JP6926492B2 - Solid electrolyte and its manufacturing method, all-solid secondary battery and its manufacturing method - Google Patents

Solid electrolyte and its manufacturing method, all-solid secondary battery and its manufacturing method Download PDF

Info

Publication number
JP6926492B2
JP6926492B2 JP2017015652A JP2017015652A JP6926492B2 JP 6926492 B2 JP6926492 B2 JP 6926492B2 JP 2017015652 A JP2017015652 A JP 2017015652A JP 2017015652 A JP2017015652 A JP 2017015652A JP 6926492 B2 JP6926492 B2 JP 6926492B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
solid
secondary battery
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017015652A
Other languages
Japanese (ja)
Other versions
JP2018125129A (en
Inventor
健司 本間
健司 本間
純一 岩田
純一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2017015652A priority Critical patent/JP6926492B2/en
Publication of JP2018125129A publication Critical patent/JP2018125129A/en
Application granted granted Critical
Publication of JP6926492B2 publication Critical patent/JP6926492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体電解質及びその製造方法、全固体二次電池及びその製造方法に関する。 The present invention relates to a solid electrolyte and a method for producing the same, an all-solid secondary battery and a method for producing the same.

太陽光、振動、人や動物の体温などの微小なエネルギーから発電した電気を蓄え、センサーや無線発信電力に利用する環境発電技術には、あらゆる地球環境下において安全で信頼性の高い二次電池が必要である。
現在広く利用されている液系二次電池は、サイクルを重ねると正極活物質が劣化して電池容量が低下したり、デンドライトの形成による電池短絡によって電池内の有機電解液に引火したりすることが懸念される。
Energy harvesting technology that stores electricity generated from minute energies such as sunlight, vibration, and body temperature of humans and animals and uses it for sensors and wireless transmission power is a safe and reliable secondary battery in all global environments. is required.
Liquid-based secondary batteries, which are widely used at present, deteriorate the positive electrode active material and reduce the battery capacity as the cycle is repeated, or the organic electrolyte in the battery ignites due to a short circuit caused by the formation of dendrites. Is a concern.

このため、例えば10年以上の利用が考えられている環境発電デバイスに用いるには、液系電解質の二次電池では信頼性・安全性に乏しい。
そこで、構成材料をすべて固体にした全固体二次電池(例えば全固体リチウム二次電池)が注目されている。特に、全固体リチウム二次電池は、液漏れや発火などの恐れがなく、サイクル特性も優れている。
Therefore, for example, a liquid electrolyte secondary battery is poor in reliability and safety for use in an energy harvesting device that is expected to be used for 10 years or more.
Therefore, an all-solid-state secondary battery (for example, an all-solid-state lithium secondary battery) in which all the constituent materials are solid is drawing attention. In particular, the all-solid-state lithium secondary battery has no risk of liquid leakage or ignition, and has excellent cycle characteristics.

例えば、全固体リチウム二次電池に用いられる固体電解質、即ち、リチウムイオン導電体としては、LiS−B系(LiBS)、LiS−P系(Li11、LiPS、Liなど)、(Li4−XGe1−X)系などの硫化物を基本とした硫化物固体電解質がある。
また、例えば、LLTO(ペロブスカイト)、LAGP(NASICON)、LLZ(ガーネット)、LiPO−LiSiO(LISICON)などの酸化物を基本とした酸化物固体電解質もある。
For example, a solid electrolyte used in the all-solid lithium secondary battery, i.e., as the lithium ion conductor, Li 2 S-B 2 S 3 type (Li 3 BS 3), Li 2 S-P 2 S 5 based (Li There are sulfide-based solid-state electrolytes such as 7 P 3 S 11 , Li 3 PS 4 , Li 8 P 2 S 6 ), (Li 4-X Ge 1-X P X S 4).
Further, for example, there are oxide solid electrolytes based on oxides such as LLTO (perovskite), LAGP (NASICON), LLZ (garnet), and Li 3 PO 4- Li 4 SiO 4 (LISION).

特開2015−176854号公報Japanese Unexamined Patent Publication No. 2015-176854 特開2013−37992号公報Japanese Unexamined Patent Publication No. 2013-37792

N. Kamaya, K. Homma, et al., (2011), "A lithium superionic conductor", Nat Mater, 10(9), 682-686N. Kamaya, K. Homma, et al., (2011), "A lithium superionic conductor", Nat Mater, 10 (9), 682-686 K. Homma, T. Yamamoto, et al., (2013), "Enlarged Lithium-Ion Migration Pathway by Substitution of B3+ for P5+ in Li3PS4", ECS Transactions, 50(26), 307-314K. Homma, T. Yamamoto, et al., (2013), "Enlarged Lithium-Ion Migration Pathway by Substitution of B3 + for P5 + in Li3PS4", ECS Transactions, 50 (26), 307-314 M. Tatsumisago, R. Takano, et al. (2014), "Preparation of Li3BO3-Li2SO4 glass-ceramic electrolytes for all-oxide lithium batteries", Journal of Power Sources, 270(0), 603-607M. Tatsumisago, R. Takano, et al. (2014), "Preparation of Li3BO3-Li2SO4 glass-ceramic electrolytes for all-oxide lithium batteries", Journal of Power Sources, 270 (0), 603-607

ところで、上述の硫化物固体電解質は、液体電解質を凌駕するイオン導電性を示し、室温下で圧粉成型のみで電池を作製することが可能である。
しかしながら、硫化物固体電解質は、大気中に暴露された場合、空気中の水分と直ちに反応し、毒性の高い硫化水素(HS)が発生することから、これを用いた電池は安全性に問題がある。
By the way, the above-mentioned sulfide solid electrolyte exhibits ionic conductivity superior to that of the liquid electrolyte, and it is possible to manufacture a battery only by powder molding at room temperature.
However, the sulfide solid electrolyte, when exposed to the atmosphere, immediately reacts with moisture in the air, since the high hydrogen sulfide toxic (H 2 S) is generated, the safety battery using the same There's a problem.

また、上述の酸化物固体電解質は、大気中で加水分解することなく安定で、大気中に暴露された場合に硫化水素が発生するようなこともないため、これを用いた電池は安全性に問題はないが、電池作製工程において、粒界接続のために、負極/固体電解質/正極のそれぞれの粉体材料を積層して、例えば1000℃程度の高温で焼成し、焼結(一体焼結)させることが必要となる。 In addition, the above-mentioned oxide solid electrolyte is stable without being hydrolyzed in the atmosphere, and hydrogen sulfide is not generated when exposed to the atmosphere. Therefore, a battery using the above-mentioned oxide solid electrolyte is safe. There is no problem, but in the battery manufacturing process, the negative electrode / solid electrolyte / positive electrode powder materials are laminated and fired at a high temperature of, for example, about 1000 ° C. for the grain boundary connection, and sintered (integral sintering). ) Is required.

しかしながら、このような高温で焼成し、焼結させると、電極と固体電解質の界面(例えばLiCoOとLAGPの界面)で熱拡散が起こり、電極が作用しなくなる問題がある。
そこで、熱拡散を抑制するために、固体電解質に、例えばLiBO−LiSO等の酸化物−硫酸化物化合物を用い、例えば約500℃以下の低温で作製できるようにすることが考えられる。
However, when firing and sintering at such a high temperature, there is a problem that heat diffusion occurs at the interface between the electrode and the solid electrolyte (for example, the interface between LiCoO 2 and LAGP), and the electrode does not work.
Therefore, in order to suppress thermal diffusion, an oxide-sulfated compound such as Li 3 BO 3- Li 2 SO 4 can be used as the solid electrolyte so that it can be produced at a low temperature of, for example, about 500 ° C. or lower. Conceivable.

しかしながら、この固体電解質に用いられているLiSOは、吸湿性が高く、大気中においては加水によってLiSO・HO水和物になってしまい、固体電解質として機能しなくなる問題がある。
本発明は、安全性を向上させ、例えば約500℃以下の低温で作製でき、大気中で取扱いが可能で安定な固体電解質を実現し、全固体二次電池の製造を容易にすることを目的とする。
However, Li 2 SO 4 used in this solid electrolyte has high hygroscopicity, and in the air, it becomes Li 2 SO 4 · H 2 O hydrate due to water addition, and it does not function as a solid electrolyte. There is.
An object of the present invention is to improve safety, realize a stable solid electrolyte that can be produced at a low temperature of, for example, about 500 ° C. or less, can be handled in the atmosphere, and facilitate the production of an all-solid secondary battery. And.

1つの態様では、固体電解質は、Li1−4/3xSi(0.05≦x≦0.15)、Li1−4/3xGe(0.05≦x≦0.5)、又は、Li3−x1−4/3x(0.05≦x≦0.5)で表される組成を有し、結晶構造を有し、前記結晶構造を構成する骨格構造が、BO、MO(M=Si,Ge,P)酸素酸塩を含み、前記結晶構造が、単斜晶系の結晶格子を含む、空間群P2/c(14)の結晶構造であり、X線回折(CuKα1:λ=1.5405Å)において、2θ=21.08±0.5deg、23.04±0.5deg、29.56±0.5deg、32.50±0.5deg、35.74±0.5deg、39.32±0.5degに回折ピークを有する。
1つの態様では、全固体二次電池は、正極と、負極と、正極と負極との間に挟まれた、上述の固体電解質とを備える。
In one embodiment, the solid electrolyte is Li 3 B 1-4 / 3 x Si x O 3 ( 0.05 ≦ x ≦ 0.15), Li 3 B 1-4 / 3 x Ge x O 3 ( 0.05 ≦). x ≦ 0. 1 5), or, Li 3x B 1-4 / 3x P x O 3 (0 .05 ≦ x ≦ 0. has a composition represented by 1 5), it has a crystal structure , The skeletal structure constituting the crystal structure contains BO 3 , MO 4 (M = Si, Ge, P) oxidates, and the crystal structure contains a monoclinic crystal lattice, the space group P2 1 It has a crystal structure of / c (14), and in X-ray diffraction (CuKα 1 : λ = 1.5405 Å), 2θ = 21.08 ± 0.5 deg, 23.04 ± 0.5 deg, 29.56 ± 0. It has diffraction peaks at 5 deg, 32.50 ± 0.5 deg, 35.74 ± 0.5 deg, and 39.32 ± 0.5 deg.
In one embodiment, the all-solid-state secondary battery comprises a positive electrode, a negative electrode, and the solid electrolyte described above sandwiched between the positive electrode and the negative electrode.

1つの態様では、固体電解質の製造方法は、上述した固体電解質の製造方法であって、Li1−4/3xSi(0.05≦x≦0.15)、Li1−4/3xGe(0.05≦x≦0.5)、又は、Li3−x1−4/3x(0.05≦x≦0.5)となるように原材料を混合する工程と、ガラス転移点に対応する温度であり且つ300℃以下の温度で粒界を融着させるための第1の熱処理を行なう工程と、結晶化温度であり且つ500℃以下の第1結晶化ピークを超える温度で結晶化させるための第2の熱処理を行なう工程とを含む。 In one embodiment, the method for producing the solid electrolyte is the above-mentioned method for producing the solid electrolyte, which is Li 3 B 1-4 / 3 x Si x O 3 ( 0.05 ≦ x ≦ 0.15), Li 3 B. 1-4 / 3x Ge x O 3 ( 0 .05 ≦ x ≦ 0. 1 5), or, Li 3x B 1-4 / 3x P x O 3 (0 .05 ≦ x ≦ 0. 1 5) The step of mixing the raw materials so as to be the same, the step of performing the first heat treatment for fusing the grain boundaries at a temperature corresponding to the glass transition point and at a temperature of 300 ° C. or lower, and the crystallization temperature. It includes a step of performing a second heat treatment for crystallization at a temperature exceeding the first crystallization peak of 500 ° C. or lower.

1つの態様では、全固体二次電池の製造方法は、上述した固体電解質の材料を、正極材料と負極材料との間に挟んで圧粉成型して、全固体二次電池を製造する全固体二次電池の製造方法であって、Li1−4/3xSi(0.05≦x≦0.15)、Li1−4/3xGe(0.05≦x≦0.5)、又は、Li3−x1−4/3x(0.05≦x≦0.5)となるように原材料を混合する工程と、ガラス転移点に対応する温度であり且つ300℃以下の温度で粒界を融着させるための第1の熱処理を行なう工程と、結晶化温度であり且つ500℃以下の第1結晶化ピークを超える温度で結晶化させるための第2の熱処理を行なう工程とを含む。 In one embodiment, in the method for manufacturing an all-solid-state secondary battery, the above-mentioned solid electrolyte material is sandwiched between a positive electrode material and a negative electrode material and powder-molded to produce an all-solid-state secondary battery. A method for manufacturing a secondary battery, which is Li 3 B 1-4 / 3 x Si x O 3 ( 0.05 ≤ x ≤ 0.15), Li 3 B 1-4 / 3 x Ge x O 3 ( 0.05). ≦ x ≦ 0. 1 5) , or, Li 3x B 1-4 / 3x P x O 3 (0 .05 ≦ x ≦ 0. 1 5) a step of mixing the raw materials so that the glass transition At the step of performing the first heat treatment for fusing the grain boundaries at a temperature corresponding to the point and at a temperature of 300 ° C. or lower, and at a temperature exceeding the first crystallization peak at a crystallization temperature of 500 ° C. or lower. It includes a step of performing a second heat treatment for crystallization.

1つの側面として、安全性を向上させ、例えば約500℃以下の低温で作製でき、大気中で取扱いが可能で安定な固体電解質を実現し、全固体二次電池の製造を容易にすることができるという効果を有する。 One aspect is to improve safety, for example, to realize a stable solid electrolyte that can be manufactured at a low temperature of about 500 ° C. or lower, can be handled in the atmosphere, and facilitates the manufacture of an all-solid secondary battery. It has the effect of being able to do it.

本実施形態にかかる全固体二次電池の構成を示す模式的断面図である。It is a schematic cross-sectional view which shows the structure of the all-solid-state secondary battery which concerns on this embodiment. 本実施形態にかかる固体電解質の組成を説明するための図である。It is a figure for demonstrating the composition of the solid electrolyte which concerns on this embodiment. (A)〜(D)は、実施例及び比較例の固体電解質の粉末X線回折測定によって得られた回折図形を示す図である。(A) to (D) are diagrams showing diffraction figures obtained by powder X-ray diffraction measurement of solid electrolytes of Examples and Comparative Examples. (A)、(B)は、実施例の固体電解質の粉末X線回折測定によって得られた回折図形から解析した結晶構造を示す図であって、(A)はb軸方向から見た図であり、(B)はc軸方向から見た図である。(A) and (B) are diagrams showing a crystal structure analyzed from a diffraction pattern obtained by powder X-ray diffraction measurement of the solid electrolyte of the example, and (A) is a diagram viewed from the b-axis direction. Yes, (B) is a view seen from the c-axis direction. 実施例及び比較例の固体電解質のDTAの測定結果(DTA曲線)を示す図である。It is a figure which shows the measurement result (DTA curve) of the DTA of the solid electrolyte of an Example and a comparative example. 実施例及び比較例の固体電解質のインピーダンスの測定結果及びイオン導電率の算出について説明するための図である。It is a figure for demonstrating the measurement result of the impedance of the solid electrolyte of an Example and a comparative example, and the calculation of an ionic conductivity. 実施例の全固体リチウム二次電池の充放電カーブを示す図である。It is a figure which shows the charge / discharge curve of the all-solid-state lithium secondary battery of an Example.

以下、図面により、本発明の実施の形態にかかる固体電解質及びその製造方法、全固体二次電池及びその製造方法について、図1〜図7を参照しながら説明する。
本実施形態にかかる全固体二次電池は、例えば全固体リチウム二次電池であって、この全固体リチウム二次電池は、図1に示すように、正極1と、負極2と、正極1と負極2との間に備えられた固体電解質3と、これらを挟んで設けられた正極集電体4及び負極集電体5とを備える。このような全固体リチウム二次電池は、例えば環境発電装置に搭載されるのが好ましい。
Hereinafter, the solid electrolyte and its manufacturing method, the all-solid-state secondary battery and its manufacturing method according to the embodiment of the present invention will be described with reference to FIGS. 1 to 7.
The all-solid-state secondary battery according to the present embodiment is, for example, an all-solid-state lithium secondary battery, and the all-solid-state lithium secondary battery has a positive electrode 1, a negative electrode 2, and a positive electrode 1 as shown in FIG. It includes a solid electrolyte 3 provided between the negative electrode 2 and a positive electrode current collector 4 and a negative electrode current collector 5 provided so as to sandwich the solid electrolyte 3. Such an all-solid-state lithium secondary battery is preferably mounted in, for example, an energy harvesting device.

ここで、正極1は、正極活物質を含む。ここでは、正極1は、正極活物質として例えばLiCoOを含む。具体的には、正極1は、LiCoOと固体電解質材料を6:4の割合で混ぜ合わせた材料(合材)に、例えば導電助剤としてカーボンナノチューブ6を加えて構成される。
負極2は、負極活物質を含む。ここでは、負極2は、負極活物質として例えばLiTi12を含む。具体的には、負極2は、LiTi12(LTO)と固体電解質材料を6:4の割合で混ぜ合わせた材料(合材)に、例えば導電助剤としてカーボンナノチューブ7を加えて構成される。
Here, the positive electrode 1 contains a positive electrode active material. Here, the positive electrode 1 contains, for example, LiCoO 2 as the positive electrode active material. Specifically, the positive electrode 1 is formed by adding carbon nanotubes 6 as a conductive auxiliary agent to a material (mixture) obtained by mixing LiCoO 2 and a solid electrolyte material at a ratio of 6: 4.
The negative electrode 2 contains a negative electrode active material. Here, the negative electrode 2 contains, for example, Li 4 Ti 5 O 12 as the negative electrode active material. Specifically, for the negative electrode 2, for example, carbon nanotube 7 is added as a conductive auxiliary agent to a material (mixture) in which Li 4 Ti 5 O 12 (LTO) and a solid electrolyte material are mixed at a ratio of 6: 4. It is composed.

固体電解質3は、リチウムイオン導電体であり、Li1−4/3xSi(0≦x≦0.75)、Li1−4/3xGe(0≦x≦0.75)、又は、Li3−x1−4/3x(0≦x≦0.75)で表される組成を有し、結晶構造を有する。
ここで、図2は、LiBOをベースとしてLiSiO、LiGeO、LiPOとの組成比率を示すタイラインである。そして、上述の組成を有する固体電解質3は、図2中、丸印と丸印との間の組成を有することになる。
The solid electrolyte 3 is a lithium ion conductor, Li 3 B 1-4 / 3 x Si x O 3 (0 ≦ x ≦ 0.75), Li 3 B 1-4 / 3 x Ge x O 3 (0 ≦ x). It has a composition represented by ≦ 0.75) or Li 3-x B 1-4 / 3 x P x O 3 (0 ≦ x ≦ 0.75) and has a crystal structure.
Here, FIG. 2 is a tie line showing the composition ratio of Li 4 SiO 4 , Li 4 GeO 4 , and Li 3 PO 4 based on Li 3 BO 3. Then, the solid electrolyte 3 having the above-mentioned composition has a composition between the circles in FIG. 2.

なお、図2では、比較例として、LiBOをベースとしてLiSOとの組成比率を示すタイラインも示しており、図2中、丸印と丸印との間の組成を有するものは、Li3−2x1−4/3xSO(0≦x≦0.75)で表される組成を有することになるが、上述の組成を有する本実施形態の固体電解質3はこれとは異なる。
特に、Li1−4/3xSi(0.05≦x≦0.15)、Li1−4/3xGe(0.05≦x≦0.15)、又は、Li3−x1−4/3x(0.05≦x≦0.15)で表される組成を有することが好ましい。これにより、単一の結晶相が得られ、イオン導電性を向上させることができる。この中でも、x=0.1付近(図2中、星印参照)で特に高いイオン導電性を示す固体電解質が得られる。ここで、x=0.1付近とするには、例えば、LiBO−LiSiO、LiBO−LiGeO、LiBO−LiPOを9:1の割合で混合すれば良い。
In addition, in FIG. 2, as a comparative example, a tie line showing the composition ratio with Li 2 SO 4 based on Li 3 BO 3 is also shown, and has a composition between the circles in FIG. The solid electrolyte 3 of the present embodiment having the above-mentioned composition has a composition represented by Li 3-2x B 1-4 / 3x SO 3 (0 ≦ x ≦ 0.75). Is different.
In particular, Li 3 B 1-4 / 3 x Si x O 3 (0.05 ≦ x ≦ 0.15), Li 3 B 1-4 / 3 x Ge x O 3 (0.05 ≦ x ≦ 0.15), Alternatively, it preferably has a composition represented by Li 3-x B 1-4 / 3 x P x O 3 (0.05 ≦ x ≦ 0.15). As a result, a single crystal phase can be obtained and the ionic conductivity can be improved. Among these, a solid electrolyte showing particularly high ionic conductivity can be obtained in the vicinity of x = 0.1 (see the star mark in FIG. 2). Here, in order to make x = 0.1, for example, Li 3 BO 3- Li 4 SiO 4 , Li 3 BO 3- Li 4 GeO 4 , and Li 3 BO 3- Li 3 PO 4 are 9: 1. It may be mixed in a ratio.

また、固体電解質3は、単斜晶系の結晶格子を含む結晶構造を有することが好ましい。つまり、この固体電解質3は、構成元素として、リチウム(Li)、ホウ素(B)及び酸素(O)と、シリコン(Si)、ゲルマニウム(Ge)及びリン(P)のいずれかを含み、単斜晶系の結晶格子を含む結晶構造を有することが好ましい。
このような単斜晶系の結晶格子を含む結晶構造を有する固体電解質(リチウムイオン導電体)3は、後述の実施例(図3参照)において説明するように、単位格子の各軸の長さa、b、cがa≠b≠cの関係を満たし、かつ、各稜間の角度α、β、γがα、γ=90°、β≠90°の関係を満たす結晶格子を含む結晶構造を有する。これは、斜方晶系の結晶格子を含む結晶構造を有する固体電解質、即ち、単位格子の各軸の長さa、b、cがa≠b≠cの関係を満たし、かつ、各稜間の角度α、β、γがα、β、γ=90°の関係を満たす結晶格子を含む結晶構造を有する固体電解質とは異なる。
Further, the solid electrolyte 3 preferably has a crystal structure including a monoclinic crystal lattice. That is, the solid conductive Kaishitsu 3, as an element, including lithium (Li), boron (B) and oxygen (O), in a silicon (Si), one of germanium (Ge) and phosphorus (P), It is preferable to have a crystal structure including a monoclinic crystal lattice.
The solid electrolyte (lithium ion conductor) 3 having a crystal structure including such a monoclinic crystal lattice has the length of each axis of the unit lattice as described in Examples (see FIG. 3) described later. A crystal structure including a crystal lattice in which a, b, and c satisfy the relationship of a ≠ b ≠ c, and the angles α, β, and γ between the ridges satisfy the relationship of α, γ = 90 °, β ≠ 90 °. Has. This is a solid electrolyte having a crystal structure including an orthorhombic crystal lattice, that is, the lengths a, b, and c of each axis of the unit lattice satisfy the relationship of a ≠ b ≠ c, and between the ridges. It is different from the solid electrolyte having a crystal structure including a crystal lattice in which the angles α, β, and γ of are satisfied with the relationship of α, β, and γ = 90 °.

また、固体電解質3は、後述の実施例(図3参照)において説明するように、空間群P21/c(14)の結晶構造を有することが好ましい。
また、固体電解質3は、後述の実施例(図3参照)において説明するように、結晶構造を構成する骨格構造が、BO、MO(M=Si,Ge,P)酸素酸塩を含むことが好ましい。
Further, the solid electrolyte 3 preferably has a crystal structure of the space group P21 / c (14) as described in Examples (see FIG. 3) described later.
Further, in the solid electrolyte 3, as described in Examples (see FIG. 3) described later, the skeletal structure constituting the crystal structure contains BO 3 and MO 4 (M = Si, Ge, P) oxygenate. Is preferable.

また、固体電解質3は、後述の実施例(図3参照)において説明するように、X線回折(CuKα1:λ=1.5405Å)において、2θ=21.08±0.5deg、23.04±0.5deg、29.56±0.5deg、32.50±0.5deg、35.74±0.5deg、39.32±0.5degに回折ピークを有することが好ましい。 Further, the solid electrolyte 3 has 2θ = 21.08 ± 0.5 deg, 23.04 in X-ray diffraction (CuKα 1 : λ = 1.5405 Å) as described in Examples (see FIG. 3) described later. It is preferable to have diffraction peaks at ± 0.5 deg, 29.56 ± 0.5 deg, 32.50 ± 0.5 deg, 35.74 ± 0.5 deg, and 39.32 ± 0.5 deg.

そして、このような固体電解質3は、Li1−4/3xSi(0≦x≦0.75)、Li1−4/3xGe(0≦x≦0.75)、又は、Li3−x1−4/3x(0≦x≦0.75)となるように原材料を混合し、ガラス転移点に対応する温度(約300℃以下の温度)で粒界を融着させるための第1の熱処理を行ない、結晶化温度(約500℃以下の第1結晶化ピークを超える温度)で結晶化させるための第2の熱処理を行なうことによって製造することができる。 Then, such a solid electrolyte 3 is Li 3 B 1-4 / 3 x Si x O 3 (0 ≦ x ≦ 0.75), Li 3 B 1-4 / 3 x Ge x O 3 (0 ≦ x ≦ 0). .75) or Li 3-x B 1-4 / 3 x P x O 3 (0 ≦ x ≦ 0.75), and the raw materials are mixed so that the temperature corresponds to the glass transition point (about 300 ° C or less). The first heat treatment for fusing the grain boundaries is performed at (temperature), and the second heat treatment is performed for crystallization at the crystallization temperature (temperature exceeding the first crystallization peak of about 500 ° C. or lower). Can be manufactured by.

つまり、固体電解質3の製造方法は、Li1−4/3xSi(0≦x≦0.75)、Li1−4/3xGe(0≦x≦0.75)、又は、Li3−x1−4/3x(0≦x≦0.75)となるように原材料を混合する工程と、ガラス転移点に対応する温度で粒界を融着させるための第1の熱処理を行なう工程と、結晶化温度で結晶化させるための第2の熱処理を行なう工程とを含む。 That is, the method for producing the solid electrolyte 3 is Li 3 B 1-4 / 3 x Si x O 3 (0 ≦ x ≦ 0.75), Li 3 B 1-4 / 3 x Ge x O 3 (0 ≦ x ≦ 0). .75) or the step of mixing the raw materials so that Li 3-x B 1-4 / 3 x P x O 3 (0 ≦ x ≦ 0.75) and the grain boundary at the temperature corresponding to the glass transition point. It includes a step of performing a first heat treatment for fusing the mixture and a step of performing a second heat treatment for crystallizing at the crystallization temperature.

このように、第1の熱処理によって、約300℃以下の低い温度でガラス質特有のガラス転移点を利用して粒界の融着を行なって、粒界接続を行なった後、第2の熱処理によって、約500℃以下の低い温度で結晶化することで、高いイオン導電性を示す結晶を析出させると同時に、電極/固体電解質界面における元素拡散(熱拡散)を抑制している。
つまり、本実施形態の固体電解質3では、ガラス材料特有の軟化現象を利用して粒子同士を接合させ、イオンの導電経路である粒界を接続し、さらに、結晶化することで、結晶構造内のイオンの導電経路を規則正しく配列させて、高いイオン導電性が得られるようにしている。
In this way, by the first heat treatment, the grain boundaries are fused by utilizing the glass transition point peculiar to the glass at a low temperature of about 300 ° C. or less, the grain boundaries are connected, and then the second heat treatment is performed. By crystallizing at a low temperature of about 500 ° C. or lower, crystals exhibiting high ionic conductivity are precipitated, and at the same time, element diffusion (heat diffusion) at the electrode / solid electrolyte interface is suppressed.
That is, in the solid electrolyte 3 of the present embodiment, the particles are bonded to each other by utilizing the softening phenomenon peculiar to the glass material, the grain boundaries which are the conductive paths of ions are connected, and further crystallized, so that the inside of the crystal structure is formed. The conductive paths of the ions are arranged regularly so that high ionic conductivity can be obtained.

このため、本実施形態の固体電解質3によって、安全性を向上させ、例えば約500℃以下の低温で作製でき、大気中で取扱いが可能で安定な固体電解質を実現することができる。
つまり、本実施形態の固体電解質3は、酸化物固体電解質であるため、大気中で加水分解することなく安定で、万が一電池が大気中に暴露された際の安全性を向上させることができる。
Therefore, the solid electrolyte 3 of the present embodiment can improve safety and realize a stable solid electrolyte that can be produced at a low temperature of, for example, about 500 ° C. or lower, can be handled in the atmosphere, and is stable.
That is, since the solid electrolyte 3 of the present embodiment is an oxide solid electrolyte, it is stable without being hydrolyzed in the atmosphere, and it is possible to improve the safety in the unlikely event that the battery is exposed to the atmosphere.

つまり、上述の従来技術の欄で挙げた硫化物固体電解質では、大気中に暴露された場合に硫化水素が発生することから、これを用いた電池には安全性に問題があったのに対し、本実施形態の固体電解質3では、例えば、落下や圧潰等によって電池の被覆体が破壊され、電池構成材料が大気に開放された際に、発火や硫化水素が発生することがないため、安全な電池を実現することができる。 That is, in the sulfide solid electrolyte mentioned in the above-mentioned prior art column, hydrogen sulfide is generated when exposed to the atmosphere, so that a battery using this has a problem in safety. The solid electrolyte 3 of the present embodiment is safe because, for example, when the battery coating is destroyed by dropping or crushing and the battery constituent material is released to the atmosphere, ignition or hydrogen sulfide is not generated. Batteries can be realized.

また、本実施形態の固体電解質3は、電極/固体電解質界面において分解、固溶、拡散が起こらない例えば約500℃以下の低温で作製できるため、熱拡散を抑制することができ、電極が作用しなくなるのを防止することができる。
つまり、本実施形態の固体電解質3は、ガラス転移点を利用して粒界接続を行なうため、例えば約500℃以下の低温で成型可能で、上述の従来技術の欄で挙げた酸化物固体電解質のように、電池作製工程において例えば1000℃程度の高温で焼成し、焼結させることが必要でないため、電極/固体電解質間の熱拡散を抑制することができ、電極が作用しなくなるのを防止することができる。
Further, since the solid electrolyte 3 of the present embodiment can be produced at a low temperature of, for example, about 500 ° C. or less in which decomposition, solid solution, and diffusion do not occur at the electrode / solid electrolyte interface, thermal diffusion can be suppressed and the electrode acts. It can be prevented from disappearing.
That is, since the solid electrolyte 3 of the present embodiment uses the glass transition point to perform grain boundary connection, it can be molded at a low temperature of, for example, about 500 ° C. or lower, and the oxide solid electrolyte mentioned in the above-mentioned prior art column. As described above, since it is not necessary to bake and sinter at a high temperature of, for example, about 1000 ° C. in the battery manufacturing process, heat diffusion between the electrode and the solid electrolyte can be suppressed, and the electrode can be prevented from working. can do.

また、本実施形態の固体電解質3は、大気中で取扱いが可能で安定な固体電解質である。
つまり、上述の課題の欄で挙げた、例えばLiBO−LiSO等の酸化物−硫酸化物化合物を用いた固体電解質では、吸湿性が高いLiSOを用いるため、大気中において固体電解質として機能しなくなるのに対し、本実施形態の固体電解質3は、SOを含まないため、吸湿性が低く、安定であるため、大気中で取扱いが可能で安定な固体電解質を実現することができる。
Further, the solid electrolyte 3 of the present embodiment is a stable solid electrolyte that can be handled in the atmosphere.
That is, in the solid electrolyte using the oxide-sulfated compound such as Li 3 BO 3- Li 2 SO 4 mentioned in the above-mentioned problem column, since Li 2 SO 4 having high hygroscopicity is used, it is in the atmosphere. However, since the solid electrolyte 3 of the present embodiment does not contain SO 4 , it has low hygroscopicity and is stable, so that it can be handled in the atmosphere and a stable solid electrolyte is realized. can do.

また、本実施形態の固体電解質3によって、全固体二次電池の製造を容易にすることができる。
つまり、工場において全固体二次電池を作製するラインを構築する場合、なるべく簡素な製造設備であることが望ましい。この場合、固体電解質の吸湿性の問題を解決できれば、乾燥雰囲気を作り出すドライルームやグローブボックス等の設備が不要となり、製造ラインを簡素化することが可能となる。これにより、全固体二次電池の製造を容易にすることができ、安価に全固体二次電池を製造することが可能となる。また、例えば酸化物セラミックス焼結に必須であった約800℃〜約1000℃程度の焼成温度が、約500℃以下の低温になるため、製造に使用する電力やガスのエネルギー消費を抑えることができ、製造コストを低減することも可能である。
Further, the solid electrolyte 3 of the present embodiment can facilitate the production of an all-solid secondary battery.
That is, when constructing a line for manufacturing an all-solid-state secondary battery in a factory, it is desirable that the manufacturing equipment is as simple as possible. In this case, if the problem of hygroscopicity of the solid electrolyte can be solved, equipment such as a dry room and a glove box that creates a dry atmosphere becomes unnecessary, and the production line can be simplified. This makes it possible to easily manufacture an all-solid-state secondary battery, and it is possible to manufacture an all-solid-state secondary battery at low cost. Further, for example, the firing temperature of about 800 ° C. to about 1000 ° C., which was indispensable for sintering oxide ceramics, becomes a low temperature of about 500 ° C. or less, so that the energy consumption of electric power and gas used for manufacturing can be suppressed. It is possible to reduce the manufacturing cost.

また、本実施形態の固体電解質3は、上述のように、結晶化することで、高いイオン導電率を有するものを実現することができる。このように、例えばLi1−3/4xSi、斜方晶系の結晶格子を含む結晶構造を有する固体電解質では得られなかった顕著な効果を奏する。
正極集電体4及び負極集電体5は、例えば金からなる金集電体である。
Further, the solid electrolyte 3 of the present embodiment can be crystallized as described above to have a high ionic conductivity. As described above, for example, Li 3 B 1-3 / 4 x Si x O 3 and a solid electrolyte having a crystal structure including an orthorhombic crystal lattice have a remarkable effect which cannot be obtained.
The positive electrode current collector 4 and the negative electrode current collector 5 are, for example, gold current collectors made of gold.

したがって、本実施形態にかかる固体電解質及びその製造方法、全固体二次電池及びその製造方法は、安全性を向上させ、例えば約500℃以下の低温で作製でき、大気中で取扱いが可能で安定な固体電解質を実現し、全固体二次電池の製造を容易にすることができるという効果を有する。
なお、本発明は、上述した実施形態に記載した構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能である。
Therefore, the solid electrolyte and its manufacturing method, the all-solid-state secondary battery and its manufacturing method according to the present embodiment have improved safety, can be manufactured at a low temperature of, for example, about 500 ° C. or lower, can be handled in the atmosphere, and are stable. It has the effect of realizing a solid electrolyte and facilitating the production of an all-solid secondary battery.
The present invention is not limited to the configuration described in the above-described embodiment, and can be variously modified without departing from the spirit of the present invention.

以下、実施例によって本発明を更に詳細に説明する。ただし、本発明は以下の実施例によって限定されるものではない。
[固体電解質(リチウムイオン導電体)の合成方法]
まず、LiBO−LiSiO、又は、LiBO−LiGeO、又は、LiBO−LiPO、又は、LiBO−LiSO、又は、LiBO、LiSiO、Bを、グローブボックス内で秤量し、これを、外気を遮断可能なボールミルポットに封入し、約400rpm、約48時間の混合を行なった。
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the following examples.
[Method for synthesizing solid electrolyte (lithium ion conductor)]
First, Li 3 BO 3- Li 4 SiO 4 , or Li 3 BO 3- Li 4 GeO 4 , or Li 3 BO 3- Li 3 PO 4 , or Li 3 BO 3- Li 2 SO 4 , or Li 3 BO 3 , Li 4 SiO 4 , and B 2 O 3 were weighed in a glove box, sealed in a ball mill pot capable of blocking the outside air, and mixed at about 400 rpm for about 48 hours.

次に、ガラス転移点に対応する温度(約300℃以下の温度;実施例1〜3、比較例1では約296℃、比較例2では約273℃)で熱処理(第1の熱処理)を行なって、ガラス質特有のガラス転移点を利用して、得られた粉体の粒界の融着を行なった。
また、得られた粉体は非晶質であるため、結晶化温度(約500℃以下の第1結晶化ピークを超える温度)で熱処理(第2の熱処理)を行なって(各実施例及び各比較例では約340℃で約6時間焼成を行なって)、結晶化して、結晶性の固体電解質(リチウムイオン導電体)を得た。
[実施例1]
Li1−4/3xSi固溶系においてx=0.100とした場合の組成比に基づいて、9:1の割合になるようにLiBO−LiSiOを秤量、混合し、上述の方法で固体電解質(リチウムイオン導電体)を得た。この実施例1の固体電解質の組成は、Li1−4/3xSi(x=0.100)であって、Li1−4/3xSi(0≦x≦0.75)に含まれる。
[実施例2]
Li3−x1−4/3x固溶系においてx=0.100とした場合の組成比に基づいて、9:1の割合になるようにLiBO−LiPOを秤量、混合し、上述の方法で固体電解質(リチウムイオン導電体)を得た。この実施例2の固体電解質の組成は、Li3−x1−4/3x(x=0.100)であって、Li3−x1−4/3x(0≦x≦0.75)に含まれる。
[実施例3]
Li1−4/3xGe固溶系においてx=0.100とした場合の組成比に基づいて、9:1の割合になるようにLiBO−LiGeOを秤量、混合し、上述の方法で固体電解質(リチウムイオン導電体)を得た。この実施例3の固体電解質の組成は、Li1−4/3xGe(x=0.100)であって、Li1−4/3xGe(0≦x≦0.75)に含まれる。
[比較例1]
Li3−2x1−4/3x固溶系においてx=0.100とした場合の組成比に基づいて、9:1の割合になるようにLiBO−LiSOを秤量、混合し、上述の方法で固体電解質(リチウムイオン導電体)を得た。この比較例1の固体電解質の組成は、Li3−2x1−4/3x(x=0.100)である。
[比較例2]
Li1−3/4xSi固溶系においてx=0.100とした場合の組成比に基づいて、LiBO、LiSiO、Bを秤量、混合し、上述の方法で固体電解質(リチウムイオン導電体)を得た。この比較例2の固体電解質の組成は、Li1−3/4xSi(x=0.100)である。
[固体電解質(リチウムイオン導電体)の評価]
まず、粉末X線回折測定を行なって、上述のようにして得られた各実施例1〜3及び比較例1の固体電解質(リチウムイオン導電体)の結晶構造を評価した。
Next, heat treatment (first heat treatment) is performed at a temperature corresponding to the glass transition point (temperature of about 300 ° C. or lower; Examples 1 to 3, about 296 ° C. in Comparative Example 1, and about 273 ° C. in Comparative Example 2). Then, the grain boundaries of the obtained powder were fused by utilizing the glass transition point peculiar to glass.
Further, since the obtained powder is amorphous, heat treatment (second heat treatment) is performed at a crystallization temperature (a temperature exceeding the first crystallization peak of about 500 ° C. or lower) (each example and each). In the comparative example, it was calcined at about 340 ° C. for about 6 hours) and crystallized to obtain a crystalline solid electrolyte (lithium ion conductor).
[Example 1]
Based on the composition ratio in the case of the x = 0.100 in Li 3 B 1-4 / 3x Si x O 3 solid solution system, 9: Weigh Li 3 BO 3 -Li 4 SiO 4 such that the ratio of 1 , And mixed to obtain a solid electrolyte (lithium ion conductor) by the above method. The composition of the solid electrolyte of Example 1 is Li 3 B 1-4 / 3 x Si x O 3 (x = 0.100), and Li 3 B 1-4 / 3 x Si x O 3 (0 ≦ x). ≤0.75).
[Example 2]
Li 3 3-x B 1-4 / 3 x P x O 3 Based on the composition ratio when x = 0.100 in the solid solution system, the ratio of Li 3 BO 3 − Li 3 PO 4 is adjusted to 9: 1. Weighed and mixed to obtain a solid electrolyte (lithium ion conductor) by the above method. The composition of the solid electrolyte of Example 2 is Li 3-x B 1-4 / 3 x P x O 3 (x = 0.100), and Li 3-x B 1-4 / 3 x P x O 3 It is included in (0 ≦ x ≦ 0.75).
[Example 3]
Based on the composition ratio in the case of the x = 0.100 in Li 3 B 1-4 / 3x Ge x O 3 solid solution system, 9: Weigh Li 3 BO 3 -Li 4 GeO 4 such that the ratio of 1 , And mixed to obtain a solid electrolyte (lithium ion conductor) by the above method. The composition of the solid electrolyte of Example 3 is Li 3 B 1-4 / 3 x Ge x O 3 (x = 0.100), and Li 3 B 1-4 / 3 x Ge x O 3 (0 ≦ x). ≤0.75).
[Comparative Example 1]
Li 3 BO 3 − Li 2 SO 4 so that the ratio is 9: 1 based on the composition ratio when x = 0.100 in the Li 3-2 x B 1-4 / 3 x S x O 3 solid solution system. Weighed and mixed to obtain a solid electrolyte (lithium ion conductor) by the above method. The composition of the solid electrolyte of Comparative Example 1 is Li 3-2 x B 1-4 / 3 x S x O 3 (x = 0.100).
[Comparative Example 2]
Based on the Li 3 B 1-3 / 4x Si x O 3 composition ratio in the case of the x = 0.100 in the solid solution system, weighed Li 3 BO 3, Li 4 SiO 4, B 2 O 3, and mixed, A solid electrolyte (lithium ion conductor) was obtained by the above method. The composition of the solid electrolyte of Comparative Example 2 is Li 3 B 1-3 / 4 x Si x O 3 (x = 0.100).
[Evaluation of solid electrolyte (lithium ion conductor)]
First, powder X-ray diffraction measurement was performed to evaluate the crystal structures of the solid electrolytes (lithium ion conductors) of Examples 1 to 3 and Comparative Example 1 obtained as described above.

ここでは、粉末X線回折測定として、各実施例1〜3及び比較例1の固体電解質について実験室X線回折測定を行なった。
この実験室X線回折測定では、装置としてRigaku社のMini−flex[出力電圧(管電圧)40kv、出力電流(管電流)30mA)]を用い、CuKα(CuKα1:λ=1.5405Å)で、測定範囲を10°≦2θ≦60°とし、測定温度を27℃(室温)とし、走査速度10°/minで連続測定を行なって、図3(A)〜図3(D)に示すような回折図形(データ)を得た。
Here, as powder X-ray diffraction measurement, laboratory X-ray diffraction measurement was performed on the solid electrolytes of Examples 1 to 3 and Comparative Example 1.
In this laboratory X-ray diffraction measurement, Mini-flex [output voltage (tube voltage) 40 kv, output current (tube current) 30 mA)] manufactured by Rigaku was used as an apparatus, and CuKα (CuKα 1 : λ = 1.5405 Å) was used. , The measurement range is 10 ° ≤ 2θ ≤ 60 °, the measurement temperature is 27 ° C (room temperature), and continuous measurement is performed at a scanning speed of 10 ° / min, as shown in FIGS. 3 (A) to 3 (D). Diffraction figures (data) were obtained.

ここでは、各実施例1〜3及び比較例1の固体電解質の材料である粉体について不活性雰囲気下で実験室X線回折測定を行なって、大気暴露前の各実施例1〜3及び比較例1の固体電解質の回折図形を得た。また、各実施例1〜3及び比較例1の固体電解質の材料である粉体について約25℃、相対湿度約55%(RH約55%)の雰囲気下に5時間静置した後、実験室X線回折測定を行なって、大気暴露後の各実施例1〜3及び比較例1の固体電解質の回折図形を得た。 Here, the powder, which is the material of the solid electrolytes of Examples 1 to 3 and Comparative Example 1, is subjected to laboratory X-ray diffraction measurement in an inert atmosphere and compared with Examples 1 to 3 before exposure to the atmosphere. A diffraction pattern of the solid electrolyte of Example 1 was obtained. Further, the powders that are the materials of the solid electrolytes of Examples 1 to 3 and Comparative Example 1 were allowed to stand in an atmosphere of about 25 ° C. and a relative humidity of about 55% (RH of about 55%) for 5 hours, and then in the laboratory. X-ray diffraction measurement was performed to obtain diffraction patterns of the solid electrolytes of Examples 1 to 3 and Comparative Example 1 after exposure to the atmosphere.

ここで、図3(A)は、比較例1の固体電解質の実験室X線回折測定によって得られた回折図形を示しており、図3(B)は、実施例1の固体電解質の実験室X線回折測定によって得られた回折図形を示しており、図3(C)は、実施例2の固体電解質の実験室X線回折測定によって得られた回折図形を示しており、図3(D)は、実施例3の固体電解質の実験室X線回折測定によって得られた回折図形を示している。 Here, FIG. 3 (A) shows a diffraction pattern obtained by the laboratory X-ray diffraction measurement of the solid electrolyte of Comparative Example 1, and FIG. 3 (B) shows the laboratory of the solid electrolyte of Example 1. The diffraction pattern obtained by the X-ray diffraction measurement is shown, and FIG. 3 (C) shows the diffraction pattern obtained by the laboratory X-ray diffraction measurement of the solid electrolyte of Example 2 in FIG. 3 (D). ) Shows the diffraction pattern obtained by the laboratory X-ray diffraction measurement of the solid electrolyte of Example 3.

また、図3(A)〜図3(D)中、符号Xは、大気暴露前の各実施例1〜3及び比較例1の固体電解質のそれぞれの実験室X線回折測定によって得られた回折図形を示している。また、図3(A)〜図3(D)中、符号Yは、大気暴露後(ここでは大気暴露5時間後)の各実施例1〜3及び比較例1の固体電解質のそれぞれの実験室X線回折測定によって得られた回折図形を示している。 Further, in FIGS. 3 (A) to 3 (D), reference numeral X indicates diffraction obtained by each laboratory X-ray diffraction measurement of the solid electrolytes of Examples 1 to 3 and Comparative Example 1 before exposure to the atmosphere. Shows a figure. Further, in FIGS. 3 (A) to 3 (D), reference numeral Y is a laboratory of the solid electrolytes of Examples 1 to 3 and Comparative Example 1 after atmospheric exposure (here, 5 hours after atmospheric exposure). The diffraction pattern obtained by the X-ray diffraction measurement is shown.

まず、図3(B)〜図3(D)に示すように、実施例1〜3の固体電解質の回折図形は、2θ=21.08±0.5deg、23.04±0.5deg、29.56±0.5deg、32.50±0.5deg、35.74±0.5deg、39.32±0.5degに回折ピークを有するものであった。
また、実施例1の固体電解質の粉末X線回折測定によって得られた回折図形から解析したところ、図4(A)、図4(B)に示すような結晶構造が得られた。
First, as shown in FIGS. 3 (B) to 3 (D), the diffraction patterns of the solid electrolytes of Examples 1 to 3 are 2θ = 21.08 ± 0.5 deg, 23.04 ± 0.5 deg, 29. It had diffraction peaks at .56 ± 0.5 deg, 32.50 ± 0.5 deg, 35.74 ± 0.5 deg, and 39.32 ± 0.5 deg.
Further, as a result of analysis from the diffraction pattern obtained by the powder X-ray diffraction measurement of the solid electrolyte of Example 1, the crystal structures as shown in FIGS. 4 (A) and 4 (B) were obtained.

ここで、図4(A)、図4(B)中、符号8で示す三角体はBOユニットを示しており、符号9で示す四面体はSiOユニットを示しており、符号10はBを示しており、符号11はOを示しており、符号12はSiを示している。なお、Liは図示していない。
図4(A)に示すように、b軸方向から見た結晶構造では、BOユニットとSiOユニットが点共有してb軸方向に連なっている。Liは層状の隙間に位置し、ab平面に並行に二次元的に移動するものと考えられる。
Here, in FIGS. 4 (A) and 4 (B), the triangle represented by reference numeral 8 indicates a BO 3 unit, the tetrahedron indicated by reference numeral 9 indicates a SiO 4 unit, and reference numeral 10 is B. , Reference numeral 11 indicates O, and reference numeral 12 indicates Si. Li is not shown.
As shown in FIG. 4A, in the crystal structure viewed from the b-axis direction, the BO 3 unit and the SiO 4 unit share a point and are connected in the b-axis direction. Li is located in a layered gap and is considered to move two-dimensionally in parallel with the ab plane.

図4(B)に示すように、c軸方向から見た結晶構造では、Liが入り込めるような隙間は見つからないため、c軸方向にはLiの移動経路はないと考えられる。
このように、実施例1の固体電解質は、結晶構造を構成する骨格構造が、BO、MO(M=Si,Ge,P)酸素酸塩を含むものとなっていた。
また、図4(A)、図4(B)中、結晶格子を四角形の線で示しており、X線回折図形から計算したところ、実施例1の固体電解質は、単位格子の各軸の長さa、b、cが、それぞれ、8.46043Å、4.94384Å、12.66930Åであり、各稜間の角度α、β、γが、それぞれ、90°、102.8960°、90°であった。
As shown in FIG. 4B, in the crystal structure viewed from the c-axis direction, no gap is found for Li to enter, so it is considered that there is no movement path of Li in the c-axis direction.
As described above, in the solid electrolyte of Example 1, the skeletal structure constituting the crystal structure contained BO 3 and MO 4 (M = Si, Ge, P) oxygenate.
Further, in FIGS. 4 (A) and 4 (B), the crystal lattice is shown by a quadrangular line, and when calculated from the X-ray diffraction pattern, the solid electrolyte of Example 1 has the length of each axis of the unit lattice. The a, b, and c are 8.46043 Å, 4.94384 Å, and 12.66930 Å, respectively, and the angles α, β, and γ between the ridges are 90 °, 102.8960 °, and 90 °, respectively. rice field.

このように、実施例1の固体電解質は、単位格子の各軸の長さa、b、cがa≠b≠cの関係を満たし、かつ、各稜間の角度α、β、γがα、γ=90°、β≠90°の関係を満たす結晶格子を含む結晶構造になっていた。つまり、実施例1の固体電解質は、単斜晶系の結晶格子を含む結晶構造になっていた。
また、実施例1の固体電解質は、空間群P21/c(14)の結晶構造を有するものとなっていた。
As described above, in the solid electrolyte of Example 1, the lengths a, b, and c of each axis of the unit lattice satisfy the relationship of a ≠ b ≠ c, and the angles α, β, and γ between the ridges are α. , Γ = 90 °, β ≠ 90 °, and the crystal structure includes a crystal lattice that satisfies the relationship. That is, the solid electrolyte of Example 1 had a crystal structure including a monoclinic crystal lattice.
Further, the solid electrolyte of Example 1 had a crystal structure of the space group P21 / c (14).

同様に、実施例2、3の固体電解質も、単斜晶系の結晶格子を含む結晶構造になっており、空間群P21/c(14)の結晶構造を有するものとなっていた。
次に、各実施例1〜3の固体電解質と比較例1の固体電解質の大気安定性について比較した。
各実施例1〜3の固体電解質と比較例1の固体電解質について、大気暴露前と大気暴露後の回折図形の変化を調べたところ、図3(A)〜図3(D)中、符号Yで示すように、各実施例1〜3の固体電解質と比較して、比較例1の固体電解質は著しく回折図形が変化し(図3(A)中、矢印で示す個所参照)、加水分解していることが判明した。このことから、比較例1の固体電解質、即ち、SOを含む固体電解質は、大気中では不安定であるのに対し、各実施例1〜3の固体電解質は、大気中で安定であることがわかった。
Similarly, the solid electrolytes of Examples 2 and 3 also had a crystal structure including a monoclinic crystal lattice, and had a crystal structure of the space group P21 / c (14).
Next, the atmospheric stability of the solid electrolytes of Examples 1 to 3 and the solid electrolyte of Comparative Example 1 was compared.
When the changes in the diffraction patterns of the solid electrolytes of Examples 1 to 3 and the solid electrolyte of Comparative Example 1 were examined before and after the air exposure, the reference numerals Y in FIGS. 3 (A) to 3 (D). As shown by, the solid electrolyte of Comparative Example 1 was significantly changed in the diffraction pattern (see the part indicated by the arrow in FIG. 3 (A)) and hydrolyzed as compared with the solid electrolytes of Examples 1 to 3. It turned out that. From this, the solid electrolyte of Comparative Example 1, that is, the solid electrolyte containing SO 4 is unstable in the atmosphere, whereas the solid electrolytes of Examples 1 to 3 are stable in the atmosphere. I understood.

次に、各実施例1〜3及び比較例1の固体電解質、即ち、LiBO−LiSiO、LiBO−LiGeO、LiBO−LiPO、LiBO−LiSOをそれぞれ9:1の割合で混合した粉体の固体電解質材料に対し、DTA(differential thermal analysis)測定を行なったところ、図5に示すような結果(DTA曲線)が得られた。 Next, the solid electrolytes of Examples 1 to 3 and Comparative Example 1, that is, Li 3 BO 3 − Li 4 SiO 4 , Li 3 BO 3 − Li 4 GeO 4 , Li 3 BO 3 − Li 3 PO 4 , Li. A DTA (differential thermal analysis) measurement was performed on a powdered solid electrolyte material in which 3 BO 3- Li 2 SO 4 was mixed at a ratio of 9: 1, and the results shown in FIG. 5 (DTA curve) were obtained. was gotten.

ここでは、DTA測定には、装置名Rigaku TG8120を用い、昇温・下降速度を10℃/minとし、雰囲気を乾燥Ar100%露点(−40℃以下)とし、試料量13.39mgとし、サンプルPANをPtとした。
図5に示すように、各実施例1〜3及び比較例1の固体電解質では、ガラス転移点、第1結晶化ピーク、第2結晶化ピークが見られた。
Here, the device name Rigaku TG8120 is used for DTA measurement, the temperature rise / fall speed is set to 10 ° C./min, the atmosphere is set to the dry Ar 100% dew point (-40 ° C or less), the sample amount is 13.39 mg, and the sample PAN is set. Was Pt.
As shown in FIG. 5, in the solid electrolytes of Examples 1 to 3 and Comparative Example 1, a glass transition point, a first crystallization peak, and a second crystallization peak were observed.

ここで、実施例1の固体電解質(Li1−4/3xSi(x=0.100))では、ガラス転移点に対応する温度は約260℃〜約317℃であり、第1結晶化ピークよりも高い結晶化温度は約311℃〜約450℃であった。
このため、実施例1の固体電解質(Li1−4/3xSi(x=0.100))では、約260℃〜約317℃の範囲の温度で、粒界を融着させるための第1の熱処理を行ない、約311℃〜約450℃の範囲の温度で、結晶化させるための第2の熱処理を行なえば良いことになる。そこで、実施例1では、第1の熱処理として、約296℃での熱処理を行ない、第2の熱処理として、約340℃で約6時間焼成を行なった。
Here, in the solid electrolyte of Example 1 (Li 3 B 1-4 / 3 x Si x O 3 (x = 0.100)), the temperature corresponding to the glass transition point is about 260 ° C. to about 317 ° C. The crystallization temperature higher than the first crystallization peak was about 311 ° C to about 450 ° C.
Therefore, in the solid electrolyte of Example 1 (Li 3 B 1-4 / 3 x Si x O 3 (x = 0.100)), the grain boundaries are fused at a temperature in the range of about 260 ° C. to about 317 ° C. The first heat treatment for crystallization may be performed, and the second heat treatment for crystallization may be performed at a temperature in the range of about 311 ° C. to about 450 ° C. Therefore, in Example 1, the first heat treatment was performed at about 296 ° C., and the second heat treatment was performed at about 340 ° C. for about 6 hours.

また、実施例2の固体電解質(Li3−x1−4/3x(x=0.100))では、ガラス転移点に対応する温度は約260℃〜約317℃であり、第1結晶化ピークよりも高い結晶化温度は約295℃〜約395℃であった。
このため、実施例2の固体電解質(Li3−x1−4/3x(x=0.100))では、約260℃〜約317℃の範囲の温度で、粒界を融着させるための第1の熱処理を行ない、約295℃〜約395℃の範囲の温度で、結晶化させるための第2の熱処理を行なえば良いことになる。そこで、実施例2では、第1の熱処理として、約296℃での熱処理を行ない、第2の熱処理として、約340℃で約6時間焼成を行なった。
Further, in the solid electrolyte of Example 2 (Li 3-x B 1-4 / 3 x P x O 3 (x = 0.100)), the temperature corresponding to the glass transition point is about 260 ° C to about 317 ° C. The crystallization temperature higher than the first crystallization peak was about 295 ° C to about 395 ° C.
Therefore, in the solid electrolyte of Example 2 (Li 3-x B 1-4 / 3 x P x O 3 (x = 0.100)), the grain boundaries are formed at a temperature in the range of about 260 ° C. to about 317 ° C. The first heat treatment for fusing may be performed, and the second heat treatment for crystallization may be performed at a temperature in the range of about 295 ° C. to about 395 ° C. Therefore, in Example 2, the first heat treatment was performed at about 296 ° C., and the second heat treatment was performed at about 340 ° C. for about 6 hours.

また、実施例3の固体電解質(Li1−4/3xGe(x=0.100))では、ガラス転移点に対応する温度は約260℃〜約317℃であり、第1結晶化ピークよりも高い結晶化温度は約310℃〜約435℃であった。
このため、実施例3の固体電解質(Li1−4/3xGe(x=0.100))では、約260℃〜約317℃の範囲の温度で、粒界を融着させるための第1の熱処理を行ない、約310℃〜約435℃の範囲の温度で、結晶化させるための第2の熱処理を行なえば良いことになる。そこで、実施例3では、第1の熱処理として、約296℃での熱処理を行ない、第2の熱処理として、約340℃で約6時間焼成を行なった。
Further, in the solid electrolyte of Example 3 (Li 3 B 1-4 / 3 x Ge x O 3 (x = 0.100)), the temperature corresponding to the glass transition point is about 260 ° C. to about 317 ° C. The crystallization temperature higher than one crystallization peak was about 310 ° C. to about 435 ° C.
Therefore, in the solid electrolyte of Example 3 (Li 3 B 1-4 / 3 x Ge x O 3 (x = 0.100)), the grain boundaries are fused at a temperature in the range of about 260 ° C. to about 317 ° C. The first heat treatment for crystallization may be performed, and the second heat treatment for crystallization may be performed at a temperature in the range of about 310 ° C. to about 435 ° C. Therefore, in Example 3, the first heat treatment was performed at about 296 ° C., and the second heat treatment was performed at about 340 ° C. for about 6 hours.

次に、イオン導電率測定を行なって、上述のようにして得られた実施例1及び比較例2の固体電解質のイオン導電率を評価した。
イオン導電率の評価は、交流インピーダンス法を用いて行なった。
具体的には、上述の実施例1及び比較例2の固体電解質を、材料としてSKD11を用いた10mmφの治具を持つ電気化学セルに取り付けて、評価装置としてMetrohm Autolab社のAUTOLAB FRA(周波数応答解析装置)を用い、印加電圧を0.1Vとし、周波数応答領域を1MHz〜1Hzとし、測定温度を27℃(室温)として、インピーダンスを測定した。
Next, the ionic conductivity was measured to evaluate the ionic conductivity of the solid electrolytes of Example 1 and Comparative Example 2 obtained as described above.
The evaluation of ionic conductivity was performed using the AC impedance method.
Specifically, the solid electrolytes of Example 1 and Comparative Example 2 described above are attached to an electrochemical cell having a jig of 10 mmφ using SKD11 as a material, and AUTOLAB FRA (frequency response) of Metrohm AUTOLAB is used as an evaluation device. Using an analyzer), the applied voltage was 0.1 V, the frequency response region was 1 MHz to 1 Hz, the measurement temperature was 27 ° C. (room temperature), and the impedance was measured.

そして、図6に示すように、測定されたインピーダンスのデータに、一つの円弧を外挿し、Z軸との右端の交点を粒界抵抗として、イオン導電率を算出した。なお、図6中、符号Xで示す部分が実施例1のデータであり、それ以外の部分が比較例1のデータである。
ここでは、固体電解質の厚さをt(cm)とし、測定に用いた治具の面積(電極面積)をS(cm)とし、粒界抵抗の抵抗値をR(Ω)として、次式によって、イオン導電率σ(S/cm)を算出した。ここでは、t=0.05cm、S=0.785cmとした。
t(cm)/R(Ω)/S(cm)=σ(1/Ω・cm)=σ(S/cm)
この結果、実施例1の固体電解質は、比較例2の固体電解質と比較して、約20倍良好なイオン導電性を示した。
Then, as shown in FIG. 6, one arc was extrapolated to the measured impedance data, and the ionic conductivity was calculated with the intersection at the right end with the Z axis as the grain boundary resistance. In FIG. 6, the portion indicated by reference numeral X is the data of the first embodiment, and the other portion is the data of the comparative example 1.
Here, the thickness of the solid electrolyte is t (cm), the area of the jig used for the measurement (electrode area) is S (cm 2 ), and the resistance value of the grain boundary resistance is R (Ω). Ion conductivity σ (S / cm) was calculated. Here, t = 0.05 cm and S = 0.785 cm 2 .
t (cm) / R (Ω) / S (cm 2 ) = σ (1 / Ω · cm) = σ (S / cm)
As a result, the solid electrolyte of Example 1 showed about 20 times better ionic conductivity than the solid electrolyte of Comparative Example 2.

このように、実施例1の固体電解質は、比較例2の固体電解質と比較すると、イオン導電率が高くなり、イオン導電性が向上することがわかった。
[全固体リチウム二次電池の作製方法]
ここでは、LiCoOと、上述のようにして合成された固体電解質材料(ここでは実施例1)を重量比6:4の割合で混ぜ合わせ、さらに、カーボンナノチューブ6を約5wt%加えて、正極1の材料とした。
As described above, it was found that the solid electrolyte of Example 1 has a higher ionic conductivity and the ionic conductivity is improved as compared with the solid electrolyte of Comparative Example 2.
[How to make an all-solid-state lithium secondary battery]
Here, LiCoO 2 and the solid electrolyte material synthesized as described above (here, Example 1) are mixed at a weight ratio of 6: 4, and about 5 wt% of carbon nanotubes 6 are added to the positive electrode. It was used as the material of 1.

また、LiTi12と、上述のようにして合成された固体電解質材料(ここでは実施例1)を重量比6:4の割合で混ぜ合わせ、カーボンナノチューブ7を約5wt%加えて、負極2の材料とした。
そして、電気化学セルに備えられる10mmφの治具の間に、負極2の材料、上述のようにして合成された固体電解質3の材料(ここでは実施例1)、正極1の材料を順番に積層させ、さらに、正極集電体4及び負極集電体5の材料である金粉体を正極1及び負極2の表面に分散させ、加圧しながら、約296℃で加熱(第1の熱処理)した後、約340℃で約6時間加熱(第2の熱処理)して(即ち、ホットプレスによって圧粉成型して)、全固体リチウム二次電池を作製した。
[全固体リチウム二次電池の評価]
上述のようにして作製した全固体リチウム二次電池の充放電評価を行なった。
Further, Li 4 Ti 5 O 12 and the solid electrolyte material synthesized as described above (here, Example 1) were mixed at a weight ratio of 6: 4, and about 5 wt% of carbon nanotubes 7 was added. It was used as the material for the negative electrode 2.
Then, the material of the negative electrode 2, the material of the solid electrolyte 3 synthesized as described above (here, Example 1), and the material of the positive electrode 1 are laminated in order between the jigs of 10 mmφ provided in the electrochemical cell. Further, the gold powder which is the material of the positive electrode current collector 4 and the negative electrode current collector 5 was dispersed on the surfaces of the positive electrode 1 and the negative electrode 2, and heated at about 296 ° C. (first heat treatment) while pressurizing. After that, it was heated at about 340 ° C. for about 6 hours (second heat treatment) (that is, powder molded by hot pressing) to prepare an all-solid-state lithium secondary battery.
[Evaluation of all-solid-state lithium secondary battery]
The charge / discharge evaluation of the all-solid-state lithium secondary battery produced as described above was performed.

ここでは、上述のようにして作製した全固体リチウム二次電池をSKDで挟み込み、約100℃に加熱して充放電測定を行なった。また、充放電の条件としては、充電条件を、約12.7μA/cm定電流充電−3.1V定電圧充電モード、10時間で充電を終了とし、放電条件を、約12.7μA/cm定電流放電モード、0.5Vに達したら放電終了とした。 Here, the all-solid-state lithium secondary battery produced as described above was sandwiched between SKD and heated to about 100 ° C. for charge / discharge measurement. As the charging / discharging conditions, the charging condition is about 12.7 μA / cm, the 2 constant current charging-3.1 V constant voltage charging mode, the charging is completed in 10 hours, and the discharge condition is about 12.7 μA / cm. 2 Constant current discharge mode, when 0.5V was reached, the discharge was terminated.

上述のようにして作製した全固体リチウム二次電池、即ち、上述のようにして得られた固体電解質(ここでは実施例1)3を備える全固体リチウム二次電池では、約100℃下で電池動作を確認することができ、図7に示すような充放電曲線(充放電カーブ)が得られ、良好な負荷特性(出力特性)が得られた。ここでは、電池の全容量に対して約7.7%の放電容量が得られた。 The all-solid-state lithium secondary battery produced as described above, that is, the all-solid-state lithium secondary battery provided with the solid electrolyte (here, Example 1) 3 obtained as described above, is a battery at about 100 ° C. The operation could be confirmed, the charge / discharge curve (charge / discharge curve) as shown in FIG. 7 was obtained, and good load characteristics (output characteristics) were obtained. Here, a discharge capacity of about 7.7% with respect to the total capacity of the battery was obtained.

なお、本発明は、上述した実施形態に記載した構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能である。
以下、上述の実施形態に関し、更に、付記を開示する。
(付記1)
Li1−4/3xSi(0≦x≦0.75)、Li1−4/3xGe(0≦x≦0.75)、又は、Li3−x1−4/3x(0≦x≦0.75)で表される組成を有し、結晶構造を有することを特徴とする固体電解質。
The present invention is not limited to the configuration described in the above-described embodiment, and can be variously modified without departing from the spirit of the present invention.
Hereinafter, additional notes will be disclosed with respect to the above-described embodiment.
(Appendix 1)
Li 3 B 1-4 / 3 x Si x O 3 (0 ≤ x ≤ 0.75), Li 3 B 1-4 / 3 x Ge x O 3 (0 ≤ x ≤ 0.75), or Li 3-x B A solid electrolyte having a composition represented by 1-4 / 3 x P x O 3 (0 ≦ x ≦ 0.75) and having a crystal structure.

(付記2)
前記結晶構造を構成する骨格構造が、BO、MO(M=Si,Ge,P)酸素酸塩を含むことを特徴とする、付記1に記載の固体電解質。
(付記3)
前記結晶構造が、単斜晶系の結晶格子を含む結晶構造であることを特徴とする、付記1又は2に記載の固体電解質。
(Appendix 2)
The solid electrolyte according to Appendix 1, wherein the skeletal structure constituting the crystal structure contains BO 3 , MO 4 (M = Si, Ge, P) oxygenate.
(Appendix 3)
The solid electrolyte according to Appendix 1 or 2, wherein the crystal structure is a crystal structure including a monoclinic crystal lattice.

(付記4)
前記結晶構造が、空間群P21/c(14)の結晶構造であることを特徴とする、付記3に記載の固体電解質。
(付記5)
X線回折(CuKα1:λ=1.5405Å)において、2θ=21.08±0.5deg、23.04±0.5deg、29.56±0.5deg、32.50±0.5deg、35.74±0.5deg、39.32±0.5degに回折ピークを有することを特徴とする、付記1〜4のいずれか1項に記載の固体電解質。
(Appendix 4)
The solid electrolyte according to Appendix 3, wherein the crystal structure is the crystal structure of the space group P21 / c (14).
(Appendix 5)
In X-ray diffraction (CuKα 1 : λ = 1.5405 Å), 2θ = 21.08 ± 0.5 deg, 23.04 ± 0.5 deg, 29.56 ± 0.5 deg, 32.50 ± 0.5 deg, 35 The solid electrolyte according to any one of Supplementary note 1 to 4, which has a diffraction peak at .74 ± 0.5 deg and 39.32 ± 0.5 deg.

(付記6)
Li1−4/3xSi(0.05≦x≦0.15)、Li1−4/3xGe(0.05≦x≦0.15)、又は、Li3−x1−4/3x(0.05≦x≦0.15)で表される組成を有することを特徴とする、付記1〜5のいずれか1項に記載の固体電解質。
(Appendix 6)
Li 3 B 1-4 / 3 x Si x O 3 (0.05 ≤ x ≤ 0.15), Li 3 B 1-4 / 3 x Ge x O 3 (0.05 ≤ x ≤ 0.15), or The item according to any one of Appendix 1 to 5, which has a composition represented by Li 3-x B 1-4 / 3 x P x O 3 (0.05 ≦ x ≦ 0.15). Solid electrolyte.

(付記7)
正極と、
負極と、
前記正極と前記負極との間に備えられ、Li1−4/3xSi(0≦x≦0.75)、Li1−4/3xGe(0≦x≦0.75)、又は、Li3−x1−4/3x(0≦x≦0.75)で表される組成を有し、結晶構造を有する固体電解質とを備えることを特徴とする全固体二次電池。
(Appendix 7)
With the positive electrode
With the negative electrode
Provided between the positive electrode and the negative electrode, Li 3 B 1-4 / 3 x Si x O 3 (0 ≦ x ≦ 0.75), Li 3 B 1-4 / 3 x Ge x O 3 (0 ≦ x). ≤0.75) or a solid electrolyte having a composition represented by Li 3-x B 1-4 / 3 x P x O 3 (0 ≤ x ≤ 0.75) and having a crystal structure. An all-solid-state secondary battery characterized by.

(付記8)
前記固体電解質の前記結晶構造を構成する骨格構造が、BO、MO(M=Si,Ge,P)酸素酸塩を含むことを特徴とする、付記7に記載の全固体二次電池。
(付記9)
前記固体電解質の前記結晶構造が、単斜晶系の結晶格子を含む結晶構造であることを特徴とする、付記7又は8に記載の全固体二次電池。
(Appendix 8)
The all-solid-state secondary battery according to Appendix 7, wherein the skeletal structure constituting the crystal structure of the solid electrolyte contains BO 3 , MO 4 (M = Si, Ge, P) oxygenate.
(Appendix 9)
The all-solid-state secondary battery according to Appendix 7 or 8, wherein the crystal structure of the solid electrolyte is a crystal structure including a monoclinic crystal lattice.

(付記10)
前記固体電解質の前記結晶構造が、空間群P21/c(14)の結晶構造であることを特徴とする、付記9に記載の全固体二次電池。
(付記11)
前記固体電解質は、X線回折(CuKα1:λ=1.5405Å)において、2θ=21.08±0.5deg、23.04±0.5deg、29.56±0.5deg、32.50±0.5deg、35.74±0.5deg、39.32±0.5degに回折ピークを有することを特徴とする、付記7〜10のいずれか1項に記載の全固体二次電池。
(Appendix 10)
The all-solid-state secondary battery according to Appendix 9, wherein the crystal structure of the solid electrolyte is the crystal structure of the space group P21 / c (14).
(Appendix 11)
The solid electrolyte has 2θ = 21.08 ± 0.5 deg, 23.04 ± 0.5 deg, 29.56 ± 0.5 deg, 32.50 ± in X-ray diffraction (CuKα 1: λ = 1.5405 Å). The all-solid-state secondary battery according to any one of Supplementary note 7 to 10, which has a diffraction peak at 0.5 deg, 35.74 ± 0.5 deg, and 39.32 ± 0.5 deg.

(付記12)
前記固体電解質は、Li1−4/3xSi(0.05≦x≦0.15)、Li1−4/3xGe(0.05≦x≦0.15)、又は、Li3−x1−4/3x(0.05≦x≦0.15)で表される組成を有することを特徴とする、付記7〜11のいずれか1項に記載の全固体二次電池。
(Appendix 12)
The solid electrolytes include Li 3 B 1-4 / 3 x Si x O 3 (0.05 ≦ x ≦ 0.15) and Li 3 B 1-4 / 3 x Ge x O 3 (0.05 ≦ x ≦ 0. 15) or any of Supplementary note 7 to 11, which has a composition represented by Li 3-x B 1-4 / 3 x P x O 3 (0.05 ≦ x ≦ 0.15). The all-solid-state secondary battery according to item 1.

(付記13)
Li1−4/3xSi(0≦x≦0.75)、Li1−4/3xGe(0≦x≦0.75)、又は、Li3−x1−4/3x(0≦x≦0.75)となるように原材料を混合する工程と、
ガラス転移点に対応する温度で粒界を融着させるための第1の熱処理を行なう工程と、
結晶化温度で結晶化させるための第2の熱処理を行なう工程とを含むことを特徴とする固体電解質の製造方法。
(Appendix 13)
Li 3 B 1-4 / 3 x Si x O 3 (0 ≤ x ≤ 0.75), Li 3 B 1-4 / 3 x Ge x O 3 (0 ≤ x ≤ 0.75), or Li 3-x B 1-4 / 3 x P x O 3 (0 ≤ x ≤ 0.75) and the process of mixing the raw materials.
The step of performing the first heat treatment for fusing the grain boundaries at the temperature corresponding to the glass transition point, and
A method for producing a solid electrolyte, which comprises a step of performing a second heat treatment for crystallization at a crystallization temperature.

(付記14)
固体電解質材料を、正極材料と負極材料との間に挟んで圧粉成型して、全固体二次電池を製造する全固体二次電池の製造方法であって、
Li1−4/3xSi(0≦x≦0.75)、Li1−4/3xGe(0≦x≦0.75)、又は、Li3−x1−4/3x(0≦x≦0.75)となるように原材料を混合する工程と、
ガラス転移点に対応する温度で粒界を融着させるための第1の熱処理を行なう工程と、
結晶化温度で結晶化させるための第2の熱処理を行なう工程とを含むことを特徴とする全固体二次電池の製造方法。
(Appendix 14)
A method for manufacturing an all-solid-state secondary battery in which a solid-state electrolyte material is sandwiched between a positive electrode material and a negative electrode material and powder-molded to manufacture an all-solid-state secondary battery.
Li 3 B 1-4 / 3 x Si x O 3 (0 ≤ x ≤ 0.75), Li 3 B 1-4 / 3 x Ge x O 3 (0 ≤ x ≤ 0.75), or Li 3-x B 1-4 / 3 x P x O 3 (0 ≤ x ≤ 0.75) and the process of mixing the raw materials.
The step of performing the first heat treatment for fusing the grain boundaries at the temperature corresponding to the glass transition point, and
A method for producing an all-solid-state secondary battery, which comprises a step of performing a second heat treatment for crystallization at a crystallization temperature.

1 正極
2 負極
3 固体電解質(リチウムイオン導電体)
4 正極集電体
5 負極集電体
6、7 カーボンナノチューブ
8 BOユニット
9 SiOユニット
10 B(ボロン)
11 O(酸素)
12 Si(シリコン)
1 Positive electrode 2 Negative electrode 3 Solid electrolyte (lithium ion conductor)
4 Positive electrode current collector 5 Negative electrode current collector 6, 7 Carbon nanotubes 8 BO 3 units 9 SiO 4 units 10 B (boron)
11 O (oxygen)
12 Si (silicon)

Claims (4)

Li1−4/3xSi(0.05≦x≦0.15)、Li1−4/3xGe(0.05≦x≦0.5)、又は、Li3−x1−4/3x(0.05≦x≦0.5)で表される組成を有するとともに、結晶構造を有し、
前記結晶構造を構成する骨格構造が、BO、MO(M=Si,Ge,P)酸素酸塩を含み、
前記結晶構造が、単斜晶系の結晶格子を含む、空間群P2/c(14)の結晶構造であり、
X線回折(CuKα1:λ=1.5405Å)において、2θ=21.08±0.5deg、23.04±0.5deg、29.56±0.5deg、32.50±0.5deg、35.74±0.5deg、39.32±0.5degに回折ピークを有することを特徴とする固体電解質。
Li 3 B 1-4 / 3x Si x O 3 (0 .05 ≦ x ≦ 0.15), Li 3 B 1-4 / 3x Ge x O 3 (0 .05 ≦ x ≦ 0. 1 5), or , and has a composition represented by Li 3x B 1-4 / 3x P x O 3 (0 .05 ≦ x ≦ 0. 1 5), has a crystal structure,
The skeletal structure constituting the crystal structure contains BO 3 and MO 4 (M = Si, Ge, P) oxidates.
The crystal structure is a crystal structure of the space group P2 1 / c (14) including a monoclinic crystal lattice.
In X-ray diffraction (CuKα 1 : λ = 1.5405 Å), 2θ = 21.08 ± 0.5 deg, 23.04 ± 0.5 deg, 29.56 ± 0.5 deg, 32.50 ± 0.5 deg, 35 A solid electrolyte characterized by having diffraction peaks at .74 ± 0.5 deg and 39.32 ± 0.5 deg .
正極と、
負極と、
前記正極と前記負極との間に挟まれた、請求項1に記載の固体電解質とを備えることを特徴とする全固体二次電池。
With the positive electrode
With the negative electrode
An all-solid-state secondary battery comprising the solid electrolyte according to claim 1, which is sandwiched between the positive electrode and the negative electrode.
請求項1に記載の固体電解質の製造方法であって、
Li1−4/3xSi(0.05≦x≦0.15)、Li1−4/3xGe(0.05≦x≦0.5)、又は、Li3−x1−4/3x(0.05≦x≦0.5)となるように原材料を混合する工程と、
ガラス転移点に対応する温度であり且つ300℃以下の温度で粒界を融着させるための第1の熱処理を行なう工程と、
結晶化温度であり且つ500℃以下の第1結晶化ピークを超える温度で結晶化させるための第2の熱処理を行なう工程とを含むことを特徴とする固体電解質の製造方法。
The method for producing a solid electrolyte according to claim 1.
Li 3 B 1-4 / 3x Si x O 3 (0 .05 ≦ x ≦ 0.15), Li 3 B 1-4 / 3x Ge x O 3 (0 .05 ≦ x ≦ 0. 1 5), or a step of mixing the raw materials so that Li 3x B 1-4 / 3x P x O 3 (0 .05 ≦ x ≦ 0. 1 5),
The step of performing the first heat treatment for fusing the grain boundaries at a temperature corresponding to the glass transition point and at a temperature of 300 ° C. or lower, and
A method for producing a solid electrolyte, which comprises a step of performing a second heat treatment for crystallization at a crystallization temperature and a temperature exceeding a first crystallization peak of 500 ° C. or lower.
請求項1に記載の固体電解質の材料を、正極材料と負極材料との間に挟んで圧粉成型して、全固体二次電池を製造する全固体二次電池の製造方法であって、
Li1−4/3xSi(0.05≦x≦0.15)、Li1−4/3xGe(0.05≦x≦0.5)、又は、Li3−x1−4/3x(0.05≦x≦0.5)となるように原材料を混合する工程と、
ガラス転移点に対応する温度であり且つ300℃以下の温度で粒界を融着させるための第1の熱処理を行なう工程と、
結晶化温度であり且つ500℃以下の第1結晶化ピークを超える温度で結晶化させるための第2の熱処理を行なう工程とを含むことを特徴とする全固体二次電池の製造方法。
A method for manufacturing an all-solid-state secondary battery, wherein the solid-state electrolyte material according to claim 1 is sandwiched between a positive electrode material and a negative electrode material and powder-molded to manufacture an all-solid-state secondary battery.
Li 3 B 1-4 / 3x Si x O 3 (0 .05 ≦ x ≦ 0.15), Li 3 B 1-4 / 3x Ge x O 3 (0 .05 ≦ x ≦ 0. 1 5), or a step of mixing the raw materials so that Li 3x B 1-4 / 3x P x O 3 (0 .05 ≦ x ≦ 0. 1 5),
The step of performing the first heat treatment for fusing the grain boundaries at a temperature corresponding to the glass transition point and at a temperature of 300 ° C. or lower, and
A method for producing an all-solid-state secondary battery, which comprises a step of performing a second heat treatment for crystallization at a crystallization temperature and a temperature exceeding a first crystallization peak of 500 ° C. or lower.
JP2017015652A 2017-01-31 2017-01-31 Solid electrolyte and its manufacturing method, all-solid secondary battery and its manufacturing method Active JP6926492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017015652A JP6926492B2 (en) 2017-01-31 2017-01-31 Solid electrolyte and its manufacturing method, all-solid secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017015652A JP6926492B2 (en) 2017-01-31 2017-01-31 Solid electrolyte and its manufacturing method, all-solid secondary battery and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018125129A JP2018125129A (en) 2018-08-09
JP6926492B2 true JP6926492B2 (en) 2021-08-25

Family

ID=63111466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017015652A Active JP6926492B2 (en) 2017-01-31 2017-01-31 Solid electrolyte and its manufacturing method, all-solid secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6926492B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7439617B2 (en) 2020-03-31 2024-02-28 富士通株式会社 Crystalline solid electrolyte and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259454A (en) * 2008-04-14 2009-11-05 Toyota Motor Corp Battery
JP2015056326A (en) * 2013-09-13 2015-03-23 株式会社日立製作所 Solid electrolyte, and all-solid-state ion secondary battery

Also Published As

Publication number Publication date
JP2018125129A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP5772961B2 (en) Lithium ion conductor and method for producing the same, all-solid lithium secondary battery
JP7178452B2 (en) sulfide solid electrolyte
Liu et al. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries
Zhang et al. Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite
KR102319569B1 (en) Sulfide Solid Electrolyte
JP5701741B2 (en) Sulfide-based solid electrolyte
JP5721540B2 (en) Lithium ion conductive inorganic material
KR102605002B1 (en) Sulfide solid electrolyte
WO2015198848A1 (en) Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
JP7113513B2 (en) Inorganic sulfide and method for producing the same
JP6070815B2 (en) Lithium ion conductor and method for producing the same, all-solid lithium secondary battery
KR20190137691A (en) Cathode mixture, all solid state battery, and method for producing cathode mixture
JP6070713B2 (en) Lithium ion conductor and all solid lithium ion secondary battery
JP2014229579A (en) Lithium ion conductive inorganic solid composite
JP2019145486A (en) All-solid battery
JP7010011B2 (en) Sulfide solid electrolyte
WO2015076935A2 (en) All-solid-state cathode materials, cathodes, batteries and methods
JP6926492B2 (en) Solid electrolyte and its manufacturing method, all-solid secondary battery and its manufacturing method
WO2020022342A1 (en) Solid electrolyte for all-solid-state sodium battery, manufacturing method therefor, and all-solid-state sodium battery
CN105374994B (en) All-solid-state battery system
JP2017117639A (en) Sulfide solid electrolyte, sulfide glass, electrode mixture, and lithium ion battery
JP7301005B2 (en) Sulfide-based solid electrolyte and all-solid lithium-ion battery
JP7119902B2 (en) Sulfide solid electrolyte
JP7274868B2 (en) Cathode material for all-solid-state battery, all-solid-state battery, and method for producing cathode active material for all-solid-state battery
JP7476867B2 (en) Sulfide solid electrolyte, battery, and method for producing sulfide solid electrolyte

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R150 Certificate of patent or registration of utility model

Ref document number: 6926492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150