a small radius by controlling the speed of the front wheel to decelerate. Can prevent Since the traveling stability is improved.
Further, the deviation from the guide tape is detected based on the output of the guide sensors installed before and after the traveling carriage, and the target value of the steering angle of the front wheels is calculated from the deviation by calculating the target value of the steering angle of the front wheels and the rear wheels. Since the target value of the steering angle of the rear wheels can be accurately grasped, the running stability is further improved.

また、本請求項2に係る発明によれば、走行台車と、走行台車の前後に設置されそれぞれ独立に操舵・駆動される駆動輪と、走行路面上のガイドテープを検出する走行台車の前後に設置されたガイドセンサとを有する無人搬送車の走行制御方法において、走行台車の前後に設置されたガイドセンサの出力に基づき前輪及び後輪とガイドテープとの偏差を検出し、偏差から前輪及び後輪の操舵角の目標値を演算し、駆動輪が前輪・後輪速度制御され、前輪の操舵角の目標値及び後輪の操舵角の目標値の少なくとも一方が設定操舵角よりも大きく、かつ後輪の操舵角の目標値が前輪の操舵角の目標値を超えた場合、前輪の速度を減速制御とするとともに後輪の速度を設定速度とし、前輪の操舵角の目標値及び後輪の操舵角の目標値の少なくとも一方が設定操舵角よりも大きく、かつ前輪の操舵角の目標値が後輪の操舵角の目標値以上である場合、前輪の速度を設定速度とするとともに後輪の速度を減速制御することにより、半径の小さな軌道を走行した場合においても前輪と後輪の速度が大きく異なることが防止されるので、走行安定性が向上する。   According to the second aspect of the present invention, the traveling carriage, the driving wheels installed before and after the traveling carriage, which are respectively steered and driven independently, and the traveling carriage which detects the guide tape on the running road surface are provided. In a traveling control method for an automated guided vehicle having an installed guide sensor, a deviation between the front wheel and the rear wheel and the guide tape is detected based on an output of the guide sensor installed before and after the traveling carriage, and the front wheel and the rear are detected from the deviation. The target value of the steering angle of the wheel is calculated, the driving wheel is controlled to control the front wheel / rear wheel speed, at least one of the target value of the steering angle of the front wheel and the target value of the steering angle of the rear wheel is greater than the set steering angle, and When the target value of the steering angle of the rear wheel exceeds the target value of the steering angle of the front wheel, the speed of the front wheel is set to deceleration control and the speed of the rear wheel is set to the set speed, and the target value of the steering angle of the front wheel and the rear wheel At least one of the target values for the steering angle Is larger than the set steering angle and the target value of the steering angle of the front wheels is equal to or larger than the target value of the steering angle of the rear wheels, the speed of the front wheels is set to the set speed and the speed of the rear wheels is decelerated and controlled, Even when the vehicle travels on a track with a small radius, it is possible to prevent the front wheels and the rear wheels from greatly differing in speed, so that traveling stability is improved.

そして、本請求項3に係る発明によれば、請求項2に係る無人搬送車の走行制御方法において、前輪の操舵角の目標値と後輪の操舵角の目標値がともに設定操舵角以下である場合、後輪トルク制御に切り換えることにより、前輪と後輪との制御がかち合うことがないので、走行安定性が一層向上する。   According to the invention of claim 3, in the traveling control method for the automatic guided vehicle according to claim 2, both the target value of the steering angle of the front wheels and the target value of the steering angle of the rear wheels are equal to or less than the set steering angle. In some cases, by switching to the rear wheel torque control, the control of the front wheel and the rear wheel will not be shared, so that the running stability is further improved.

そして、本請求項4に係る発明によれば、請求項1乃至請求項3のいずれかに係る無人搬送車の走行制御方法において、減速制御するときの前輪の速度が、Vf=V・cos(Sr)/cos(Sf)により得られる。   According to the fourth aspect of the present invention, in the traveling control method for an automatic guided vehicle according to any one of the first to third aspects, the speed of the front wheels when the deceleration control is performed is Vf = V · cos ( Sr) / cos (Sf).

本実施例の無人搬送車が円柱状ワークを搬送している状態を示す斜視図。The perspective view which shows the state which the automatic guided vehicle of a present Example is conveying the cylindrical workpiece. 本実施例の無人搬送車を下から見たとき下面図。The bottom view when the automatic guided vehicle of a present Example is seen from the bottom. (a)が、図1に示した無人搬送車の内部構造の概略を示した斜視図であり、(b)が、前輪、後輪の操舵角Sf、Srの定義を示す図。(A) is the perspective view which showed the outline of the internal structure of the automatic guided vehicle shown in FIG. 1, (b) is a figure which shows the definition of the steering angles Sf and Sr of a front wheel and a rear wheel. 本実施例の無人搬送車の走行制御を説明するフローチャート。The flowchart explaining the traveling control of the automatic guided vehicle of a present Example. 本実施例の無人搬送車の別の走行制御を説明するフローチャート。The flowchart explaining another traveling control of the automatic guided vehicle of a present Example. 曲線軌道を走行するときと前輪と後輪の速度の関係を示す説明図。Explanatory drawing which shows the relationship between the speed of driving | running | working on a curved track and the front wheel and a rear wheel.

本発明の無人搬送車の走行制御方法は、走行台車と、走行台車の前後に設置されそれぞれ独立に操舵・駆動される駆動輪と、走行路面上のガイドテープを検出する走行台車の前後に設置されたガイドセンサとを有する無人搬送車の走行制御方法において、走行台車の前後に設置されたガイドセンサの出力に基づき前輪及び後輪とガイドテープとの偏差を検出し、偏差から前輪及び後輪の操舵角の目標値を演算し、駆動輪が前輪速度制御・後輪トルク制御され、前輪の操舵角の目標値及び後輪の操舵角の目標値の少なくとも一方が設定操舵角よりも大きく、かつ後輪の操舵角の目標値が前輪の操舵角の目標値を超えた場合、前輪の速度を減速制御する若しくは、駆動輪が前輪・後輪速度制御され、前輪の操舵角の目標値及び後輪の操舵角の目標値の少なくとも一方が設定操舵角よりも大きく、かつ後輪の操舵角の目標値が前輪の操舵角の目標値を超えた場合、前輪の速度を減速制御とするとともに後輪の速度を設定速度とし、前輪の操舵角の目標値及び後輪の操舵角の目標値の少なくとも一方が設定操舵角よりも大きく、かつ前輪の操舵角の目標値が後輪の操舵角の目標値以上である場合、前輪の速度を設定速度とするとともに後輪の速度を減速制御するものであって、小さい半径の軌道も安定して走行することが可能な無人搬送車の走行制御方法を提供するものであれば、その具体的な実施の態様は、如何なるものであっても何ら構わない。   The traveling control method of the automatic guided vehicle of the present invention is installed before and after a traveling carriage, driving wheels that are installed before and after the traveling carriage, and are independently steered and driven, and a guide tape on the traveling road surface. In the traveling control method of the automatic guided vehicle having the guided sensor, the deviation between the front wheel and the rear wheel and the guide tape is detected based on the output of the guide sensor installed before and after the traveling carriage, and the front wheel and the rear wheel are detected from the deviation. The steering wheel target value is calculated, the driving wheel is subjected to front wheel speed control and rear wheel torque control, and at least one of the front wheel steering angle target value and the rear wheel steering angle target value is larger than the set steering angle, When the target value of the steering angle of the rear wheel exceeds the target value of the steering angle of the front wheel, the speed of the front wheel is controlled to be reduced, or the driving wheel is controlled to control the front and rear wheels, and the target value of the steering angle of the front wheel and Rear wheel steering angle target If at least one of these is larger than the set steering angle and the target value of the steering angle of the rear wheel exceeds the target value of the steering angle of the front wheel, the speed of the front wheel is set to deceleration control and the speed of the rear wheel is set to the set speed. When at least one of the target value of the steering angle of the front wheels and the target value of the steering angle of the rear wheels is larger than the set steering angle, and the target value of the steering angle of the front wheels is equal to or larger than the target value of the steering angle of the rear wheels, As long as the speed of the front wheels is set as the set speed and the speed of the rear wheels is controlled to be reduced, and a travel control method for an automatic guided vehicle capable of stably traveling on a track with a small radius is provided. Any specific embodiment may be used.

例えば、本発明の無人搬送車に用いられる誘導制御方式としては、磁気誘導方式及び光誘導方式などの何れであっても構わないが、ガードテープの汚れの影響を受けにくい、周辺の明るさの変化による影響を受けにくいなどの観点から磁気誘導方式が特に好ましい。   For example, the guidance control method used in the automatic guided vehicle of the present invention may be any of a magnetic guidance method and a light guidance method, but is not easily affected by dirt on the guard tape and has a surrounding brightness. The magnetic induction method is particularly preferable from the viewpoint of being hardly affected by changes.

本発明の一実施例を図1乃至図5に基づいて説明する。
ここで、図1は、本実施例の無人搬送車が、例えば、新聞巻取紙のような円柱状ワークを搬送している状態を示す斜視図であり、図2は、本実施例の無人搬送車を下から見たときの下面図であり、図3(a)は、図1に示した無人搬送車の内部構造の概略を示した斜視図であり、図3(b)は、前輪、後輪の操舵角Sf、Srの定義を示す図である。図4は、本実施例の無人搬送車の走行制御方法を説明するフローチャートであり、図5は、本実施例の無人搬送車の別の走行制御方法を説明するフローチャートである。
An embodiment of the present invention will be described with reference to FIGS.
Here, FIG. 1 is a perspective view showing a state in which the automatic guided vehicle of the present embodiment is transporting a cylindrical workpiece such as a newspaper web, and FIG. 2 is an automatic guided vehicle of the present embodiment. FIG. 3A is a perspective view showing an outline of the internal structure of the automatic guided vehicle shown in FIG. 1, and FIG. 3B is a front wheel, rear view. It is a figure which shows the definition of the steering angles Sf and Sr of a wheel. FIG. 4 is a flowchart for explaining a traveling control method for the automatic guided vehicle according to the present embodiment. FIG. 5 is a flowchart for explaining another traveling control method for the automatic guided vehicle according to the present embodiment.

本実施例の無人搬送車100は、図1に示すように、新聞印刷工場などにおいて、走行路面F上に所望の搬送経路に沿って敷設されたガイドテープLに誘導されて移動する。   As shown in FIG. 1, the automatic guided vehicle 100 of the present embodiment is guided and moved by a guide tape L laid along a desired conveyance path on a traveling road surface F in a newspaper printing factory or the like.

まず、本実施例の走行制御方法の対象となる無人搬送車100の全体構成について説明する。無人搬送車100は、図1乃至図3に示すように、走行台車110の片方の側辺に沿って、円柱状ワークWを使い果たして残った巻芯C、すなわち残芯を輪転機から回収するための残芯回収機構160を具備している。残芯回収機構160は、上昇時に横方向にせり出して行く機構を備えており、その上昇位置で輪転機から残芯を受け取った後、横方向に引き込まれ、下降位置へ移動して走行台車110の中に格納されるように構成されていて、図1の斜視図においては、残芯回収機構160を走行台車110内に格納した状態を示している。そして、図2に示すように、残芯回収機構160が設置された残余の部分の四隅に前方側に2つ、後方側に2つ、長方形Rの各頂点に位置するようにキャスタ輪122、124、126、128が配置されている。ここで、長方形Rは、4つのキャスタ輪122、124、126、128の旋回中心を結んだ長方形を意味している。この時、走行台車110の長手方向中心線CVと長方形Rの長手方向中心線CLとは残芯回収機構160の幅から決まる所定の距離だけ離間して平行となるように配置されている。   First, an overall configuration of the automatic guided vehicle 100 that is a target of the traveling control method of the present embodiment will be described. As shown in FIGS. 1 to 3, the automatic guided vehicle 100 collects the remaining core C from the rotary press, that is, the remaining core, by using up the cylindrical workpiece W along one side of the traveling carriage 110. The remaining core collecting mechanism 160 is provided. The remaining core collecting mechanism 160 includes a mechanism that protrudes in the lateral direction when it rises. After the remaining core is received from the rotary press at the raised position, the remaining core is pulled in the lateral direction and moved to the lowered position to move the traveling carriage 110. In the perspective view of FIG. 1, the remaining core collecting mechanism 160 is stored in the traveling carriage 110. As shown in FIG. 2, the caster wheels 122 are located at the four corners of the remaining portion where the remaining core collecting mechanism 160 is installed, two on the front side, two on the rear side, and each vertex of the rectangle R, 124, 126, and 128 are arranged. Here, the rectangle R means a rectangle connecting the turning centers of the four caster wheels 122, 124, 126, and 128. At this time, the longitudinal center line CV of the traveling carriage 110 and the longitudinal center line CL of the rectangle R are arranged so as to be parallel to each other by a predetermined distance determined by the width of the remaining core collecting mechanism 160.

また、長方形Rの長手方向中心線CL上の前方側と後方側にそれぞれ独立して操舵・駆動される駆動輪130が1つずつ配置されている。さらに、長方形Rの長手方向中心線CLと所定の距離、すなわち、{センサ幅/2+磁気テープ幅+駆動輪幅/2}以上離間して平行なセンサ中心線CC上の前方側と後方側に1つずつガイドセンサ142、144が配置されている。このように駆動輪130とガイドセンサ142、144との位置を決めることにより、無人搬送車100が前後進するときに駆動輪130がガイドテープLを踏みながら移動するということがないので、ガイドテープLの損傷を抑制することができる。また、前後の駆動輪130を結んだ線に対して線対称の位置に4つのキャスタ輪122、124、126、128が配置されることになるので、無人搬送車100の重量バランスがよく、無人搬送車100の走行安定性が向上する。なお、図2において符号180で示した部材は、円柱状ワークWを昇降するための昇降機構である。   In addition, one drive wheel 130 that is independently steered and driven on the front side and the rear side on the longitudinal center line CL of the rectangle R is disposed one by one. Further, it is separated from the longitudinal center line CL of the rectangle R by a predetermined distance, that is, {sensor width / 2 + magnetic tape width + driving wheel width / 2} or more on the front side and rear side on the parallel sensor center line CC. Guide sensors 142 and 144 are arranged one by one. By determining the positions of the drive wheel 130 and the guide sensors 142 and 144 in this way, the drive wheel 130 does not move while stepping on the guide tape L when the automatic guided vehicle 100 moves forward and backward. L damage can be suppressed. In addition, since the four caster wheels 122, 124, 126, and 128 are arranged at positions symmetrical with respect to the line connecting the front and rear drive wheels 130, the weight balance of the automatic guided vehicle 100 is good, and the unmanned The running stability of the transport vehicle 100 is improved. In addition, the member shown with the code | symbol 180 in FIG. 2 is the raising / lowering mechanism for raising / lowering the cylindrical workpiece W. As shown in FIG.

次に、本実施例の無人搬送車の走行制御方法について説明する。本実施例の無人搬送車の走行制御方法は、前輪速度制御・後輪トルク制御の場合と前輪・後輪速度制御の場合とで異なった制御が行われる。まず、前輪速度制御・後輪トルク制御の場合について、図4に示したフローチャートに基づき説明する。   Next, the traveling control method for the automatic guided vehicle according to the present embodiment will be described. In the traveling control method of the automatic guided vehicle according to the present embodiment, different control is performed for front wheel speed control / rear wheel torque control and for front wheel / rear wheel speed control. First, the case of front wheel speed control / rear wheel torque control will be described based on the flowchart shown in FIG.

走行制御がスタートすると(S0)、走行台車の前方及び後方に取り付けられたガイドセンサ142、144(図2、3参照)によって、前輪及び後輪とガイドテープとの偏差を検出する(S1)。そして、この偏差から前輪及び後輪の操舵角の目標値Sf、Srを演算によって求める(S2)。そして、前輪の操舵角の目標値Sf及び後輪の操舵角の目標値Srの少なくとも一方が設定操舵角Scrvより大きいか否かを判別する(S3)。S3の結果がYesの場合、SfがSr以上であるか否かを判別する(S4)。S4の結果がYesの場合及びS3の結果がNoの場合、前輪の速度Vfを設定速度Vとする(S5)。一方、S4の結果がNoの場合、前輪の速度Vfを設定速度Vにcos(Sr)/cos(Sf)を乗じた値にする(S6)。すなわち、Sf<Srであるので、cos(Sr)/cos(Sf)<1であり、前輪の速度Vfは減速される。そして、S2で得られたSf、Srが前輪、後輪の操舵制御機構に出力され、S5又はS6で得られたVfが前輪の速度制御機構に出力される(S7)。このようにして一連の走行制御が終了する(S8)。   When the traveling control starts (S0), deviations between the front and rear wheels and the guide tape are detected by the guide sensors 142 and 144 (see FIGS. 2 and 3) attached to the front and rear of the traveling carriage (S1). Then, the target values Sf and Sr of the steering angles of the front wheels and the rear wheels are obtained by calculation from this deviation (S2). Then, it is determined whether or not at least one of the front wheel steering angle target value Sf and the rear wheel steering angle target value Sr is larger than the set steering angle Scrv (S3). If the result of S3 is Yes, it is determined whether Sf is equal to or greater than Sr (S4). When the result of S4 is Yes and when the result of S3 is No, the front wheel speed Vf is set to the set speed V (S5). On the other hand, if the result of S4 is No, the front wheel speed Vf is set to a value obtained by multiplying the set speed V by cos (Sr) / cos (Sf) (S6). That is, since Sf <Sr, cos (Sr) / cos (Sf) <1 and the front wheel speed Vf is decelerated. Then, Sf and Sr obtained in S2 are output to the front wheel and rear wheel steering control mechanisms, and Vf obtained in S5 or S6 is output to the front wheel speed control mechanism (S7). In this way, a series of travel control ends (S8).

次に、前輪・後輪速度制御の場合について、図5に示したフローチャートに基づき説明する。   Next, the case of front wheel / rear wheel speed control will be described based on the flowchart shown in FIG.

走行制御がスタートすると(S0)、走行台車の前方及び後方に取り付けられたガイドセンサ142、144(図2、3参照)によって、前輪及び後輪とガイドテープとの偏差を検出する(S1)。そして、この偏差から前輪及び後輪の操舵角の目標値Sf、Srを演算によって求める(S2)。そして、前輪の操舵角の目標値Sf及び後輪の操舵角の目標値Srの少なくとも一方が設定操舵角Scrvより大きいか否かを判別する(S3)。S3の結果がYesの場合、SfがSr以上であるか否かを判別する(S4)。S4の結果がYesの場合、前輪の速度Vfを設定速度Vとするとともに後輪の速度Vrを設定速度Vにcos(Sf)/cos(Sr)を乗じた値にする(S5)。すなわち、Sf≧Srであるので、cos(Sf)/cos(Sr)≦1であり、後輪の速度Vrは減速される。一方、S4の結果がNoの場合、前輪の速度Vfを設定速度Vにcos(Sr)/cos(Sf)を乗じた値にするとともに後輪の速度Vrを設定速度Vにする(S6)。すなわち、Sf<Srであるので、cos(Sr)/cos(Sf)<1であり、前輪の速度Vfは減速される。そして、後輪の速度制御を維持し(S7)、S2で得られたSf、Srが前輪、後輪の操舵制御機構に出力され、S5又はS6で得られたVf、Vrが前輪、後輪の速度制御機構に出力される(S7)。   When the traveling control starts (S0), deviations between the front and rear wheels and the guide tape are detected by the guide sensors 142 and 144 (see FIGS. 2 and 3) attached to the front and rear of the traveling carriage (S1). Then, the target values Sf and Sr of the steering angles of the front wheels and the rear wheels are obtained by calculation from this deviation (S2). Then, it is determined whether or not at least one of the front wheel steering angle target value Sf and the rear wheel steering angle target value Sr is larger than the set steering angle Scrv (S3). If the result of S3 is Yes, it is determined whether Sf is equal to or greater than Sr (S4). When the result of S4 is Yes, the front wheel speed Vf is set to the set speed V, and the rear wheel speed Vr is set to a value obtained by multiplying the set speed V by cos (Sf) / cos (Sr) (S5). That is, since Sf ≧ Sr, cos (Sf) / cos (Sr) ≦ 1 and the rear wheel speed Vr is decelerated. On the other hand, if the result of S4 is No, the front wheel speed Vf is set to a value obtained by multiplying the set speed V by cos (Sr) / cos (Sf), and the rear wheel speed Vr is set to the set speed V (S6). That is, since Sf <Sr, cos (Sr) / cos (Sf) <1 and the front wheel speed Vf is decelerated. Then, the rear wheel speed control is maintained (S7), Sf and Sr obtained in S2 are output to the front wheel and rear wheel steering control mechanisms, and Vf and Vr obtained in S5 or S6 are the front and rear wheels. Is output to the speed control mechanism (S7).

一方、S3の結果がNoの場合、前輪の速度Vfを設定速度Vとし(S9)、後輪をトルク制御に切換え(S10)、S2で得られたSf、Srが前輪、後輪の操舵制御機構に出力され、S9で得られたVfが前輪の速度制御機構に出力される(S11)。このようにして一連の走行制御が終了する(S12)。   On the other hand, when the result of S3 is No, the front wheel speed Vf is set to the set speed V (S9), the rear wheel is switched to torque control (S10), and Sf and Sr obtained in S2 are the front wheel and rear wheel steering control. The Vf obtained in S9 is output to the speed control mechanism for the front wheels (S11). In this way, a series of travel control ends (S12).

以上のように、本発明の無人搬送車の走行制御方法によれば、小さい半径の曲線軌道における幾何学的影響により後輪速度が設定速度より速くならないように前輪速度を減速するため走行安定性が向上するとともに、後輪速度が設定速度より速くならないため安全性が向上するなど、その効果は絶大である。   As described above, according to the traveling control method of the automatic guided vehicle of the present invention, the traveling stability is reduced because the front wheel speed is reduced so that the rear wheel speed does not become faster than the set speed due to the geometrical effect on the curved track having a small radius. As a result, the rear wheel speed does not become faster than the set speed, and the safety is improved.

100 ・・・ 無人搬送車
110 ・・・ 走行台車
122、124、126、128 ・・・ キャスタ輪
130 ・・・ 駆動輪
132 ・・・ 駆動モータ
142、144 ・・・ ガイドセンサ
160 ・・・ 残芯回収装置
180 ・・・ 昇降機構
CC ・・・ センサ中心線
CL ・・・ (長方形Rの)長手方向中心線
CS ・・・ (長方形Rの)短手方向中心線
CV ・・・ (走行台車の)長手方向中心線
F ・・・ 走行路面
L ・・・ ガイドテープ
DESCRIPTION OF SYMBOLS 100 ... Automatic guided vehicle 110 ... Traveling carts 122, 124, 126, 128 ... Caster wheel 130 ... Drive wheel 132 ... Drive motor 142, 144 ... Guide sensor 160 ... Remaining Core recovery device 180 ... Elevating mechanism CC ... Sensor center line CL ... Longitudinal center line (of rectangle R) CS ... Short axis center line (of rectangle R) CV ... (traveling carriage) ) Longitudinal center line F ... Traveling road surface L ... Guide tape

Claims (4)

走行台車と、前記走行台車の前後に設置されそれぞれ独立に操舵・駆動される駆動輪と、走行路面上のガイドテープを検出する走行台車の前後に設置されたガイドセンサとを有する無人搬送車の走行制御方法において、
前記走行台車の前後に設置された前記ガイドセンサの出力に基づき前輪及び後輪と前記ガイドテープとの偏差を検出し、
前記偏差から前輪及び後輪の操舵角の目標値を演算し、
前記駆動輪が前輪速度制御・後輪トルク制御され、
前輪の操舵角の前記目標値及び後輪の操舵角の前記目標値の少なくとも一方が設定操舵角よりも大きく、かつ後輪の操舵角の前記目標値が前輪の操舵角の前記目標値を超えた場合、前輪の速度を減速制御することを特徴とする無人搬送車の走行制御方法。
An automated guided vehicle having a traveling carriage, drive wheels installed before and after the traveling carriage and independently steered and driven, and guide sensors installed before and after the traveling carriage for detecting a guide tape on the traveling road surface. In the traveling control method,
Detecting a deviation between the front and rear wheels and the guide tape based on the output of the guide sensor installed before and after the traveling carriage;
Calculate the target value of the steering angle of the front and rear wheels from the deviation,
The driving wheel is front wheel speed controlled and rear wheel torque controlled,
At least one of the target value of the steering angle of the front wheel and the target value of the steering angle of the rear wheel is larger than the set steering angle, and the target value of the steering angle of the rear wheel exceeds the target value of the steering angle of the front wheel A method for controlling the traveling of the automatic guided vehicle, wherein the speed of the front wheels is controlled to be reduced.
走行台車と、前記走行台車の前後に設置されそれぞれ独立に操舵・駆動される駆動輪と、走行路面上のガイドテープを検出する走行台車の前後に設置されたガイドセンサとを有する無人搬送車の走行制御方法において、
前記走行台車の前後に設置された前記ガイドセンサの出力に基づき前輪及び後輪と前記ガイドテープとの偏差を検出し、
前記偏差から前輪及び後輪の操舵角の目標値を演算し、
前記駆動輪が前輪・後輪速度制御され、
前輪の操舵角の前記目標値及び後輪の操舵角の前記目標値の少なくとも一方が設定操舵角よりも大きく、かつ後輪の操舵角の前記目標値が前輪の操舵角の前記目標値を超えた場合、前輪の速度を減速制御とするとともに後輪の速度を設定速度とし、
前輪の操舵角の前記目標値及び後輪の操舵角の前記目標値の少なくとも一方が前記設定操舵角よりも大きく、かつ前輪の操舵角の前記標値が後輪の操舵角の前記目標値以上である場合、前輪の速度を設定速度とするとともに後輪の速度を減速制御することを特徴とする無人搬送車の走行制御方法。
An automated guided vehicle having a traveling carriage, drive wheels installed before and after the traveling carriage and independently steered and driven, and guide sensors installed before and after the traveling carriage for detecting a guide tape on the traveling road surface. In the traveling control method,
Detecting a deviation between the front and rear wheels and the guide tape based on the output of the guide sensor installed before and after the traveling carriage;
Calculate the target value of the steering angle of the front and rear wheels from the deviation,
The driving wheels are front / rear wheel speed controlled,
At least one of the target value of the steering angle of the front wheel and the target value of the steering angle of the rear wheel is larger than the set steering angle, and the target value of the steering angle of the rear wheel exceeds the target value of the steering angle of the front wheel In this case, the front wheel speed is set to deceleration control and the rear wheel speed is set to the speed
At least one of the target value of the steering angle of the front wheels and the target value of the steering angle of the rear wheels is larger than the set steering angle, and the target value of the steering angle of the front wheels is greater than or equal to the target value of the steering angle of the rear wheels In this case, the traveling control method for the automatic guided vehicle is characterized in that the speed of the front wheels is set to the set speed and the speed of the rear wheels is controlled to be reduced.
前輪の操舵角の前記目標値と後輪の操舵角の前記目標値がともに前記設定操舵角以下である場合、後輪トルク制御に切り換えることを特徴とする請求項2に記載の無人搬送車の走行制御方法。   The automatic guided vehicle according to claim 2, wherein when the target value of the steering angle of the front wheels and the target value of the steering angle of the rear wheels are both equal to or less than the set steering angle, switching to rear wheel torque control is performed. Travel control method. 減速制御するときの前輪の速度を、次の式
Vf=V・cos(Sr)/cos(Sf)
ここで、Vf=前輪の速度
V =設定速度
Sf=前輪の操舵角の目標値
Sr=前輪の操舵角の目標値
により得ることを特徴とする請求項1乃至請求項3のいずれかに記載の無人搬送車の走行制御方法。
The speed of the front wheels when performing deceleration control is expressed by the following equation: Vf = V · cos (Sr) / cos (Sf)
Where Vf = front wheel speed
V = set speed
Sf = target value of the steering angle of the front wheels
4. The automatic guided vehicle travel control method according to claim 1, wherein Sr is obtained from a target value of a steering angle of the front wheels.
JP2009133887A 2009-06-03 2009-06-03 Driving control method of automatic guided vehicle Active JP5300603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009133887A JP5300603B2 (en) 2009-06-03 2009-06-03 Driving control method of automatic guided vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133887A JP5300603B2 (en) 2009-06-03 2009-06-03 Driving control method of automatic guided vehicle

Publications (2)

Publication Number Publication Date
JP2010282330A JP2010282330A (en) 2010-12-16
JP5300603B2 true JP5300603B2 (en) 2013-09-25

Family

ID=43539017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133887A Active JP5300603B2 (en) 2009-06-03 2009-06-03 Driving control method of automatic guided vehicle

Country Status (1)

Country Link
JP (1) JP5300603B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7013842B2 (en) * 2017-12-20 2022-02-01 株式会社明電舎 Drive steering device for automatic guided vehicles
CN112644984B (en) * 2019-10-10 2024-09-24 松下知识产权经营株式会社 Control method, control system, conveying device and component mounting system
JP2021064069A (en) * 2019-10-10 2021-04-22 パナソニックIpマネジメント株式会社 Control method, program, control system, carrier device, and component mounting system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2555365C3 (en) * 1975-12-09 1988-02-11 Digitron AG, Brügg, Bern Steering control system for remote-controlled transport units
JPH0479704A (en) * 1990-07-18 1992-03-13 Toyota Autom Loom Works Ltd Travel controller for automatically guided vehicle
JPH05241658A (en) * 1992-02-28 1993-09-21 Sumitomo Heavy Ind Ltd Traveling control method for unmanned truck and travel controlling device for realizing the device
JP3096934B2 (en) * 1992-05-11 2000-10-10 住友重機械工業株式会社 Control unit for unmanned transport cart
JPH09128052A (en) * 1995-11-02 1997-05-16 Japan Tobacco Inc Self-traveling carriage
JP4182709B2 (en) * 2002-08-30 2008-11-19 株式会社ダイフク Traveling control method of traveling body
JP4264399B2 (en) * 2004-10-04 2009-05-13 株式会社Ihi Automated guided vehicle

Also Published As

Publication number Publication date
JP2010282330A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
CA2640769C (en) Variable path automated guided vehicle
JP5390419B2 (en) Automated guided vehicle
JP2015187798A (en) Unmanned carrier truck
JP5300603B2 (en) Driving control method of automatic guided vehicle
CN112731920B (en) Control method and device of conveying equipment, conveying equipment and storage medium
JP2016074507A (en) Unmanned carrier for container
JP2019099141A (en) Unmanned forklift travel control device, unmanned forklift travel control method, unmanned traction vehicle travel control device, and unmanned traction vehicle travel control method
CN113110440B (en) Latent AGV shelf automatic identification and adjustment system and method
JP2010282329A (en) Unmanned carrier
JP6111684B2 (en) Automated guided vehicle
JP2019175036A (en) Unmanned running truck
JP6570237B2 (en) Self-propelled cart turning method and turning equipment
JP5882130B2 (en) Transport device
JP3370200B2 (en) How to determine the steering wheel steering angle of an automatic guided vehicle
JP5300545B2 (en) Automated guided vehicle
JP2001225744A (en) Steering control device for unmanned carrying vehicle
JPH05333928A (en) Back traveling control method for unmanned carrier
JP2016115156A (en) Unmanned carrier
JP2008171088A (en) Traveling vehicle system
JPH11245839A (en) Multiaxle automatic guided vehicle
JPH0323389B2 (en)
JP5051346B2 (en) Control method for automatic guided vehicle
KR102676996B1 (en) Rearfork type Automatic Guided Vehicle Cargo Loading System
CN112631289B (en) Automatic safety obstacle avoidance system and method for laser navigation forklift
JP2000259249A (en) Device for guiding unmanned vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Ref document number: 5300603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150