JP6928262B2 - Surface cleaning method for crushed silicon - Google Patents

Surface cleaning method for crushed silicon Download PDF

Info

Publication number
JP6928262B2
JP6928262B2 JP2017239747A JP2017239747A JP6928262B2 JP 6928262 B2 JP6928262 B2 JP 6928262B2 JP 2017239747 A JP2017239747 A JP 2017239747A JP 2017239747 A JP2017239747 A JP 2017239747A JP 6928262 B2 JP6928262 B2 JP 6928262B2
Authority
JP
Japan
Prior art keywords
container
silicon
crushed
pieces
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017239747A
Other languages
Japanese (ja)
Other versions
JP2018095548A (en
Inventor
宗弘 高杉
宗弘 高杉
弘毅 梅原
弘毅 梅原
徹弥 渥美
徹弥 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JP2018095548A publication Critical patent/JP2018095548A/en
Application granted granted Critical
Publication of JP6928262B2 publication Critical patent/JP6928262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高純度の多結晶シリコンの破砕片又は塊状片(以下、単にシリコン破砕片という。)の表面を清浄化する方法に関するものである。 The present invention relates to a method for cleaning the surface of crushed or lumpy pieces of high-purity polycrystalline silicon (hereinafter, simply referred to as crushed silicon).

高純度の多結晶シリコンは、チョクラルスキー法(以下、CZ法という。)で製造される単結晶シリコンの原料に使用される場合、坩堝に充填する作業を円滑にするために、通常100mm以下のシリコン破砕片に加工される。この多結晶シリコンから単結晶シリコンをCZ法等により製造する場合、不純物の取り込みを極力低く抑える観点から、多結晶シリコンには極めて高い純度が要求される。 When high-purity polycrystalline silicon is used as a raw material for single-crystal silicon produced by the Czochralski method (hereinafter referred to as the CZ method), it is usually 100 mm or less in order to facilitate the filling operation in the crucible. It is processed into silicon shards. When single crystal silicon is produced from this polycrystalline silicon by the CZ method or the like, extremely high purity is required for the polycrystalline silicon from the viewpoint of suppressing the uptake of impurities as low as possible.

このため、通常は多結晶シリコンの加工時や加工後にその表面に付着した金属などの汚染を除去するために、多結晶シリコンを酸液により洗浄して、付着した金属を含む表面不純物は多結晶シリコンから除去される。具体的には、破砕や切断などの加工された多結晶シリコンが一定量、専用の容器等に入れられ、酸液などによるエッチング処理(洗浄)、純水によるリンスがなされ、その後、同じ容器のまま乾燥等が行われた後、多結晶シリコンは容器から取り出され、検査後、包装される。 For this reason, usually, in order to remove contamination of metals and the like adhering to the surface of polycrystalline silicon during and after processing, the polycrystalline silicon is washed with an acid solution, and surface impurities containing the adhered metal are polycrystalline. Removed from silicon. Specifically, a certain amount of processed polycrystalline silicon such as crushed or cut is placed in a special container, etc., etched with an acid solution (cleaning), rinsed with pure water, and then in the same container. After being dried as it is, the polycrystalline silicon is taken out from the container, inspected, and then packaged.

近年、半導体製品の性能向上とともに、多結晶シリコンへの高純度化の要求が高まる中、シリコン製品表面に付着する有機物起因による汚染が問題となり、熱処理などによってその汚染を除去する方法などが開示されている(特許文献1参照)。特許文献1では、多結晶シリコンの有機物汚染の一因として、機械的作業間の有機ポリマーやプラスチックから作られた部品とのシリコンの接触を挙げており、不活性ガス流中における熱処理において炭素汚染が低減されることが開示されている。 In recent years, as the performance of semiconductor products has improved and the demand for high purity in polycrystalline silicon has increased, contamination due to organic substances adhering to the surface of silicon products has become a problem, and methods for removing the contamination by heat treatment or the like have been disclosed. (See Patent Document 1). Patent Document 1 cites the contact of silicon with parts made of organic polymers and plastics during mechanical work as one of the causes of organic contamination of polycrystalline silicon, and carbon contamination in heat treatment in an inert gas stream. Is disclosed to be reduced.

また、多結晶シリコンの処理においては、その表面品質を確保するために、上述のように、エッチングや純水リンス、乾燥などが行われているが、このような処理については、シリコンを収容する容器への熱負荷が容器への劣化の原因にもなっていることが知られている(特許文献2参照)。特許文献2では、樹脂製の容器に多結晶シリコン塊を収容した状態で薬液によるエッチング工程、純水リンス工程、ガスブロー乾燥工程の順で処理を行い、処理過程で行われる乾燥が不十分な場合には多結晶シリコン塊表面のシミの発生による品質低下を招くことが記載されている。一方、シミによる品質低下を抑制するためには、乾燥工程での時間を長くすることが必要であるが、反面、乾燥工程での時間を長くすると乾燥段階での熱負荷による容器の劣化が生じることが挙げられている。 Further, in the treatment of polycrystalline silicon, etching, pure water rinsing, drying and the like are performed as described above in order to ensure the surface quality. In such treatment, silicon is contained. It is known that the heat load on the container also causes deterioration of the container (see Patent Document 2). In Patent Document 2, in the state where the polycrystalline silicon lump is contained in the resin container, the treatment is performed in the order of the etching step with a chemical solution, the pure water rinsing step, and the gas blow drying step, and the drying performed in the treatment step is insufficient. It is described that the quality is deteriorated due to the occurrence of stains on the surface of the polycrystalline silicon mass. On the other hand, in order to suppress quality deterioration due to stains, it is necessary to lengthen the time in the drying process, but on the other hand, if the time in the drying process is lengthened, the container deteriorates due to the heat load in the drying stage. Is mentioned.

特開2013−170122号公報Japanese Unexamined Patent Publication No. 2013-170122 特開2016−5993号公報Japanese Unexamined Patent Publication No. 2016-5993

有機汚染物質/アウトガスの発生とメカニズムとトラブル対策実例集(株式会社技術情報協会発行)28-29頁Generation of Organic Pollutants / Outgas, Mechanism and Trouble Countermeasures Examples (Published by Technical Information Association, Inc.) Pages 28-29

このような容器の劣化は、特許文献1の有機物による汚染の観点からみるとシリコン表面との接触面が増えることにもなるため、シリコンを収容する容器の劣化は有機物起因による汚染原因の一因にもなり得る。また、容器の劣化は容器表面の一部が剥離したりすることにも繋がり、その一部が容器内部のシリコン表面に付着することにもなる。また、特許文献2に開示されているような多結晶シリコン塊は、破砕などの加工を伴うため、脆性材料であるシリコンを破砕するとその破砕片や破砕塊は破砕面の端部や角部が刃面や鋭利形状になることが多い。これにより、収容容器へのシリコン塊投入時や、エッチング処理、純水処理などに伴う揺動や動き、または処理操作間の移動などに伴う振動など、収容容器内でシリコンの動きにより、シリコン破砕片が収容容器表面に刺さったり、傷つけたりあるいは削ってしまう損傷が生じる。更に、シリコン破砕片との接触による容器の摩耗粉が生じる。その結果、削られた容器片(樹脂片)や摩耗粉がシリコン表面に付着することで新たな汚染の要因にもなる。 Such deterioration of the container also increases the contact surface with the silicon surface from the viewpoint of contamination by organic substances in Patent Document 1. Therefore, deterioration of the container containing silicon is one of the causes of contamination due to organic substances. Can also be. In addition, deterioration of the container leads to peeling of a part of the surface of the container, and a part of the deterioration also adheres to the silicon surface inside the container. Further, since a polycrystalline silicon lump as disclosed in Patent Document 2 involves processing such as crushing, when silicon which is a brittle material is crushed, the crushed pieces and crushed lumps have edges and corners of the crushed surface. It often has a blade surface or a sharp shape. As a result, silicon is crushed by the movement of silicon in the storage container, such as when the silicon lump is put into the storage container, vibration or movement due to etching treatment, pure water treatment, etc., or vibration due to movement between treatment operations. Damage occurs in which pieces pierce, damage, or scrape the surface of the container. Further, contact with silicon crushed pieces produces wear debris in the container. As a result, the scraped container pieces (resin pieces) and wear debris adhere to the silicon surface, which causes new contamination.

また、一方では、樹脂系材料では樹脂の使用される環境(温度)によるアウトガスの発生が知られている(非特許文献1)。このアウトガスについては、上述の多結晶シリコンが容器に収容された処理方法で当てはめてみると、多結晶シリコン洗浄後の乾燥時の温度の影響により、アウトガスの発生が起因となってシリコン破砕片表面の有機物汚染が生じることが考えられる。このような観点より、特許文献2に開示されているような、多結晶シリコン塊を樹脂製の容器に収容した状態での薬液によるエッチング工程、純水リンス工程、ガスブロー乾燥工程の順で進行される方法でも容器の劣化に伴う品質への影響を低減する効果はあるものの、更なる品質汚染の低減を図るには、対策が必要となる。 On the other hand, it is known that outgas is generated in resin-based materials depending on the environment (temperature) in which the resin is used (Non-Patent Document 1). When the above-mentioned treatment method in which polycrystalline silicon is contained in a container is applied to this outgas, the surface of silicon crushed pieces is caused by the generation of outgas due to the influence of the temperature at the time of drying after cleaning the polycrystalline silicon. It is possible that organic matter contamination will occur. From this point of view, the step of etching with a chemical solution, the step of rinsing pure water, and the step of gas blow drying in a state where the polycrystalline silicon lump is contained in a resin container, as disclosed in Patent Document 2, proceed in this order. Although this method has the effect of reducing the impact on quality due to deterioration of the container, measures are required to further reduce quality contamination.

本発明の目的は、シリコン破砕片を収容して洗浄から乾燥までの処理を同じ容器を使用して行うことにより生じる樹脂製容器の劣化に伴うシリコン破砕片の品質汚染、特に有機物起因による汚染を低減するシリコン破砕片の表面清浄化方法を提供することにある。本発明の別の目的は、水切れが容易な第2容器を用いることにより、乾燥時間を短縮可能なシリコン破砕片の表面清浄化方法を提供することにある。本発明の更に別の目的は、シリコン破砕片を収容する容器において、有機性ガスの発生を抑制する第2容器を用いることにより、シリコン破砕片の表面清浄化方法を提供することにある。 An object of the present invention is to prevent quality contamination of silicon shards due to deterioration of a resin container caused by accommodating silicon shards and performing the treatment from cleaning to drying using the same container, particularly contamination due to organic substances. It is an object of the present invention to provide a method for cleaning the surface of silicon debris to be reduced. Another object of the present invention is to provide a method for cleaning the surface of crushed silicon pieces, which can shorten the drying time by using a second container that easily drains water. Yet another object of the present invention is to provide a method for cleaning the surface of silicon crushed pieces by using a second container that suppresses the generation of organic gas in a container for containing the crushed silicon pieces.

本発明の第1の観点は、樹脂製の第1容器に収容して洗浄した後のシリコン破砕片を乾燥する前に、前記シリコン破砕片を純水又は超純水の中で前記第1容器から樹脂製の第2容器に移し替えることを特徴とするシリコン破砕片の表面清浄化方法である。 The first aspect of the present invention is to put the silicon crushed pieces in pure water or ultrapure water before drying the silicon crushed pieces after being housed in a resin first container and washed. This is a method for cleaning the surface of crushed silicon, which comprises transferring from a second container made of resin to a second container.

本発明の第2の観点は、第1の観点に係る発明であって、前記第1容器及び前記第2容器がそれぞれ上部に開口部を有する容器であって、前記移し替えが、水槽の純水又は超純水の中に前記第2容器の上部を上方に向けて配置した後、前記純水又は超純水の中で、前記第1容器に収容して洗浄した後のシリコン破砕片を前記第1容器の開口部を傾斜することにより前記第2容器の内部に落下させて行うことを特徴とする。 The second aspect of the present invention is the invention according to the first aspect, wherein the first container and the second container each have an opening at the upper part, and the transfer is pure water tank. After arranging the upper part of the second container upward in water or ultrapure water, the silicon crushed pieces after being housed in the first container and washed in the pure water or ultrapure water are placed. It is characterized in that the opening of the first container is tilted so that the opening of the first container is dropped into the inside of the second container.

本発明の第3の観点は、第1又は第2の観点に係る発明であって、前記第2容器は、その開口面積が前記第1容器より大きいか、又はその容積が前記第1容器の容積より大きいことを特徴とする。 A third aspect of the present invention is the invention according to the first or second aspect, wherein the opening area of the second container is larger than that of the first container, or the volume thereof is larger than that of the first container. It is characterized by being larger than the volume.

本発明の第4の観点は、第1ないし第3の観点のいずれかの観点に係る発明であって、前記第1容器及び前記第2容器は、周壁部と底板部に前記シリコン破砕片のサイズより小径の複数の貫通孔がそれぞれ形成されたことを特徴とする。 The fourth aspect of the present invention is the invention according to any one of the first to third aspects, wherein the first container and the second container have the peripheral wall portion and the bottom plate portion of the silicon crushed pieces. It is characterized in that a plurality of through holes having a diameter smaller than the size are formed.

本発明の第5の観点は、第1ないし第4の観点のいずれかの観点に係る発明であって、前記純水又は超純水が流動する水であることを特徴とする。 The fifth aspect of the present invention is the invention according to any one of the first to fourth aspects, characterized in that the pure water or ultrapure water is flowing water.

本発明の第6の観点は、第1ないし第5の観点のいずれかの観点に係る発明であって、前記純水又は超純水を10〜70℃の温度に設定することを特徴とする。 A sixth aspect of the present invention is an invention according to any one of the first to fifth aspects, characterized in that the pure water or ultrapure water is set to a temperature of 10 to 70 ° C. ..

本発明の第7の観点は、第4の観点に係る発明であって、前記第2容器の周壁部に形成された貫通孔は、前記周壁部の正面視で孔下半分の孔周面が漸次下方に直線的に又は曲線的に傾斜する傾斜面を有することを特徴とする。 The seventh aspect of the present invention is the invention according to the fourth aspect, and the through hole formed in the peripheral wall portion of the second container has a hole peripheral surface of the lower half of the hole in the front view of the peripheral wall portion. It is characterized by having an inclined surface that gradually slopes downward linearly or curvedly.

本発明の第8の観点は、第4の観点に係る発明であって、前記第2容器の底板部の貫通孔が形成されていない外底面の部分に前記第2容器の設置面から前記外底面を離間させる1又は2以上の突起部が形成され、前記突起部の縦断面視で漸次下方に直線的に又は曲線的に傾斜する傾斜面を有することを特徴とする。 The eighth aspect of the present invention is the invention according to the fourth aspect, from the installation surface of the second container to the outside of the outer bottom surface portion where the through hole of the bottom plate portion of the second container is not formed. It is characterized in that one or more protrusions that separate the bottom surfaces are formed, and the protrusions have an inclined surface that is gradually inclined downward linearly or curvedly in a vertical cross-sectional view.

本発明の第9の観点は、第4又は第8の観点に係る発明であって、前記第1容器又は第2容器の底板部に形成された貫通孔は、容器内側の孔縁部から容器外側の孔縁部にかけて縮径してテーパー形状又は曲率を有することを特徴とする。 The ninth aspect of the present invention is the invention according to the fourth or eighth aspect, and the through hole formed in the bottom plate portion of the first container or the second container is formed from the hole edge portion inside the container to the container. It is characterized in that it has a tapered shape or a curvature by reducing the diameter toward the outer edge portion.

本発明の第10の観点は、第1ないし第4の観点又は第7ないし第9の観点のいずれかの観点に係る発明であって、第2容器がポリプロピレン、ポリカーボネート、シリコーン合成樹脂、エチレン・四フッ化エチレン共重合体(以下、ETFEと略称することもある。)、ポリエーテルエーテルケトン(以下、PEEKと略称する。)、ポリテトラフルオロエチレン(以下、PTFEと略称する。)、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(以下、PFAと略称する。)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(以下、FEPと略称する。)及びポリフッ化ビニリデン(以下、PVDFと略称する。)からなる群より選ばれた1種又は2種以上の合成樹脂からなることを特徴とする。 The tenth aspect of the present invention is an invention according to any one of the first to fourth viewpoints or the seventh to ninth viewpoints, wherein the second container is polypropylene, polycarbonate, silicone synthetic resin, ethylene. Ethylene tetrafluoride copolymer (hereinafter, sometimes abbreviated as ETFE), polyetheretherketone (hereinafter, abbreviated as PEEK), polytetrafluoroethylene (hereinafter, abbreviated as PTFE), tetrafluoro Ethylene / perfluoro (alkyl vinyl ether) copolymer (hereinafter abbreviated as PFA), tetrafluoroethylene / hexafluoropropylene copolymer (hereinafter abbreviated as FEP) and polyvinylidene fluoride (hereinafter abbreviated as PVDF). It is characterized by being composed of one kind or two or more kinds of synthetic resins selected from the group consisting of.

本発明の第1の観点の方法では、純水又は超純水での移し替えのため、シリコン破砕片表面への空気中からの汚染が生じない。また水中で樹脂製の第1容器内のシリコン破砕片を移し替える際にシリコン破砕片より容器片(樹脂片)が離脱し、水中に分散することで、第1容器内の容器片が第2容器内に取り込まれることを低減できる。これにより容器片による有機物汚染の影響が抑制される。 In the method of the first aspect of the present invention, since the transfer is made with pure water or ultrapure water, the surface of the silicon crushed piece is not contaminated from the air. Further, when the silicon crushed pieces in the first resin container are transferred in water, the container pieces (resin pieces) are separated from the silicon crushed pieces and dispersed in water, so that the container pieces in the first container become the second. It is possible to reduce the amount taken into the container. As a result, the influence of organic matter contamination by the container piece is suppressed.

本発明の第2の観点の方法では、水の中で、第1容器をその開口部を傾斜することにより、下方の第2容器の開口部を介して、第1容器のシリコン破砕片を第2容器内部に落下させて、シリコン破砕片を移し替えるため、シリコン破砕片の移し替えをより円滑に行うことができる。また移し替え時のシリコン破砕片の水中での移動が緩やかであるため、シリコン破砕片による第2容器への移し替え時の衝突によるダメージが軽減され、第1容器の容器片の発生によるシリコン破砕片への汚染を抑制するとともに、シリコン破砕片による第2容器内面の損傷を抑制できる。また移し替えに伴うシリコン破砕片同士の接触や衝突によるダメージが軽減されることでシリコン微粉の発生を抑制でき、シリコン微粉経由による汚染の影響を低減できる。また第1容器内のシリコン破砕片の重量が大きい場合には水中での移し替え時の作業負荷を軽減できる。 In the method of the second aspect of the present invention, by inclining the opening of the first container in water, the silicon crushed pieces of the first container are squeezed through the opening of the second container below. 2 Since the silicon crushed pieces are transferred by dropping them into the container, the silicon crushed pieces can be transferred more smoothly. In addition, since the silicon crushed pieces move slowly in water at the time of transfer, the damage caused by the collision of the silicon crushed pieces to the second container is reduced, and the silicon crushed due to the generation of the container pieces of the first container. It is possible to suppress contamination of the pieces and prevent damage to the inner surface of the second container due to the crushed silicon pieces. In addition, by reducing the damage caused by contact and collision between the silicon crushed pieces due to the transfer, the generation of silicon fine powder can be suppressed, and the influence of contamination via the silicon fine powder can be reduced. Further, when the weight of the crushed silicon pieces in the first container is large, the work load at the time of transfer in water can be reduced.

本発明の第3の観点の方法では、第2容器の開口面積又は容積を第1容器の開口面積又は容積よりそれぞれ大きくすることで、シリコン破砕片の水中での移し替えを容易にするとともに、移し替え時に、落下するシリコン破砕片を確実に第2容器内に移し替えることができ、シリコン破砕片の第2容器外への移し替えミスがなくなり、作業効率が向上する。 In the method of the third aspect of the present invention, the opening area or volume of the second container is made larger than the opening area or volume of the first container, respectively, thereby facilitating the transfer of the crushed silicon pieces in water and at the same time. At the time of transfer, the falling silicon crushed pieces can be reliably transferred into the second container, the mistake of transferring the silicon crushed pieces to the outside of the second container is eliminated, and the work efficiency is improved.

本発明の第4の観点の方法では、第1容器の周壁部及び底板部に複数の貫通孔を設けることで、貫通孔から容器片が容器外へ水とともに排出されるので、第1容器内の容器片が第2容器内にシリコン破砕片とともに取り込まれることを低減できる。またシリコン破砕片移し替え後の第2容器を水中より取り出す際に、第2容器の貫通孔から容器内の水が排出されるので、第2容器内に容器片が取り込まれた場合でも貫通孔からの水の排出とともに容器片が排出されやすくなる。これにより、第2容器内への容器片の残留を低減することができるので、有機物に起因する汚染を抑制でき、シリコン破砕片を収容した第2容器をその運搬負荷を低減して乾燥工程に移動できるとともに、シリコン破砕片の乾燥時間を短縮できる。これにより、乾燥時間の短縮により第2容器からのシリコン破砕片への有機物に起因する汚染を抑制でき、乾燥の作業効率を向上できる。 In the method of the fourth aspect of the present invention, by providing a plurality of through holes in the peripheral wall portion and the bottom plate portion of the first container, the container piece is discharged from the through holes to the outside of the container together with water. It is possible to reduce the amount of the container piece taken into the second container together with the silicon crushed piece. Further, when the second container after transferring the silicon crushed pieces is taken out from the water, the water in the container is discharged from the through hole of the second container, so that even if the container piece is taken into the second container, the through hole The container pieces are easily discharged as the water is discharged from the container. As a result, the residue of the container piece in the second container can be reduced, so that the contamination caused by organic substances can be suppressed, and the transport load of the second container containing the silicon crushed piece can be reduced to be used in the drying process. As well as being able to move, the drying time of silicon debris can be shortened. As a result, by shortening the drying time, contamination of the silicon crushed pieces from the second container due to organic substances can be suppressed, and the drying work efficiency can be improved.

本発明の第5の観点の方法では、純水又は超純水が流動する水であるので、移し替えるシリコン破砕片表面に付着している容器片(樹脂片)を効率良く脱離させることができ、また第1容器内に付着している容器片、或いはシリコン破砕片とともに第2容器内に落下する容器片なども水中に分散させることができるので、シリコン破砕片への有機物に起因する汚染を抑制できる。 In the method of the fifth aspect of the present invention, since pure water or ultrapure water is flowing water, it is possible to efficiently remove the container piece (resin piece) adhering to the surface of the silicon crushed piece to be transferred. Also, the container pieces adhering to the first container or the container pieces falling into the second container together with the silicon crushed pieces can be dispersed in water, so that the silicon crushed pieces are contaminated due to organic substances. Can be suppressed.

本発明の第6の観点の方法では、純水又は超純水の温度を10〜70℃に設定することで、水中での移し替え中にシリコン破砕片及び第2容器の温度を水の温度と同一にでき、水の温度を30〜70℃に設定すれば、シリコン破砕片及び第2容器が加温され、次の乾燥工程でのシリコン破砕片の乾燥時間がより短縮され、第2容器からの有機物に起因するシリコン破砕片の汚染を抑制できる。 In the method of the sixth aspect of the present invention, the temperature of pure water or ultrapure water is set to 10 to 70 ° C., so that the temperature of the silicon debris and the second container is changed to the temperature of water during transfer in water. If the temperature of the water is set to 30 to 70 ° C., the silicon crushed pieces and the second container are heated, the drying time of the silicon crushed pieces in the next drying step is further shortened, and the second container is used. It is possible to suppress the contamination of silicon debris caused by organic substances from the water.

本発明の第7の観点の方法では、第2容器の周壁部に形成された貫通孔が、周壁部の正面視で孔下半分の孔周面が漸次下方に直線的に又は曲線的に傾斜する傾斜面を有することで、第2容器を水槽から取り出した後の水切りが効率的に行われ、第2容器に付着している水量を低減できる。これにより次の乾燥工程でのシリコン破砕片の乾燥時間がより短縮されることで、第2容器からの有機物に起因するシリコン破砕片の汚染を抑制できる。 In the method of the seventh aspect of the present invention, the through hole formed in the peripheral wall portion of the second container is gradually inclined downward linearly or curvedly in the peripheral surface of the lower half of the hole in the front view of the peripheral wall portion. By having the inclined surface, the drainage after taking out the second container from the water tank is efficiently performed, and the amount of water adhering to the second container can be reduced. As a result, the drying time of the silicon shards in the next drying step is further shortened, so that the contamination of the silicon shards due to the organic matter from the second container can be suppressed.

本発明の第8の観点の方法では、第2容器の外底面に形成された突起部が第2容器の設置面から容器を離間させるため、底板部の貫通孔下部に一定の空間を確保することができ、第2容器内に持ち込まれた容器片やシリコン微粉などを第2容器底板部の貫通孔を介して容器外部へ容易に排出することができ、また第2容器底板部外の水中槽内底面からの容器片やシリコン微粉などが直接入りにくくすることで、シリコン破砕片への汚染を低減できる。また突起部がその縦断面視で漸次下方に直線的に又は曲線的に傾斜する傾斜面を有することで、第2容器の外底面における突起部と突起部との間の空間を大きく取ることができ、移し替えの際に第2容器内に取り込まれたシリコン微粉や比較的大きい容器片を前記外底面における突起部と突起部との間の空間に留めておくこともできる。これにより有機物に起因するシリコン破砕片の汚染を抑制できる。 In the method of the eighth aspect of the present invention, the protrusion formed on the outer bottom surface of the second container separates the container from the installation surface of the second container, so that a certain space is secured under the through hole of the bottom plate portion. It is possible to easily discharge the container pieces and silicon fine powder brought into the second container to the outside of the container through the through holes of the bottom plate of the second container, and the water outside the bottom plate of the second container. By making it difficult for container pieces and silicon fine powder to enter directly from the bottom surface of the tank, contamination of the silicon crushed pieces can be reduced. Further, since the protrusion has an inclined surface that gradually inclines downward in a linear or curved manner in the vertical cross-sectional view, it is possible to take a large space between the protrusions on the outer bottom surface of the second container. It is also possible to keep the silicon fine powder or a relatively large container piece taken into the second container at the time of transfer in the space between the protrusions on the outer bottom surface. As a result, contamination of silicon debris caused by organic substances can be suppressed.

本発明の第9の観点の方法では、第2容器の底板部に形成された貫通孔が、容器内側の孔縁部から容器外側の孔縁部にかけて縮径してテーパー形状又は曲率を有することで、角部がなくなり、容器内側の孔縁部がシリコン片により削られにくくすることで容器片の発生を低減でき、また内底面に付着した水や容器内部に取り込まれた容器片やシリコン微粉が貫通孔を通じて外部へ流れ出易くすることもできる。また第2容器を水槽から取り出した後の水切りがより効率的に行われ、第2容器に付着している水量を低減できる。これにより次の乾燥工程でのシリコン破砕片の乾燥時間がより短縮され、第2容器からの有機物に起因するシリコン破砕片の汚染を抑制できる。 In the method of the ninth aspect of the present invention, the through hole formed in the bottom plate portion of the second container has a tapered shape or curvature by reducing the diameter from the hole edge portion inside the container to the hole edge portion outside the container. By eliminating the corners and making it difficult for the hole edge inside the container to be scraped by the silicon piece, the generation of the container piece can be reduced, and the water adhering to the inner bottom surface and the container piece and silicon fine powder taken into the inside of the container can be reduced. Can also be facilitated to flow out through the through hole. Further, draining after taking out the second container from the water tank is performed more efficiently, and the amount of water adhering to the second container can be reduced. As a result, the drying time of the silicon debris in the next drying step can be further shortened, and the contamination of the silicon debris caused by the organic matter from the second container can be suppressed.

本発明の第10の観点の方法では、第2の容器がポリプロピレン、ポリカーボネート、シリコーン合成樹脂、エチレン・四フッ化エチレン共重合体、PEEK、PTFE、PFA、FEP、PVDFなどの発ガス性の低い合成樹脂製保持部材である場合には、乾燥時に温度を50℃以上にしても、保持部材から炭素を含む樹脂添加剤等の有機性ガスの発生量は僅かであるため、容器片の有機物による汚染を低減することができる。またシリコーン樹脂は、発ガス量が上記樹脂類と比較して少なくはないが、発生するガスがシリコン表面に付着しにくく、破砕片の炭素による汚染を低減することができる。 In the method of the tenth aspect of the present invention, the second container has low gasogenicity such as polypropylene, polycarbonate, silicone synthetic resin, ethylene / tetrafluoroethylene copolymer, PEEK, PTFE, PFA, FEP, PVDF, etc. In the case of a synthetic resin holding member, even if the temperature is 50 ° C. or higher during drying, the amount of organic gas such as a resin additive containing carbon generated from the holding member is small, so it depends on the organic material of the container piece. Contamination can be reduced. Further, although the amount of gas generated by the silicone resin is not smaller than that of the above resins, the generated gas is less likely to adhere to the silicon surface, and the carbon contamination of the crushed fragments can be reduced.

本発明実施形態のシリコン破砕片を水の中で第1容器から第2容器に移し替える状況を示す図である。It is a figure which shows the situation which transfers the silicon crushed piece of the embodiment of this invention from a 1st container to a 2nd container in water. その第2容器の外観斜視図である。It is an external perspective view of the 2nd container. その第2容器の周壁部に形成された貫通孔の拡大図である。It is an enlarged view of the through hole formed in the peripheral wall part of the 2nd container. その第2容器の底板部の外底面に形成された突起部の拡大図である。It is an enlarged view of the protrusion formed on the outer bottom surface of the bottom plate part of the 2nd container. その第2容器の底板部に形成された貫通孔の拡大断面図である。It is an enlarged cross-sectional view of the through hole formed in the bottom plate part of the 2nd container. シーメンス法により析出された多結晶のシリコンロッドから作製したシリコン破砕片を乾燥させるまでの処理手順を示すフローチャート図である。It is a flowchart which shows the process process until the silicon crushed piece prepared from the polycrystalline silicon rod which was precipitated by the Siemens method was dried.

次に本発明の一実施形態を図面に基づいて説明する。図1に示すように、樹脂製の第1容器10内には、洗浄工程で洗浄した後のシリコン破砕片11が収容される。水槽12に貯えられた純水又は超純水13の中には、第1容器10とは別の樹脂製の第2容器14が配置される。第2容器14を金属製でなく樹脂製にすることにより、収容するシリコン破砕片の金属汚染を防止できる第2容器の樹脂材質としては、ポリエチレン、ポリプロピレン、ポリカーボネート等が例示される。シリコン破砕片11を収容した第1容器10は、純水又は超純水13の中で、容器内のシリコン破砕片11を第1容器の開口部10aを傾斜し、その傾斜角度を増大することにより、第2容器14の内部に落下させることで、シリコン破砕片11は、第1容器10から第2容器14に移し替えられる。 Next, one embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the first container 10 made of resin contains the silicon crushed pieces 11 after being washed in the washing step. In the pure water or ultrapure water 13 stored in the water tank 12, a second container 14 made of resin different from the first container 10 is arranged. Examples of the resin material of the second container, which can prevent metal contamination of the contained silicon crushed pieces by making the second container 14 made of resin instead of metal, include polyethylene, polypropylene, and polycarbonate. In the first container 10 containing the silicon crushed pieces 11, the silicon crushed pieces 11 in the container are inclined at the opening 10a of the first container in pure water or ultrapure water 13, and the inclination angle thereof is increased. By dropping the silicon crushed pieces 11 into the second container 14, the silicon crushed pieces 11 are transferred from the first container 10 to the second container 14.

水中でシリコン破砕片11を樹脂製の第2容器14へ移し替えることで、第1容器10内でシリコン破砕片11に付着した容器片(樹脂片)がシリコン破砕片から離脱して除去でき、樹脂片の乾燥工程への持ち込みを防止できる。また移し替え時のシリコン破砕片11の水中での移動が緩やかであるため、シリコン破砕片による第2容器への移し替え時の衝突によるダメージが軽減され、第1容器の容器片の発生によるシリコン破砕片への汚染を抑制するとともに、シリコン破砕片による第2容器内面の損傷を抑制でき、第2容器からの有機物に起因するシリコン破砕片の汚染を抑制できる。また、移し替え時にシリコン同士の接触や衝突による微粉の発生を抑制でき、表面積を有する微粉を低減することで、水中から取出し後の空気中の汚染物質による表面汚染を回避できる。更にシリコン破砕片の重量が大きい場合は、移し替え時の作業負荷を低減できる。 By transferring the silicon crushed piece 11 to the second resin container 14 in water, the container piece (resin piece) adhering to the silicon crushed piece 11 in the first container 10 can be separated from the silicon crushed piece and removed. It is possible to prevent the resin pieces from being brought into the drying process. Further, since the silicon crushed pieces 11 move slowly in water at the time of transfer, the damage caused by the collision of the silicon crushed pieces to the second container is reduced, and the silicon caused by the generation of the container pieces of the first container is reduced. In addition to suppressing contamination of the crushed pieces, damage to the inner surface of the second container due to the silicon crushed pieces can be suppressed, and contamination of the silicon crushed pieces caused by organic substances from the second container can be suppressed. Further, it is possible to suppress the generation of fine powder due to contact or collision between silicons at the time of transfer, and by reducing the fine powder having a surface area, it is possible to avoid surface contamination by pollutants in the air after being taken out of the water. Further, when the weight of the silicon crushed piece is large, the work load at the time of transfer can be reduced.

なお、純水とは、溶存するイオンの大部分を除去した電気抵抗率が0.1〜15MΩcmレベルの水をいい、超純水とは、限りなくH2Oに近づいた電気抵抗率が15MΩcmを超えるレベルの水をいう。水槽12に貯えられる水を純水又は超純水にすることにより、水に含まれる微量の不純物によるシリコン破砕片表面への汚染を低減できる。また、第1容器の材質としては、比重が水より小さい方が好ましい。その場合、第1容器内でシリコン破砕片表面に付着した容器片(樹脂片)がシリコン破砕片から離脱する際、容器片は浮揚することでシリコン破砕片にはより再付着しにくくなり、樹脂片の乾燥工程への持ち込みを防止できる。 Pure water refers to water having an electrical resistivity of 0.1 to 15 MΩcm level from which most of the dissolved ions have been removed, and ultrapure water has an electrical resistivity of 15 MΩcm that approaches H 2 O as much as possible. A level of water that exceeds. By changing the water stored in the water tank 12 to pure water or ultrapure water, it is possible to reduce the contamination of the surface of silicon crushed pieces by a small amount of impurities contained in the water. Further, as the material of the first container, it is preferable that the specific gravity is smaller than that of water. In that case, when the container piece (resin piece) adhering to the surface of the silicon crushed piece in the first container separates from the silicon crushed piece, the container piece floats, making it more difficult to reattach to the silicon crushed piece, and the resin. It is possible to prevent the pieces from being brought into the drying process.

本実施の形態では、第2容器14の開口部18の面積又は容積は、第1容器10の開口部10aの面積又は容積よりそれぞれ大きい。このように構成することにより、シリコン破砕片の水中での移し替えを容易にするとともに、移し替え時に、シリコン破砕片が第2容器開口部の縁に接触や衝突することで生じる第2容器の破損や損傷、また新たな容器片の削れなどの虞もなく、落下するシリコン破砕片を確実に第2容器内に移し替えることができ、シリコン破砕片の第2容器外への移し替えミスがなくなり、作業効率が向上する。 In the present embodiment, the area or volume of the opening 18 of the second container 14 is larger than the area or volume of the opening 10a of the first container 10, respectively. With this configuration, the transfer of the crushed silicon pieces in water is facilitated, and at the time of transfer, the crushed silicon pieces come into contact with or collide with the edge of the opening of the second container of the second container. There is no risk of breakage or damage, and there is no risk of scraping of new container pieces, and the falling silicon crushed pieces can be reliably transferred into the second container, and there is a mistake in transferring the silicon crushed pieces to the outside of the second container. Eliminates and improves work efficiency.

水槽12に貯えられる純水又は超純水13は、流動するように構成することが好ましい。図示しないが、この流動状態は、水槽12の一つの周壁部から水を供給し、この周壁部とは別の周壁部から水を排出するか、或いは水槽12の底板部から水を供給し、水槽12の上端縁からオーバフローさせることにより、作り出される。流動状態にすることにより、シリコン破砕片表面に付着している容器片(樹脂片)を効率良く脱離させることができ、シリコン破砕片への有機物に起因する汚染を抑制できる。なお、水の流動に当たっては、水の流動によって第2容器内へのシリコン破砕片の移し替えに影響が出ない範囲内で流動することが望ましい。 The pure water or ultrapure water 13 stored in the water tank 12 is preferably configured to flow. Although not shown, in this flow state, water is supplied from one peripheral wall portion of the water tank 12 and water is discharged from a peripheral wall portion different from the peripheral wall portion, or water is supplied from the bottom plate portion of the water tank 12. It is created by overflowing from the upper edge of the water tank 12. By making the silicon crushed state into a fluid state, the container piece (resin piece) adhering to the surface of the silicon crushed piece can be efficiently desorbed, and contamination of the silicon crushed piece due to organic substances can be suppressed. Regarding the flow of water, it is desirable that the flow of water does not affect the transfer of the silicon crushed pieces into the second container.

また水槽12内の純水又は超純水の温度は10〜70℃の温度に設定することが好ましい。30〜70℃の温度に設定することが更に好ましい。30〜70℃の温度に設定することにより、水中での移し替え中にシリコン破砕片及び第2容器の温度を高められ、熱容量を付加させることで次の乾燥工程でのシリコン破砕片の乾燥時間がより短縮され、第2容器からの有機物に起因するシリコン破砕片の汚染を抑制できる。 The temperature of pure water or ultrapure water in the water tank 12 is preferably set to a temperature of 10 to 70 ° C. It is more preferable to set the temperature to 30 to 70 ° C. By setting the temperature to 30 to 70 ° C., the temperature of the silicon crushed pieces and the second container can be increased during the transfer in water, and by adding the heat capacity, the drying time of the silicon crushed pieces in the next drying step can be increased. Can be further shortened, and contamination of silicon debris caused by organic substances from the second container can be suppressed.

図2に示すように、第2容器14は、合成樹脂の射出成形により、直方体の箱状に形成され、概略矩形の底板部16の上に4つの周壁部17が一体的に立設されて構成される。4つの周壁部17は、底板部16の4辺の各辺に沿う四面の壁をなし、角筒状をなす。これらの周壁部17の上部には開口部18が形成される。即ちこの第2容器14は、上方を開放状態とした箱状に形成されており、その上部の開口部18を介して第2容器の内部空間19(図1参照。)にシリコン破砕片11が供給されたり、排出されるように構成される。第1容器10も図示しないが、同様の構成の底板部と周壁部と有し、底板部と周壁部には貫通孔を有する。第1容器10に貫通孔を形成することにより、第1容器の貫通孔から容器内の洗浄液が移動するので、シリコン破砕片を収容した第1容器10をその運搬負荷を低減して水中に移動できるとともに、貫通孔から容器片が容器外へ水とともに排出されるので、第1容器内の容器片が第2容器内にシリコン破砕片とともに取り込まれることを低減できる。 As shown in FIG. 2, the second container 14 is formed into a rectangular parallelepiped box shape by injection molding of synthetic resin, and four peripheral wall portions 17 are integrally erected on a substantially rectangular bottom plate portion 16. It is composed. The four peripheral wall portions 17 form four-sided walls along each of the four sides of the bottom plate portion 16 and form a square cylinder. An opening 18 is formed in the upper part of these peripheral wall portions 17. That is, the second container 14 is formed in a box shape with the upper side open, and the silicon crushed pieces 11 are placed in the internal space 19 (see FIG. 1) of the second container through the opening 18 at the upper portion thereof. It is configured to be supplied or discharged. Although not shown, the first container 10 also has a bottom plate portion and a peripheral wall portion having the same configuration, and the bottom plate portion and the peripheral wall portion have through holes. By forming a through hole in the first container 10, the cleaning liquid in the container moves from the through hole of the first container, so that the first container 10 containing the silicon crushed pieces is moved into water with a reduced transport load. At the same time, since the container piece is discharged from the through hole together with water to the outside of the container, it is possible to reduce that the container piece in the first container is taken into the second container together with the silicon crushed piece.

図2に示すように、第2容器14の底板部16の全面及び4つの周壁部17の全面には、複数の貫通孔21及び22が格子状にそれぞれ形成される。図2では周壁部17の貫通孔22は周壁部の一部にのみ示し、全面に示していない。これらの貫通孔21、22を通じて、水槽12から第2容器14を取り出したときに、容器内の水が排出されるようになっている。これにより、シリコン破砕片を収容した第2容器を作業負荷を低減して乾燥工程に移動できるとともに、貫通孔を通して乾燥時の温度などがシリコン破砕片に伝わり易くなるため、シリコン破砕片の乾燥時間を短縮できる。乾燥時間の短縮により容器からのシリコン破砕片への有機物に起因する汚染を抑制でき、乾燥の作業効率を向上できる。 As shown in FIG. 2, a plurality of through holes 21 and 22 are formed in a grid pattern on the entire surface of the bottom plate portion 16 of the second container 14 and the entire surface of the four peripheral wall portions 17. In FIG. 2, the through hole 22 of the peripheral wall portion 17 is shown only in a part of the peripheral wall portion and is not shown on the entire surface. When the second container 14 is taken out from the water tank 12 through these through holes 21 and 22, the water in the container is discharged. As a result, the second container containing the silicon crushed pieces can be moved to the drying process by reducing the work load, and the temperature at the time of drying is easily transmitted to the silicon crushed pieces through the through holes, so that the drying time of the silicon crushed pieces is easy. Can be shortened. By shortening the drying time, contamination of silicon crushed pieces from the container due to organic substances can be suppressed, and the drying work efficiency can be improved.

本実施の形態では、第2容器14の底板部16に形成された貫通孔21は、図2に示すように、例えば底板部の正面視で円形に形成される。この貫通孔21は、図示しないが、底板部の正面視で角形に形成されてもよい。また4つの周壁部17に形成された貫通孔22は、周壁部17の正面視で、貫通孔の上方に向けられた孔周面、即ち孔下半分の孔周面が漸次下方に直線的に又は曲線的に傾斜する傾斜面を有する。図2及び図3(a)に示すように、貫通孔22が上方に向けられた孔周面が漸次下方に直線的に傾斜する傾斜面22aを有する例としては、周壁部の正面視で菱形の貫通孔が挙げられる。また図3(b)に示すように、貫通孔22が上方に向けられた孔周面が漸次下方に曲線的に傾斜する傾斜面22bを有する例としては、周壁部の正面視で円形の貫通孔が挙げられる。こうした貫通孔22では、第2容器14を水槽12から取り出した後の水切りがより効率的に行われ、第2容器14に付着している水量を低減できる。これにより次の乾燥工程でのシリコン破砕片11の乾燥時間がより短縮され、第2容器14からの有機物に起因するシリコン破砕片の汚染を抑制できる。 In the present embodiment, the through hole 21 formed in the bottom plate portion 16 of the second container 14 is formed in a circular shape, for example, when viewed from the front of the bottom plate portion, as shown in FIG. Although not shown, the through hole 21 may be formed in a square shape when viewed from the front of the bottom plate portion. Further, in the through holes 22 formed in the four peripheral wall portions 17, the peripheral surface of the hole directed upward of the through hole, that is, the peripheral surface of the hole in the lower half of the hole is gradually linearly downward in the front view of the peripheral wall portion 17. Alternatively, it has an inclined surface that slopes in a curved line. As shown in FIGS. 2 and 3A, as an example of having an inclined surface 22a in which the peripheral surface of the hole in which the through hole 22 is directed upward gradually inclines downward, a rhombus is formed in the front view of the peripheral wall portion. Through hole. Further, as shown in FIG. 3B, as an example in which the peripheral surface of the hole in which the through hole 22 is directed upward has an inclined surface 22b in which the peripheral surface of the hole is gradually inclined downward, a circular penetration is seen in the front view of the peripheral wall portion. There is a hole. In such a through hole 22, draining after taking out the second container 14 from the water tank 12 is performed more efficiently, and the amount of water adhering to the second container 14 can be reduced. As a result, the drying time of the silicon crushed piece 11 in the next drying step is further shortened, and the contamination of the silicon crushed piece due to the organic matter from the second container 14 can be suppressed.

第2容器14の底板部16と周壁部17に形成された貫通孔21及び22は、シリコン破砕片11のサイズより小さい孔径を有する。本明細書では、シリコン破砕片の平面視で最短長部をシリコン破砕片のサイズと称する。図示しないが、第1容器10の底板部と周壁部に形成された貫通孔も同様に、シリコン破砕片のサイズより小さい孔径を有する。このように貫通孔の孔径を設定することにより、第1容器10及び第2容器14の各内部からシリコン破砕片11が貫通孔を介して抜け落ちることを防止できる。 The through holes 21 and 22 formed in the bottom plate portion 16 and the peripheral wall portion 17 of the second container 14 have a hole diameter smaller than the size of the silicon crushed piece 11. In the present specification, the shortest part of the silicon fragment in a plan view is referred to as the size of the silicon fragment. Although not shown, the through holes formed in the bottom plate portion and the peripheral wall portion of the first container 10 also have a hole diameter smaller than the size of the silicon crushed piece. By setting the hole diameter of the through hole in this way, it is possible to prevent the silicon crushed piece 11 from falling out from the inside of each of the first container 10 and the second container 14 through the through hole.

また本実施の形態では、図4(a)〜(c)に示すように、第2容器14の底板部16の貫通孔21が形成されていない外底面16aの部分に第2容器の設置面23から外底面16aを離間させる1又は2以上の突起部24が形成される。例えば、突起部24は、その縦断面視で漸次下方に直線的に傾斜する図4(a)に示す傾斜面24aを有する。 この傾斜面は、漸次下方に曲線的に傾斜する図4(b)又は(c)に示す傾斜面24b又は24cでもよい。このように突起部24を形成することにより、底板部16の貫通孔下部に一定の空間を確保することができ、第2容器14内に持ち込まれた容器片やシリコン微粉などを容器外へ排出し易くするとともに、第2容器底板部外からの容器片やシリコン微粉などが直接入りにくくすることで、シリコン破砕片への汚染を低減できる。また突起部24がその縦断面視で漸次下方に直線的に又は曲線的に傾斜する傾斜面を有することで、第2容器の外底面16aにおける突起部24と突起部24との間の空間を大きく取ることができ、移し替えの際に第2容器14内に取り込まれたシリコン微粉や比較的大きい容器片を上記外底面16aにおける突起部24と突起部24との間の空間に排出することで容器内部のシリコン破砕片と隔離することもできる。これにより有機物に起因するシリコン破砕片の汚染を抑制できる。 Further, in the present embodiment, as shown in FIGS. 4A to 4C, the installation surface of the second container is located on the outer bottom surface 16a where the through hole 21 of the bottom plate portion 16 of the second container 14 is not formed. One or more protrusions 24 are formed that separate the outer bottom surface 16a from the 23. For example, the protrusion 24 has an inclined surface 24a shown in FIG. 4A which is gradually inclined downward in a vertical cross-sectional view. The inclined surface may be the inclined surface 24b or 24c shown in FIG. 4 (b) or (c), which gradually inclines downward in a curved line. By forming the protrusion 24 in this way, a certain space can be secured under the through hole of the bottom plate portion 16, and the container pieces and silicon fine powder brought into the second container 14 are discharged to the outside of the container. By making it easier and making it difficult for the container pieces and silicon fine powder from the outside of the bottom plate of the second container to enter directly, it is possible to reduce the contamination of the silicon crushed pieces. Further, since the protrusion 24 has an inclined surface that gradually inclines downward in a straight line or a curve in the vertical cross-sectional view, the space between the protrusion 24 and the protrusion 24 on the outer bottom surface 16a of the second container is created. It can be taken large, and the silicon fine powder and the relatively large container piece taken into the second container 14 at the time of transfer are discharged into the space between the protrusion 24 and the protrusion 24 on the outer bottom surface 16a. It can also be isolated from the silicon shards inside the container. As a result, contamination of silicon debris caused by organic substances can be suppressed.

更に本実施の形態では、第2容器14の底板部16に形成された貫通孔21は、図5に示すように、容器内側の孔縁部から容器外側の孔縁部にかけて縮径してテーパー形状又は曲率を有することで、角部がなくなり、容器内側の孔縁部がシリコン片により削られにくくなるとともに容器片の発生を低減できる。このように貫通孔21を形成することにより、第2容器14を水槽12から取り出した後の水切りがより効率的に行われるとともに容器内部に取り込まれた容器片やシリコン微粉が貫通孔を通じて外部へ流れ出易くすることもできる。第2容器14に付着している水量を低減できる。この結果、次の乾燥工程でのシリコン破砕片の乾燥時間がより短縮され、第2容器14からの有機物に起因するシリコン破砕片の汚染を抑制できる。 Further, in the present embodiment, the through hole 21 formed in the bottom plate portion 16 of the second container 14 is tapered in diameter from the hole edge portion inside the container to the hole edge portion outside the container, as shown in FIG. By having the shape or curvature, the corners are eliminated, the hole edge inside the container is less likely to be scraped by the silicon piece, and the generation of the container piece can be reduced. By forming the through hole 21 in this way, draining after taking out the second container 14 from the water tank 12 is performed more efficiently, and the container pieces and silicon fine powder taken into the container are discharged to the outside through the through hole. It can also be made easier to flow out. The amount of water adhering to the second container 14 can be reduced. As a result, the drying time of the silicon debris in the next drying step is further shortened, and the contamination of the silicon debris caused by the organic matter from the second container 14 can be suppressed.

また第2の容器をポリプロピレン、ポリカーボネート、シリコーン合成樹脂、エチレン・四フッ化エチレン共重合体、PEEK、PTFE、PFA、FEP、PVDFなどの発ガス性の低い合成樹脂製保持部材とすることで、乾燥時の温度を50℃以上にした場合でも、容器自体からの炭素を含む樹脂添加剤等の有機性ガスの発生量は僅かであることから、容器片の有機物による汚染を低減することができる。なお、シリコーン樹脂は、発ガス量が上記樹脂類と比較して少なくはないが、発生するガスがシリコン表面に付着しにくく、破砕片の炭素による汚染を低減することができる。 Further, by using the second container as a holding member made of synthetic resin having low gasogenicity such as polypropylene, polycarbonate, silicone synthetic resin, ethylene / tetrafluoroethylene copolymer, PEEK, PTFE, PFA, FEP, PVDF, etc. Even when the drying temperature is set to 50 ° C. or higher, the amount of organic gas such as a resin additive containing carbon generated from the container itself is small, so that the contamination of the container piece by organic substances can be reduced. .. Although the amount of gas generated by the silicone resin is not smaller than that of the above resins, the generated gas is less likely to adhere to the silicon surface, and the carbon contamination of the crushed fragments can be reduced.

なお、本発明においては、上記実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において、種々の変更をすることが可能である。例えば、前記実施形態では第2容器を直方体の箱状としたが、円筒形状のものであってもよく、四角形以上の多角形であってもよい。また、周壁部に形成された貫通孔のすべてに傾斜面22a、22bを形成したが、一部の貫通孔にのみ形成してもよい。また、本発明においては、容器の移し替えに際して、純水又は超純水にバブリングを形成し、このバブリングをシリコン破砕片表面に接触するような状態下で容器の移し替えを行い、容器片や摩耗粉をシリコン破砕片から離脱するようにしてもよい。また、容器移し替え時にシリコン破砕片表面に超音波照射を行い、シリコン破砕片表面に付着している容器片や摩耗粉をシリコン破砕片表面から離脱するような構成としてもよい。 The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the invention. For example, in the above-described embodiment, the second container has a rectangular parallelepiped box shape, but it may have a cylindrical shape or a polygonal shape of a quadrangle or more. Further, although the inclined surfaces 22a and 22b are formed in all the through holes formed in the peripheral wall portion, they may be formed only in some of the through holes. Further, in the present invention, when transferring the container, bubbling is formed in pure water or ultrapure water, and the container is transferred in a state where the bubbling is in contact with the surface of the silicon crushed piece, and the container piece or the container piece or the container piece is transferred. Abrasion debris may be separated from the silicon debris. Further, the surface of the silicon crushed piece may be irradiated with ultrasonic waves when the container is transferred so that the container piece and the abrasion powder adhering to the surface of the silicon crushed piece are separated from the surface of the silicon crushed piece.

また、本発明においては、水槽中に配置した第2容器の中にシリコン破砕片を落下させて移し替えを行ったが、この移し替えを行う際に、第2容器を第3容器内に配置した状態で第1容器からのシリコン破砕片の移し替えを行ってもよい。この場合、第3容器は、第2容器よりもその底面積が大きいものとし、第2容器を第3容器内に配置する際、第2容器の底面部付近に第3容器の底面部が存在するように配置されるとよい。これにより、第1容器から第2容器内にシリコン破砕片を移し替える時に第2容器の外部に落下したシリコン破砕片を第3容器内に収容することができ、第2容器外に落下したシリコン破砕片を容易に回収することができる。 Further, in the present invention, the silicon crushed pieces were dropped and transferred into the second container arranged in the water tank, but when this transfer was performed, the second container was arranged in the third container. In this state, the silicon crushed pieces may be transferred from the first container. In this case, the bottom area of the third container is larger than that of the second container, and when the second container is arranged in the third container, the bottom surface of the third container exists near the bottom surface of the second container. It is good to be arranged so as to. As a result, when the silicon crushed pieces are transferred from the first container to the second container, the silicon crushed pieces that have fallen to the outside of the second container can be stored in the third container, and the silicon that has fallen to the outside of the second container can be stored. The crushed pieces can be easily recovered.

また、本発明における水槽中の純水又は超純水は、循環濾過を構成する形でもよい。この場合、水槽中の純水又は超純水を循環濾過することで、水中に分散している容器片や摩耗粉を濾過により除去することができ、シリコン破砕片から分離した容器片や摩耗粉がシリコン破砕片に再付着することを防止できる。更に、本発明では水槽内に第2容器を配置し、その上部から第1容器内のシリコン破砕片を落下させたが、第2容器の下部に第2容器を水槽の底面部から間隔をあけて上方に配置させる架台を設けてもよい。これにより、シリコン破砕片の移し替え時に、容器片や摩耗粉が第2容器内に入った場合、架台を配置することで第2容器内から容器片や摩耗粉が排出し易くなり、シリコン破砕片から容器片や摩耗粉をより効率良く分離できる。 Further, the pure water or ultrapure water in the water tank in the present invention may constitute circulation filtration. In this case, by circulating and filtering pure water or ultrapure water in the water tank, the container pieces and wear debris dispersed in the water can be removed by filtration, and the container pieces and wear debris separated from the silicon crushed pieces can be removed. Can be prevented from reattaching to the silicon debris. Further, in the present invention, the second container is arranged in the water tank, and the silicon crushed pieces in the first container are dropped from the upper part of the second container. A stand may be provided so as to be arranged above. As a result, if container pieces or wear debris enter the second container when the silicon crushed pieces are transferred, the container pieces or wear debris can be easily discharged from the second container by arranging the gantry, and the silicon crushed pieces can be crushed. Container pieces and wear debris can be separated from the pieces more efficiently.

次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
図1に示すように、内寸で縦×横×高さが約2000mm×約1000mm×約1000mmであるPVDF(ポリフッ化ビニリデン)製の水槽12と、外寸で縦×横×高さが約155mm×約155mm×約220mmであるPE(ポリエチレン)製の未使用の第1容器10と、内寸で縦×横×高さが約480mm×約320mm×約140mmであるPE(ポリエチレン)製の第2容器14とを用意した。なお、第1容器10の底板部には、一辺が約5mmである正方形状の貫通孔を、貫通孔間の縦及び横のピッチが約4mmとなるように形成し、第1容器10の周壁部には、一辺が約5mmである正方形状の貫通孔を、その貫通孔の対角線が鉛直方向及び水平方向に延びかつ隣り合う貫通孔間のピッチが約4mmとなるように形成した。また、第2容器14の底板部16には、直径が約5mmである円形状の貫通孔21を、貫通孔21間の縦及び横のピッチが約4mmとなるように形成し(図2)、第2容器14の周壁部17には、一辺が約5mmである正方形状の貫通孔22を、その貫通孔22の対角線が鉛直方向及び水平方向に延びかつ隣り合う貫通孔22間のピッチが約4mmとなるように形成した(図2及び図3(a))。
<Example 1>
As shown in FIG. 1, a water tank 12 made of PVDF (polyvinylidene fluoride) having an inner dimension of about 2000 mm × width × height of about 2000 mm × about 1000 mm × about 1000 mm and an outer dimension of about length × width × height are about. An unused first container 10 made of PE (polyethylene) measuring 155 mm × about 155 mm × about 220 mm and made of PE (polyethylene) having internal dimensions of about 480 mm × about 320 mm × about 140 mm. A second container 14 was prepared. A square through hole having a side of about 5 mm is formed in the bottom plate portion of the first container 10 so that the vertical and horizontal pitches between the through holes are about 4 mm, and the peripheral wall of the first container 10 is formed. A square through hole having a side of about 5 mm was formed in the portion so that the diagonal line of the through hole extends in the vertical direction and the horizontal direction and the pitch between adjacent through holes is about 4 mm. Further, in the bottom plate portion 16 of the second container 14, a circular through hole 21 having a diameter of about 5 mm is formed so that the vertical and horizontal pitches between the through holes 21 are about 4 mm (FIG. 2). In the peripheral wall portion 17 of the second container 14, a square through hole 22 having a side of about 5 mm is provided, and the diagonal lines of the through hole 22 extend in the vertical and horizontal directions, and the pitch between the adjacent through holes 22 is increased. It was formed to be about 4 mm (FIGS. 2 and 3 (a)).

一方、平面視で最大長部の長さが約5.5mm〜45mmであるシリコン破砕片11を約25kg用意し、この約25kgのシリコン破砕片11を約5kgずつ5セットに分けて、5個の第1容器10にそれぞれ投入して収容した。ここで、上記シリコン破砕片は、シーメンス法により多結晶のシリコンロッドを析出した後、このシリコンロッドの切断及び破砕等によりシリコン塊を形成し、更にこのシリコン塊を所定のサイズにハンマー等の工具を用いて作製した(図6)。 On the other hand, about 25 kg of silicon crushed pieces 11 having a maximum length of about 5.5 mm to 45 mm in a plan view are prepared, and about 25 kg of the silicon crushed pieces 11 are divided into 5 sets of about 5 kg each, and 5 pieces are prepared. Each of the first containers 10 of the above was charged and contained. Here, in the above-mentioned silicon crushed piece, after precipitating a polycrystalline silicon rod by the Siemens method, a silicon lump is formed by cutting and crushing the silicon rod, and further, the silicon lump is made into a predetermined size by a tool such as a hammer. (Fig. 6).

図6のフローチャート図に示すように、先ず、第1容器10に収容されたシリコン破砕片11をエッチング処理した。このエッチング処理は、フッ酸及び硝酸の混合液からなるエッチング液中に、約5kgのシリコン破砕片11を入れた第1容器10を浸漬させることにより行った。具体的には、シリコン破砕片11を入れた第1容器10をエッチング液中に2分間浸漬し、この浸漬している間に第1容器10を20回揺動させるエッチング処理を行った。このエッチング処理により、第1容器10内のシリコン破砕片11表面に付着した不純物を除去した。なお、シリコン破砕片11のエッチング量のバラツキを低く抑えるために、エッチング液の温度管理及び濃度管理を行って、エッチング液の温度及び濃度を安定化させた。次いで、エッチング処理されたシリコン破砕片11を第1容器10に収容したままリンス処理した。このリンス処理は、エッチング処理されたシリコン破砕片11を第1容器10に収容したまま純水中に3分間浸漬し、この浸漬している間に第1容器10を20回揺動させることにより行った。このリンス処理により、第1容器10内のシリコン破砕片11表面に付着した酸液を除去した。 As shown in the flowchart of FIG. 6, first, the silicon crushed piece 11 housed in the first container 10 was etched. This etching treatment was performed by immersing the first container 10 containing about 5 kg of crushed silicon pieces 11 in an etching solution composed of a mixed solution of hydrofluoric acid and nitric acid. Specifically, the first container 10 containing the crushed silicon piece 11 was immersed in the etching solution for 2 minutes, and the first container 10 was shaken 20 times during the immersion. By this etching treatment, impurities adhering to the surface of the silicon crushed piece 11 in the first container 10 were removed. In addition, in order to suppress the variation in the etching amount of the silicon crushed piece 11 to a low level, the temperature and concentration of the etching solution were controlled to stabilize the temperature and concentration of the etching solution. Next, the etched silicon crushed pieces 11 were rinsed while being contained in the first container 10. In this rinsing treatment, the etched silicon crushed pieces 11 are immersed in pure water for 3 minutes while being contained in the first container 10, and the first container 10 is shaken 20 times during the immersion. went. By this rinsing treatment, the acid solution adhering to the surface of the silicon crushed piece 11 in the first container 10 was removed.

次に、5個の第1容器10内のシリコン破砕片11を単一の第2容器14に順次移し替えた(移し替え処理)。この移し替え処理は、水槽12に純水(水温:約20℃)を満たし、この水槽12内の底部に開口部10aを上方に向けて第2容器14を配置し、この第2容器14の開口部18上方の純水13中で、上記リンス処理された第1容器10を徐々に傾斜させて、第1容器10内のシリコン破砕片11を第2容器14内に移すことにより行った。残りの4セットのシリコン破砕品11についても上記と同様に移し替え処理を行った。そして、シリコン破砕片11が収容された第2容器14を水槽12から取り出し、シリコン破砕片11を乾燥させた(乾燥処理)。この乾燥処理は、シリコン破砕片11を第2容器14に収容したまま真空乾燥処理装置に入れて、70℃に120分間保持することにより行った。これらの処理を行ったシリコン破砕片11を実施例1とした。 Next, the silicon crushed pieces 11 in the five first containers 10 were sequentially transferred to a single second container 14 (transfer treatment). In this transfer treatment, the water tank 12 is filled with pure water (water temperature: about 20 ° C.), and a second container 14 is arranged at the bottom of the water tank 12 with the opening 10a facing upward. In the pure water 13 above the opening 18, the rinsed first container 10 was gradually tilted to move the silicon crushed pieces 11 in the first container 10 into the second container 14. The remaining 4 sets of crushed silicon products 11 were also transferred in the same manner as described above. Then, the second container 14 containing the silicon crushed pieces 11 was taken out from the water tank 12, and the silicon crushed pieces 11 were dried (drying treatment). This drying treatment was carried out by placing the silicon crushed pieces 11 in the vacuum drying treatment device while being housed in the second container 14 and holding the silicon crushed pieces 11 at 70 ° C. for 120 minutes. The silicon crushed piece 11 subjected to these treatments was designated as Example 1.

<比較例1>
移し替え処理を行わなかったこと以外は、実施例1と同様の処理を行って、即ち5セットのシリコン破砕片について、エッチング処理、リンス処理及び乾燥処理をそれぞれ行った。これらの処理を行った5セットのシリコン破砕片を比較例1とした。なお、処理後の比較例1のシリコン破砕片は、移し替え処理を行っていないので、第1容器に収容されたままである。
<Comparative example 1>
The same treatment as in Example 1 was carried out except that the transfer treatment was not carried out, that is, 5 sets of crushed silicon pieces were subjected to an etching treatment, a rinsing treatment and a drying treatment, respectively. Five sets of crushed silicon pieces subjected to these treatments were designated as Comparative Example 1. Since the silicon crushed piece of Comparative Example 1 after the treatment has not been subjected to the transfer treatment, it remains contained in the first container.

<比較試験1>
比較例1の乾燥処理後のシリコン破砕片について容器片の付着の有無と、実施例1の乾燥処理後のシリコン破砕片について容器片の付着の有無とを目視により調べた。その結果を表1に示す。
<Comparative test 1>
The presence or absence of the container pieces attached to the silicon crushed pieces after the drying treatment of Comparative Example 1 and the presence or absence of the container pieces attached to the silicon crushed pieces after the drying treatment of Example 1 were visually examined. The results are shown in Table 1.

Figure 0006928262
Figure 0006928262

<評価1>
表1から明らかなように、移し替え処理を行わなかった比較例1では、乾燥処理後のシリコン破砕片に3mm程度以下の容器片が数個付着していた。これに対し、移し替え処理を行った実施例1では、移し替え処理前まで比較例1と全く同じ処理を行ったため、5個の第1容器内でシリコン破砕片に容器片が数個それぞれ付着していたと考えられるけれども、単一の第2容器内で乾燥処理後のシリコン破砕片に容器片は全く付着していなかった。なお、実施例1及び比較例1に使用した第1容器では、シリコン破砕片が接触した容器内側の壁面に、シリコン破砕片の接触時に生じたと思われる切削痕が複数見られた。
<Evaluation 1>
As is clear from Table 1, in Comparative Example 1 in which the transfer treatment was not performed, several container pieces of about 3 mm or less were attached to the silicon crushed pieces after the drying treatment. On the other hand, in Example 1 in which the transfer treatment was performed, exactly the same treatment as in Comparative Example 1 was performed before the transfer treatment, so that several container pieces adhered to the silicon crushed pieces in each of the five first containers. However, the container pieces did not adhere to the silicon crushed pieces after the drying treatment in a single second container. In the first container used in Example 1 and Comparative Example 1, a plurality of cutting marks which were considered to have been generated when the silicon crushed pieces were in contact were observed on the inner wall surface of the container in which the silicon crushed pieces were in contact.

<実施例2>
実施例1の移し替え処理において、5個の第1容器内のシリコン破砕片を、第1容器と同形同大に形成された5個の別の第1容器にそれぞれ移し替えた。この移し替え処理は、水槽に純水を満たし、この水槽内の底部に開口部を上方に向けて別の第1容器を配置し、この別の第1容器の開口部上方の純水中で、リンス処理された第1容器を徐々に傾斜させて、第1容器内のシリコン破砕片を別の第1容器内に移すことにより行った。上記以外は、シリコン破砕片に対して実施例1と同様の処理を行った。これらの処理を残りの4セットのシリコン破砕品についても行った。これらの処理を行ったシリコン破砕片を実施例2とした。
<Example 2>
In the transfer treatment of Example 1, the silicon crushed pieces in the five first containers were transferred to five other first containers formed in the same shape and size as the first container. In this transfer process, the water tank is filled with pure water, another first container is placed at the bottom of the water tank with the opening facing upward, and in the pure water above the opening of the other first container. This was done by gradually tilting the rinsed first container and transferring the silicon crushed pieces in the first container into another first container. Except for the above, the silicon crushed pieces were treated in the same manner as in Example 1. These treatments were also performed on the remaining 4 sets of crushed silicon products. The silicon crushed piece subjected to these treatments was designated as Example 2.

<比較試験2>
実施例2のシリコン破砕片の第1容器から別の第1容器への移し替え中における状況を調べた。具体的には、上記移し替え中に、シリコン破砕片が別の第1容器の外へ落下したシリコン破砕片の数を調べた。その結果を表2に示す。なお、実施例1についても、移し替え中に、シリコン破砕片が第2容器の外へ落下したシリコン破砕片の数を合わせて調べた。なお、表2において、実施例2の『−』は、第1容器から第2容器への移し替え処理を行わなかったため、第2容器の外へ落下したシリコン破砕片の数を調べる必要がなかったことを意味し、実施例1の『−』は、第1容器から別の第1容器への移し替え処理を行わなかったため、別の第1容器の外へ落下したシリコン破砕片の数を調べる必要がなかったことを意味する。
<Comparative test 2>
The situation during the transfer of the silicon crushed pieces of Example 2 from the first container to another first container was investigated. Specifically, during the above transfer, the number of silicon crushed pieces dropped out of another first container was examined. The results are shown in Table 2. In addition, also in Example 1, the number of silicon crushed pieces that the silicon crushed pieces fell out of the second container during the transfer was also examined. In Table 2, since the “-” in Example 2 was not transferred from the first container to the second container, it is not necessary to check the number of silicon crushed pieces that fell out of the second container. This means that “-” in Example 1 indicates the number of silicon crushed pieces that fell out of the other first container because the transfer process from the first container to another first container was not performed. It means that I didn't have to look it up.

Figure 0006928262
Figure 0006928262

<評価2>
表2から明らかなように、実施例2では、別の第1容器を使用して移し替えを行った場合、移し替え中のシリコン破砕片が別の第1容器の外へ落下するものが散見された。一方、実施例1では、シリコン破砕片を第1容器から第2容器に移し替えているとき、第2容器の外へ落下するものはなかった。これにより、実施例2の移し替えの効率は、実施例1と比較して良くなかったことが分かった。
<Evaluation 2>
As is clear from Table 2, in Example 2, when the transfer was performed using another first container, some silicon crushed pieces being transferred fell out of the other first container. Was done. On the other hand, in Example 1, when the silicon crushed pieces were transferred from the first container to the second container, none of them fell out of the second container. From this, it was found that the transfer efficiency of Example 2 was not as good as that of Example 1.

<実施例3>
実施例1の第1容器の底板部上面に、厚さ約1mm程度の1枚の板(第1容器と同じ材質)を貼り付けて、第1容器の底板部の貫通孔を全て塞ぐとともに、第1容器の周壁部内面に厚さ約1mm程度の4枚の板(第1容器と同じ材質)を貼り付けて、第1容器の周壁部の貫通孔を全て塞いだ。また、実施例1の第2容器の底板部上面に厚さ約1mm程度の1枚の板(第2容器と同じ材質)を貼り付けて、第2容器の底板部の貫通孔を全て塞ぐとともに、第2容器の周壁部内面に厚さ約1mm程度の4枚の板(第2容器と同じ材質)を貼り付けて、第2容器の周壁部の貫通孔を全て塞いだ。これらの第1容器及び第2容器を用いて、シリコン破砕片に対し実施例1と同様の処理を行った。これらの処理を行ったシリコン破砕片を実施例3とした。
<Example 3>
A single plate (same material as the first container) having a thickness of about 1 mm is attached to the upper surface of the bottom plate portion of the first container of the first embodiment to close all the through holes of the bottom plate portion of the first container. Four plates (the same material as the first container) having a thickness of about 1 mm were attached to the inner surface of the peripheral wall portion of the first container to close all the through holes in the peripheral wall portion of the first container. Further, one plate (the same material as the second container) having a thickness of about 1 mm is attached to the upper surface of the bottom plate portion of the second container of Example 1 to close all the through holes of the bottom plate portion of the second container. , Four plates (the same material as the second container) having a thickness of about 1 mm were attached to the inner surface of the peripheral wall of the second container to close all the through holes in the peripheral wall of the second container. Using these first container and second container, the silicon crushed pieces were treated in the same manner as in Example 1. The silicon crushed piece subjected to these treatments was designated as Example 3.

<比較試験3>
実施例3のシリコン破砕片の処理に用いた第2容器内の状況を調べた。具体的には、シリコン破砕片の処理に用いた第2容器に溜まった第1容器の容器片の有無を調べた。その結果を表3に示す。なお、実施例1についても、シリコン破砕片の処理に用いた第2容器に溜まった第1容器の容器片の有無を合わせて調べた。
<Comparative test 3>
The situation in the second container used for the treatment of the silicon crushed pieces of Example 3 was investigated. Specifically, the presence or absence of container pieces in the first container collected in the second container used for treating the crushed silicon pieces was examined. The results are shown in Table 3. In addition, also in Example 1, the presence or absence of the container piece of the first container accumulated in the second container used for the treatment of the silicon crushed piece was examined together.

Figure 0006928262
Figure 0006928262

<評価3>
表3から明らかなように、実施例1では、シリコン破砕片の処理に用いた第2容器内に溜まった第1容器の容器片は確認されなかった。これに対し、実施例3では、シリコン破砕片の処理に用いた第2容器内に溜まった第1容器の容器片は数個確認された。これは次の理由に基づくと考えられる。実施例3では、第1容器の底面及び側面の貫通孔が塞がれているため、エッチング処理時及びリンス処理時に第1容器内で発生した容器片が移し替え前の第1容器内から貫通孔を通して第1容器外へ移動することができず、第1容器内に留まり易い。また、シリコン破砕片を第1容器から第2容器に移し替えたときに、第1容器内の容器片の一部が第2容器内にシリコン破砕片とともに入ると、第2容器内の底面や側面の貫通孔が塞がれているため、上記容器片が第2容器内から排出されずに、第2容器内に溜まり易い。
<Evaluation 3>
As is clear from Table 3, in Example 1, the container pieces of the first container collected in the second container used for the treatment of the silicon crushed pieces were not confirmed. On the other hand, in Example 3, several container pieces of the first container collected in the second container used for the treatment of the crushed silicon pieces were confirmed. This is considered to be based on the following reasons. In the third embodiment, since the through holes on the bottom surface and the side surface of the first container are closed, the container pieces generated in the first container during the etching process and the rinsing process penetrate from the inside of the first container before transfer. It cannot move out of the first container through the hole and easily stays in the first container. Further, when the silicon crushed pieces are transferred from the first container to the second container, if a part of the container pieces in the first container enters the second container together with the silicon crushed pieces, the bottom surface in the second container or Since the through hole on the side surface is closed, the container piece is not discharged from the second container and easily collects in the second container.

<実施例4>
実施例1の水槽の上部に、その縦方向に約7m/分の緩やかな流れを形成するように、水槽中の純水を給排機構により供給しかつ排出した。この状態で、第1容器内のシリコン破砕片を水槽中で別の第1容器に移し替えた。上記以外は、実施例2と同様の処理をシリコン破砕片に対して行った。これらの処理を行ったシリコン破砕片を実施例4とした。
<Example 4>
Pure water in the water tank was supplied and discharged by a water supply / discharge mechanism so as to form a gentle flow of about 7 m / min in the vertical direction on the upper part of the water tank of Example 1. In this state, the silicon crushed pieces in the first container were transferred to another first container in the water tank. Except for the above, the same treatment as in Example 2 was performed on the silicon crushed pieces. The silicon crushed piece subjected to these treatments was designated as Example 4.

<比較試験4>
実施例4のシリコン破砕片について乾燥処理後の容器片の付着の有無を確認した。また、水槽内の純水の流れを形成しなかった(流速:0m/分)実施例2についても、上記と同様の確認を行った。その結果を表4に示す。
<Comparative test 4>
It was confirmed whether or not the container pieces adhered to the silicon crushed pieces of Example 4 after the drying treatment. Further, the same confirmation as above was performed for Example 2 in which the flow of pure water in the water tank was not formed (flow velocity: 0 m / min). The results are shown in Table 4.

Figure 0006928262
Figure 0006928262

<評価4>
表4から明らかなように、水槽内の純水の流速が0m/分である実施例2では、シリコン破砕片に3mm程度以下の容器片が1個確認されたのに対し、水槽内の純水の流速が約7m/分である実施例4では、シリコン破砕片に容器片が確認されなかった。これにより、水槽中の純水を流水とすることで、第1容器から落下した容器片が純水に流されて分散し、別の第1容器内に入るのを低減できると考えられる。なお、約7m/分という純水の流速は一例であって、これに限定されない。水槽内の純水の流速が速すぎると、純水の流れに乗って別の第1容器外に落下する比較的小さいサイズのシリコン破砕片の個数が増加するため、流速は速すぎない方がよい。一方、純水の流速が遅いと、容器片が純水の流れに乗れず、容器片の分散効果が小さくなる。
<Evaluation 4>
As is clear from Table 4, in Example 2 in which the flow velocity of pure water in the water tank was 0 m / min, one container piece of about 3 mm or less was confirmed in the silicon crushed piece, whereas the pure water in the water tank was pure. In Example 4 in which the flow velocity of water was about 7 m / min, no container piece was confirmed in the silicon crushed piece. As a result, by using the pure water in the water tank as running water, it is considered that the container pieces that have fallen from the first container are flowed into the pure water and dispersed, and it is possible to reduce the amount of the container pieces falling into another first container. The flow rate of pure water of about 7 m / min is an example, and is not limited to this. If the flow velocity of pure water in the water tank is too fast, the number of relatively small-sized silicon crushed pieces that fall out of another first container along with the flow of pure water will increase, so the flow velocity should not be too fast. good. On the other hand, if the flow velocity of pure water is slow, the container piece cannot ride on the flow of pure water, and the dispersion effect of the container piece becomes small.

<実施例5>
実施例1の水槽内の純水の温度を約30℃としたこと以外は、実施例1と同様にしてシリコン破砕片を処理した。これらの処理を行ったシリコン破砕片を実施例5とした。
<Example 5>
Silicon crushed pieces were treated in the same manner as in Example 1 except that the temperature of pure water in the water tank of Example 1 was set to about 30 ° C. The silicon crushed piece subjected to these treatments was designated as Example 5.

<実施例6>
実施例1の水槽内の純水の温度を約50℃としたこと以外は、実施例1と同様にしてシリコン破砕片を処理した。これらの処理を行ったシリコン破砕片を実施例6とした。
<Example 6>
Silicon crushed pieces were treated in the same manner as in Example 1 except that the temperature of pure water in the water tank of Example 1 was set to about 50 ° C. The silicon crushed piece subjected to these treatments was designated as Example 6.

<実施例7>
実施例1の水槽内の純水の温度を約70℃としたこと以外は、実施例1と同様にしてシリコン破砕片を処理した。これらの処理を行ったシリコン破砕片を実施例7とした。
<Example 7>
Silicon crushed pieces were treated in the same manner as in Example 1 except that the temperature of pure water in the water tank of Example 1 was set to about 70 ° C. The silicon crushed piece subjected to these treatments was designated as Example 7.

<比較試験5>
実施例5〜7のシリコン破砕片の乾燥処理に掛かった時間を測定した。また、水槽内の純水の温度を20℃とした実施例1のシリコン破砕片の乾燥処理に掛かった時間も測定した。そして、実施例1の乾燥時間を基準として、実施例5〜7の乾燥時間の短縮割合をそれぞれ算出した。その結果を表5に示す。なお、シリコン破砕片の乾燥は、シリコン破砕片を真空乾燥処理装置に入れて圧力を760mmHgとし温度を70℃に保持することにより行い、窒素ガスを500mmHgの圧力にパージし、圧力上昇量が2mmHg以下であるときを、シリコン破砕片が乾燥したと判断し、真空乾燥を開始してから窒素ガスをパージして圧力上昇量が2mmHg以下になるまでの時間をシリコン破砕片の乾燥時間とした。
<Comparative test 5>
The time required for the drying treatment of the silicon crushed pieces of Examples 5 to 7 was measured. In addition, the time required for the drying treatment of the silicon crushed pieces of Example 1 in which the temperature of pure water in the water tank was set to 20 ° C. was also measured. Then, the reduction rate of the drying time of Examples 5 to 7 was calculated based on the drying time of Example 1. The results are shown in Table 5. The silicon crushed pieces are dried by putting the silicon crushed pieces in a vacuum drying treatment device to set the pressure to 760 mmHg and keeping the temperature at 70 ° C., purging the nitrogen gas to a pressure of 500 mmHg, and increasing the pressure by 2 mmHg. When it was the following, it was judged that the silicon crushed pieces were dried, and the time from the start of vacuum drying to the purging of nitrogen gas until the pressure increase amount became 2 mmHg or less was defined as the drying time of the silicon crushed pieces.

Figure 0006928262
Figure 0006928262

<評価5>
表5から明らかなように、実施例5〜7では、シリコン破砕片の乾燥時間を、実施例1と比べて全て短縮できた。これは、第1容器から第2容器への移し替え後のシリコン破砕片が第2容器とともに純水の温度近くまで温められた状態で乾燥処理されたため、純水の温度が約20℃の場合の実施例1のシリコン破砕片の乾燥時間と比較して、乾燥までに掛かる時間を短縮できたと考えられる。これにより、乾燥処理効率の向上、並びに乾燥時間の短縮による容器自体からのガスの発生も低減でき、乾燥処理における有機物由来の炭素汚染を低減できる。
<Evaluation 5>
As is clear from Table 5, in Examples 5 to 7, the drying time of the silicon crushed pieces could be shortened as compared with Example 1. This is because the silicon crushed pieces after the transfer from the first container to the second container were dried together with the second container while being warmed to near the temperature of pure water, so that the temperature of pure water is about 20 ° C. It is considered that the time required for drying could be shortened as compared with the drying time of the silicon crushed pieces of Example 1. As a result, it is possible to improve the drying treatment efficiency and reduce the generation of gas from the container itself due to the shortening of the drying time, and it is possible to reduce the carbon contamination derived from organic substances in the drying treatment.

<実施例8>
第2容器の周壁部に、一辺が約5mmである正方形状の貫通孔を、その対角線が鉛直方向に対して斜め45度の方向に延び、即ちその辺が鉛直方向及び水平方向に延び、かつ貫通孔間の縦及び横のピッチが約4mmとなるように形成した。上記以外は、実施例1と同一の第2容器を用いた。この第2容器を実施例8とした。
<Example 8>
A square through hole having a side of about 5 mm is formed in the peripheral wall of the second container so that the diagonal line extends at an angle of 45 degrees with respect to the vertical direction, that is, the side extends in the vertical direction and the horizontal direction, and It was formed so that the vertical and horizontal pitches between the through holes were about 4 mm. Except for the above, the same second container as in Example 1 was used. This second container was designated as Example 8.

<実施例9>
図3(b)に示すように、第2容器の周壁部17に、直径が約5mmである円形状の貫通孔22を、貫通孔22間の縦及び横のピッチが約4mmとなるように形成した。上記以外は、実施例1と同一の第2容器を用いた。この第2容器を実施例9とした。
<Example 9>
As shown in FIG. 3B, a circular through hole 22 having a diameter of about 5 mm is provided in the peripheral wall portion 17 of the second container so that the vertical and horizontal pitches between the through holes 22 are about 4 mm. Formed. Except for the above, the same second container as in Example 1 was used. This second container was designated as Example 9.

<比較試験6>
実施例1、実施例8及び実施例9の第2容器を水槽内の純水中に入れた後、第2容器を純水中から取り出して、第2容器内の純水が底板部の貫通孔や周壁部の貫通孔を通って落下した後、第2容器の周壁部内面に付着した純水(付着水)が周壁部の貫通孔の周縁を伝わって第2容器外に水滴となって落ちて、付着水が落ちなくなるまで放置し、シリコン破砕片の入った第2容器の重量を測定した。付着水が落ちなくなったことは、目視により判断した。その結果を表6に示す。なお、実施例1の第2容器では、図3(a)に示すように、その周壁部17に形成された貫通孔22は、一辺が約5mmである正方形状であり、その対角線が鉛直方向及び水平方向に延び、かつ隣り合う貫通孔22間のピッチが約4mmであった。
<Comparative test 6>
After putting the second container of Example 1, Example 8 and Example 9 into the pure water in the water tank, the second container is taken out from the pure water, and the pure water in the second container penetrates the bottom plate portion. After falling through the hole or the through hole of the peripheral wall, pure water (adhered water) adhering to the inner surface of the peripheral wall of the second container travels along the periphery of the through hole of the peripheral wall and becomes water droplets outside the second container. The container was left until it fell and the adhering water did not fall, and the weight of the second container containing the crushed silicon was measured. It was visually judged that the adhering water did not fall. The results are shown in Table 6. In the second container of the first embodiment, as shown in FIG. 3A, the through hole 22 formed in the peripheral wall portion 17 has a square shape having a side of about 5 mm, and the diagonal line thereof is in the vertical direction. The pitch between the through holes 22 extending in the horizontal direction and adjacent to each other was about 4 mm.

Figure 0006928262
Figure 0006928262

<評価6>
表6から明らかなように、対角線が鉛直方向及び水平方向に延びる正方形状の貫通孔を有する実施例1の第2容器の付着水が落ちなくなったときの重量が最も小さく、円形状の貫通孔を有する実施例9の第2容器の付着水が落ちなくなったときの重量が次に小さく、対角線が鉛直方向に対して45度の方向に延びる正方形状の貫通孔を有する実施例8の第2容器の付着水が落ちなくなったときの重量が最も大きかった。即ち、周壁部内面の付着水の残留量は、実施例1の第2容器が最も少なく、実施例9の第2容器が次に少なく、実施例8の第2容器が最も多かった。これにより、実施例8の第2容器は貫通孔の下部側の縁に水滴が最も溜まり易く、実施例9の第2容器は貫通孔の下部側の縁に水滴が次に溜まり易いのに対し、実施例1の第2容器は貫通孔の下部側の縁に溜まった水滴が流下し易いことが分かった。
<Evaluation 6>
As is clear from Table 6, the weight of the second container of Example 1 having a square through hole whose diagonal line extends vertically and horizontally is the smallest when the adhering water does not fall, and the circular through hole has a circular shape. The second of Example 8 having the next smallest weight when the adhering water of the second container of Example 9 does not fall, and having a square through hole whose diagonal line extends in the direction of 45 degrees with respect to the vertical direction. The weight was the heaviest when the adhering water in the container did not fall. That is, the amount of residual water adhering to the inner surface of the peripheral wall portion was the smallest in the second container of Example 1, the second smallest container of Example 9, and the largest amount of the second container of Example 8. As a result, the second container of Example 8 is most likely to collect water droplets on the lower edge of the through hole, whereas the second container of Example 9 is most likely to collect water droplets on the lower edge of the through hole. It was found that, in the second container of Example 1, water droplets accumulated on the lower edge of the through hole easily flowed down.

<実施例10>
第2容器の底板部の下面に、直方体板状の複数の突起部を下方に向ってそれぞれ突設した。上記以外は、実施例1と同一の第2容器を用いた。この第2容器を実施例10とした。なお、長方形板状の突起部は、長さ、厚さ及び高さがそれぞれ5mm、5mm及び7mmであり、底板部に形成された複数の貫通孔を塞がない位置にそれぞれ突設した。また、第2容器の周壁部内面に厚さ約1mm程度の4枚の板(第2容器と同じ材質)を貼り付けて、第2容器の周壁部の貫通孔を全て塞いだ。
<Example 10>
On the lower surface of the bottom plate portion of the second container, a plurality of rectangular parallelepiped plate-shaped protrusions were projected downward. Except for the above, the same second container as in Example 1 was used. This second container was designated as Example 10. The rectangular plate-shaped protrusions had lengths, thicknesses, and heights of 5 mm, 5 mm, and 7 mm, respectively, and were projected at positions where a plurality of through holes formed in the bottom plate portion were not blocked. In addition, four plates (the same material as the second container) having a thickness of about 1 mm were attached to the inner surface of the peripheral wall portion of the second container to close all the through holes in the peripheral wall portion of the second container.

<実施例11>
図4(a)に示すように、第2容器の底板部16の下面に、傾斜面が直線的である円錐台状の複数の突起部24を下方に向ってそれぞれ突設した。上記以外は、実施例1と同一の第2容器を用いた。この第2容器を実施例11とした。なお、傾斜面が直線的である円錐台状の突起部24は、上端の直径、下端の直径及び高さがそれぞれ5mm、3mm及び7mmであり、底板部16に形成された複数の貫通孔21を塞がない位置にそれぞれ突設した。また、第2容器の周壁部内面に厚さ約1mm程度の4枚の板(第2容器と同じ材質)を貼り付けて、第2容器の周壁部の貫通孔を全て塞いだ。
<Example 11>
As shown in FIG. 4A, a plurality of truncated cone-shaped protrusions 24 having a straight inclined surface are projected downward from the lower surface of the bottom plate portion 16 of the second container. Except for the above, the same second container as in Example 1 was used. This second container was designated as Example 11. The truncated cone-shaped protrusion 24 having a straight inclined surface has an upper end diameter, a lower end diameter and a height of 5 mm, 3 mm and 7 mm, respectively, and a plurality of through holes 21 formed in the bottom plate portion 16. Was projected at a position where there was no blockage. In addition, four plates (the same material as the second container) having a thickness of about 1 mm were attached to the inner surface of the peripheral wall portion of the second container to close all the through holes in the peripheral wall portion of the second container.

<実施例12>
図4(b)に示すように、第2容器の底板部16の下面に、傾斜面が内方に湾曲した曲線的である円錐台状の複数の突起部24を下方に向ってそれぞれ突設した。上記以外は、実施例1と同一の第2容器を用いた。この第2容器を実施例12とした。なお、傾斜面が内方に湾曲した曲線的である円錐台状の突起部24は、上端の直径、下端の直径及び高さがそれぞれ5mm、3mm及び7mmであり、底板部16に形成された複数の貫通孔21を塞がない位置にそれぞれ突設した。また、第2容器の周壁部内面に厚さ約1mm程度の4枚の板(第2容器と同じ材質)を貼り付けて、第2容器の周壁部の貫通孔を全て塞いだ。
<Example 12>
As shown in FIG. 4B, a plurality of curved cone-shaped protrusions 24 having an inwardly curved inclined surface are projected downward from the lower surface of the bottom plate portion 16 of the second container. bottom. Except for the above, the same second container as in Example 1 was used. This second container was designated as Example 12. The truncated cone-shaped protrusion 24 having an inclined surface curved inward has an upper end diameter, a lower end diameter and a height of 5 mm, 3 mm and 7 mm, respectively, and is formed on the bottom plate portion 16. A plurality of through holes 21 are projected at positions where they are not blocked. In addition, four plates (the same material as the second container) having a thickness of about 1 mm were attached to the inner surface of the peripheral wall portion of the second container to close all the through holes in the peripheral wall portion of the second container.

<比較試験7>
実施例10〜12の第2容器を水槽と同一材質の平板上に置いて、この第2容器に容器片を含む純水を5リットルずつ入れて、第2容器の底板部の貫通孔から純水が排出されなくなった後、第2容器内の容器片の有無を目視で確認した。その結果を表7に示す。
<Comparative test 7>
The second container of Examples 10 to 12 is placed on a flat plate made of the same material as the water tank, 5 liters of pure water containing a container piece is put into the second container, and pure through the through hole of the bottom plate of the second container. After the water was no longer discharged, the presence or absence of container pieces in the second container was visually confirmed. The results are shown in Table 7.

Figure 0006928262
Figure 0006928262

<評価7>
表7から明らかなように、傾斜面が曲線的に傾斜する円錐台状の突起部を有する実施例12の第2容器内、及び傾斜面が直線的に傾斜する円錐台状の突起部を有する実施例11の第2容器内において容器片は確認されず、直方体板状の突起部を有する実施例10の第2容器内のみ容器片が数個確認された。即ち、実施例12の第2容器及び実施例11の第2容器から底板部の貫通孔を通って第2容器外に落下する純水の流れが速いため、容器片が排出され易く、実施例10の第2容器から底板部の貫通孔を通って第2容器外に落下する純水の流れが遅いため、容器片が排出され難かったと考えられる。
<Evaluation 7>
As is clear from Table 7, the inside of the second container of Example 12 having a truncated cone-shaped protrusion whose inclined surface is curvedly inclined, and having a truncated cone-shaped protrusion whose inclined surface is linearly inclined. No container pieces were confirmed in the second container of Example 11, and several container pieces were confirmed only in the second container of Example 10 having a rectangular parallelepiped plate-shaped protrusion. That is, since the flow of pure water that falls from the second container of Example 12 and the second container of Example 11 through the through hole of the bottom plate portion to the outside of the second container is fast, the container pieces are easily discharged, and the example. It is probable that the container pieces were difficult to be discharged because the flow of pure water falling from the second container of No. 10 through the through hole of the bottom plate portion to the outside of the second container was slow.

<実施例13>
図5に示すように、第2容器の底板部16に形成された貫通孔21を上方から下方に向うに従って小さくなるテーパ状に形成した。この第2容器を用いたこと以外は、実施例1と同様にして、シリコン破砕片を処理した。処理後の第2容器を実施例13とした。なお、上記テーパ状の貫通孔21は、内方に湾曲して形成され、上端及び下端の正方形の一辺の長さがそれぞれ5mm及び3mmであった。
<Example 13>
As shown in FIG. 5, the through hole 21 formed in the bottom plate portion 16 of the second container is formed in a tapered shape that becomes smaller from the upper side to the lower side. The silicon crushed pieces were treated in the same manner as in Example 1 except that this second container was used. The second container after the treatment was designated as Example 13. The tapered through hole 21 was formed by being curved inward, and the lengths of one side of the square at the upper end and the lower end were 5 mm and 3 mm, respectively.

<実施例14>
実施例1と同様にしてシリコン破砕片を処理した。処理後の第2容器を実施例14とした。
<Example 14>
The silicon shards were treated in the same manner as in Example 1. The second container after the treatment was designated as Example 14.

<比較試験8>
処理後の実施例13及び実施例14の第2容器の底板部の摩耗状態、即ち底板部の削れや底板部内側の貫通孔周縁の削れの状況を目視により調べた。また、実施例13及び実施例14の第2容器に、容器片を含む純水を入れて、第2容器の底板部からの純水中の容器片等の挙動、即ち貫通孔の周縁に引っ掛かった容器片等の有無や、底板部上面に溜まった水滴の状況を目視により調べた。その結果を表8に示す。
<Comparative test 8>
After the treatment, the wear state of the bottom plate portion of the second container of Examples 13 and 14, that is, the state of scraping of the bottom plate portion and the scraping of the peripheral edge of the through hole inside the bottom plate portion was visually examined. Further, pure water containing a container piece is put into the second container of Examples 13 and 14, and the behavior of the container piece or the like in the pure water from the bottom plate portion of the second container, that is, it is caught on the peripheral edge of the through hole. The presence or absence of container pieces and the condition of water droplets accumulated on the upper surface of the bottom plate were visually inspected. The results are shown in Table 8.

Figure 0006928262
Figure 0006928262

<評価8>
表8から明らかなように、底板部の貫通孔を直方体状に形成した実施例14の第2容器は、底板部の削れや底板部内側の貫通孔周縁の削れが比較的多かったのに対し、底板部の貫通孔をテーパ状に形成した実施例13の第2容器は、底板部の削れや底板部内側の貫通孔周縁の削れが比較的少なかった。また、実施例14の第2容器は、底板部の直方体状の貫通孔周縁に容器片等が引っ掛かっていたけれども、実施例13の第2容器は、底板部のテーパ状の貫通孔周縁に容器片等は引っ掛かっていなかった。更に、実施例14の第2容器は、底板部上面に比較的多くの水滴が溜まっていたけれども、実施例13の第2容器は、底板部上面に溜まっていた水滴は比較的少なかった。
<Evaluation 8>
As is clear from Table 8, in the second container of Example 14 in which the through hole of the bottom plate portion was formed in a rectangular parallelepiped shape, the bottom plate portion was scraped and the peripheral edge of the through hole inside the bottom plate portion was scraped relatively much. In the second container of Example 13 in which the through hole of the bottom plate portion was formed in a tapered shape, the scraping of the bottom plate portion and the scraping of the peripheral edge of the through hole inside the bottom plate portion were relatively small. Further, in the second container of Example 14, a container piece or the like was caught on the peripheral edge of the rectangular parallelepiped through hole of the bottom plate portion, whereas in the second container of Example 13, the container was placed on the peripheral edge of the tapered through hole of the bottom plate portion. One piece was not caught. Further, in the second container of Example 14, a relatively large amount of water droplets were accumulated on the upper surface of the bottom plate portion, whereas in the second container of Example 13, the amount of water droplets accumulated on the upper surface of the bottom plate portion was relatively small.

本発明のシリコン破砕片の表面清浄化方法は、CZ法で製造される単結晶シリコンの原料であるシリコン破砕片を洗浄後、乾燥するまでの間に利用することができる。 The method for cleaning the surface of crushed silicon of the present invention can be used between cleaning and drying the crushed silicon, which is a raw material for single crystal silicon produced by the CZ method.

10 第1容器
11 シリコン破砕片
12 水槽
13 純水又は超純水
14 第2容器
16 第2容器の底板部
17 第2容器の周壁部
18 第2容器の開口部
21 第2容器の底板部の貫通孔
22 第2容器の周壁部の貫通孔
22a、22b 第2容器の周壁部の貫通孔の傾斜面
23 第2容器の設置面
24 第2容器の底板部の突起部
24a〜24c 第2容器の底板部の突起部の傾斜面
10 1st container 11 Silicon crushed pieces 12 Water tank 13 Pure water or ultra-pure water 14 2nd container 16 Bottom plate of 2nd container 17 Peripheral wall of 2nd container 18 Opening of 2nd container 21 Bottom plate of 2nd container Through hole 22 Through hole 22a, 22b of the peripheral wall portion of the second container Inclined surface of the through hole of the peripheral wall portion of the second container 23 Installation surface of the second container 24 Protrusions 24a to 24c of the bottom plate portion of the second container Second container Inclined surface of the protrusion of the bottom plate of

Claims (10)

樹脂製の第1容器に収容して洗浄した後のシリコン破砕片を乾燥する前に、前記シリコン破砕片を純水又は超純水の中で前記第1容器から樹脂製の第2容器に移し替えることを特徴とするシリコン破砕片の表面清浄化方法。 Before drying the silicon crushed pieces after being housed in the resin first container and washed, the silicon crushed pieces are transferred from the first container to the resin second container in pure water or ultrapure water. A method for cleaning the surface of crushed silicon, which is characterized by replacement. 前記第1容器及び前記第2容器がそれぞれ上部に開口部を有する容器であって、前記移し替えが、水槽の純水又は超純水の中に前記第2容器を上部を上方に向けて配置した後、前記純水又は超純水の中で、前記第1容器に収容して洗浄した後のシリコン破砕片を前記第1容器の開口部を傾斜することにより前記第2容器の内部に落下させて行う請求項1記載のシリコン破砕片の表面清浄化方法。 The first container and the second container are containers having an opening at the upper part, respectively, and the transfer arranges the second container in pure water or ultrapure water of a water tank with the upper part facing upward. Then, in the pure water or ultrapure water, the silicon crushed pieces after being housed in the first container and washed are dropped into the inside of the second container by inclining the opening of the first container. The method for cleaning the surface of crushed silicon according to claim 1. 前記第2容器は、その開口面積が前記第1容器より大きいか、又はその容積が前記第1容器の容積より大きい請求項1又は2記載のシリコン破砕片の表面清浄化方法。 The method for cleaning the surface of crushed silicon according to claim 1 or 2, wherein the opening area of the second container is larger than that of the first container, or the volume thereof is larger than the volume of the first container. 前記第1容器及び前記第2容器は、周壁部と底板部に前記シリコン破砕片のサイズより小径の複数の貫通孔がそれぞれ形成された請求項1ないし3いずれか1項に記載のシリコン破砕片の表面清浄化方法。 The silicon crushed piece according to any one of claims 1 to 3, wherein a plurality of through holes having a diameter smaller than the size of the silicon crushed piece are formed in the peripheral wall portion and the bottom plate portion of the first container and the second container, respectively. Surface cleaning method. 前記純水又は超純水が流動する水である請求項1ないし4いずれか1項に記載のシリコン破砕片の表面清浄化方法。 The method for cleaning the surface of crushed silicon according to any one of claims 1 to 4, wherein the pure water or ultrapure water is water in which the ultrapure water flows. 前記純水又は超純水を10〜70℃の温度に設定する請求項1ないし5いずれか1項に記載のシリコン破砕片の表面清浄化方法。 The method for cleaning the surface of crushed silicon according to any one of claims 1 to 5, wherein the pure water or ultrapure water is set to a temperature of 10 to 70 ° C. 前記第2容器の周壁部に形成された貫通孔は、前記周壁部の正面視で孔下半分の孔周面が漸次下方に直線的に又は曲線的に傾斜する傾斜面を有する請求項4記載のシリコン破砕片の表面清浄化方法。 The fourth aspect of claim 4, wherein the through hole formed in the peripheral wall portion of the second container has an inclined surface in which the peripheral surface of the lower half of the hole is gradually inclined downward linearly or curvedly in a front view of the peripheral wall portion. How to clean the surface of silicon shards. 前記第2容器の底板部の貫通孔が形成されていない外底面の部分に前記第2容器の設置面から前記外底面を離間させる1又は2以上の突起部が形成され、前記突起部の縦断面視で漸次下方に直線的に又は曲線的に傾斜する傾斜面を有する請求項4記載のシリコン破砕片の表面清浄化方法。 One or two or more protrusions that separate the outer bottom surface from the installation surface of the second container are formed on the outer bottom surface portion where the through hole of the bottom plate portion of the second container is not formed, and the vertical section of the protrusion portion is formed. The method for cleaning the surface of silicon crushed pieces according to claim 4, which has an inclined surface that gradually slopes downward linearly or curvedly in a plan view. 前記第1容器又は第2容器の底板部に形成された貫通孔は、容器内側の孔縁部から容器外側の孔縁部にかけて縮径してテーパー形状又は曲率を有する請求項4又は8記載のシリコン破砕片の表面清浄化方法。 The fourth or eight claim, wherein the through hole formed in the bottom plate portion of the first container or the second container has a tapered shape or a curvature by reducing the diameter from the hole edge portion inside the container to the hole edge portion outside the container. A method for cleaning the surface of crushed silicon. 前記第2容器がポリプロピレン、ポリカーボネート、シリコーン合成樹脂、エチレン・四フッ化エチレン共重合体、PEEK、PTFE、PFA,FEP及びPVDFからなる群より選ばれた1種又は2種以上の合成樹脂からなる請求項1ないし4又は請求項7ないし9いずれか1項に記載のシリコン破砕片の表面清浄化方法。 The second container is made of one or more synthetic resins selected from the group consisting of polypropylene, polycarbonate, silicone synthetic resin, ethylene / ethylene tetrafluoride copolymer, PEEK, PTFE, PFA, FEP and PVDF. The method for cleaning the surface of crushed silicon according to any one of claims 1 to 4 or 7 to 9.
JP2017239747A 2016-12-14 2017-12-14 Surface cleaning method for crushed silicon Active JP6928262B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016241799 2016-12-14
JP2016241799 2016-12-14

Publications (2)

Publication Number Publication Date
JP2018095548A JP2018095548A (en) 2018-06-21
JP6928262B2 true JP6928262B2 (en) 2021-09-01

Family

ID=62631744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017239747A Active JP6928262B2 (en) 2016-12-14 2017-12-14 Surface cleaning method for crushed silicon

Country Status (1)

Country Link
JP (1) JP6928262B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281937B2 (en) * 2019-03-28 2023-05-26 高純度シリコン株式会社 Low-carbon high-purity polycrystalline silicon mass and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279390A (en) * 1997-02-04 1998-10-20 Komatsu Electron Metals Co Ltd Apparatus for loading raw material to quartz crucible and method for loading raw material
JP5434576B2 (en) * 2008-12-26 2014-03-05 三菱マテリアル株式会社 Polycrystalline silicon cleaning equipment
JP5494360B2 (en) * 2009-08-31 2014-05-14 三菱マテリアル株式会社 Cleaning device for polycrystalline silicon lump
JP5761096B2 (en) * 2011-03-23 2015-08-12 三菱マテリアル株式会社 Polycrystalline silicon cleaning apparatus and cleaning method
JP6217140B2 (en) * 2013-05-29 2017-10-25 三菱マテリアル株式会社 Method for producing polycrystalline silicon material
JP6175909B2 (en) * 2013-05-31 2017-08-09 三菱マテリアル株式会社 Polycrystalline silicon cleaning method and polycrystalline silicon cleaning apparatus

Also Published As

Publication number Publication date
JP2018095548A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP5716816B2 (en) Cleaning method for polycrystalline silicon lump
CN1179394C (en) Wafer cleaning and vapor drying system and method
KR101332922B1 (en) Method for washing polycrystalline silicon, washing device, and method for producing polycrystalline silicon
JP6928262B2 (en) Surface cleaning method for crushed silicon
JP5761096B2 (en) Polycrystalline silicon cleaning apparatus and cleaning method
US20130312785A1 (en) Ultrasonic cleaning method and ultrasonic cleaning apparatus
JP5738592B2 (en) Method for cleaning polycrystalline silicon
JP6217140B2 (en) Method for producing polycrystalline silicon material
JP6184906B2 (en) Cleaning method for polycrystalline silicon lump
JP3600837B2 (en) How to clean silicon pieces
JP5116628B2 (en) Cleaning method
JP2008166804A (en) Method of cleaning substrate for solar cell
WO2021182341A1 (en) Device for cleaning silicon raw material
JP6384455B2 (en) Silicon raw material cleaning equipment
JP4830851B2 (en) Drainage device and cleaning device using the drainage device
CN206424738U (en) A kind of horizontal type gas and liquid knockout tower with blowdown apparatus
KR101582112B1 (en) Chip-size Silicon Cleaning Method and Apparatus
JP4945789B2 (en) Aluminum chip cleaning method and cleaning apparatus therefor
JP6175909B2 (en) Polycrystalline silicon cleaning method and polycrystalline silicon cleaning apparatus
CN203002672U (en) Cleaning device for preventing liquid from splashing and cleaning system with cleaning device
JP4487544B2 (en) Cleaning method and object to be cleaned
JP2007311658A (en) Semiconductor wafer reproduction system, and its method
JP6206708B2 (en) Coolant cleaning device
RU2510098C1 (en) Method and device to wash and dry substrates
JP2024011180A (en) Cleaning tank, cleaning system, and cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R150 Certificate of patent or registration of utility model

Ref document number: 6928262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350