JP2015056326A - Solid electrolyte, and all-solid-state ion secondary battery - Google Patents

Solid electrolyte, and all-solid-state ion secondary battery Download PDF

Info

Publication number
JP2015056326A
JP2015056326A JP2013189914A JP2013189914A JP2015056326A JP 2015056326 A JP2015056326 A JP 2015056326A JP 2013189914 A JP2013189914 A JP 2013189914A JP 2013189914 A JP2013189914 A JP 2013189914A JP 2015056326 A JP2015056326 A JP 2015056326A
Authority
JP
Japan
Prior art keywords
solid electrolyte
active material
electrode active
material layer
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013189914A
Other languages
Japanese (ja)
Inventor
正 藤枝
Tadashi Fujieda
藤枝  正
純 川治
Jun Kawaji
純 川治
裕介 浅利
Yusuke ASARI
裕介 浅利
大剛 小野寺
Hirotsuyo Onodera
大剛 小野寺
博胤 滝澤
Hirotane Takizawa
博胤 滝澤
林 大和
Yamato Hayashi
大和 林
友哉 中谷
Tomoya Nakatani
友哉 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Hitachi Ltd
Original Assignee
Tohoku University NUC
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Hitachi Ltd filed Critical Tohoku University NUC
Priority to JP2013189914A priority Critical patent/JP2015056326A/en
Priority to PCT/JP2014/062077 priority patent/WO2015037270A1/en
Publication of JP2015056326A publication Critical patent/JP2015056326A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte for an all-solid-state ion secondary battery, in which resistance to reduction is compatible with ion conductivity.SOLUTION: This all-solid-state ion secondary battery includes a positive electrode active material layer which contains a solid electrolyte having a ramsdellite type crystal structure expressed by LiSnO(0<x<1.33), particles containing the solid electrolyte, a positive electrode material, and an oxide softened and fluidized at lower temperatures in comparison with the solid electrolyte while having ion conductivity, and in which the particles and the positive electrode active material are bound by the oxide, a negative electrode active material layer which contains particles containing the solid electrolyte, a negative electrode active material, and an oxide softened and fluidized at lower temperatures in comparison with the solid electrolyte, and in which the particles and the negative electrode active material are bound by the oxide, and a solid electrolyte layer containing the solid electrolyte. The solid electrolyte layer is bonded between the positive electrode active material layer and the negative electrode layer.

Description

本発明は、固体電解質及び全固体型イオン二次電池に関する。   The present invention relates to a solid electrolyte and an all solid-state ion secondary battery.

不燃性又は難燃性の無機系固体電解質を用いた全固体型イオン二次電池は、高耐熱化が可能であり、安全化が図れるため、モジュールコストを低減できるとともに、高エネルギー密度化が可能である。近年、高イオン伝導性の硫化物系固体電解質が開発されているが、水との反応により有毒・腐食ガスが発生し、安定性に懸念が残る。一方、酸化物系固体電解質は、安定性に優れるが、負極電位に対する耐環元性と硫化物系の固体電解質並みの高イオン伝導性を両立した材料は開発されていない。   All solid-state ion secondary batteries using non-flammable or flame-retardant inorganic solid electrolytes can be heat-resistant and safer, so the module cost can be reduced and the energy density can be increased. It is. In recent years, sulfide-based solid electrolytes with high ion conductivity have been developed, but toxic and corrosive gases are generated by reaction with water, and there are concerns about stability. On the other hand, although the oxide-based solid electrolyte is excellent in stability, no material has been developed that has both resistance to negative electrode potential and high ionic conductivity comparable to sulfide-based solid electrolytes.

非特許文献1では、ラムスデライト(ramsdellite)型Li2+x(LiMg1−xSn)O(0≦x≦0.5)のイオン伝導性物質が開示されている。 Non-Patent Document 1 discloses a ramsdellite type Li 2 + x (Li x Mg 1-x Sn 3 ) O 8 (0 ≦ x ≦ 0.5) ion-conductive substance.

J.GRINS and A.R.WEST: J. Solid State Chem., 65, 265 (1986)J.GRINS and A.R.WEST: J. Solid State Chem., 65, 265 (1986)

しかし、上記非特許文献のイオン伝導性物質のイオン伝導率は、x=0.3で最大値となり、x>0.3ではイオン伝導率が低下し、更なる改善の余地があるものの、その解決策については何ら開示されていない。   However, the ionic conductivity of the ionic conductive material of the above non-patent document is a maximum value at x = 0.3, and when x> 0.3, the ionic conductivity is lowered and there is room for further improvement. No solution is disclosed.

本発明の目的は、全固体型イオン二次電池の固体電解質において、耐環元性と高イオン伝導性とを両立することにある。   An object of the present invention is to achieve both ring resistance and high ion conductivity in a solid electrolyte of an all solid-state ion secondary battery.

上記目的を達成するために、本発明においては、固体電解質としてLi4xSn4−x(0<x<1.33)で表わされるラムスデライト型の結晶構造を有する化合物を用いる。 In order to achieve the above object, in the present invention, a compound having a ramsdellite type crystal structure represented by Li 4x Sn 4-x O 8 (0 <x <1.33) is used as a solid electrolyte.

本発明によれば、耐環元性と高イオン伝導性を両立した固体電解質、及びそれを用いた全固体型イオン二次電池を実現することができる。   According to the present invention, it is possible to realize a solid electrolyte that achieves both ring resistance and high ion conductivity, and an all solid-state ion secondary battery using the same.

固体電解質の結晶を示す構造図である。1 is a structural diagram showing a crystal of a solid electrolyte. 全固体型イオン二次電池の要部を示す断面図である。It is sectional drawing which shows the principal part of an all-solid-type ion secondary battery.

本発明の実施形態について、適宜図面を参照しながら詳細に説明する。   Embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

本発明の固体電解質は、図1に示すようなLi4xSn4−x(0<x<1.33)で示されるラムスデライト型構造を呈し、SnO八面体が稜共有して互いに結合して二重鎖を形成し、隣接する二重鎖が頂点で連結して三次元骨格を形成する。この構成により、リチウムイオンサイズに比べて十分大きな一次元のトンネル構造を有するものとなっている。なお、SnO八面体におけるSnサイトの一部はLiで置換され得る。xが0<x<1.33の範囲でラムスデライト型構造を示し、高イオン伝導度を有する。 The solid electrolyte of the present invention exhibits a ramsdellite structure represented by Li 4x Sn 4x O 8 as shown in FIG. 1 (0 <x <1.33) , together SnO 2 octahedra and edge-sharing They are combined to form a double chain, and adjacent double chains are connected at the apex to form a three-dimensional skeleton. This configuration has a one-dimensional tunnel structure that is sufficiently larger than the lithium ion size. A part of the Sn site in the SnO 2 octahedron can be replaced with Li. In the range of 0 <x <1.33, x shows a ramsdellite structure and has high ionic conductivity.

固体電解質の粉末に該固体電解質よりも低温で軟化流動するイオン伝導性を有する酸化物を添加することにより、緻密な焼結体を容易に形成することができる。低温で軟化流動する酸化物としては、ホウ酸リチウム(LiBO)、バナジン酸リチウム、NASICON型のLi1+xAlTi2−x(PO、Li1+xGeTi(POに代表される結晶性酸化物や、上記化合物を急冷することで得られる非晶質酸化物を挙げることができる。 By adding an oxide having ion conductivity that softens and flows at a lower temperature than the solid electrolyte to the solid electrolyte powder, a dense sintered body can be easily formed. Examples of oxides that soften and flow at low temperatures include lithium borate (Li 3 BO 3 ), lithium vanadate, NASICON-type Li 1 + x Al x Ti 2-x (PO 4 ) 3 , Li 1 + x Ge x Ti 2 (PO 4 3 ) Crystalline oxides typified by 3 and amorphous oxides obtained by quenching the above compounds.

図2は、全固体型イオン二次電池の要部を示す断面図である。   FIG. 2 is a cross-sectional view showing a main part of the all solid state ion secondary battery.

本図において、全固体型イオン二次電池は、正極活物質層207と、固体電解質層208と、負極活物質層209とを備えている。固体電解質層208は、正極活物質層207と負極活物質層209との間に挟み込まれている。これらは、正極集電体201と負極集電体206との間に挟み込まれている。   In this figure, the all solid state ion secondary battery includes a positive electrode active material layer 207, a solid electrolyte layer 208, and a negative electrode active material layer 209. The solid electrolyte layer 208 is sandwiched between the positive electrode active material layer 207 and the negative electrode active material layer 209. These are sandwiched between the positive electrode current collector 201 and the negative electrode current collector 206.

固体電解質層208は、固体電解質粒子204(Li4xSn4−x(0<x<1.33))を含む。正極活物質層207は、正極活物質粒子202と固体電解質粒子204とを含む。負極活物質層209は、負極活物質粒子205と固体電解質粒子204とを含む。正極活物質層207、固体電解質層208及び負極活物質層209は、各構成粒子がホウ酸リチウム203(LiBO)で結着されている(700℃×1hで焼成)。即ち、ホウ酸リチウム203中に活物質粒子と固体電解質粒子とが分散した構造となっている。 The solid electrolyte layer 208 includes solid electrolyte particles 204 (Li 4x Sn 4-x O 8 (0 <x <1.33)). The positive electrode active material layer 207 includes positive electrode active material particles 202 and solid electrolyte particles 204. The negative electrode active material layer 209 includes negative electrode active material particles 205 and solid electrolyte particles 204. In the positive electrode active material layer 207, the solid electrolyte layer 208, and the negative electrode active material layer 209, the constituent particles are bound by lithium borate 203 (Li 3 BO 3 ) (fired at 700 ° C. × 1 h). That is, the active material particles and the solid electrolyte particles are dispersed in the lithium borate 203.

固体電解質層208においては、固体電解質粒子204がホウ酸リチウム203で結着されているが、ホウ酸リチウム203を用いずに固体電解質粒子204の焼結体を用いてもよい。なお、正極活物質層207と負極活物質層209とは、固体電解質層208により完全に電気絶縁されている。   In the solid electrolyte layer 208, the solid electrolyte particles 204 are bound by the lithium borate 203, but a sintered body of the solid electrolyte particles 204 may be used without using the lithium borate 203. Note that the positive electrode active material layer 207 and the negative electrode active material layer 209 are completely electrically insulated by the solid electrolyte layer 208.

また、各極の活物質層における導電性向上のために、導電助剤を添加してもよい。導電助剤としては、黒鉛、アセチレンブラック、ケッチェンブラック等の炭素材料や金、銀、銅、ニッケル、アルミニウム、チタン等の金属粉、インジウム・錫酸化物(ITO)、チタン酸化物、錫酸化物、亜鉛酸化物、タングステン酸化物等の導電性酸化物等が好ましい。   Moreover, you may add a conductive support agent in order to improve the electroconductivity in the active material layer of each electrode. Conductive aids include carbon materials such as graphite, acetylene black, ketjen black, metal powders such as gold, silver, copper, nickel, aluminum, titanium, indium / tin oxide (ITO), titanium oxide, tin oxide And conductive oxides such as zinc oxide and tungsten oxide are preferred.

活物質あるいは固体電解質に対するLiBOの添加量は、体積換算で5体積%以上、40体積%以下(5〜40体積%)であることが望ましい。5体積%以上にすると、活物質粒子と固体電解質粒子の間を十分に埋めることができ、40体積%以下にすると、活物質量や固体電解質量の減少に伴う充放電容量や充放電レートの低下を防止できる。 The amount of Li 3 BO 3 added to the active material or solid electrolyte is preferably 5% by volume or more and 40% by volume or less (5 to 40% by volume) in terms of volume. When the volume is 5% by volume or more, the space between the active material particles and the solid electrolyte particles can be sufficiently filled. When the volume is 40% by volume or less, the charge / discharge capacity and the charge / discharge rate associated with the decrease in the amount of the active material and the solid electrolytic mass are reduced. Decline can be prevented.

正極活物質としては、リチウムイオンを吸蔵・放出可能である既知の正極活物質を使用することができる。例えば、スピネル系、オリビン系、層状酸化物系、固溶体系、ケイ酸塩系、バナジウム系結晶化ガラスなどが挙げられる。   As the positive electrode active material, a known positive electrode active material capable of occluding and releasing lithium ions can be used. Examples thereof include spinel, olivine, layered oxide, solid solution system, silicate system, and vanadium crystallized glass.

負極活物質としては、リチウムイオンを吸蔵・放出可能である既知の負極活物質を使用することができる。たとえば、黒鉛に代表される炭素材料や、TiSn合金、TiSi合金などの合金材料、LiCoNなどの窒化物、LiTi12、LiTiO、バナジウム系結晶化ガラスなどの酸化物を用いることができる。また、リチウム金属を用いてもよい。 As the negative electrode active material, a known negative electrode active material capable of occluding and releasing lithium ions can be used. For example, carbon materials typified by graphite, alloy materials such as TiSn alloy and TiSi alloy, nitrides such as LiCoN, oxides such as Li 4 Ti 5 O 12 , LiTiO 4 and vanadium crystallized glass may be used. it can. Further, lithium metal may be used.

以下、実施例にて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

<リチウムイオン伝導性固体電解質の作製>
Li4xSn4−x(0<x<1.33)で示されるリチウムイオン伝導性固体電解質を作製した。
<Preparation of lithium ion conductive solid electrolyte>
A lithium ion conductive solid electrolyte represented by Li 4x Sn 4-x O 8 (0 <x <1.33) was produced.

表1は、異なるx値の固体電解質を作製するため、原料である炭酸リチウム(LiCO)及び酸化スズ(SnO)の混合比率(モル比)を変化させたサンプルを示したものである。 Table 1 shows a sample in which the mixing ratio (molar ratio) of lithium carbonate (Li 2 CO 3 ) and tin oxide (SnO 2 ) as raw materials was changed in order to produce solid electrolytes having different x values. is there.

本表に示すサンプルNo.1〜No.10の原料組成(モル比)の混合粉を冷間プレスによりペレット状に成型し、同一組成の混合粉に成型したペレットを埋没させた状態で、マイクロ波加熱装置により、1300℃で5min保持の条件で大気中焼成した。なお、通常の電気炉加熱でも合成可能であるが、焼成に長時間を要し、蒸気圧の高いリチウムが揮発してしまい、組成ずれが生じやすいため、急速加熱が可能なマイクロ波加熱での合成がより好ましい。   Sample No. shown in this table. 1-No. A mixed powder of 10 raw material compositions (molar ratio) was formed into a pellet by cold pressing, and the pellet formed into the mixed powder of the same composition was buried, and kept at 1300 ° C. for 5 minutes with a microwave heater Baking in the air under conditions. Although it can be synthesized by ordinary electric furnace heating, it takes a long time for firing, volatilization of lithium with a high vapor pressure, and composition deviation tends to occur. Synthesis is more preferred.

焼成したペレットの粉砕粉のX線回折パターンを調べた結果、表1にある0<x<1.33の範囲では、いずれもラムスデライト型の単相結晶が得られた。なお、x≧1.33ではLiSnOに帰属する回折パターンが得られた。 As a result of examining the X-ray diffraction pattern of the pulverized powder of the baked pellets, ramsdellite type single-phase crystals were obtained in the range of 0 <x <1.33 in Table 1. When x ≧ 1.33, a diffraction pattern belonging to Li 2 SnO 3 was obtained.

焼成したペレットの交流インピーダンス法により測定した室温におけるリチウムイオン伝導度を表1に示す。   Table 1 shows the lithium ion conductivity at room temperature measured by the AC impedance method of the baked pellets.

Figure 2015056326
Figure 2015056326

本表に示す結果より、x値が0〜1.33の中間値付近でイオン伝導度が最大になる傾向があることがわかる。具体的には、x値が0.5〜0.75の範囲でイオン伝導度が2×10S/cm以上となっている。これは、x値が小さくなる、つまり、キャリアであるリチウムイオン濃度が低下すると、イオン伝導度は低下すること、逆に、x値が大きくなる、つまり、リチウムイオン濃度が増大すると、リチウムイオン間での静電反発力の影響が大きくなり、リチウムイオンが拡散し難くなるため、イオン伝導度が低下することを示していると考えられる。 From the results shown in this table, it can be seen that the ionic conductivity tends to be maximized in the vicinity of the intermediate value of x value of 0 to 1.33. Specifically, the ionic conductivity is 2 × 10 3 S / cm or more when the x value is in the range of 0.5 to 0.75. This is because when the x value decreases, that is, when the lithium ion concentration as a carrier decreases, the ionic conductivity decreases, conversely, when the x value increases, that is, when the lithium ion concentration increases, between lithium ions. It is considered that the influence of the electrostatic repulsive force on the surface increases and lithium ions do not easily diffuse, indicating that the ionic conductivity decreases.

さらに、固体電解質の還元電流が発生する電位を測定することにより、耐還元性を評価した。焼成したペレットの粉砕粉と、導電助剤であるカーボンブラックと、バインダーであるポリフッ化ビニリデンとをそれぞれ体積比で、70:10:20となるように調合し、N−メチル−2−ピロドリン(NMP)を適量添加してペーストを作製した。このペーストを厚さ20μmのアルミニウム箔に塗布し、90℃×1hrの大気中加熱による乾燥後、プレスし、直径15mmの円盤状に打ち抜いた後、120℃×1hrの真空中熱処理を行うことにより、固体電解質電極を作製した。   Furthermore, the reduction resistance was evaluated by measuring the potential at which the reduction current of the solid electrolyte was generated. The pulverized powder of the baked pellets, carbon black as a conductive auxiliary agent, and polyvinylidene fluoride as a binder were each prepared in a volume ratio of 70:10:20, and N-methyl-2-pyrodoline ( An appropriate amount of NMP) was added to prepare a paste. This paste is applied to an aluminum foil having a thickness of 20 μm, dried by heating in the atmosphere of 90 ° C. × 1 hr, pressed, punched into a disk shape having a diameter of 15 mm, and then subjected to heat treatment in vacuum of 120 ° C. × 1 hr. A solid electrolyte electrode was prepared.

この固体電解質電極と対極のLi板とを、電解液を含浸した厚さ30μmのセパレータを介して積層し、これらを2枚のSUS製治具で挟み込んだ状態で、固体電解質電極へLi金属電位に対し、5Vから1Vまでの電位を印加した。その結果、この電位走査範囲では還元電流の発生は認められなかった。よって、少なくとも還元電位は1V未満であり、耐還元性に優れていることがわかった。なお、使用した電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比で1:2で混合した溶媒に六フッ化リン酸リチウム(LiPF)を1mol/l溶解させたものを用いた。 The solid electrolyte electrode and the counter electrode Li plate are stacked via a 30 μm-thick separator impregnated with an electrolytic solution, and sandwiched between two SUS jigs, and the Li metal potential is applied to the solid electrolyte electrode. In contrast, a potential of 5 V to 1 V was applied. As a result, no reduction current was observed in this potential scanning range. Therefore, it was found that at least the reduction potential was less than 1 V, and the reduction resistance was excellent. The electrolyte used was 1 mol / l of lithium hexafluorophosphate (LiPF 6 ) dissolved in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 2. A thing was used.

実施例1で作製したリチウムイオン伝導性固体電解質を適用し、以下の工程により全固体電池を作製し、その充放電特性を評価した。   The lithium ion conductive solid electrolyte produced in Example 1 was applied to produce an all-solid battery by the following steps, and its charge / discharge characteristics were evaluated.

<LiBOの作製>
LiCOとBを3:1の重量比で混合し、ジルコニアボールを用いた遊星ボールミルにより2時間混合した後、大気中600℃×12hrの条件で加熱保持させることにより、結晶性のLiBOを得た。示差熱分析(DTA)より700℃で融解に起因する吸熱ピークを確認した。
<Preparation of Li 3 BO 3 >
Li 2 CO 3 and B 2 O 3 were mixed at a weight ratio of 3: 1, mixed for 2 hours by a planetary ball mill using zirconia balls, and then heated and held in the atmosphere at 600 ° C. for 12 hours to obtain crystals. Li 3 BO 3 was obtained. An endothermic peak due to melting was confirmed at 700 ° C. by differential thermal analysis (DTA).

<正極>
正極活物質である平均粒径5μmのLiCoO粉末と、LiBO粉末と、実施例1で作製した固体電解質(表1のNo.6)である平均粒径3μmのLi0.2Sn3.8粉末(以下、LSOと記述する。)と、導電助材である針状(短軸:0.13μm、長軸:1.68μm)の導電性酸化チタン(ルチル型酸化チタンの母体にSbをドープしたSnO導電層を被覆したもの)とをそれぞれ体積比で、53:30:10:7となるように調合し、この混合粉末に、樹脂バインダーと溶剤とを適量添加して正極ペーストを作製した。なお、樹脂バインダーとしてはエチルセルロースやニトロセルロースを用い、溶剤としてはブチルカルビトールアセテートを用いた。この正極ペーストを厚さ20μmのステンレス箔に塗布し、脱媒、脱バインダーのための熱処理後に、真空中700℃×1hrで焼成し、正極活物質層厚さが10μmの正極シートを得た。これを直径14mmの円盤状に打ち抜き、正極とした。
<Positive electrode>
LiCoO 2 powder with an average particle diameter of 5 μm as a positive electrode active material, Li 3 BO 3 powder, and Li 0.2 Sn with an average particle diameter of 3 μm as a solid electrolyte prepared in Example 1 (No. 6 in Table 1). 3.8 O 8 powder (hereinafter referred to as LSO), and conductive titanium oxide (rutile-type titanium oxide) in the form of needles (short axis: 0.13 μm, long axis: 1.68 μm), which is a conductive aid. The base material is coated with a SnO 2 conductive layer doped with Sb) and the volume ratio is 53: 30: 10: 7, and an appropriate amount of a resin binder and a solvent are added to the mixed powder. Thus, a positive electrode paste was prepared. In addition, ethyl cellulose or nitrocellulose was used as the resin binder, and butyl carbitol acetate was used as the solvent. The positive electrode paste was applied to a stainless steel foil having a thickness of 20 μm, and after heat treatment for removing the solvent and removing the binder, the positive electrode paste was baked at 700 ° C. × 1 hr in vacuum to obtain a positive electrode sheet having a positive electrode active material layer thickness of 10 μm. This was punched out into a disk shape having a diameter of 14 mm to obtain a positive electrode.

<負極>
負極活物質である平均粒径5μmのLiTi12粉末と、LiBO粉末と、固体電解質である平均粒径3μmのLSOと、導電助材である針状(短軸:0.13μm、長軸:1.68μm)の導電性酸化チタン(ルチル型酸化チタンの母体にSbをドープしたSnO導電層を被覆したもの)とをそれぞれ体積比で、53:30:10:7となるように調合し、この混合粉末に、樹脂バインダーと溶剤とを適量添加して負極ペーストを作製した。この負極ペーストを厚さ20μmのステンレス箔に塗布し、脱媒、脱バインダーのための熱処理後に、真空中700℃×1hrで焼成し、負極活物質層厚さが10μmの負極シートを得た。これを直径14mmの円盤状に打ち抜き、負極とした。
<Negative electrode>
Li 4 Ti 5 O 12 powder having an average particle diameter of 5 μm as a negative electrode active material, Li 3 BO 3 powder, LSO having an average particle diameter of 3 μm as a solid electrolyte, and acicular (short axis: 0) as a conductive aid .13 μm, long axis: 1.68 μm) conductive titanium oxide (a rutile-type titanium oxide base material coated with SnO 2 conductive layer doped with Sb) in a volume ratio of 53: 30: 10: 7 An appropriate amount of a resin binder and a solvent was added to the mixed powder to prepare a negative electrode paste. This negative electrode paste was applied to a stainless steel foil having a thickness of 20 μm, and after heat treatment for removing the solvent and removing the binder, the negative electrode paste was fired in vacuum at 700 ° C. × 1 hr to obtain a negative electrode sheet having a negative electrode active material layer thickness of 10 μm. This was punched out into a disk shape having a diameter of 14 mm to obtain a negative electrode.

ここでは、負極活物質層として負極活物質粒子と固体電解質粒子をガラスで結着したものを適用したが、これに限らず、リチウム金属板を用いることもできる。以下の実施例についても同様である。   Here, a negative electrode active material layer in which negative electrode active material particles and solid electrolyte particles are bound with glass is used. However, the present invention is not limited to this, and a lithium metal plate can also be used. The same applies to the following embodiments.

<固体電解質層>
固体電解質である平均粒径3μmのLSOと、LiBOとをそれぞれ体積比で70:30となるように調合し、この混合粉末に、樹脂バインダーと溶剤とを適量添加して固体電解質ペーストを作製した。この固体電解質ペーストを正極あるいは負極の電極層のいずれかに塗布した後、脱媒、脱バインダーのための熱処理を施した後、700℃×1hrで真空中焼成し、厚さ15μmの固体電解質層を形成した。これを直径15mmの円盤状に打ち抜いた。
<Solid electrolyte layer>
LSO with an average particle diameter of 3 μm, which is a solid electrolyte, and Li 3 BO 3 were prepared so that the volume ratio would be 70:30, and an appropriate amount of a resin binder and a solvent were added to the mixed powder to obtain a solid electrolyte paste. Was made. After applying this solid electrolyte paste to either the positive electrode layer or the negative electrode layer, heat treatment for removing the solvent and removing the binder is performed, followed by baking in a vacuum at 700 ° C. × 1 hr to obtain a solid electrolyte layer having a thickness of 15 μm. Formed. This was punched into a disk shape having a diameter of 15 mm.

ここでは、固体電解質層として固体電解質粒子をガラスで結着したものを適用したが、これに限らず、焼結した板状の固体電解質バルクを用いることもできる。以下の実施例についても同様である。   Here, a solid electrolyte layer in which solid electrolyte particles are bound with glass is used as a solid electrolyte layer. However, the present invention is not limited to this, and a sintered plate-shaped solid electrolyte bulk can also be used. The same applies to the following embodiments.

<電池の作製>
上記の固体電解質層が形成された電極層と、もう一方の電極層を積層し、正極活物質層/固体電解質層/負極活物質層の界面の密着性を向上させるため、この積層体を加圧しながら、700℃×15minで真空中焼成し、各層の界面を十分密着させた。得られた積層体の側面を絶縁物でマスキングし、これをCR2025型のコイン電池に組み込み全固体電池を作製した。
<Production of battery>
In order to improve the adhesion at the interface of the positive electrode active material layer / solid electrolyte layer / negative electrode active material layer by laminating the electrode layer on which the solid electrolyte layer is formed and the other electrode layer, this laminate is added. While pressing, baking was performed in a vacuum at 700 ° C. for 15 minutes to sufficiently adhere the interfaces of the layers. The side surface of the obtained laminate was masked with an insulator, and this was incorporated into a CR2025 type coin battery to produce an all-solid battery.

なお、上記した混合粉末ペーストの塗布、焼成による各層の形成法の代わりに、混合粉末を溶融し、又はガス化すること無く、不活性ガスと共に超音速流で固相状態のまま基材に衝突させて皮膜を形成するコールドスプレー(CS)法や、混合粉末をガスと混合したエアロゾルを圧力差により生じるガスの流れを利用し、ノズルを通して基板に噴射して皮膜を形成するエアロゾルデポジション(AD)法を適用することもできる。   Instead of the method of forming each layer by applying and baking the mixed powder paste described above, the mixed powder does not melt or gasify, but collides with the base material in a solid state in supersonic flow with an inert gas. Using a spray spray (CS) method to form a film, or an aerosol deposition (AD) that forms a film by spraying an aerosol obtained by mixing a powder mixture with a gas through a nozzle onto a substrate. ) Law can also be applied.

CS法による電池作製方法について以下に説明する。   A battery manufacturing method by the CS method will be described below.

上記同様のLiCoO粉末と、LiBO粉末と、LSO粉末と、前記導電性酸化チタンとの混合粉末を厚さ20μmのステンレス箔上に噴射し、厚さ10μmの正極活物質層を形成させた。なお、各粉末をそれぞれ別のフィーダーに投入し、同時に噴射させてもよい。 A mixed powder of the same LiCoO 2 powder, Li 3 BO 3 powder, LSO powder, and conductive titanium oxide is sprayed onto a stainless steel foil having a thickness of 20 μm to form a positive electrode active material layer having a thickness of 10 μm. I let you. Each powder may be put into a separate feeder and sprayed at the same time.

上記同様のLSO粉末と、LiBO粉末との混合粉末を正極活物質層上に噴射し、厚さ15μmの固体電解質層を形成させた。 A mixed powder of the same LSO powder and Li 3 BO 3 powder was sprayed onto the positive electrode active material layer to form a solid electrolyte layer having a thickness of 15 μm.

次に、上記同様のLiTi12粉末と、LiBO粉末と、LSO粉末と、前記導電性酸化チタンとの混合粉末を固体電解質層上に噴射し、厚さ10μmの負極活物質層を形成させた。 Next, a mixed powder of the same Li 4 Ti 5 O 12 powder, Li 3 BO 3 powder, LSO powder, and conductive titanium oxide is sprayed onto the solid electrolyte layer, and a negative electrode active material having a thickness of 10 μm is injected. A material layer was formed.

さらに、負極電解質層の上に、ステンレス粉末を噴射し、厚さ20μmの負極集電体層を形成した。   Furthermore, a stainless steel powder was sprayed on the negative electrode electrolyte layer to form a negative electrode current collector layer having a thickness of 20 μm.

<電池特性評価>
実施例2で作製した電池について、0.1C、1Cレートでの放電容量を測定した結果、0.1C、1.0Cでの初期の放電容量はそれぞれ、正極活物質重量当り140mAh/g、110mAh/gであった。なお、リチウム以外のイオン伝導性固体電解質を適用した全固体電池においても、同様に充放電することを確認している。
<Battery characteristics evaluation>
As a result of measuring the discharge capacity at a rate of 0.1 C and 1 C for the battery manufactured in Example 2, the initial discharge capacities at 0.1 C and 1.0 C were 140 mAh / g and 110 mAh per weight of the positive electrode active material, respectively. / G. In addition, it has been confirmed that charging and discharging are performed in the same manner even in an all-solid battery to which an ion conductive solid electrolyte other than lithium is applied.

201:正極集電体、202:正極活物質粒子、203:ホウ酸リチウム、204:固体電解質粒子、205:負極活物質粒子、206:負極集電体、207:正極活物質層、208:固体電解質層、209:負極活物質層。   201: Positive electrode current collector, 202: Positive electrode active material particles, 203: Lithium borate, 204: Solid electrolyte particles, 205: Negative electrode active material particles, 206: Negative electrode current collector, 207: Positive electrode active material layer, 208: Solid Electrolyte layer, 209: negative electrode active material layer.

Claims (10)

Li4xSn4−x(0<x<1.33)で表わされるラムスデライト型の結晶構造を有することを特徴とする固体電解質。 A solid electrolyte having a ramsdellite type crystal structure represented by Li 4x Sn 4-x O 8 (0 <x <1.33). 請求項1に記載の固体電解質を含む粒子と、該固体電解質よりも低温で軟化流動するイオン伝導性を有する酸化物とを含み、前記粒子が前記酸化物で結着されていることを特徴とする固体電解質層。   A particle comprising the solid electrolyte according to claim 1 and an oxide having ion conductivity that softens and flows at a lower temperature than the solid electrolyte, wherein the particle is bound with the oxide. A solid electrolyte layer. 請求項1に記載の固体電解質を含む粒子と、正極活物質と、該固体電解質よりも低温で軟化流動するイオン伝導性を有する酸化物とを含み、前記粒子及び前記正極活物質が前記酸化物で結着されていることを特徴とする正極活物質層。   A particle including the solid electrolyte according to claim 1, a positive electrode active material, and an oxide having ion conductivity that softens and flows at a lower temperature than the solid electrolyte, and the particle and the positive electrode active material are the oxide. A positive electrode active material layer characterized by being bound by: 請求項1に記載の固体電解質を含む粒子と、負極活物質と、該固体電解質よりも低温で軟化流動するイオン伝導性を有する酸化物とを含み、前記粒子及び前記負極活物質が前記酸化物で結着されていることを特徴とする負極活物質層。   A particle comprising the solid electrolyte according to claim 1, a negative electrode active material, and an oxide having ion conductivity that softens and flows at a lower temperature than the solid electrolyte, wherein the particle and the negative electrode active material are the oxide. A negative electrode active material layer characterized by being bound by 請求項1に記載の固体電解質を含む固体電解質層と、正極活物質層と、負極活物質層とを備え、前記固体電解質層は、前記正極活物質層と前記負極活物質層との間に接合された構成を有することを特徴とする全固体型イオン二次電池。   A solid electrolyte layer containing the solid electrolyte according to claim 1, a positive electrode active material layer, and a negative electrode active material layer, wherein the solid electrolyte layer is between the positive electrode active material layer and the negative electrode active material layer. An all-solid-type ion secondary battery having a bonded configuration. 請求項2に記載の固体電解質層と、正極活物質層と、負極活物質層とを備え、前記固体電解質層は、前記正極活物質層と前記負極活物質層との間に接合された構成を有することを特徴とする全固体型イオン二次電池。   A configuration comprising the solid electrolyte layer according to claim 2, a positive electrode active material layer, and a negative electrode active material layer, wherein the solid electrolyte layer is bonded between the positive electrode active material layer and the negative electrode active material layer. An all-solid-state ion secondary battery comprising: 前記正極活物質層は、請求項3に記載の正極活物質層であることを特徴とする請求項5に記載の全固体型イオン二次電池。   The all-solid-state ion secondary battery according to claim 5, wherein the positive electrode active material layer is the positive electrode active material layer according to claim 3. 前記負極活物質層は、請求項4に記載の負極活物質層であることを特徴とする請求項5に記載の全固体型イオン二次電池。   The all-solid-state ion secondary battery according to claim 5, wherein the negative electrode active material layer is the negative electrode active material layer according to claim 4. 請求項1に記載の固体電解質を製造する方法であって、リチウム及びスズの原料を混合し、成型し、マイクロ波加熱により焼成することを特徴とする固体電解質の製造方法。   A method for producing a solid electrolyte according to claim 1, wherein raw materials of lithium and tin are mixed, molded, and fired by microwave heating. 前記原料は、炭酸リチウム及び酸化スズであることを特徴とする請求項9に記載の固体電解質の製造方法。   The method for producing a solid electrolyte according to claim 9, wherein the raw materials are lithium carbonate and tin oxide.
JP2013189914A 2013-09-13 2013-09-13 Solid electrolyte, and all-solid-state ion secondary battery Withdrawn JP2015056326A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013189914A JP2015056326A (en) 2013-09-13 2013-09-13 Solid electrolyte, and all-solid-state ion secondary battery
PCT/JP2014/062077 WO2015037270A1 (en) 2013-09-13 2014-05-01 Solid electrolyte, and all-solid ion secondary battery using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013189914A JP2015056326A (en) 2013-09-13 2013-09-13 Solid electrolyte, and all-solid-state ion secondary battery

Publications (1)

Publication Number Publication Date
JP2015056326A true JP2015056326A (en) 2015-03-23

Family

ID=52665395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013189914A Withdrawn JP2015056326A (en) 2013-09-13 2013-09-13 Solid electrolyte, and all-solid-state ion secondary battery

Country Status (2)

Country Link
JP (1) JP2015056326A (en)
WO (1) WO2015037270A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225089A (en) * 2015-05-28 2016-12-28 株式会社豊田中央研究所 Electrode, electrode manufacturing method and battery
JP2017004673A (en) * 2015-06-08 2017-01-05 セイコーエプソン株式会社 Electrode composite, method for manufacturing electrode composite, and lithium battery
JP2018125129A (en) * 2017-01-31 2018-08-09 富士通株式会社 Solid electrolyte and production method therefor, all-solid secondary battery, and production method therefor
WO2019044902A1 (en) * 2017-08-30 2019-03-07 株式会社村田製作所 Co-firing type all-solid state battery
WO2020066323A1 (en) 2018-09-26 2020-04-02 マクセルホールディングス株式会社 Flat solid-state battery and method for manufacturing same
JP7061719B1 (en) 2021-10-28 2022-04-28 東邦チタニウム株式会社 Solid electrolyte powder
US11955596B2 (en) 2017-08-30 2024-04-09 Murata Manufacturing Co., Ltd. Solid electrolyte and all solid state battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110495038B (en) * 2017-04-04 2022-07-08 株式会社村田制作所 All-solid-state battery, electronic equipment, electronic card, wearable equipment and electric vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270020A (en) * 1997-03-19 1998-10-09 Japan Storage Battery Co Ltd Negative electrode active material for lithium battery and lithium battery
JP5738150B2 (en) * 2011-10-25 2015-06-17 京セラ株式会社 Secondary battery
JP5880581B2 (en) * 2012-02-06 2016-03-09 トヨタ自動車株式会社 Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225089A (en) * 2015-05-28 2016-12-28 株式会社豊田中央研究所 Electrode, electrode manufacturing method and battery
JP2017004673A (en) * 2015-06-08 2017-01-05 セイコーエプソン株式会社 Electrode composite, method for manufacturing electrode composite, and lithium battery
JP2018125129A (en) * 2017-01-31 2018-08-09 富士通株式会社 Solid electrolyte and production method therefor, all-solid secondary battery, and production method therefor
WO2019044902A1 (en) * 2017-08-30 2019-03-07 株式会社村田製作所 Co-firing type all-solid state battery
JPWO2019044902A1 (en) * 2017-08-30 2020-01-23 株式会社村田製作所 Co-fired all-solid-state battery
US11322776B2 (en) 2017-08-30 2022-05-03 Murata Manufacturing Co., Ltd. Co-fired all-solid-state battery
US11955596B2 (en) 2017-08-30 2024-04-09 Murata Manufacturing Co., Ltd. Solid electrolyte and all solid state battery
WO2020066323A1 (en) 2018-09-26 2020-04-02 マクセルホールディングス株式会社 Flat solid-state battery and method for manufacturing same
JP7061719B1 (en) 2021-10-28 2022-04-28 東邦チタニウム株式会社 Solid electrolyte powder
WO2023074280A1 (en) * 2021-10-28 2023-05-04 東邦チタニウム株式会社 Solid electrolyte powder
JP2023066223A (en) * 2021-10-28 2023-05-15 東邦チタニウム株式会社 solid electrolyte powder

Also Published As

Publication number Publication date
WO2015037270A1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
WO2015037270A1 (en) Solid electrolyte, and all-solid ion secondary battery using same
WO2014141456A1 (en) Solid electrolyte, and all-solid ion secondary cell using same
JP6240306B2 (en) Lithium secondary battery
JP6164812B2 (en) All solid lithium ion secondary battery
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
KR102094991B1 (en) lithium secondary battery
JP5987103B2 (en) All solid ion secondary battery
CN105938894B (en) The manufacturing method of electrode body
JP5283188B2 (en) All-solid secondary battery and manufacturing method thereof
WO2014020654A1 (en) All-solid ion secondary cell
JP2012155994A (en) Electrode for solid-state battery
JP4575487B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP6927292B2 (en) All-solid-state lithium-ion secondary battery
WO2016157751A1 (en) Lithium ion conductor, solid electrolyte layer, electrode, battery and electronic device
JP2013089321A (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP6679843B2 (en) Electrode, electrode manufacturing method and battery
CN102844911B (en) Negative electrode active material for electricity storage device and use its electrical storage device negative material and electrical storage device negative pole
JP7042426B2 (en) Solid electrolytes and batteries
JP2016066584A (en) Electrode, method of producing the same, battery, and electronic device
JP2012182115A (en) Method for manufacturing negative electrode active material for electricity storage device
JP2017139142A (en) Solid electrolyte, method for producing the same, and battery
KR20130018435A (en) Ionic rechargeable battery electrode, method for manufacturing thereof, and lithium and magnesium ion rechargeable batteries
JP6578743B2 (en) Electrode manufacturing method
JP2016103381A (en) Method for manufacturing all-solid battery
JP5644951B2 (en) Non-sintered laminate for all solid state battery, all solid state battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151127

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160715