JP6926303B2 - Substrate processing method, substrate processing equipment and recording medium - Google Patents

Substrate processing method, substrate processing equipment and recording medium Download PDF

Info

Publication number
JP6926303B2
JP6926303B2 JP2020142936A JP2020142936A JP6926303B2 JP 6926303 B2 JP6926303 B2 JP 6926303B2 JP 2020142936 A JP2020142936 A JP 2020142936A JP 2020142936 A JP2020142936 A JP 2020142936A JP 6926303 B2 JP6926303 B2 JP 6926303B2
Authority
JP
Japan
Prior art keywords
processing
fluid
discharge
pressure
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020142936A
Other languages
Japanese (ja)
Other versions
JP2020191479A (en
Inventor
源太郎 五師
源太郎 五師
清瀬 浩巳
浩巳 清瀬
康雄 清原
康雄 清原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016196630A external-priority patent/JP6759042B2/en
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2020142936A priority Critical patent/JP6926303B2/en
Publication of JP2020191479A publication Critical patent/JP2020191479A/en
Application granted granted Critical
Publication of JP6926303B2 publication Critical patent/JP6926303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超臨界状態の処理流体を用いて基板の表面に付着した液体を除去する技術に関する。 The present invention relates to a technique for removing a liquid adhering to the surface of a substrate using a processing fluid in a supercritical state.

基板である半導体ウエハ(以下、ウエハという)などの表面に集積回路の積層構造を形成する半導体装置の製造工程においては、薬液などの洗浄液によりウエハ表面の微小なごみや自然酸化膜を除去するなど、液体を利用してウエハ表面を処理する液処理工程が行われている。 In the manufacturing process of a semiconductor device that forms a laminated structure of integrated circuits on the surface of a semiconductor wafer (hereinafter referred to as a wafer) that is a substrate, fine dust and a natural oxide film on the wafer surface are removed by a cleaning liquid such as a chemical solution. A liquid treatment step of treating the wafer surface using a liquid is performed.

こうした液処理工程にてウエハの表面に付着した液体などを除去する際に、超臨界状態の処理流体を用いる方法が知られている。 A method of using a processing fluid in a supercritical state is known when removing a liquid or the like adhering to the surface of a wafer in such a liquid treatment step.

例えば特許文献1は、超臨界状態の流体を基板と接触させて、基板に付着した液体を除去する基板処理装置を開示する。また特許文献2は、超臨界流体を利用して基板の上から有機溶剤を溶解して基板を乾燥させる基板処理装置を開示する。 For example, Patent Document 1 discloses a substrate processing apparatus that removes a liquid adhering to a substrate by bringing a fluid in a supercritical state into contact with the substrate. Further, Patent Document 2 discloses a substrate processing apparatus that uses a supercritical fluid to dissolve an organic solvent from above a substrate to dry the substrate.

超臨界状態の処理流体を用いて基板から液体を除去する乾燥処理では、基板上に形成された半導体パターンの倒壊(すなわち、パターン間の液体の表面張力によってもたらされるパターン倒れ)の発生を抑えつつ、処理時間を可能な限り短縮することが望ましい。また、乾燥処理に使用される処理流体の消費量を可能な限り抑えることが望ましい。 In the drying process of removing the liquid from the substrate using the processing fluid in the supercritical state, the occurrence of the collapse of the semiconductor pattern formed on the substrate (that is, the pattern collapse caused by the surface tension of the liquid between the patterns) is suppressed. , It is desirable to shorten the processing time as much as possible. In addition, it is desirable to reduce the consumption of the processing fluid used for the drying process as much as possible.

特開2013−12538号公報Japanese Unexamined Patent Publication No. 2013-12538 特開2013−16798号公報Japanese Unexamined Patent Publication No. 2013-16798

本発明はこのような背景の下なされたものであり、超臨界状態の処理流体を用いて基板から液体を除去する乾燥処理を、処理流体の消費量を抑えつつ短時間で行うことができる基板処理装置、基板処理方法及び記録媒体を提供することを目的とする。 The present invention has been made under such a background, and a substrate capable of performing a drying process of removing a liquid from a substrate using a processing fluid in a supercritical state can be performed in a short time while suppressing the consumption of the processing fluid. It is an object of the present invention to provide a processing apparatus, a substrate processing method, and a recording medium.

本発明の一態様は、処理容器内において、基板から液体を除去する乾燥処理を、超臨界状態の処理流体を使って行う基板処理方法であって、処理容器内に存在する超臨界状態の処理流体の気化が起こらない第1の排出到達圧力に処理容器内がなるまで処理容器内の流体を排出し、その後、第1の排出到達圧力より高く且つ処理容器内の処理流体の気化が起こらない第1の供給到達圧力に処理容器内がなるまで処理容器内に処理流体を供給する第1処理工程と、第1処理工程後に、超臨界状態の処理流体の気化が起こらない第2の排出到達圧力であって第1の排出到達圧力とは異なる第2の排出到達圧力に処理容器内がなるまで処理容器内の流体を排出し、その後、第2の排出到達圧力より高く且つ処理容器内の処理流体の気化が起こらない第2の供給到達圧力に処理容器内がなるまで処理容器内に処理流体を供給する第2処理工程と、を有する基板処理方法に関する。 One aspect of the present invention is a substrate processing method in which a drying process for removing a liquid from a substrate in a processing container is performed using a processing fluid in a supercritical state, and the treatment in the supercritical state existing in the processing container is performed. The fluid in the processing container is discharged until the inside of the processing container reaches the first discharge ultimate pressure at which the fluid does not vaporize, and then the treatment fluid in the processing container does not vaporize at a pressure higher than the first discharge ultimate pressure. The first treatment step of supplying the treatment fluid into the treatment container until the first supply reaching pressure reaches the inside of the treatment container, and the second discharge arrival where the supercritical state treatment fluid does not vaporize after the first treatment step. The fluid in the processing container is discharged until the inside of the processing container reaches a second discharge ultimate pressure that is different from the first discharge ultimate pressure, and then the fluid is discharged higher than the second discharge ultimate pressure and in the processing container. The present invention relates to a substrate processing method comprising a second processing step of supplying a processing fluid into the processing container until the inside of the processing container reaches a second supply ultimate pressure at which vaporization of the processing fluid does not occur.

本発明の他の態様は、凹部を有する基板であって、当該凹部に液体が液盛りされた基板が搬入される処理容器と、処理容器内に超臨界状態の処理流体を供給する流体供給部と、処理容器内の流体を排出する流体排出部と、流体供給部及び流体排出部を制御し、処理容器内において基板から液体を除去する乾燥処理を、超臨界状態の処理流体を使って行う制御部と、を備え、制御部は、流体供給部及び流体排出部を制御し、処理容器内に存在する超臨界状態の処理流体の気化が起こらない第1の排出到達圧力に処理容器内がなるまで処理容器内の流体を排出し、その後、第1の排出到達圧力より高く且つ処理容器内の処理流体の気化が起こらない第1の供給到達圧力に処理容器内がなるまで処理容器内に処理流体を供給する第1処理工程と、第1処理工程後に、超臨界状態の処理流体の気化が起こらない第2の排出到達圧力であって第1の排出到達圧力とは異なる第2の排出到達圧力に処理容器内がなるまで処理容器内の流体を排出し、その後、第2の排出到達圧力より高く且つ処理容器内の処理流体の気化が起こらない第2の供給到達圧力に処理容器内がなるまで処理容器内に処理流体を供給する第2処理工程と、を行う基板処理装置に関する。 Another aspect of the present invention is a substrate having a recess, which is a processing container in which a substrate filled with a liquid is carried into the recess, and a fluid supply unit for supplying a processing fluid in a supercritical state into the processing container. And, the fluid discharge part that discharges the fluid in the processing container, the fluid supply part, and the fluid discharge part are controlled, and the drying process of removing the liquid from the substrate in the processing container is performed using the processing fluid in the supercritical state. A control unit is provided, and the control unit controls the fluid supply unit and the fluid discharge unit, and the inside of the processing container reaches the first discharge ultimate pressure at which the supercritical processing fluid existing in the processing container does not vaporize. The fluid in the processing container is discharged until it becomes, and then the inside of the processing container is filled with the first supply ultimate pressure which is higher than the first discharge ultimate pressure and the processing fluid in the processing container does not vaporize. A second discharge that is different from the first discharge ultimate pressure, which is the first discharge ultimate pressure for supplying the treatment fluid and the second discharge ultimate pressure at which vaporization of the treatment fluid in the supercritical state does not occur after the first treatment step. The fluid in the processing container is discharged until the ultimate pressure reaches the inside of the processing container, and then the inside of the processing container reaches a second supply ultimate pressure higher than the second discharge ultimate pressure and the processing fluid in the processing container does not vaporize. The present invention relates to a substrate processing apparatus that performs a second processing step of supplying a processing fluid into the processing container until the above.

本発明の他の態様は、処理容器内において基板から液体を除去する乾燥処理を超臨界状態の処理流体を使って行う基板処理方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、基板処理方法は、処理容器内に存在する超臨界状態の処理流体の気化が起こらない第1の排出到達圧力に処理容器内がなるまで処理容器内の流体を排出し、その後、第1の排出到達圧力より高く且つ処理容器内の処理流体の気化が起こらない第1の供給到達圧力に処理容器内がなるまで処理容器内に処理流体を供給する第1処理工程と、第1処理工程後に、超臨界状態の処理流体の気化が起こらない第2の排出到達圧力であって第1の排出到達圧力とは異なる第2の排出到達圧力に処理容器内がなるまで処理容器内の流体を排出し、その後、第2の排出到達圧力より高く且つ処理容器内の処理流体の気化が起こらない第2の供給到達圧力に処理容器内がなるまで処理容器内に処理流体を供給する第2処理工程と、を有する記録媒体に関する。 Another aspect of the present invention is a computer-readable record recording a program for causing a computer to perform a substrate processing method in which a drying process for removing a liquid from a substrate in a processing container is performed using a processing fluid in a supercritical state. In the substrate processing method, which is a medium, the fluid in the processing container is discharged until the inside of the processing container reaches the first discharge reaching pressure at which the supercritical state processing fluid existing in the processing container does not vaporize, and then the fluid in the processing container is discharged. The first processing step of supplying the processing fluid into the processing container until the inside of the processing container reaches the first supply ultimate pressure, which is higher than the first discharge ultimate pressure and the vaporization of the processing fluid in the processing container does not occur, and the first After one treatment step, the inside of the processing container is filled with the second discharge ultimate pressure at which the vaporization of the processing fluid in the supercritical state does not occur, which is different from the first discharge ultimate pressure. Is discharged, and then the processing fluid is supplied into the processing container until the inside of the processing container reaches the second supply ultimate pressure, which is higher than the second discharge ultimate pressure and the vaporization of the processing fluid in the processing container does not occur. The present invention relates to a recording medium having a second processing step.

本発明によれば、超臨界状態の処理流体を用いて基板から液体を除去する乾燥処理を、処理流体の消費量を抑えつつ短時間で行うことができる。 According to the present invention, a drying process for removing a liquid from a substrate using a processing fluid in a supercritical state can be performed in a short time while suppressing the consumption of the processing fluid.

図1は、洗浄処理システムの全体構成を示す横断平面図である。FIG. 1 is a cross-sectional plan view showing the overall configuration of the cleaning treatment system. 図2は、超臨界処理装置の処理容器の一例を示す外観斜視図である。FIG. 2 is an external perspective view showing an example of a processing container of a supercritical processing apparatus. 図3は、超臨界処理装置のシステム全体の構成例を示す図である。FIG. 3 is a diagram showing a configuration example of the entire system of the supercritical processing apparatus. 図4は、制御部の機能構成を示すブロック図である。FIG. 4 is a block diagram showing a functional configuration of the control unit. 図5は、IPAの乾燥メカニズムを説明するための図であり、ウエハが有する凹部としてのパターンを簡略的に示した拡大断面図である。FIG. 5 is a diagram for explaining the drying mechanism of IPA, and is an enlarged cross-sectional view simply showing a pattern as a recess of the wafer. 図6は、第1の乾燥処理例における時間、処理容器内の圧力、及び処理流体(CO)の消費量の関係の一例を示す図である。FIG. 6 is a diagram showing an example of the relationship between the time in the first drying treatment example, the pressure in the treatment container, and the consumption amount of the treatment fluid (CO 2). 図7は、COの濃度、臨界温度及び臨界圧力の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the CO 2 concentration, the critical temperature, and the critical pressure. 図8は、COの濃度、臨界温度及び臨界圧力の関係を示すグラフである。FIG. 8 is a graph showing the relationship between the CO 2 concentration, the critical temperature, and the critical pressure. 図9は、COの濃度、臨界温度及び臨界圧力の関係を示すグラフである。FIG. 9 is a graph showing the relationship between the CO 2 concentration, the critical temperature, and the critical pressure. 図10は、第2の乾燥処理例における時間及び処理容器内の圧力を示す図である。FIG. 10 is a diagram showing the time and the pressure in the processing container in the second drying treatment example. 図11は、ウエハのパターン上に液盛りされたIPAの状態を説明するための断面図である。FIG. 11 is a cross-sectional view for explaining the state of the IPA liquid-filled on the wafer pattern. 図12は、第3の乾燥処理例における時間及び処理容器内の圧力を示す図である。FIG. 12 is a diagram showing the time and the pressure in the processing container in the third drying treatment example.

以下、図面を参照して本発明の一実施の形態について説明する。なお、本件明細書に添付する図面に示されている構成には、図示と理解のしやすさの便宜上、サイズ及び縮尺等が実物のそれらから変更されている部分が含まれうる。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. It should be noted that the configuration shown in the drawings attached to the present specification may include parts in which the size, scale, etc. are changed from those of the actual product for the convenience of illustration and comprehension.

[洗浄処理システムの構成]
図1は、洗浄処理システム1の全体構成を示す横断平面図である。
[Cleaning system configuration]
FIG. 1 is a cross-sectional plan view showing the overall configuration of the cleaning processing system 1.

洗浄処理システム1は、ウエハWに洗浄液を供給して洗浄処理を行う複数の洗浄装置2(図1に示す例では2台の洗浄装置2)と、洗浄処理後のウエハWに付着している乾燥防止用の液体(本実施形態ではIPA:イソプロピルアルコール)を、超臨界状態の処理流体(本実施形態ではCO:二酸化炭素)と接触させて除去する複数の超臨界処理装置3(図1に示す例では6台の超臨界処理装置3)と、を備える。 The cleaning treatment system 1 is attached to a plurality of cleaning devices 2 (two cleaning devices 2 in the example shown in FIG. 1) that supply a cleaning liquid to the wafer W to perform the cleaning treatment, and the wafer W after the cleaning treatment. A plurality of supercritical processing devices 3 (FIG. 1) for removing a liquid for preventing drying (IPA: isopropyl alcohol in this embodiment ) by contacting it with a processing fluid in a supercritical state (CO 2: carbon dioxide in this embodiment). In the example shown in the above, six supercritical processing devices 3) are provided.

この洗浄処理システム1では、載置部11にFOUP100が載置され、このFOUP100に格納されたウエハWが、搬入出部12及び受け渡し部13を介して洗浄処理部14及び超臨界処理部15に受け渡される。洗浄処理部14及び超臨界処理部15において、ウエハWは、まず洗浄処理部14に設けられた洗浄装置2に搬入されて洗浄処理を受け、その後、超臨界処理部15に設けられた超臨界処理装置3に搬入されてウエハW上からIPAを除去する乾燥処理を受ける。図1中、符合「121」はFOUP100と受け渡し部13との間でウエハWを搬送する第1の搬送機構を示し、符合「131」は搬入出部12と洗浄処理部14及び超臨界処理部15との間で搬送されるウエハWが一時的に載置されるバッファとしての役割を果たす受け渡し棚を示す。 In this cleaning processing system 1, the FOUP 100 is mounted on the mounting unit 11, and the wafer W stored in the FOUP 100 is transferred to the cleaning processing unit 14 and the supercritical processing unit 15 via the loading / unloading unit 12 and the delivery unit 13. Delivered. In the cleaning processing unit 14 and the supercritical processing unit 15, the wafer W is first carried into the cleaning device 2 provided in the cleaning processing unit 14 to undergo cleaning treatment, and then the supercritical processing unit 15 is provided. It is carried into the processing device 3 and undergoes a drying process for removing the IPA from the wafer W. In FIG. 1, the code "121" indicates a first transport mechanism for transporting the wafer W between the FOUP 100 and the transfer unit 13, and the code "131" indicates a loading / unloading unit 12, a cleaning processing unit 14, and a supercritical processing unit. A delivery shelf that serves as a buffer on which the wafer W transported to and from 15 is temporarily placed is shown.

受け渡し部13の開口部にはウエハ搬送路162が接続されており、ウエハ搬送路162に沿って洗浄処理部14及び超臨界処理部15が設けられている。洗浄処理部14には、当該ウエハ搬送路162を挟んで洗浄装置2が1台ずつ配置されており、合計2台の洗浄装置2が設置されている。一方、超臨界処理部15には、ウエハWからIPAを除去する乾燥処理を行う基板処理装置として機能する超臨界処理装置3が、ウエハ搬送路162を挟んで3台ずつ配置されており、合計6台の超臨界処理装置3が設置されている。ウエハ搬送路162には第2の搬送機構161が配置されており、第2の搬送機構161は、ウエハ搬送路162内を移動可能に設けられている。受け渡し棚131に載置されたウエハWは第2の搬送機構161によって受け取られ、第2の搬送機構161は、ウエハWを洗浄装置2及び超臨界処理装置3に搬入する。なお、洗浄装置2及び超臨界処理装置3の数及び配置態様は特に限定されず、単位時間当たりのウエハWの処理枚数及び各洗浄装置2及び各超臨界処理装置3の処理時間等に応じて、適切な数の洗浄装置2及び超臨界処理装置3が適切な態様で配置される。 A wafer transfer path 162 is connected to the opening of the transfer section 13, and a cleaning process section 14 and a supercritical process section 15 are provided along the wafer transfer path 162. In the cleaning processing unit 14, one cleaning device 2 is arranged so as to sandwich the wafer transfer path 162, and a total of two cleaning devices 2 are installed. On the other hand, in the supercritical processing unit 15, three supercritical processing devices 3 functioning as substrate processing devices for performing a drying process for removing IPA from the wafer W are arranged with the wafer transfer path 162 in between, for a total of three. Six supercritical processing devices 3 are installed. A second transfer mechanism 161 is arranged in the wafer transfer path 162, and the second transfer mechanism 161 is provided so as to be movable in the wafer transfer path 162. The wafer W placed on the delivery shelf 131 is received by the second transfer mechanism 161 and the second transfer mechanism 161 carries the wafer W into the cleaning device 2 and the supercritical processing device 3. The number and arrangement of the cleaning device 2 and the supercritical processing device 3 are not particularly limited, and depend on the number of wafers W processed per unit time, the processing time of each cleaning device 2 and each supercritical processing device 3, and the like. , An appropriate number of cleaning devices 2 and supercritical processing devices 3 are arranged in an appropriate manner.

洗浄装置2は、例えばスピン洗浄によってウエハWを1枚ずつ洗浄する枚葉式の装置として構成される。この場合、ウエハWを水平に保持した状態で鉛直軸線周りに回転させながら、洗浄用の薬液や薬液を洗い流すためのリンス液をウエハWの処理面に対して適切なタイミングで供給することで、ウエハWの洗浄処理を行うことができる。洗浄装置2で用いられる薬液及びリンス液は特に限定されない。例えば、アルカリ性の薬液であるSC1液(すなわちアンモニアと過酸化水素水の混合液)をウエハWに供給し、ウエハWからパーティクルや有機性の汚染物質を除去することができる。その後、リンス液である脱イオン水(DIW:DeIonized Water)をウエハWに供給し、SC1液をウエハWから洗い流すことができる。さらに、酸性の薬液である希フッ酸水溶液(DHF:Diluted HydroFluoric acid)をウエハWに供給して自然酸化膜を除去し、その後、DIWをウエハWに供給して希フッ酸水溶液をウエハWから洗い流すこともできる。 The cleaning device 2 is configured as a single-wafer type device that cleans the wafers W one by one by, for example, spin cleaning. In this case, while the wafer W is held horizontally and rotated around the vertical axis, the chemical solution for cleaning and the rinse solution for washing away the chemical solution are supplied to the processing surface of the wafer W at an appropriate timing. The wafer W can be cleaned. The chemical solution and rinse solution used in the cleaning device 2 are not particularly limited. For example, the SC1 solution (that is, a mixed solution of ammonia and hydrogen peroxide solution), which is an alkaline chemical solution, can be supplied to the wafer W to remove particles and organic contaminants from the wafer W. After that, deionized water (DIW: DeIonized Water) which is a rinsing liquid can be supplied to the wafer W, and the SC1 liquid can be washed away from the wafer W. Further, a diluted hydrofluoric acid (DHF), which is an acidic chemical solution, is supplied to the wafer W to remove the natural oxide film, and then DIW is supplied to the wafer W to supply the diluted hydrofluoric acid aqueous solution from the wafer W. It can also be washed away.

そして洗浄装置2は、薬液による洗浄処理を終えたら、ウエハWの回転を停止し、乾燥防止用の液体としてIPAをウエハWに供給し、ウエハWの処理面に残存するDIWをIPAと置換する。このとき、ウエハWには十分量のIPAが供給され、半導体のパターンが形成されたウエハWの表面はIPAが液盛りされた状態となり、ウエハWの表面にはIPAの液膜が形成される。ウエハWは、IPAが液盛りされた状態を維持しつつ、第2の搬送機構161によって洗浄装置2から搬出される。 Then, when the cleaning device 2 finishes the cleaning process with the chemical solution, the rotation of the wafer W is stopped, IPA is supplied to the wafer W as a liquid for preventing drying, and the DIW remaining on the processed surface of the wafer W is replaced with the IPA. .. At this time, a sufficient amount of IPA is supplied to the wafer W, the surface of the wafer W on which the semiconductor pattern is formed is in a state of being filled with IPA, and a liquid film of IPA is formed on the surface of the wafer W. .. The wafer W is carried out from the cleaning device 2 by the second transfer mechanism 161 while maintaining the state in which the IPA is filled with liquid.

このようにしてウエハWの表面に付与されたIPAは、ウエハWの乾燥を防ぐ役割を果たす。特に、洗浄装置2から超臨界処理装置3へのウエハWの搬送中におけるIPAの蒸発によってウエハWに所謂パターン倒れが生じてしまうことを防ぐため、洗浄装置2は、比較的大きな厚みを有するIPA膜がウエハWの表面に形成されるように、十分な量のIPAをウエハWに付与する。 The IPA thus applied to the surface of the wafer W plays a role of preventing the wafer W from drying. In particular, in order to prevent the so-called pattern collapse of the wafer W due to the evaporation of the IPA during the transfer of the wafer W from the cleaning device 2 to the supercritical processing device 3, the cleaning device 2 has a relatively large thickness. A sufficient amount of IPA is applied to the wafer W so that the film is formed on the surface of the wafer W.

洗浄装置2から搬出されたウエハWは、第2の搬送機構161によって、IPAが液盛りされた状態で超臨界処理装置3の処理容器内に搬入され、超臨界処理装置3においてIPAの乾燥処理が行われる。 The wafer W carried out from the cleaning device 2 is carried into the processing container of the supercritical processing device 3 in a state where the IPA is filled with liquid by the second transport mechanism 161 and is dried by the supercritical processing device 3. Is done.

[超臨界処理装置]
以下、超臨界処理装置3で行われる超臨界流体を用いた乾燥処理の詳細について説明する。まず、超臨界処理装置3においてウエハWが搬入される処理容器の構成例を説明し、その後、超臨界処理装置3のシステム全体の構成例を説明する。
[Supercritical processing equipment]
Hereinafter, the details of the drying treatment using the supercritical fluid performed by the supercritical processing apparatus 3 will be described. First, a configuration example of a processing container into which the wafer W is carried in the supercritical processing apparatus 3 will be described, and then a configuration example of the entire system of the supercritical processing apparatus 3 will be described.

図2は、超臨界処理装置3の処理容器301の一例を示す外観斜視図である。 FIG. 2 is an external perspective view showing an example of the processing container 301 of the supercritical processing apparatus 3.

処理容器301は、ウエハWの搬入出用の開口部312が形成された筐体状の容器本体311と、処理対象のウエハWを横向きに保持する保持板316と、この保持板316を支持するとともに、ウエハWを容器本体311内に搬入したとき開口部312を密閉する蓋部材315とを備える。 The processing container 301 supports a housing-shaped container body 311 having an opening 312 for loading and unloading the wafer W, a holding plate 316 for holding the wafer W to be processed sideways, and the holding plate 316. In addition, a lid member 315 that seals the opening 312 when the wafer W is carried into the container body 311 is provided.

容器本体311は、例えば直径300mmのウエハWを収容可能な処理空間が内部に形成された容器であり、その壁部には、供給ポート313及び排出ポート314が設けられている。供給ポート313及び排出ポート314は、それぞれ、処理容器301の上流側及び下流側に設けられる処理流体を流通させるための供給ラインに接続されている。なお、図2には1つの供給ポート313及び2つの排出ポート314が図示されているが、供給ポート313及び排出ポート314の数は特に限定されない。 The container body 311 is a container in which, for example, a processing space capable of accommodating a wafer W having a diameter of 300 mm is formed, and a supply port 313 and a discharge port 314 are provided on the wall portion thereof. The supply port 313 and the discharge port 314 are connected to supply lines provided on the upstream side and the downstream side of the processing container 301 for circulating the processing fluid, respectively. Although one supply port 313 and two discharge ports 314 are shown in FIG. 2, the number of supply ports 313 and discharge ports 314 is not particularly limited.

容器本体311内の一方の壁部には供給ポート313に連通する流体供給ヘッダー317が設けられ、容器本体311内の他方の壁部には排出ポート314に連通する流体排出ヘッダー318が設けられている。流体供給ヘッダー317には多数の開孔が設けられ、流体排出ヘッダー318にも多数の開孔が設けられており、流体供給ヘッダー317及び流体排出ヘッダー318は相互に対向するように設置されている。流体供給部として機能する流体供給ヘッダー317は、実質的に水平方向へ向けて処理流体を容器本体311内に供給する。ここでいう水平方向とは、重力が作用する鉛直方向と垂直な方向であって、通常は、保持板316に保持されたウエハWの平坦な表面が延在する方向と平行な方向である。処理容器301内の流体を排出する流体排出部として機能する流体排出ヘッダー318は、容器本体311内の流体を、容器本体311外に導いて排出する。流体排出ヘッダー318を介して容器本体311外に排出される流体には、流体供給ヘッダー317を介して容器本体311内に供給された処理流体の他に、ウエハWの表面から処理流体に溶け込んだIPAが含まれる。このように流体供給ヘッダー317の開孔から容器本体311内に処理流体が供給されることによって、また流体排出ヘッダー318の開孔を介して流体が容器本体311内から排出されることによって、容器本体311内には、ウエハWの表面と略平行に流動する処理流体の層流が形成される。 One wall in the container body 311 is provided with a fluid supply header 317 communicating with the supply port 313, and the other wall in the container body 311 is provided with a fluid discharge header 318 communicating with the discharge port 314. There is. The fluid supply header 317 is provided with a large number of holes, the fluid discharge header 318 is also provided with a large number of holes, and the fluid supply header 317 and the fluid discharge header 318 are installed so as to face each other. .. The fluid supply header 317, which functions as a fluid supply unit, supplies the processing fluid into the container body 311 in a substantially horizontal direction. The horizontal direction referred to here is a direction perpendicular to the vertical direction on which gravity acts, and is usually a direction parallel to the direction in which the flat surface of the wafer W held by the holding plate 316 extends. The fluid discharge header 318, which functions as a fluid discharge unit for discharging the fluid in the processing container 301, guides the fluid in the container body 311 to the outside of the container body 311 and discharges the fluid. The fluid discharged to the outside of the container body 311 via the fluid discharge header 318 was dissolved in the processing fluid from the surface of the wafer W in addition to the processing fluid supplied into the container body 311 via the fluid supply header 317. IPA is included. In this way, the processing fluid is supplied into the container body 311 through the opening of the fluid supply header 317, and the fluid is discharged from the container body 311 through the opening of the fluid discharge header 318. A laminar flow of the processing fluid that flows substantially parallel to the surface of the wafer W is formed in the main body 311.

容器本体311内への処理流体の供給時及び容器本体311からの流体の排出時にウエハWに加えられうる負荷を軽減する観点からは、流体供給ヘッダー317及び流体排出ヘッダー318は複数設けられることが好ましい。後述の図3に示す超臨界処理装置3では、処理流体を供給するための2つの供給ラインが処理容器301に接続されているが、図2では、理解を容易にするため1つの供給ラインに接続される1つの供給ポート313及び1つの流体供給ヘッダー317のみが示されている。 From the viewpoint of reducing the load that can be applied to the wafer W when the processing fluid is supplied into the container body 311 and when the fluid is discharged from the container body 311, a plurality of fluid supply headers 317 and fluid discharge headers 318 may be provided. preferable. In the supercritical processing apparatus 3 shown in FIG. 3 described later, two supply lines for supplying the processing fluid are connected to the processing container 301, but in FIG. 2, one supply line is used for easy understanding. Only one supply port 313 and one fluid supply header 317 connected are shown.

処理容器301は、さらに、不図示の押圧機構を備える。この押圧機構は、処理空間内に供給された超臨界状態の処理流体によってもたらされる内圧に抗して、容器本体311に向けて蓋部材315を押し付け、処理空間を密閉する役割を果たす。また、処理空間内に供給された処理流体が超臨界状態の温度を保てるように、容器本体311の表面に断熱材やテープヒータなどが設けられてもよい。 The processing container 301 further includes a pressing mechanism (not shown). This pressing mechanism plays a role of sealing the processing space by pressing the lid member 315 toward the container body 311 against the internal pressure generated by the processing fluid in the supercritical state supplied into the processing space. Further, a heat insulating material, a tape heater, or the like may be provided on the surface of the container body 311 so that the processing fluid supplied into the processing space can maintain the temperature in the supercritical state.

図3は、超臨界処理装置3のシステム全体の構成例を示す図である。 FIG. 3 is a diagram showing a configuration example of the entire system of the supercritical processing apparatus 3.

処理容器301よりも上流側には流体供給タンク51が設けられており、超臨界処理装置3において処理流体を流通させるための供給ラインには、流体供給タンク51から処理流体が供給される。流体供給タンク51と処理容器301との間には、上流側から下流側に向かって、流通オンオフバルブ52a、オリフィス55a、フィルタ57及び流通オンオフバルブ52bが順次設けられる。なお、ここでいう上流側及び下流側の用語は、供給ラインにおける処理流体の流れ方向を基準とする。 A fluid supply tank 51 is provided on the upstream side of the processing container 301, and the processing fluid is supplied from the fluid supply tank 51 to the supply line for circulating the processing fluid in the supercritical processing apparatus 3. A distribution on / off valve 52a, an orifice 55a, a filter 57, and a distribution on / off valve 52b are sequentially provided between the fluid supply tank 51 and the processing container 301 from the upstream side to the downstream side. The terms of the upstream side and the downstream side referred to here are based on the flow direction of the processing fluid in the supply line.

流通オンオフバルブ52aは、流体供給タンク51からの処理流体の供給のオン及びオフを調整するバルブであり、開状態では下流側の供給ラインに処理流体を流し、閉状態では下流側の供給ラインに処理流体を流さない。流通オンオフバルブ52aが開状態にある場合、例えば16〜20MPa(メガパスカル)程度の高圧の処理流体が、流体供給タンク51から流通オンオフバルブ52aを介して供給ラインに供給される。オリフィス55aは、流体供給タンク51から供給される処理流体の圧力を調整する役割を果たし、オリフィス55aよりも下流側の供給ラインには、例えば16MPa程度に圧力が調整された処理流体を流通させることができる。フィルタ57は、オリフィス55aから送られてくる処理流体に含まれる異物を取り除き、クリーンな処理流体を下流側に流す。 The flow on / off valve 52a is a valve that adjusts the on / off of the supply of the processing fluid from the fluid supply tank 51. Do not allow the processing fluid to flow. When the distribution on / off valve 52a is in the open state, for example, a high-pressure processing fluid of about 16 to 20 MPa (megapascal) is supplied from the fluid supply tank 51 to the supply line via the distribution on / off valve 52a. The orifice 55a plays a role of adjusting the pressure of the processing fluid supplied from the fluid supply tank 51, and the processing fluid whose pressure is adjusted to, for example, about 16 MPa is circulated in the supply line on the downstream side of the orifice 55a. Can be done. The filter 57 removes foreign matter contained in the processing fluid sent from the orifice 55a, and causes a clean processing fluid to flow downstream.

流通オンオフバルブ52bは、処理容器301への処理流体の供給のオン及びオフを調整するバルブである。流通オンオフバルブ52bから処理容器301に延在する供給ラインは、上述の図2に示す供給ポート313に接続し、流通オンオフバルブ52bからの処理流体は、図2に示す供給ポート313及び流体供給ヘッダー317を介して処理容器301の容器本体311内に供給される。 The distribution on / off valve 52b is a valve that adjusts the on / off of the supply of the processing fluid to the processing container 301. The supply line extending from the distribution on / off valve 52b to the processing container 301 is connected to the supply port 313 shown in FIG. 2, and the processing fluid from the distribution on / off valve 52b is the supply port 313 and the fluid supply header shown in FIG. It is supplied into the container body 311 of the processing container 301 via 317.

なお図3に示す超臨界処理装置3では、フィルタ57と流通オンオフバルブ52aとの間において、供給ラインが分岐している。すなわちフィルタ57と流通オンオフバルブ52bとの間の供給ラインからは、流通オンオフバルブ52c及びオリフィス55bを介して処理容器301に接続する供給ライン、流通オンオフバルブ52d及びチェックバルブ58aを介してパージ装置62に接続する供給ライン、及び流通オンオフバルブ52e及びオリフィス55cを介して外部に接続する供給ラインが分岐して延在する。 In the supercritical processing apparatus 3 shown in FIG. 3, the supply line is branched between the filter 57 and the distribution on / off valve 52a. That is, from the supply line between the filter 57 and the distribution on / off valve 52b, the purging device 62 is connected to the processing container 301 via the distribution on / off valve 52c and the orifice 55b, the distribution on / off valve 52d, and the check valve 58a. The supply line connected to the outside and the supply line connected to the outside via the distribution on / off valve 52e and the orifice 55c are branched and extended.

流通オンオフバルブ52c及びオリフィス55bを介して処理容器301に接続する供給ラインは、処理容器301への処理流体の供給のための補助的な流路である。例えば処理容器301への処理流体の供給開始当初等のように、比較的多量の処理流体を処理容器301に供給する際に流通オンオフバルブ52cが開状態に調整され、オリフィス55bによって圧力が調整された処理流体を処理容器301に供給することができる。 The supply line connected to the processing container 301 via the flow on / off valve 52c and the orifice 55b is an auxiliary flow path for supplying the processing fluid to the processing container 301. For example, when a relatively large amount of processing fluid is supplied to the processing container 301, the distribution on / off valve 52c is adjusted to the open state, and the pressure is adjusted by the orifice 55b, as in the initial supply of the processing fluid to the processing container 301. The processed fluid can be supplied to the processing container 301.

流通オンオフバルブ52d及びチェックバルブ58aを介してパージ装置62に接続する供給ラインは、窒素等の不活性ガスを処理容器301に供給するための流路であり、流体供給タンク51から処理容器301に対する処理流体の供給が停止している間に活用される。例えば処理容器301を不活性ガスで満たして清浄な状態を保つ場合には、流通オンオフバルブ52d及び流通オンオフバルブ52bが開状態に調整され、パージ装置62から供給ラインに送られた不活性ガスはチェックバルブ58a、流通オンオフバルブ52d及び流通オンオフバルブ52bを介して処理容器301に供給される。 The supply line connected to the purge device 62 via the flow on / off valve 52d and the check valve 58a is a flow path for supplying an inert gas such as nitrogen to the processing container 301, and is a flow path from the fluid supply tank 51 to the processing container 301. It is utilized while the supply of processing fluid is stopped. For example, when the processing container 301 is filled with an inert gas to maintain a clean state, the flow on / off valve 52d and the flow on / off valve 52b are adjusted to the open state, and the inert gas sent from the purge device 62 to the supply line is released. It is supplied to the processing container 301 via the check valve 58a, the circulation on / off valve 52d, and the circulation on / off valve 52b.

流通オンオフバルブ52e及びオリフィス55cを介して外部に接続する供給ラインは、供給ラインから処理流体を排出するための流路である。例えば超臨界処理装置3の電源オフ時において、流通オンオフバルブ52aと流通オンオフバルブ52bとの間の供給ライン内に残存する処理流体を外部に排出する際には、流通オンオフバルブ52eが開状態に調整され、流通オンオフバルブ52aと流通オンオフバルブ52bとの間の供給ラインが外部に連通される。 The supply line connected to the outside via the flow on / off valve 52e and the orifice 55c is a flow path for discharging the processing fluid from the supply line. For example, when the power of the supercritical processing device 3 is turned off, the distribution on / off valve 52e is opened when the processing fluid remaining in the supply line between the distribution on / off valve 52a and the distribution on / off valve 52b is discharged to the outside. Adjusted, the supply line between the distribution on / off valve 52a and the distribution on / off valve 52b is communicated to the outside.

処理容器301よりも下流側には、流通オンオフバルブ52f、排気調整バルブ59、濃度計測センサ60及び流通オンオフバルブ52gが、上流側から下流側に向かって順次設けられている。 A distribution on / off valve 52f, an exhaust adjustment valve 59, a concentration measurement sensor 60, and a distribution on / off valve 52g are sequentially provided on the downstream side of the processing container 301 from the upstream side to the downstream side.

流通オンオフバルブ52fは、処理容器301からの処理流体の排出のオン及びオフを調整するバルブである。処理容器301から処理流体を排出する場合には流通オンオフバルブ52fは開状態に調整され、処理容器301から処理流体を排出しない場合には流通オンオフバルブ52fは閉状態に調整される。なお処理容器301と流通オンオフバルブ52fとの間に延在する供給ラインは、図2に示す排出ポート314に接続されている。処理容器301の容器本体311内の流体は、図2に示す流体排出ヘッダー318及び排出ポート314を介して、流通オンオフバルブ52fに向かって送られる。 The distribution on / off valve 52f is a valve that adjusts the on / off of the discharge of the processing fluid from the processing container 301. The distribution on / off valve 52f is adjusted to the open state when the processing fluid is discharged from the processing container 301, and the distribution on / off valve 52f is adjusted to the closed state when the processing fluid is not discharged from the processing container 301. The supply line extending between the processing container 301 and the distribution on / off valve 52f is connected to the discharge port 314 shown in FIG. The fluid in the container body 311 of the processing container 301 is sent toward the distribution on / off valve 52f via the fluid discharge header 318 and the discharge port 314 shown in FIG.

排気調整バルブ59は、処理容器301からの流体の排出量を調整するバルブであり、例えば背圧弁によって構成することが可能である。排気調整バルブ59の開度は、処理容器301からの流体の所望の排出量に応じて、制御部4の制御下で適応的に調整される。本実施形態では後述のように、処理容器301内の流体の圧力が予め定められた圧力になるまで、処理容器301から流体が排出される処理が行われる。そのため排気調整バルブ59は、処理容器301内の流体の圧力が予め定められた圧力に達した際に、開状態から閉状態に移行するように開度を調整して処理容器301からの流体の排出を止めることができる。 The exhaust adjustment valve 59 is a valve that adjusts the amount of fluid discharged from the processing container 301, and can be configured by, for example, a back pressure valve. The opening degree of the exhaust adjustment valve 59 is adaptively adjusted under the control of the control unit 4 according to the desired amount of fluid discharged from the processing container 301. In the present embodiment, as described later, the process of discharging the fluid from the processing container 301 is performed until the pressure of the fluid in the processing container 301 reaches a predetermined pressure. Therefore, the exhaust adjustment valve 59 adjusts the opening degree so as to shift from the open state to the closed state when the pressure of the fluid in the processing container 301 reaches a predetermined pressure, and adjusts the opening degree of the fluid from the processing container 301. Emissions can be stopped.

濃度計測センサ60は、排気調整バルブ59から送られてくる流体に含まれるIPA濃度を計測するセンサである。 The concentration measurement sensor 60 is a sensor that measures the IPA concentration contained in the fluid sent from the exhaust adjustment valve 59.

流通オンオフバルブ52gは、処理容器301からの流体の外部への排出のオン及びオフを調整するバルブである。流体を外部に排出する場合には流通オンオフバルブ52gは開状態に調整され、流体を排出しない場合には流通オンオフバルブ52gは閉状態に調整される。なお流通オンオフバルブ52gの下流側には、排気調整ニードルバルブ61a及びチェックバルブ58bが設けられている。排気調整ニードルバルブ61aは、流通オンオフバルブ52gを介して送られてくる流体の外部への排出量を調整するバルブであり、排気調整ニードルバルブ61aの開度は流体の所望の排出量に応じて調整される。チェックバルブ58bは、排出される流体の逆流を防ぐ弁であり、流体を確実に外部に排出する役割を果たす。 The distribution on / off valve 52g is a valve that adjusts the on / off of the discharge of the fluid from the processing container 301 to the outside. When the fluid is discharged to the outside, the flow on / off valve 52 g is adjusted to the open state, and when the fluid is not discharged, the flow on / off valve 52 g is adjusted to the closed state. An exhaust adjustment needle valve 61a and a check valve 58b are provided on the downstream side of the distribution on / off valve 52g. The exhaust adjustment needle valve 61a is a valve that adjusts the amount of fluid discharged to the outside via the distribution on / off valve 52g, and the opening degree of the exhaust adjustment needle valve 61a depends on the desired amount of fluid discharged. It will be adjusted. The check valve 58b is a valve that prevents the backflow of the discharged fluid, and plays a role of reliably discharging the fluid to the outside.

なお図3に示す超臨界処理装置3では、濃度計測センサ60と流通オンオフバルブ52gとの間において、供給ラインが分岐している。すなわち濃度計測センサ60と流通オンオフバルブ52gとの間の供給ラインからは、流通オンオフバルブ52hを介して外部に接続する供給ライン、流通オンオフバルブ52iを介して外部に接続する供給ライン、及び流通オンオフバルブ52jを介して外部に接続する供給ラインが分岐して延在する。 In the supercritical processing device 3 shown in FIG. 3, the supply line is branched between the concentration measurement sensor 60 and the distribution on / off valve 52 g. That is, from the supply line between the concentration measurement sensor 60 and the distribution on / off valve 52g, a supply line connected to the outside via the distribution on / off valve 52h, a supply line connected to the outside via the distribution on / off valve 52i, and a distribution on / off. The supply line connected to the outside via the valve 52j is branched and extends.

流通オンオフバルブ52h及び流通オンオフバルブ52iは、流通オンオフバルブ52gと同様に、流体の外部への排出のオン及びオフを調整するバルブである。流通オンオフバルブ52hの下流側には、排気調整ニードルバルブ61b及びチェックバルブ58cが設けられ、流体の排出量の調整及び流体の逆流防止が行われる。流通オンオフバルブ52iの下流側にはチェックバルブ58dが設けられ、流体の逆流が防止されている。流通オンオフバルブ52jも流体の外部への排出のオン及びオフを調整するバルブであり、流通オンオフバルブ52jの下流側にはオリフィス55dが設けられ、流通オンオフバルブ52jからオリフィス55dを介して外部に流体を排出することができる。ただし、図3に示す例では、流通オンオフバルブ52g、流通オンオフバルブ52h及び流通オンオフバルブ52iを介して外部に送られる流体の行き先と、流通オンオフバルブ52jを介して外部に送られる流体の行き先とは異なっている。したがって流体を、例えば流通オンオフバルブ52g、流通オンオフバルブ52h及び流通オンオフバルブ52iを介して図示しない回収装置に送る一方で、流通オンオフバルブ52jを介して大気に放出することも可能である。 The distribution on / off valve 52h and the distribution on / off valve 52i are valves that adjust the on / off of the discharge of the fluid to the outside, similarly to the distribution on / off valve 52g. An exhaust adjustment needle valve 61b and a check valve 58c are provided on the downstream side of the distribution on / off valve 52h to adjust the amount of fluid discharged and prevent the backflow of the fluid. A check valve 58d is provided on the downstream side of the distribution on / off valve 52i to prevent backflow of fluid. The flow on / off valve 52j is also a valve that adjusts the on / off of the discharge of the fluid to the outside. An orifice 55d is provided on the downstream side of the flow on / off valve 52j, and the fluid flows from the flow on / off valve 52j to the outside via the orifice 55d. Can be discharged. However, in the example shown in FIG. 3, the destination of the fluid sent to the outside via the distribution on-off valve 52g, the distribution on-off valve 52h, and the distribution on-off valve 52i, and the destination of the fluid sent to the outside via the distribution on-off valve 52j. Is different. Therefore, it is possible to send the fluid to a recovery device (not shown) via, for example, the flow on / off valve 52 g, the flow on / off valve 52h, and the flow on / off valve 52i, while discharging the fluid to the atmosphere through the flow on / off valve 52j.

処理容器301から流体を排出する場合、流通オンオフバルブ52g、流通オンオフバルブ52h、流通オンオフバルブ52i及び流通オンオフバルブ52jのうちの1以上のバルブが開状態に調整される。特に超臨界処理装置3の電源オフ時には、流通オンオフバルブ52jを開状態に調整して、濃度計測センサ60と流通オンオフバルブ52gとの間の供給ラインに残存する流体を外部に排出するようにしてもよい。 When the fluid is discharged from the processing container 301, one or more of the flow on / off valve 52 g, the flow on / off valve 52h, the flow on / off valve 52i, and the flow on / off valve 52j are adjusted to the open state. In particular, when the power of the supercritical processing device 3 is turned off, the distribution on / off valve 52j is adjusted to the open state so that the fluid remaining in the supply line between the concentration measurement sensor 60 and the distribution on / off valve 52g is discharged to the outside. May be good.

なお、上述の供給ラインの様々な箇所に流体の圧力を検出する圧力センサ及び流体の温度を検出する温度センサが設置される。図3に示す例では、流通オンオフバルブ52aとオリフィス55aとの間に圧力センサ53a及び温度センサ54aが設けられ、オリフィス55aとフィルタ57との間に圧力センサ53b及び温度センサ54bが設けられ、フィルタ57と流通オンオフバルブ52bとの間に圧力センサ53cが設けられ、流通オンオフバルブ52bと処理容器301との間に温度センサ54cが設けられ、オリフィス55bと処理容器301との間に温度センサ54dが設けられている。また処理容器301と流通オンオフバルブ52fとの間に圧力センサ53d及び温度センサ54fが設けられ、濃度計測センサ60と流通オンオフバルブ52gとの間に圧力センサ53e及び温度センサ54gが設けられている。さらに、処理容器301の内部である容器本体311内の流体の温度を検出するための温度センサ54eが設けられている。 A pressure sensor for detecting the pressure of the fluid and a temperature sensor for detecting the temperature of the fluid are installed at various points on the above-mentioned supply line. In the example shown in FIG. 3, a pressure sensor 53a and a temperature sensor 54a are provided between the flow on / off valve 52a and the orifice 55a, and a pressure sensor 53b and a temperature sensor 54b are provided between the orifice 55a and the filter 57. A pressure sensor 53c is provided between the flow on / off valve 52b and the flow on / off valve 52b, a temperature sensor 54c is provided between the flow on / off valve 52b and the processing container 301, and a temperature sensor 54d is provided between the orifice 55b and the processing container 301. It is provided. Further, a pressure sensor 53d and a temperature sensor 54f are provided between the processing container 301 and the distribution on / off valve 52f, and a pressure sensor 53e and a temperature sensor 54g are provided between the concentration measurement sensor 60 and the distribution on / off valve 52g. Further, a temperature sensor 54e for detecting the temperature of the fluid in the container body 311 inside the processing container 301 is provided.

また、超臨界処理装置3において処理流体が流れる任意の箇所にヒータHが設けられる。図3には、処理容器301よりも上流側の供給ライン(すなわち流通オンオフバルブ52aとオリフィス55aの間、オリフィス55aとフィルタ57の間、フィルタ57と流通オンオフバルブ52bの間、及び流通オンオフバルブ52bと処理容器301の間)においてヒータHが図示されているが、処理容器301及び処理容器301よりも下流側の供給ラインを含む他の箇所にヒータHが設けられていてもよい。したがって、流体供給タンク51から供給される処理流体が外部に排出されるまでの全流路においてヒータHが設けられてもよい。また特に、処理容器301に供給する処理流体の温度を調整する観点からは、処理容器301よりも上流側を流れる処理流体の温度を調整することができる位置にヒータHが設けられていることが好ましい。 Further, the heater H is provided at an arbitrary place where the processing fluid flows in the supercritical processing apparatus 3. In FIG. 3, the supply line on the upstream side of the processing container 301 (that is, between the flow on / off valve 52a and the orifice 55a, between the orifice 55a and the filter 57, between the filter 57 and the flow on / off valve 52b, and the flow on / off valve 52b). The heater H is shown between the processing container 301 and the processing container 301), but the heater H may be provided at another location including the processing container 301 and the supply line on the downstream side of the processing container 301. Therefore, the heater H may be provided in all the flow paths until the processing fluid supplied from the fluid supply tank 51 is discharged to the outside. Further, in particular, from the viewpoint of adjusting the temperature of the processing fluid supplied to the processing container 301, the heater H is provided at a position where the temperature of the processing fluid flowing upstream of the processing container 301 can be adjusted. preferable.

さらに、オリフィス55aとフィルタ57の間には安全バルブ56aが設けられ、処理容器301と流通オンオフバルブ52fとの間には安全バルブ56bが設けられ、濃度計測センサ60と流通オンオフバルブ52gの間には安全バルブ56cが設けられている。これらの安全バルブ56a〜56cは、供給ライン内の圧力が過大になった場合等の異常時において供給ラインを外部に連通し、供給ライン内の流体を緊急的に外部に排出する役割を果たす。 Further, a safety valve 56a is provided between the orifice 55a and the filter 57, a safety valve 56b is provided between the processing container 301 and the distribution on / off valve 52f, and a safety valve 56b is provided between the concentration measurement sensor 60 and the distribution on / off valve 52g. Is provided with a safety valve 56c. These safety valves 56a to 56c play a role of communicating the supply line to the outside and urgently discharging the fluid in the supply line to the outside in the event of an abnormality such as when the pressure in the supply line becomes excessive.

図4は、制御部4の機能構成を示すブロック図である。制御部4は、図3に示す各種要素から計測信号を受信し、また図3に示す各種要素に制御指示信号を送信する。例えば、制御部4は、圧力センサ53a〜53e、温度センサ54a〜54g及び濃度計測センサ60の計測結果を受信する。また制御部4は、流通オンオフバルブ52a〜52j、排気調整バルブ59及び排気調整ニードルバルブ61a〜61bに制御指示信号を送信する。なお制御部4が送受信可能な信号は特に限定されない。例えば、安全バルブ56a〜56cが制御部4からの制御指示信号に基づいて開閉可能な場合には、制御部4は、必要に応じて安全バルブ56a〜56cに制御指示信号を送信する。ただし安全バルブ56a〜56cの開閉駆動方式が信号制御によらない場合には、制御部4は安全バルブ56a〜56cに制御指示信号を送信しない。 FIG. 4 is a block diagram showing a functional configuration of the control unit 4. The control unit 4 receives measurement signals from various elements shown in FIG. 3 and transmits control instruction signals to various elements shown in FIG. For example, the control unit 4 receives the measurement results of the pressure sensors 53a to 53e, the temperature sensors 54a to 54g, and the concentration measurement sensor 60. Further, the control unit 4 transmits a control instruction signal to the distribution on / off valves 52a to 52j, the exhaust adjustment valve 59, and the exhaust adjustment needle valves 61a to 61b. The signals that can be transmitted and received by the control unit 4 are not particularly limited. For example, when the safety valves 56a to 56c can be opened and closed based on the control instruction signal from the control unit 4, the control unit 4 transmits the control instruction signal to the safety valves 56a to 56c as needed. However, when the opening / closing drive method of the safety valves 56a to 56c does not depend on signal control, the control unit 4 does not transmit the control instruction signal to the safety valves 56a to 56c.

[超臨界乾燥処理]
次に、超臨界状態の処理流体を用いたIPAの乾燥メカニズムについて説明する。
[Supercritical drying treatment]
Next, the drying mechanism of IPA using the processing fluid in the supercritical state will be described.

図5は、IPAの乾燥メカニズムを説明するための図であり、ウエハWが有する凹部としてのパターンPを簡略的に示した拡大断面図である。 FIG. 5 is a diagram for explaining the drying mechanism of the IPA, and is an enlarged cross-sectional view simply showing a pattern P as a recess of the wafer W.

超臨界処理装置3において超臨界状態の処理流体Rが処理容器301の容器本体311内に導入された当初は、図5(a)に示すように、パターンP間にはIPAのみが充填されている。 When the processing fluid R in the supercritical state was introduced into the container body 311 of the processing container 301 in the supercritical processing apparatus 3, only IPA was filled between the patterns P as shown in FIG. 5A. There is.

パターンP間のIPAは、超臨界状態の処理流体Rと接触することで、徐々に処理流体Rに溶解し、図5(b)に示すように徐々に処理流体Rと置き換わる。このとき、パターンP間には、IPA及び処理流体Rの他に、IPAと処理流体Rとが混合した状態の混合流体Mが存在する。 The IPA between the patterns P gradually dissolves in the processing fluid R by coming into contact with the processing fluid R in the supercritical state, and gradually replaces the processing fluid R as shown in FIG. 5 (b). At this time, in addition to the IPA and the processing fluid R, a mixed fluid M in a state in which the IPA and the processing fluid R are mixed exists between the patterns P.

そして、パターンP間でIPAから処理流体Rへの置換が進行するに従って、パターンP間からはIPAが除去され、最終的には図5(c)に示すように、超臨界状態の処理流体RのみによってパターンP間が満たされる。 Then, as the replacement of the IPA with the processing fluid R progresses between the patterns P, the IPA is removed from between the patterns P, and finally, as shown in FIG. 5 (c), the processing fluid R in the supercritical state. Only the pattern P is filled.

パターンP間からIPAが除去された後に、容器本体311内の圧力を大気圧まで下げることによって、図5(d)に示すように、処理流体Rは超臨界状態から気体状態に変化し、パターンP間は気体のみによって占められる。このようにしてパターンP間のIPAは除去され、ウエハWの乾燥処理は完了する。 After the IPA is removed from between the patterns P, the pressure in the container body 311 is lowered to the atmospheric pressure, so that the processing fluid R changes from the supercritical state to the gas state as shown in FIG. 5 (d), and the pattern Between P is occupied only by gas. In this way, the IPA between the patterns P is removed, and the drying process of the wafer W is completed.

上述の図5(a)〜(d)に示すメカニズムを背景に、本実施形態の超臨界処理装置3は、以下のようにしてIPAの乾燥処理を行う。 Against the background of the mechanisms shown in FIGS. 5A to 5D described above, the supercritical processing apparatus 3 of the present embodiment performs the IPA drying treatment as follows.

すなわち超臨界処理装置3によって行われる基板処理方法は、パターンPに乾燥防止用のIPAが液盛りされたウエハWを処理容器301の容器本体311内に搬入する工程と、流体供給部(すなわち流体供給タンク51、流通オンオフバルブ52a、流通オンオフバルブ52b及び流体供給ヘッダー317)を介して容器本体311内に超臨界状態の処理流体を供給する工程と、容器本体311内において、ウエハWからIPAを除去する乾燥処理を、超臨界状態の処理流体を使って行う工程とを備える。 That is, the substrate processing method performed by the supercritical processing apparatus 3 includes a step of carrying the wafer W in which the pattern P is filled with IPA for preventing drying into the container body 311 of the processing container 301, and a fluid supply unit (that is, a fluid). The process of supplying the processing fluid in the supercritical state into the container body 311 via the supply tank 51, the flow on / off valve 52a, the flow on / off valve 52b, and the fluid supply header 317), and the IPA from the wafer W in the container body 311. The drying process for removing is provided with a step of performing the drying process using a processing fluid in a supercritical state.

特に、超臨界状態の処理流体を使ったIPAの乾燥処理(すなわち超臨界乾燥処理)では、パターンP間で気液分離を生じさせない高い圧力が維持されるように、処理容器301の容器本体311に対して処理流体の供給及び排出が行われる。より具体的には、容器本体311内から処理流体を排出することで容器本体311内の圧力を降下させる降圧工程と、容器本体311内へ処理流体を供給することで容器本体311内の圧力を上昇させる昇圧工程とを、交互に複数回繰り返すことで、ウエハWのパターンP間のIPAを徐々に除去する。昇圧工程では、パターンP間が、処理流体及びIPAの2成分系の臨界圧力の最大値よりも高い圧力となるように、容器本体311内に処理流体が供給される。一方、降圧工程では、降圧工程及び昇圧工程が繰り返し行われてパターンP間の混合流体におけるIPA濃度の低減及び処理流体濃度の増大が進行するのに伴って、パターンP間が徐々に低い圧力になるように、容器本体311から流体が排出される。ただし、この降圧工程においても、パターンP間の圧力は、パターンP間の流体が非気体状態を保つ圧力に保持される。 In particular, in the drying treatment of IPA using the processing fluid in the supercritical state (that is, the supercritical drying treatment), the container body 311 of the processing container 301 is maintained so as to maintain a high pressure that does not cause gas-liquid separation between the patterns P. The processing fluid is supplied and discharged. More specifically, a step of lowering the pressure in the container body 311 by discharging the processing fluid from the inside of the container body 311 and a pressure reduction step in the container body 311 by supplying the processing fluid into the container body 311. The IPA between the patterns P of the wafer W is gradually removed by alternately repeating the step of raising the pressure a plurality of times. In the boosting step, the processing fluid is supplied into the container body 311 so that the pressure between the patterns P is higher than the maximum value of the critical pressure of the two-component system of the processing fluid and the IPA. On the other hand, in the step-down step, as the step-down step and the step-up step are repeated to reduce the IPA concentration in the mixed fluid between the patterns P and increase the processing fluid concentration, the pressure between the patterns P gradually decreases. The fluid is discharged from the container body 311 so as to be. However, even in this step-down step, the pressure between the patterns P is maintained at a pressure at which the fluid between the patterns P maintains a non-gas state.

以下に、代表的な乾燥処理例を示す。以下の各乾燥処理例では、処理流体としてCOが使用されている。 A typical example of drying treatment is shown below. In each of the following drying treatment examples, CO 2 is used as the treatment fluid.

[第1の乾燥処理例]
図6は、第1の乾燥処理例における時間、処理容器301内(すなわち容器本体311内)の圧力、及び処理流体(CO)の消費量の関係の一例を示す図である。図6に示す曲線Aは、第1の乾燥処理例における時間(横軸;sec(秒))及び処理容器301内の圧力(縦軸;MPa)の関係を表す。図6に示す曲線Bは、第1の乾燥処理例における時間(横軸;sec(秒))及び処理流体(CO)の消費量(縦軸;kg(キログラム))の関係を表す。
[First example of drying treatment]
FIG. 6 is a diagram showing an example of the relationship between the time in the first drying treatment example, the pressure in the treatment container 301 (that is, in the container body 311), and the consumption amount of the treatment fluid (CO 2). The curve A shown in FIG. 6 represents the relationship between the time (horizontal axis; sec (seconds)) and the pressure in the processing container 301 (vertical axis; MPa) in the first drying treatment example. The curve B shown in FIG. 6 shows the relationship between the time (horizontal axis; sec (seconds)) and the consumption amount of the processing fluid (CO 2 ) (vertical axis; kg (kilograms)) in the first drying treatment example.

本乾燥処理例では、まず流体導入工程T1が行われ、流体供給タンク51から処理容器301内(すなわち容器本体311内)にCOが供給される。 In this drying treatment example, first, the fluid introduction step T1 is performed, and CO 2 is supplied from the fluid supply tank 51 into the processing container 301 (that is, in the container body 311).

この流体導入工程T1において、制御部4は、図3に示す流通オンオフバルブ52a、流通オンオフバルブ52b、流通オンオフバルブ52c及び流通オンオフバルブ52fを開状態とし、流通オンオフバルブ52d及び流通オンオフバルブ52eは閉状態とするように制御を行う。また制御部4は、流通オンオフバルブ52g〜52iを開状態とし、流通オンオフバルブ52jは閉状態とするように制御を行う。また制御部4は、排気調整ニードルバルブ61a〜61bを開状態とするように制御を行う。また制御部4は排気調整バルブ59の開度を調整し、処理容器301内のCOが超臨界状態を維持できるように、処理容器301内の圧力が所望の圧力(図6に示す例では15MPa)に調整されるようにする。 In the fluid introduction step T1, the control unit 4 opens the distribution on / off valve 52a, the distribution on / off valve 52b, the distribution on / off valve 52c, and the distribution on / off valve 52f shown in FIG. Control is performed so that the valve is closed. Further, the control unit 4 controls so that the distribution on / off valves 52g to 52i are in the open state and the distribution on / off valves 52j are in the closed state. Further, the control unit 4 controls the exhaust adjustment needle valves 61a to 61b so as to be in the open state. Further, the control unit 4 adjusts the opening degree of the exhaust adjustment valve 59, and the pressure in the processing container 301 is a desired pressure (in the example shown in FIG. 6) so that the CO 2 in the processing container 301 can maintain the supercritical state. It is adjusted to 15 MPa).

図6に示す流体導入工程T1において、処理容器301内では、ウエハW上のIPAが超臨界状態のCOに溶け込み始める。超臨界状態のCOとウエハW上のIPAが混ざり始めると、CO及びIPAの混合流体ではIPA及びCOが局所的に様々な比率となり、COの臨界圧力も局所的に様々な値となりうる。一方、流体導入工程T1では、処理容器301内へのCOの供給圧力がCOの全ての臨界圧力よりも高い圧力(すなわち臨界圧力の最大値よりも高い圧力)に調整される。そのため、混合流体のIPA及びCOの比率に関わらず、処理容器301内のCOは超臨界状態又は液体状態となり、気体状態にはならない。 In the fluid introduction step T1 shown in FIG. 6, the IPA on the wafer W begins to dissolve in CO 2 in the supercritical state in the processing container 301. When CO 2 in the supercritical state and IPA on the wafer W start to be mixed, IPA and CO 2 are locally in various ratios in the mixed fluid of CO 2 and IPA, and the critical pressure of CO 2 is also locally in various values. Can be. On the other hand, in the fluid introduction step T1, the supply pressure of CO 2 into the processing container 301 is adjusted to a pressure higher than all the critical pressures of CO 2 (that is, a pressure higher than the maximum value of the critical pressure). Therefore, regardless of the ratio of IPA and CO 2 mixed fluid, CO 2 in the processing chamber 301 is brought into a supercritical state or a liquid state, not a gaseous state.

そして、流体導入工程T1後には流体保持工程T2が行われ、ウエハWのパターンP間の混合流体のIPA濃度及びCO濃度が所望濃度(例えばIPA濃度が30%以下、CO濃度が70%以上)になるまで、処理容器301内の圧力が一定に保持される。 Then, after the fluid introduction step T1, the fluid holding step T2 is performed, and the IPA concentration and the CO 2 concentration of the mixed fluid between the patterns P of the wafer W are desired concentrations (for example, the IPA concentration is 30% or less and the CO 2 concentration is 70%). The pressure in the processing container 301 is kept constant until the above) is reached.

この流体保持工程T2では、処理容器301内のCOが超臨界状態を維持できる程度に処理容器301内の圧力は調整されており、図6に示す例では処理容器301内の圧力が15MPaに保たれている。この流体保持工程T2において、制御部4は、図3に示す流通オンオフバルブ52b及び流通オンオフバルブ52fを閉状態とするように制御を行い、処理容器301内に対するCOの供給及び排出が停止される。他の各種バルブの開閉状態は、上述の流体導入工程T1における開閉状態と同じである。 In this fluid holding step T2, the pressure inside the processing container 301 is adjusted to such an extent that CO 2 in the processing container 301 can maintain a supercritical state, and in the example shown in FIG. 6, the pressure inside the processing container 301 is 15 MPa. It is kept. In the fluid holding step T2, the control unit 4 controls so that the distribution on / off valve 52b and the distribution on / off valve 52f shown in FIG. 3 are closed, and the supply and discharge of CO 2 into the processing container 301 are stopped. NS. The open / closed state of the other various valves is the same as the open / closed state in the above-mentioned fluid introduction step T1.

そして、流体保持工程T2後には流体供給排出工程T3が行われ、処理容器301内から流体を排出して処理容器301内を降圧する降圧工程と、処理容器301内にCOを供給して処理容器301内を昇圧する昇圧工程とが繰り返される。 Then, after the fluid holding step T2, the fluid supply / discharge step T3 is performed to discharge the fluid from the processing container 301 to lower the pressure inside the processing container 301, and to supply CO 2 into the processing container 301 for processing. The step of boosting the pressure inside the container 301 is repeated.

降圧工程では、CO及びIPAが混合した状態の流体が処理容器301から排出される。一方、昇圧工程では、IPAを含まないフレッシュなCOが流体供給タンク51から処理容器301に供給される。このように、降圧工程においてIPAを積極的に処理容器301から排出しつつ、昇圧工程においてIPAを含まないCOを処理容器301内に供給することで、ウエハW上からのIPAの除去が促進される。 In the step-down step, a fluid in which CO 2 and IPA are mixed is discharged from the processing container 301. On the other hand, in the boosting step, fresh CO 2 containing no IPA is supplied from the fluid supply tank 51 to the processing container 301. In this way, while actively discharging IPA from the processing container 301 in the step-down step, CO 2 containing no IPA is supplied into the processing container 301 in the step-up step, thereby promoting the removal of IPA from the wafer W. Will be done.

流体供給排出工程T3における降圧工程及び昇圧工程の繰り返し回数は特に限定されないが、本例の乾燥処理は、流体供給排出工程T3の開始当初において、少なくとも以下の第1処理工程S1及び第2処理工程S2を有する。制御部4は、流体供給部(すなわち図3に示す流通オンオフバルブ52a〜52b)及び流体排出部(すなわち図3に示す流通オンオフバルブ52f〜52j及び排気調整バルブ59)を制御し、以下の第1処理工程S1及び第2処理工程S2を含む乾燥処理を、超臨界状態のCOを使って行う。 The number of repetitions of the step-down step and the step-up step in the fluid supply / discharge step T3 is not particularly limited, but the drying process of this example is at least the following first process steps S1 and second treatment steps at the start of the fluid supply / discharge step T3. It has S2. The control unit 4 controls the fluid supply unit (that is, the distribution on / off valves 52a to 52b shown in FIG. 3) and the fluid discharge unit (that is, the distribution on / off valves 52f to 52j and the exhaust adjustment valve 59 shown in FIG. 3). The drying treatment including the first treatment step S1 and the second treatment step S2 is performed using CO 2 in a supercritical state.

すなわち、上述の流体保持工程T2の直後に行われる第1処理工程S1では、超臨界状態のCOの気化が起こらない第1の排出到達圧力Pt1(例えば14MPa)に処理容器301内がなるまで処理容器301内の流体が排出され、その後、第1の排出到達圧力Pt1より高く且つ処理容器301内のCOの気化が起こらない第1の供給到達圧力Ps1(例えば15MPa)に処理容器301内がなるまで処理容器301内にCOが供給される。 That is, in the first processing step S1 performed immediately after the above-mentioned fluid holding step T2, until the inside of the processing container 301 reaches the first discharge ultimate pressure Pt1 (for example, 14 MPa) in which the vaporization of CO 2 in the supercritical state does not occur. The fluid in the processing container 301 is discharged, and then the inside of the processing container 301 reaches the first supply ultimate pressure Ps1 (for example, 15 MPa) which is higher than the first discharge ultimate pressure Pt1 and CO 2 in the processing container 301 does not vaporize. CO 2 is supplied into the processing container 301 until

一方、上述の第1処理工程S1の直後に行われる第2処理工程S2では、第1処理工程S1後に、超臨界状態のCOの気化が起こらない第2の排出到達圧力Pt2であって第1の排出到達圧力Pt1とは異なる第2の排出到達圧力Pt2(例えば13MPa)に処理容器301内がなるまで処理容器301内の流体が排出され、その後、第2の排出到達圧力Pt2より高く且つ処理容器301内のCOの気化が起こらない第2の供給到達圧力Ps2(例えば15MPa)に処理容器301内がなるまで処理容器301内にCOが供給される。 On the other hand, in the second treatment step S2 performed immediately after the first treatment step S1 described above, the second discharge ultimate pressure Pt2 in which the vaporization of CO 2 in the supercritical state does not occur after the first treatment step S1 is the second. The fluid in the processing container 301 is discharged until the inside of the processing container 301 reaches a second discharge ultimate pressure Pt2 (for example, 13 MPa) different from the discharge ultimate pressure Pt1 of 1, and then the fluid is discharged higher than the second discharge ultimate pressure Pt2. CO 2 is supplied into the processing container 301 until the inside of the processing container 301 is filled with the second supply ultimate pressure Ps2 (for example, 15 MPa) at which the vaporization of CO 2 in the processing container 301 does not occur.

特に本乾燥処理例では、上述の第1処理工程S1の降圧工程における第1の排出到達圧力Pt1が、上述の第2処理工程S2の降圧工程における第2の排出到達圧力Pt2よりも高く設定されている(すなわち「Pt1>Pt2」が満たされる)。 In particular, in this drying treatment example, the first discharge ultimate pressure Pt1 in the step-down step of the first treatment step S1 is set higher than the second discharge ultimate pressure Pt2 in the step-down step of the second treatment step S2. (That is, "Pt1> Pt2" is satisfied).

図7は、COの濃度、臨界温度及び臨界圧力の関係を示すグラフである。図7の横軸は、COの臨界温度(K:ケルビン)及びCO濃度(%)を示し、図7の縦軸は、COの臨界圧力(MPa)を示す。なお図7のCO濃度は、COの混合比を表し、IPAとCOとの混合気体におけるCOの割合によってCO濃度が表される。 FIG. 7 is a graph showing the relationship between the CO 2 concentration, the critical temperature, and the critical pressure. The horizontal axis of FIG. 7 indicates the critical temperature of CO 2 (K: Kelvin) and the CO 2 concentration (%), and the vertical axis of FIG. 7 indicates the critical pressure of CO 2 (MPa). Note the CO 2 concentration in FIG. 7 represents the mixing ratio of CO 2, the CO 2 concentration is represented by the percentage of CO 2 in the mixed gas of IPA and CO 2.

図7の曲線Cは、CO濃度、臨界温度及び臨界圧力の関係を示し、COの状態が曲線Cよりも上にある場合にはCOは臨界圧力よりも高い圧力を有し、COの状態が曲線Cよりも上にある場合にはCOは臨界圧力よりも低い圧力を有することを示す。 The curve C in FIG. 7 shows the relationship between the CO 2 concentration, the critical temperature and the critical pressure, and when the CO 2 state is above the curve C, the CO 2 has a pressure higher than the critical pressure, and the CO When the state of 2 is above the curve C, it indicates that CO 2 has a pressure lower than the critical pressure.

上述のように本乾燥処理例では、処理容器301からCOを排出して処理容器301内の圧力を下げる降圧工程と、流体供給タンク51からのCOを処理容器301(すなわち容器本体311)内に導入して処理容器301内の圧力を上げる昇圧工程とが繰り返し行われることで、ウエハW上のIPAが徐々に除去される。この乾燥処理において、各昇圧工程では、処理容器301に対するCOの供給圧力が、COの臨界圧力の最大値よりも高い圧力に設定される。したがって上述の第1の供給到達圧力Ps1及び第2の供給到達圧力Ps2は、例えば図7の曲線Cによって表される全ての臨界圧力よりも高い圧力(すなわちCOの臨界圧力の最大値よりも高い圧力(例えば15MPa))に調整される。これにより、処理容器301内におけるCOの気化を防ぐことができる。 In this drying process example as described above, the step-down step of reducing the pressure in the processing container 301 from the processing chamber 301 by discharging the CO 2, the process of CO 2 from the fluid supply tank 51 container 301 (i.e. the container main body 311) The IPA on the wafer W is gradually removed by repeatedly performing the step of increasing the pressure inside the processing container 301 by introducing it into the container. In this drying process, in each step of increasing the pressure, the supply pressure of CO 2 to the processing container 301 is set to a pressure higher than the maximum value of the critical pressure of CO 2. Therefore, the first supply ultimate pressure Ps1 and the second supply ultimate pressure Ps2 described above are higher than all critical pressures represented by, for example, the curve C in FIG. 7 (that is, higher than the maximum value of the critical pressure of CO 2). It is adjusted to a high pressure (for example, 15 MPa). This makes it possible to prevent the vaporization of CO 2 in the processing container 301.

上述のようにCO及びIPAの混合流体ではCO及びIPAが局所的に様々な比率で存在し、COの臨界圧力も局所的に様々な値となりうる。ただし本実施形態では、処理容器301内へのCOの供給圧力がCOの臨界圧力の最大値よりも高い圧力に調整されるため、混合流体のIPA及びCOの比率に関わらず、パターンP間のCOは超臨界状態又は液体状態となり、気体状態にはならない。 CO 2 and IPA in a fluid mixture of CO 2 and IPA as described above is present in locally varying proportions, the critical pressure of CO 2 also can be a locally different values. However, in this embodiment, since the supply pressure of the CO 2 into the processing vessel 301 is adjusted to a pressure higher than the maximum value of the critical pressure of CO 2, regardless of the ratio of IPA and CO 2 mixed fluid, pattern CO 2 between P is in a supercritical state or a liquid state, and is not in a gaseous state.

一方、降圧工程では、パターンP間のCOが臨界圧力よりも高い圧力を有するように、処理容器301内からCOの排出が行われる。すなわち各降圧工程における処理容器301内の圧力(排出到達圧力)は、COの臨界圧力よりも高い圧力に調整される。一般に、パターンP間のIPAの除去が進むに従って、パターンP間の混合流体におけるIPA濃度は徐々に低くなりCO濃度は徐々に高くなる傾向がある。その一方で、図7の曲線Cからも明らかなように、COの臨界圧力はCOの濃度に応じて変動し、特にCOの濃度が概ね60%よりも大きい場合には、COの濃度が増大するに従って臨界圧力は徐々に低減する。 On the other hand, in the step-down step, CO 2 is discharged from the processing container 301 so that the CO 2 between the patterns P has a pressure higher than the critical pressure. That is, the pressure inside the processing container 301 (exhaust ultimate pressure) in each step-down step is adjusted to a pressure higher than the critical pressure of CO 2. In general, as the removal of IPA between patterns P progresses, the IPA concentration in the mixed fluid between patterns P tends to gradually decrease and the CO 2 concentration tends to gradually increase. On the other hand, as it is clear from the curve C of FIG. 7, when the critical pressure of CO 2 varies depending on the concentration of CO 2, greater than, especially CO 2 concentrations approximately 60%, CO 2 The critical pressure gradually decreases as the concentration of carbon dioxide increases.

また、昇圧工程における処理容器301内の圧力(すなわち供給到達圧力)と降圧工程における処理容器301内の圧力(すなわち排出到達圧力)との差が大きいほど、処理容器301からの流体の排出量が増大する。処理容器301からの流体の排出量が増大するに従って、処理容器301からのIPAの排出量は増大し、その後に行われる昇圧工程で処理容器301内に供給されるCOの量を増やすことができる。そのため、連続的に行われる降圧工程と昇圧工程との間で処理容器301内の圧力差を大きくするほど、IPAからCOへの置換を効果的に促すことができ、IPAの乾燥処理を短時間で行うことが可能になる。 Further, the larger the difference between the pressure in the processing container 301 in the pressure increasing step (that is, the ultimate supply pressure) and the pressure in the processing container 301 in the lowering step (that is, the ultimate discharge pressure), the larger the amount of fluid discharged from the processing container 301. Increase. As the amount of fluid discharged from the processing container 301 increases, the amount of IPA discharged from the processing container 301 increases, and the amount of CO 2 supplied into the processing container 301 can be increased in the subsequent boosting step. can. Therefore, the larger the pressure difference in the processing container 301 between the continuously step-down step and the step-up step, the more effectively the replacement of IPA with CO 2 can be promoted, and the shorter the drying process of IPA is. It will be possible to do it in time.

図6に示す流体供給排出工程T3で繰り返し行われる複数回の降圧工程では、上述のCO濃度及び臨界圧力の関係に基づいて、パターンP間のCOが非気体状態を保つ範囲で、パターンP間のCOの圧力を徐々に下げて、処理容器301からのCOの排出量を徐々に増大させる。 In the plurality of step-down steps repeatedly performed in the fluid supply / discharge step T3 shown in FIG. 6 , the pattern is within a range in which the CO 2 between the patterns P is maintained in a non-gas state based on the relationship between the CO 2 concentration and the critical pressure described above. The pressure of CO 2 between P is gradually reduced to gradually increase the amount of CO 2 emitted from the processing container 301.

例えば、図6に示す第1処理工程S1において、パターンP間の混合流体のCO濃度が70%であるとすると、パターンP間のCOの臨界圧力は、図8のポイントC70によって示されるように、概ね14MPaよりも低い圧力となる。そのため、第1処理工程S1の降圧工程における第1の排出到達圧力Pt1が、図8のポイントC70によって示される臨界圧力よりも高い圧力(例えば14MPa)に設定される。これにより、第1処理工程S1の降圧工程においてパターンP間のCOが気化することを防いだ状態で、処理容器301内から流体を排出することができる。 For example, in the first processing step S1 shown in FIG. 6, assuming that the CO 2 concentration of the mixed fluid between the patterns P is 70%, the critical pressure of CO 2 between the patterns P is indicated by the point C70 in FIG. As described above, the pressure is generally lower than 14 MPa. Therefore, the first discharge ultimate pressure Pt1 in the step-down step of the first treatment step S1 is set to a pressure higher than the critical pressure indicated by the point C70 in FIG. 8 (for example, 14 MPa). As a result, the fluid can be discharged from the processing container 301 in a state where CO 2 between the patterns P is prevented from being vaporized in the step-down step of the first processing step S1.

一方、その後に行われる第2処理工程S2において、パターンP間の混合流体のCO濃度が80%であるとすると、パターンP間のCOの臨界圧力は、図9のポイントC80によって示されるように、概ね12MPa程度となる。そのため、第2処理工程S2の降圧工程における第2の排出到達圧力Pt2が、図9のポイントC80によって示される臨界圧力よりも高い圧力(例えば13MPa)に設定される。これにより、第2処理工程S2の降圧工程においてパターンP間のCOが気化することを防いだ状態で、処理容器301内から流体を排出することができる。特に、第2処理工程S2の降圧工程における流体の排出量は、第1処理工程S1の降圧工程における流体の排出量よりも多いため、第2処理工程S2ではより一層効果的にIPAを除去することが可能である。 On the other hand, assuming that the CO 2 concentration of the mixed fluid between the patterns P is 80% in the second treatment step S2 performed thereafter, the critical pressure of CO 2 between the patterns P is indicated by the point C80 in FIG. As described above, it is about 12 MPa. Therefore, the second discharge ultimate pressure Pt2 in the step-down step of the second treatment step S2 is set to a pressure higher than the critical pressure indicated by the point C80 in FIG. 9 (for example, 13 MPa). As a result, the fluid can be discharged from the processing container 301 in a state where CO 2 between the patterns P is prevented from being vaporized in the step-down step of the second processing step S2. In particular, since the amount of fluid discharged in the step-down step of the second treatment step S2 is larger than the amount of fluid discharged in the step-down step of the first treatment step S1, IPA is removed more effectively in the second treatment step S2. It is possible.

なお図6に示す例では、各昇圧工程における処理容器301内の圧力は同じ圧力(すなわち15MPa)まで上昇されるが、処理容器301内の圧力は昇圧工程間で必ずしも同じである必要はない。ただし、各昇圧工程における処理容器301内の圧力は、COの臨界圧力の最大値よりも高い圧力まで上昇され、処理容器301内のCOは非気体状態を保つ。 In the example shown in FIG. 6, the pressure in the processing container 301 in each boosting step is raised to the same pressure (that is, 15 MPa), but the pressure in the processing vessel 301 does not necessarily have to be the same between the boosting steps. However, pressure in the processing container 301 in the boosting step is increased to a pressure higher than the maximum value of the critical pressure of CO 2, CO 2 in the processing chamber 301 keeps the non-gaseous state.

また図6に示す例では、降圧工程における処理容器301内の圧力は徐々に低い圧力になるように徐々に降下されるが、降圧工程における処理容器301内の圧力を必ずしも徐々に低くする必要はない。ただし、IPAを短時間で除去する観点からは、降圧工程における処理容器301内からの流体の排出量が大きいことが好ましく、降圧工程において処理容器301内の圧力を下げるほど、処理容器301内からの流体の排出量は大きくなる。したがって、流体供給排出工程T3の進行とともにパターンP間の混合流体のCO濃度が徐々に大きくなること、及び図7に示すCOの臨界温度−臨界圧力の特性を考慮すると、降圧工程における処理容器301内の圧力は徐々に低い圧力になるように徐々に降下されることが好ましい。 Further, in the example shown in FIG. 6, the pressure in the processing container 301 in the step-down step is gradually lowered so as to be gradually lowered, but it is not always necessary to gradually lower the pressure in the processing container 301 in the step-down step. No. However, from the viewpoint of removing IPA in a short time, it is preferable that the amount of fluid discharged from the processing container 301 in the step-down step is large, and the lower the pressure in the processing container 301 in the step-down step, the greater the amount of fluid discharged from the processing container 301. The amount of fluid discharged is large. Therefore, considering that the CO 2 concentration of the mixed fluid between the patterns P gradually increases with the progress of the fluid supply / discharge step T3 and the characteristic of the critical temperature-critical pressure of CO 2 shown in FIG. 7, the treatment in the step-down step It is preferable that the pressure in the container 301 is gradually lowered so as to be gradually lowered.

なお図6に示す例では、第1処理工程S1の昇圧工程において第1の供給到達圧力Ps1(15MPa)までCOが処理容器301内に供給されると、パターンP間のIPA濃度は希釈されて、すぐに20%以下になる。そのため、第1処理工程S1の昇圧工程が行われた直後に第2処理工程S2の降圧工程が行われ、処理容器301から流体が排出される。また第1処理工程S1以降の処理工程でも同様にして降圧工程及び昇圧工程が行われ、各降圧工程は直前の昇圧工程が完了した直後に開始され、各昇圧工程は直前の降圧工程が完了した直後に開始される。 In the example shown in FIG. 6, when CO 2 is supplied into the processing container 301 up to the first supply ultimate pressure Ps1 (15 MPa) in the boosting step of the first processing step S1, the IPA concentration between the patterns P is diluted. It will soon be less than 20%. Therefore, immediately after the step of increasing the pressure of the first processing step S1, the step of lowering the pressure of the second processing step S2 is performed, and the fluid is discharged from the processing container 301. Further, in the treatment steps after the first treatment step S1, the step-down step and the step-up step are also performed in the same manner, each step-down step is started immediately after the immediately preceding step-up step is completed, and each step-up step is completed immediately before the step-down step. It will start immediately after.

なお上述の降圧工程及び昇圧工程は、制御部4が、図3に示す流通オンオフバルブ52b、流通オンオフバルブ52f及び排気調整バルブ59の開閉を制御することで行われる。例えば処理容器301内にCOを供給して昇圧工程を行う場合には、制御部4の制御下で、流通オンオフバルブ52bが開かれ、流通オンオフバルブ52fが閉じられる。一方、処理容器301内からCOを排出して降圧工程を行う場合には、制御部4の制御下で、流通オンオフバルブ52bが閉じられ、流通オンオフバルブ52fが開かれる。この降圧工程において、厳密に所望の排出到達圧力まで処理容器301内の流体を排出するために、排気調整バルブ59が制御部4によって制御される。 The step-down step and the step-up step are performed by the control unit 4 controlling the opening and closing of the distribution on / off valve 52b, the distribution on / off valve 52f, and the exhaust adjustment valve 59 shown in FIG. For example, when CO 2 is supplied into the processing container 301 to perform the boosting step, the distribution on / off valve 52b is opened and the distribution on / off valve 52f is closed under the control of the control unit 4. On the other hand, when CO 2 is discharged from the processing container 301 to perform the step-down step, the distribution on / off valve 52b is closed and the distribution on / off valve 52f is opened under the control of the control unit 4. In this step-down step, the exhaust adjustment valve 59 is controlled by the control unit 4 in order to discharge the fluid in the processing container 301 to exactly the desired discharge ultimate pressure.

特に、制御部4は、降圧工程において厳密な制御を行うために、処理容器301と流通オンオフバルブ52fとの間に設けられた圧力センサ53dの計測結果に基づいて、排気調整バルブ59の開度を調整する。すなわち、処理容器301内と連通する供給ライン内の圧力が圧力センサ53dによって計測される。制御部4は、圧力センサ53dの計測値から、処理容器301内を所望の圧力に調整するのに必要な排気調整バルブ59の開度を求めて、その求められた開度を実現するための制御指示信号を排気調整バルブ59に送る。排気調整バルブ59は制御部4からの制御指示信号に基づいて開度を調整し、処理容器301内が所望の圧力に調整される。これにより、処理容器301内の圧力は、精度良く所望の圧力に調整される。 In particular, the control unit 4 opens the exhaust adjustment valve 59 based on the measurement result of the pressure sensor 53d provided between the processing container 301 and the distribution on / off valve 52f in order to perform strict control in the step-down process. To adjust. That is, the pressure in the supply line communicating with the inside of the processing container 301 is measured by the pressure sensor 53d. The control unit 4 obtains the opening degree of the exhaust gas adjusting valve 59 necessary for adjusting the inside of the processing container 301 to a desired pressure from the measured value of the pressure sensor 53d, and realizes the obtained opening degree. A control instruction signal is sent to the exhaust adjustment valve 59. The exhaust gas adjusting valve 59 adjusts the opening degree based on the control instruction signal from the control unit 4, and the inside of the processing container 301 is adjusted to a desired pressure. As a result, the pressure in the processing container 301 is accurately adjusted to a desired pressure.

このように制御部4は、上述の降圧工程及び昇圧工程が繰り返し行われる過程で、処理容器301に対するCOの供給量及び排出量を制御し、パターンP間のCOが常に臨界圧力よりも高い圧力を持つようにする。これにより、パターンP間のCOが気化することを防ぐことができ、パターンP間のCOは流体供給排出工程T3の間は常に非気体状態となる。ウエハWで生じうるパターン倒れは、パターンP間に存在しうる気液界面に起因しており、一般には、パターンP間において気体の処理流体(本例ではCO)が液体のIPAに接触することによって引き起こされる。本乾燥処理例によれば、流体供給排出工程T3が行われている間は、上述のようにパターンP間のCOが常に非気体状態であるため、パターン倒れが原理的に生じない。 In this way, the control unit 4 controls the supply amount and the discharge amount of CO 2 to the processing container 301 in the process in which the above-mentioned step-down step and step-up step are repeatedly performed, and the CO 2 between the patterns P is always higher than the critical pressure. Have high pressure. As a result, it is possible to prevent the CO 2 between the patterns P from being vaporized, and the CO 2 between the patterns P is always in a non-gas state during the fluid supply / discharge step T3. The pattern collapse that can occur in the wafer W is due to the gas-liquid interface that can exist between the patterns P, and in general, the gas processing fluid (CO 2 in this example) comes into contact with the liquid IPA between the patterns P. Caused by that. According to this drying treatment example, while the fluid supply / discharge step T3 is being performed, the CO 2 between the patterns P is always in a non-gas state as described above, so that the pattern collapse does not occur in principle.

なお流体供給排出工程T3が行われている間に、パターンP間のCOの濃度を直接計測することは難しい。そのため、予め行われた実験の結果に基づいて、降圧工程及び昇圧工程を行うタイミングを決めておき、その決められたタイミングに基づいて降圧工程及び昇圧工程が行われてもよい。例えば、第1処理工程S1の降圧工程において第1の排出到達圧力Pt1に処理容器301内がなるまで処理容器301内の流体を排出するタイミング、及び第2処理工程S2の降圧工程において第2の排出到達圧力Pt2に処理容器301内がなるまで処理容器301内の流体を排出するタイミングのうち少なくともいずれか一方は、予め行われた実験の結果に基づいて定めることができる。 It is difficult to directly measure the concentration of CO 2 between patterns P while the fluid supply / discharge step T3 is being performed. Therefore, the timing of performing the step-down step and the step-up step may be determined based on the result of the experiment conducted in advance, and the step-down step and the step-up step may be performed based on the determined timing. For example, the timing at which the fluid in the processing container 301 is discharged until the inside of the processing container 301 reaches the first discharge reaching pressure Pt1 in the step-down step of the first processing step S1, and the second step in the step-down step of the second processing step S2. At least one of the timings for discharging the fluid in the processing container 301 until the discharge ultimate pressure Pt2 is filled in the processing container 301 can be determined based on the results of experiments performed in advance.

また、処理容器301内におけるCOの温度は処理容器301に設けられた図示しないヒータによって、COが超臨界状態を保つことができる温度に調整されることが好ましい。この場合、そのようなヒータは、処理容器301内の流体の温度を計測する温度センサ54eの計測結果に基づいて制御部4により制御され、ヒータの加熱温度が調整されることが好ましい。ただし、処理容器301内の流体の温度は必ずしも制御部4の制御下で調整される必要はない。たとえ処理容器301内のCOの温度が臨界温度以下になったとしても、処理容器301内のCOは液体等の非気体状態をとる。そのため、パターンP間の気液界面に起因するパターン倒れは、たとえ処理容器301内のCOの温度が臨界温度以下になったとしても生じない。ただし、処理容器301内のCOの温度は、CO密度に影響を与える因子の1つであるため、IPAからCOへの置換効率を向上させる観点からは、処理容器301内のCOの温度をヒータ等のデバイスによって積極的に調整することが好ましい。 Further, it is preferable that the temperature of CO 2 in the processing container 301 is adjusted to a temperature at which CO 2 can maintain a supercritical state by a heater (not shown) provided in the processing container 301. In this case, it is preferable that such a heater is controlled by the control unit 4 based on the measurement result of the temperature sensor 54e that measures the temperature of the fluid in the processing container 301, and the heating temperature of the heater is adjusted. However, the temperature of the fluid in the processing container 301 does not necessarily have to be adjusted under the control of the control unit 4. Even if the temperature of CO 2 in the processing container 301 becomes equal to or lower than the critical temperature, the CO 2 in the processing container 301 is in a non-gas state such as a liquid. Therefore, the pattern collapse caused by the gas-liquid interface between the patterns P does not occur even if the temperature of CO 2 in the processing container 301 becomes equal to or lower than the critical temperature. However, the temperature of CO 2 in the processing chamber 301, because it is one of the factors affecting the CO 2 density, from the viewpoint of improving the displacement efficiency of the IPA to CO 2, CO 2 in the processing chamber 301 It is preferable to positively adjust the temperature of the carbon dioxide by a device such as a heater.

そして、上述の流体供給排出工程T3によってパターンP間のIPAがCOに置換され、処理容器301内に残留するIPAが十分に低減した段階(例えば処理容器301内のIPA濃度が0%〜数%に達した段階)で流体排出工程T4が行われ、処理容器301内が大気圧に戻される。これにより、処理容器301内に残留するIPAがウエハW上に再付着することを防ぎつつ、COを気化させることができ、図5(d)に示すようにパターンP間には気体のみが存在する。 Then, the IPA between the patterns P is replaced with CO 2 by the above-mentioned fluid supply / discharge step T3, and the IPA remaining in the processing container 301 is sufficiently reduced (for example, the IPA concentration in the processing container 301 is 0% to several). The fluid discharge step T4 is performed when the percentage reaches%), and the inside of the processing container 301 is returned to atmospheric pressure. As a result, CO 2 can be vaporized while preventing the IPA remaining in the processing container 301 from reattaching to the wafer W, and as shown in FIG. 5 (d), only gas is left between the patterns P. exist.

流体排出工程T4において、制御部4は、図3に示す流通オンオフバルブ52a〜52eを閉状態とし、排気調整バルブ59を開状態とし、流通オンオフバルブ52f〜52iを開状態とし、流通オンオフバルブ52jを閉状態とし、排気調整ニードルバルブ61a〜61bを開状態とするように制御を行う。 In the fluid discharge step T4, the control unit 4 closes the distribution on / off valves 52a to 52e shown in FIG. 3, opens the exhaust adjustment valve 59, opens the distribution on / off valves 52f to 52i, and opens the distribution on / off valves 52j. Is closed, and the exhaust adjusting needle valves 61a to 61b are controlled to be open.

上述のようにして流体導入工程T1、流体保持工程T2、流体供給排出工程T3及び流体排出工程T4が行われることによって、ウエハW上からIPAを除去する乾燥処理が完了する。 By performing the fluid introduction step T1, the fluid holding step T2, the fluid supply / discharge step T3, and the fluid discharge step T4 as described above, the drying process for removing the IPA from the wafer W is completed.

なお、流体導入工程T1、流体保持工程T2、流体供給排出工程T3及び流体排出工程T4の各工程が行われるタイミング、各工程の持続時間、及び流体供給排出工程T3における降圧工程及び昇圧工程の繰り返し回数、等は、任意の手法によって定められてもよい。制御部4は、例えば濃度計測センサ60によって計測される「処理容器301内から排出される流体に含まれるIPA濃度」に応じて、各工程が行われるタイミング、各工程の持続時間、及び流体供給排出工程T3における降圧工程及び昇圧工程の繰り返し回数等を決めてもよい。また制御部4は、予め行われた実験の結果に基づいて、各工程が行われるタイミング、各工程の持続時間、及び流体供給排出工程T3における降圧工程及び昇圧工程の繰り返し回数等を決めてもよい。 The timing at which each of the fluid introduction step T1, the fluid holding step T2, the fluid supply / discharge step T3 and the fluid discharge step T4 is performed, the duration of each step, and the repetition of the step-down step and the boosting step in the fluid supply / discharge step T3. The number of times, etc. may be determined by any method. The control unit 4 determines the timing at which each process is performed, the duration of each process, and the fluid supply according to, for example, the "IPA concentration contained in the fluid discharged from the processing container 301" measured by the concentration measurement sensor 60. The number of repetitions of the step-down step and the step-up step in the discharge step T3 may be determined. Further, the control unit 4 may determine the timing at which each step is performed, the duration of each step, the number of repetitions of the step-down step and the step-up step in the fluid supply / discharge step T3, and the like, based on the results of experiments performed in advance. good.

上述の超臨界処理装置3(すなわち基板処理装置)及び基板処理方法によれば、超臨界状態の処理流体を用いて基板から液体を除去する乾燥処理を、処理流体の消費量を抑えつつ短時間で行うことができ、パターン倒れの発生も効果的に防ぐことができる。 According to the above-mentioned supercritical processing device 3 (that is, the substrate processing device) and the substrate processing method, the drying process of removing the liquid from the substrate using the processing fluid in the supercritical state can be performed in a short time while suppressing the consumption of the processing fluid. It can be done with, and the occurrence of pattern collapse can be effectively prevented.

本件発明者の実験によれば、従来技術に基づいて、10MPaの超臨界状態のCOを処理容器301に対して毎分0.5kgで連続的に供給及び排出することでウエハW上のIPAを乾燥する場合には、30分間程度の時間を要し、数十kgのCOを消費する必要があった。一方、図6に示すような本乾燥処理例に基づいてウエハW上のIPAを除去する場合には、流体供給排出工程T3において「1回の降圧工程及び1回の昇圧工程を有する処理工程」を7回繰り返すことでウエハWを適切に乾燥させることができ、全体の処理時間は約7分間であり、COの消費量は約1.7kgであった。このように、本実施形態の基板処理装置及び基板処理方法は、処理時間の短縮化及びCO(処理流体)の低消費量化を飛躍的に促進することができる。 According to the present inventor's experiments, based on the prior art, IPA on the wafer W by continuously supplying and discharging per minute 0.5kg of CO 2 in the supercritical state of 10MPa to the processing chamber 301 It took about 30 minutes to dry the wafer, and it was necessary to consume several tens of kg of CO 2. On the other hand, when the IPA on the wafer W is removed based on the present drying treatment example as shown in FIG. 6, in the fluid supply / discharge step T3, "a treatment step having one step of lowering the pressure and one step of raising the pressure". The wafer W could be appropriately dried by repeating the above 7 times, the total processing time was about 7 minutes, and the CO 2 consumption was about 1.7 kg. As described above, the substrate processing apparatus and the substrate processing method of the present embodiment can dramatically promote the shortening of the processing time and the reduction of the consumption of CO 2 (processing fluid).

[第2の乾燥処理例]
図10は、第2の乾燥処理例における時間及び処理容器301内の圧力を示す図である。図10に示す曲線Aは、第2の乾燥処理例における時間(横軸;sec)及び処理容器301内の圧力(縦軸;MPa)の関係を表す。
[Second example of drying treatment]
FIG. 10 is a diagram showing the time and the pressure in the processing container 301 in the second drying treatment example. The curve A shown in FIG. 10 represents the relationship between the time (horizontal axis; sec) and the pressure in the processing container 301 (vertical axis; MPa) in the second drying treatment example.

本乾燥処理例において、上述の第1の乾燥処理例と同一又は類似の内容について、その詳細な説明は省略する。 In this drying treatment example, detailed description of the same or similar contents as the above-mentioned first drying treatment example will be omitted.

本乾燥処理例においても、上述の第1の乾燥処理例と同様に、流体導入工程T1、流体保持工程T2、流体供給排出工程T3及び流体排出工程T4が順次行われる。ただし本乾燥処理例の流体供給排出工程T3では、流体保持工程T2の直後に行われる第1処理工程S1の降圧工程における第1の排出到達圧力Pt1は、その後の第2処理工程S2の降圧工程における第2の排出到達圧力Pt2よりも低い。 In this drying treatment example as well, similarly to the first drying treatment example described above, the fluid introduction step T1, the fluid holding step T2, the fluid supply / discharge step T3, and the fluid discharge step T4 are sequentially performed. However, in the fluid supply / discharge step T3 of this drying treatment example, the first discharge reaching pressure Pt1 in the step-down step of the first treatment step S1 performed immediately after the fluid holding step T2 is the step-down step of the second treatment step S2 thereafter. It is lower than the second discharge ultimate pressure Pt2 in.

なお、本乾燥処理の流体供給排出工程T3において、第2処理工程S2の直後に行われる第3処理工程S3の降圧工程及び昇圧工程は以下のようにして行われる。すなわち、第2処理工程S2後に、超臨界状態のCOの気化が起こらない第3の排出到達圧力Pt3であって第2の排出到達圧力Pt2よりも低い第3の排出到達圧力Pt3に処理容器301内がなるまで処理容器301内の流体が排出される。その後、第3の排出到達圧力Pt3より高く且つ処理容器301内のCOの気化が起こらない第3の供給到達圧力Ps3に処理容器301内がなるまで処理容器301内にCOが供給される。 In the fluid supply / discharge step T3 of the present drying treatment, the step-down step and the step-up step of the third treatment step S3 performed immediately after the second treatment step S2 are performed as follows. That is, after the second treatment step S2, the treatment container reaches the third discharge ultimate pressure Pt3, which is the third discharge ultimate pressure Pt3 in which the vaporization of CO 2 in the supercritical state does not occur, and is lower than the second discharge ultimate pressure Pt2. The fluid in the processing container 301 is discharged until the inside of the 301 is filled. After that, CO 2 is supplied into the processing container 301 until the third supply reaching pressure Ps3, which is higher than the third discharge reaching pressure Pt3 and CO 2 in the processing container 301 does not vaporize, becomes inside the processing container 301. ..

なお第3の供給到達圧力Ps3は、第1の供給到達圧力Ps1及び第2の供給到達圧力Ps2と同じ圧力に設定されており、例えば上述の第1の乾燥処理例と同様に15MPaに設定可能である。 The third supply ultimate pressure Ps3 is set to the same pressure as the first supply ultimate pressure Ps1 and the second supply ultimate pressure Ps2, and can be set to 15 MPa as in the above-mentioned first drying treatment example, for example. Is.

本乾燥処理例では、ランプアップ方式の乾燥処理が行われ、流体供給排出工程T3の降圧工程のうち、最初に行われる第1処理工程S1の降圧工程における排出到達圧力(すなわち第1の排出到達圧力Pt1)が最も低い圧力を示す。すなわち流体供給排出工程T3の降圧工程のうち、第1処理工程S1の降圧工程において最も多量の流体が処理容器301から排出される。これにより、ウエハWのパターンPの上方に形成された膜上のIPAを効率良く除去することが可能である。 In this drying treatment example, the lamp-up type drying treatment is performed, and among the step-down steps of the fluid supply / discharge step T3, the discharge reaching pressure (that is, reaching the first discharge) in the step-down step of the first treatment step S1 performed first. The pressure Pt1) shows the lowest pressure. That is, among the step-down steps of the fluid supply / discharge step T3, the largest amount of fluid is discharged from the processing container 301 in the step-down step of the first processing step S1. This makes it possible to efficiently remove the IPA on the film formed above the pattern P of the wafer W.

図11は、ウエハWのパターンP上に液盛りされたIPAの状態を説明するための断面図である。 FIG. 11 is a cross-sectional view for explaining the state of the IPA liquid-filled on the pattern P of the wafer W.

超臨界処理装置3に搬入されたウエハWのパターンP上には、厚さD1のIPA膜が形成されている。このIPA膜の厚さD1は、パターンPの厚さD2に比べて非常に大きく、厚さD1は厚さD2の数十倍程度となるのが一般的である。このパターンPの上方のIPA膜の部分も、超臨界処理装置3によって除去される必要があるが、パターンP間のIPAの除去量に比べ、パターンPの上方のIPA膜の除去量は非常に大きくなる。またパターンPの上方のIPA膜の部分が除去された後にしか、パターンP間のIPAを除去することはできない。 An IPA film having a thickness of D1 is formed on the pattern P of the wafer W carried into the supercritical processing apparatus 3. The thickness D1 of this IPA film is much larger than the thickness D2 of the pattern P, and the thickness D1 is generally about several tens of times the thickness D2. The portion of the IPA film above the pattern P also needs to be removed by the supercritical processing apparatus 3, but the amount of IPA film removed above the pattern P is much larger than the amount of IPA removed between the patterns P. growing. Further, the IPA between the patterns P can be removed only after the portion of the IPA film above the pattern P is removed.

したがって流体供給排出工程T3では、まず第1処理工程S1によって、パターンPの上方のIPA膜を可能な限り除去し、第2処理工程S2及びそれ以降の処理工程によって、パターンP間のIPAを除去することが好ましい。そのため本乾燥処理例では、まず第1処理工程S1において、降圧工程で多量の流体が処理容器301から排出されるとともに昇圧工程で多量のCOが処理容器301に供給され、パターンPの上方のIPA膜が大幅に除去される。 Therefore, in the fluid supply / discharge step T3, the IPA film above the pattern P is first removed as much as possible by the first treatment step S1, and the IPA between the patterns P is removed by the second treatment step S2 and the subsequent treatment steps. It is preferable to do so. Therefore, in this drying treatment example, first, in the first treatment step S1, a large amount of fluid is discharged from the treatment container 301 in the step-down step, and a large amount of CO 2 is supplied to the treatment container 301 in the pressurization step, which is above the pattern P. The IPA film is significantly removed.

なお、パターンPの上方のIPA膜を除去する際には、パターンP間にはIPAが充填されているため、パターン倒れの懸念はない。ただし、第1処理工程S1においてパターンPの上方のIPA膜だけでなく、パターンP間のIPAの一部も除去される可能性を考慮し、第1処理工程S1の降圧工程における第1の排出到達圧力Pt1は、処理容器301内のCOの臨界圧力よりも高い圧力に設定される。 When removing the IPA film above the pattern P, there is no concern that the pattern will collapse because the IPA is filled between the patterns P. However, considering the possibility that not only the IPA film above the pattern P but also a part of the IPA between the patterns P is removed in the first treatment step S1, the first discharge in the step-down step of the first treatment step S1. The ultimate pressure Pt1 is set to a pressure higher than the critical pressure of CO 2 in the processing container 301.

第1処理工程S1以外の処理工程における降圧工程及び昇圧工程は、上述の第1の乾燥処理例と同様にして行われる。すなわち、流体供給排出工程T3の各昇圧工程における処理容器301内の圧力は、COの臨界圧力の最大値よりも高い圧力であって相互に同じ圧力(すなわち15MPa)まで上昇される。また流体供給排出工程T3の第2処理工程S2及びそれ以降の処理工程における降圧工程では、処理容器301内の圧力は徐々に低い圧力になるように降下される。ただし、各降圧工程におけるパターンP間の圧力は、パターンP間のCOが非気体状態を保つ圧力に保持される。 The step-down step and the step-up step in the treatment steps other than the first treatment step S1 are performed in the same manner as in the above-mentioned first drying treatment example. That is, the pressure in the processing container 301 in each boosting step of the fluid supply / discharge step T3 is higher than the maximum value of the critical pressure of CO 2 and is raised to the same pressure (that is, 15 MPa). Further, in the second processing step S2 of the fluid supply / discharge process T3 and the step-down step in the subsequent processing steps, the pressure in the processing container 301 is gradually lowered. However, the pressure between the patterns P in each step-down step is maintained at a pressure at which CO 2 between the patterns P remains in a non-gas state.

以上説明したように本乾燥処理例によれば、ウエハWのパターンPの上方に形成されたIPA膜を効率良く除去することができ、IPAの乾燥処理の処理時間を短縮化することができる。 As described above, according to the present drying treatment example, the IPA film formed above the pattern P of the wafer W can be efficiently removed, and the processing time of the IPA drying treatment can be shortened.

[第3の乾燥処理例]
図12は、第3の乾燥処理例における時間及び処理容器301内の圧力を示す図である。図12に示す曲線Aは、第3の乾燥処理例における時間(横軸;sec)及び処理容器301内の圧力(縦軸;MPa)の関係を表す。
[Third drying treatment example]
FIG. 12 is a diagram showing the time and the pressure in the processing container 301 in the third drying treatment example. The curve A shown in FIG. 12 represents the relationship between the time (horizontal axis; sec) and the pressure in the processing container 301 (vertical axis; MPa) in the third drying treatment example.

本乾燥処理例において、上述の第1の乾燥処理例と同一又は類似の内容について、その詳細な説明は省略する。 In this drying treatment example, detailed description of the same or similar contents as the above-mentioned first drying treatment example will be omitted.

本乾燥処理例においても、上述の第1の乾燥処理例と同様に、流体導入工程T1、流体保持工程T2、流体供給排出工程T3及び流体排出工程T4が順次行われる。ただし本乾燥処理例の流体供給排出工程T3では、降圧工程と昇圧工程と間に、処理容器301内の圧力をほぼ一定に維持する圧力保持工程が行われる。 In this drying treatment example as well, similarly to the first drying treatment example described above, the fluid introduction step T1, the fluid holding step T2, the fluid supply / discharge step T3, and the fluid discharge step T4 are sequentially performed. However, in the fluid supply / discharge step T3 of this drying treatment example, a pressure holding step for maintaining the pressure in the processing container 301 to be substantially constant is performed between the step-down step and the step-pressing step.

各圧力保持工程では、処理容器301内が、直前に行われた降圧工程の排出到達圧力と同じ圧力で保持される。 In each pressure holding step, the inside of the processing container 301 is held at the same pressure as the discharge ultimate pressure of the pressure reducing step performed immediately before.

このような圧力保持工程を行うことで、ウエハW上からのIPAの除去を効率良く行うことができる。 By performing such a pressure holding step, IPA can be efficiently removed from the wafer W.

本発明は、上述の実施形態及び変形例に限定されるものではなく、当業者が想到しうる種々の変形が加えられた各種態様も含みうるものであり、本発明によって奏される効果も上述の事項に限定されない。したがって、本発明の技術的思想及び趣旨を逸脱しない範囲で、特許請求の範囲及び明細書に記載される各要素に対して種々の追加、変更及び部分的削除が可能である。 The present invention is not limited to the above-described embodiments and modifications, but may include various aspects to which various modifications that can be conceived by those skilled in the art are added, and the effects produced by the present invention are also described above. It is not limited to the matters of. Therefore, various additions, changes, and partial deletions can be made to the scope of claims and each element described in the specification without departing from the technical idea and purpose of the present invention.

例えば、乾燥処理に用いられる処理流体はCO以外の流体であってもよく、基板の凹部に液盛りされた乾燥防止用の液体を超臨界状態で除去可能な任意の流体を処理流体として用いることができる。また乾燥防止用の液体もIPAには限定されず、乾燥防止用液体として使用可能な任意の液体を使用することができる。 For example, the treatment fluid used for the drying treatment may be a fluid other than CO 2 , and any fluid capable of removing the drying prevention liquid filled in the recesses of the substrate in a supercritical state is used as the treatment fluid. be able to. Further, the anti-drying liquid is not limited to IPA, and any liquid that can be used as the anti-drying liquid can be used.

また上述の実施形態及び変形例では、基板処理装置及び基板処理方法に本発明が適用されているが、本発明の適用対象は特に限定されない。例えば、上述の基板処理方法をコンピュータに実行させるためのプログラムや、そのようなプログラムを記録したコンピュータ読み取り可能な非一時的な記録媒体に対しても本発明は適用可能である。 Further, in the above-described embodiments and modifications, the present invention is applied to the substrate processing apparatus and the substrate processing method, but the application target of the present invention is not particularly limited. For example, the present invention is also applicable to a program for causing a computer to execute the above-mentioned substrate processing method, and a computer-readable non-temporary recording medium on which such a program is recorded.

3 超臨界処理装置
4 制御部
51 流体供給タンク
52a〜52j 流通オンオフバルブ
59 排気調整バルブ
301 処理容器
P パターン
Ps1 第1の供給到達圧力
Ps2 第2の供給到達圧力
Pt1 第1の排出到達圧力
Pt2 第2の排出到達圧力
S1 第1処理工程
S2 第2処理工程
W ウエハ
3 Supercritical processing device 4 Control unit 51 Fluid supply tank 52a to 52j Flow on / off valve 59 Exhaust adjustment valve 301 Processing container P pattern Ps1 First supply ultimate pressure Ps2 Second supply ultimate pressure Pt1 First discharge ultimate pressure Pt2 First Discharge ultimate pressure of 2 S1 First processing step S2 Second processing step W Wafer

Claims (7)

処理容器内において、基板から液体を除去する乾燥処理を、超臨界状態の処理流体を使って行う基板処理方法であって、
前記処理容器内に存在する超臨界状態の前記処理流体の気化が起こらない第1の排出到達圧力に前記処理容器内がなるまで前記処理容器内の流体を排出し、その後、前記第1の排出到達圧力より高く且つ前記処理容器内の前記処理流体の気化が起こらない第1の供給到達圧力に前記処理容器内がなるまで前記処理容器内に前記処理流体を供給する第1処理工程と、
前記第1処理工程後に、超臨界状態の前記処理流体の気化が起こらない第2の排出到達圧力に前記処理容器内がなるまで前記処理容器内の流体を排出し、その後、前記第2の排出到達圧力より高く且つ前記処理容器内の前記処理流体の気化が起こらない第2の供給到達圧力に前記処理容器内がなるまで前記処理容器内に前記処理流体を供給する第2処理工程と、
前記第2処理工程後に、超臨界状態の前記処理流体の気化が起こらない第3の排出到達圧力に前記処理容器内がなるまで前記処理容器内の流体を排出し、その後、前記第3の排出到達圧力より高く且つ前記処理容器内の前記処理流体の気化が起こらない第3の供給到達圧力に前記処理容器内がなるまで前記処理容器内に前記処理流体を供給する第3処理工程と、を有し、
前記第1の排出到達圧力は、前記第2の排出到達圧力及び前記第3の排出到達圧力よりも低い基板処理方法。
A substrate processing method in which a drying process for removing a liquid from a substrate in a processing container is performed using a processing fluid in a supercritical state.
The fluid in the processing container is discharged until the inside of the processing container reaches the first discharge ultimate pressure at which the vaporization of the supercritical processing fluid existing in the treatment container does not occur, and then the first discharge is performed. The first supply step of supplying the processing fluid into the processing container until the inside of the processing container reaches the first supply ultimate pressure higher than the ultimate pressure and the vaporization of the processing fluid in the processing container does not occur.
After the first treatment step, to discharge the fluid in the processing chamber to the processing chamber is a second discharge reaching pressure of vaporization of the process fluid in a supercritical state does not occur, then the second A second processing step of supplying the processing fluid into the processing container until the inside of the processing container reaches a second supply reaching pressure higher than the discharge ultimate pressure and the vaporization of the processing fluid in the processing container does not occur.
After the second treatment step, the fluid in the treatment container is discharged until the inside of the treatment container reaches a third discharge ultimate pressure at which the vaporization of the treatment fluid in the supercritical state does not occur, and then the third discharge is performed. A third processing step of supplying the processing fluid into the processing container until the inside of the processing container reaches a third supply reaching pressure higher than the ultimate pressure and the vaporization of the processing fluid in the processing container does not occur. Yes, and
The substrate processing method in which the first discharge ultimate pressure is lower than the second discharge ultimate pressure and the third discharge ultimate pressure.
前記第1処理工程の直後に前記第2処理工程が行われ、 Immediately after the first treatment step, the second treatment step is performed,
前記第2処理工程の直後に前記第3処理工程が行われる請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the third processing step is performed immediately after the second processing step.
前記第3の排出到達圧力は、前記第2の排出到達圧力よりも低い請求項2に記載の基板処理方法。 The substrate processing method according to claim 2, wherein the third discharge ultimate pressure is lower than the second discharge ultimate pressure. 前記処理容器内の圧力が前記処理流体の臨界圧力よりも高い範囲で、前記処理容器内を降圧する降圧工程及び前記処理容器内を昇圧する昇圧工程が繰り返される流体供給排出工程であって、前記第1処理工程、前記第2処理工程及び前記第3処理工程を含む流体供給排出工程を有する流体供給排出工程を含み、 A fluid supply / discharge step in which a step of lowering the pressure inside the treatment container and a step of raising the pressure inside the treatment container are repeated within a range in which the pressure in the treatment container is higher than the critical pressure of the treatment fluid. Including a fluid supply / discharge step having a fluid supply / discharge step including a first treatment step, the second treatment step, and the third treatment step.
前記第2処理工程及び前記第2処理工程以降において行われる前記降圧工程では、前記処理容器内の圧力は徐々に低い圧力になるように降下される請求項1〜3のいずれか一項に記載の基板処理方法。 6. Substrate processing method.
前記第1処理工程、前記第2処理工程及び前記第3処理工程のうちの少なくともいずれかにおいて、前記処理容器内を降圧する降圧工程と前記処理容器内を昇圧する昇圧工程との間に、前記処理容器内の圧力をほぼ一定に維持する圧力保持工程が行われる請求項1〜4のいずれか一項に記載の基板処理方法。 In at least one of the first treatment step, the second treatment step, and the third treatment step, the step of stepping down the pressure inside the treatment container and the step of raising the pressure inside the treatment container are described as described above. The substrate processing method according to any one of claims 1 to 4, wherein a pressure holding step of maintaining the pressure in the processing container at a substantially constant level is performed. 凹部を有する基板であって、当該凹部に液体が液盛りされた基板が搬入される処理容器と、
前記処理容器内に超臨界状態の処理流体を供給する流体供給部と、
前記処理容器内の流体を排出する流体排出部と、
前記流体供給部及び前記流体排出部を制御し、前記処理容器内において前記基板から前記液体を除去する乾燥処理を、超臨界状態の前記処理流体を使って行う制御部と、を備え、
前記制御部は、前記流体供給部及び前記流体排出部を制御し、
前記処理容器内に存在する超臨界状態の前記処理流体の気化が起こらない第1の排出到達圧力に前記処理容器内がなるまで前記処理容器内の流体を排出し、その後、前記第1の排出到達圧力より高く且つ前記処理容器内の前記処理流体の気化が起こらない第1の供給到達圧力に前記処理容器内がなるまで前記処理容器内に前記処理流体を供給する第1処理工程と、
前記第1処理工程後に、超臨界状態の前記処理流体の気化が起こらない第2の排出到達圧力に前記処理容器内がなるまで前記処理容器内の流体を排出し、その後、前記第2の排出到達圧力より高く且つ前記処理容器内の前記処理流体の気化が起こらない第2の供給到達圧力に前記処理容器内がなるまで前記処理容器内に前記処理流体を供給する第2処理工程と、
前記第2処理工程後に、超臨界状態の前記処理流体の気化が起こらない第3の排出到達圧力に前記処理容器内がなるまで前記処理容器内の流体を排出し、その後、前記第3の排出到達圧力より高く且つ前記処理容器内の前記処理流体の気化が起こらない第3の供給到達圧力に前記処理容器内がなるまで前記処理容器内に前記処理流体を供給する第3処理工程と、を行い、
前記第1の排出到達圧力は、前記第2の排出到達圧力及び前記第3の排出到達圧力よりも低い基板処理装置。
A processing container that is a substrate having a recess and in which a substrate filled with a liquid is carried into the recess.
A fluid supply unit that supplies a supercritical processing fluid into the processing container,
A fluid discharge unit that discharges the fluid in the processing container and
A control unit that controls the fluid supply unit and the fluid discharge unit and performs a drying process for removing the liquid from the substrate in the processing container using the processing fluid in a supercritical state is provided.
The control unit controls the fluid supply unit and the fluid discharge unit, and controls the fluid supply unit and the fluid discharge unit.
The fluid in the processing container is discharged until the inside of the processing container reaches the first discharge ultimate pressure at which the vaporization of the supercritical processing fluid existing in the treatment container does not occur, and then the first discharge is performed. The first supply step of supplying the processing fluid into the processing container until the inside of the processing container reaches the first supply ultimate pressure higher than the ultimate pressure and the vaporization of the processing fluid in the processing container does not occur.
After the first treatment step, to discharge the fluid in the processing chamber to the processing chamber is a second discharge reaching pressure of vaporization of the process fluid in a supercritical state does not occur, then the second A second processing step of supplying the processing fluid into the processing container until the inside of the processing container reaches a second supply reaching pressure higher than the discharge ultimate pressure and the vaporization of the processing fluid in the processing container does not occur.
After the second treatment step, the fluid in the treatment container is discharged until the inside of the treatment container reaches a third discharge ultimate pressure at which the vaporization of the treatment fluid in the supercritical state does not occur, and then the third discharge is performed. A third processing step of supplying the processing fluid into the processing container until the inside of the processing container reaches a third supply reaching pressure higher than the ultimate pressure and the vaporization of the processing fluid in the processing container does not occur. There line,
The substrate processing apparatus in which the first discharge ultimate pressure is lower than the second discharge ultimate pressure and the third discharge ultimate pressure.
処理容器内において基板から液体を除去する乾燥処理を超臨界状態の処理流体を使って行う基板処理方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
前記基板処理方法は、
前記処理容器内に存在する超臨界状態の前記処理流体の気化が起こらない第1の排出到達圧力に前記処理容器内がなるまで前記処理容器内の流体を排出し、その後、前記第1の排出到達圧力より高く且つ前記処理容器内の前記処理流体の気化が起こらない第1の供給到達圧力に前記処理容器内がなるまで前記処理容器内に前記処理流体を供給する第1処理工程と、
前記第1処理工程後に、超臨界状態の前記処理流体の気化が起こらない第2の排出到達圧力に前記処理容器内がなるまで前記処理容器内の流体を排出し、その後、前記第2の排出到達圧力より高く且つ前記処理容器内の前記処理流体の気化が起こらない第2の供給到達圧力に前記処理容器内がなるまで前記処理容器内に前記処理流体を供給する第2処理工程と、
前記第2処理工程後に、超臨界状態の前記処理流体の気化が起こらない第3の排出到達圧力に前記処理容器内がなるまで前記処理容器内の流体を排出し、その後、前記第3の排出到達圧力より高く且つ前記処理容器内の前記処理流体の気化が起こらない第3の供給到達圧力に前記処理容器内がなるまで前記処理容器内に前記処理流体を供給する第3処理工程と、を有し、
前記第1の排出到達圧力は、前記第2の排出到達圧力及び前記第3の排出到達圧力よりも低い記録媒体。
A computer-readable recording medium in which a program for causing a computer to execute a substrate processing method in which a drying process for removing a liquid from a substrate in a processing container is performed using a processing fluid in a supercritical state is recorded.
The substrate processing method is
The fluid in the processing container is discharged until the inside of the processing container reaches the first discharge ultimate pressure at which the vaporization of the supercritical processing fluid existing in the treatment container does not occur, and then the first discharge is performed. The first supply step of supplying the processing fluid into the processing container until the inside of the processing container reaches the first supply ultimate pressure higher than the ultimate pressure and the vaporization of the processing fluid in the processing container does not occur.
After the first treatment step, to discharge the fluid in the processing chamber to the processing chamber is a second discharge reaching pressure of vaporization of the process fluid in a supercritical state does not occur, then the second A second processing step of supplying the processing fluid into the processing container until the inside of the processing container reaches a second supply reaching pressure higher than the discharge ultimate pressure and the vaporization of the processing fluid in the processing container does not occur.
After the second treatment step, the fluid in the treatment container is discharged until the inside of the treatment container reaches a third discharge ultimate pressure at which the vaporization of the treatment fluid in the supercritical state does not occur, and then the third discharge is performed. A third processing step of supplying the processing fluid into the processing container until the inside of the processing container reaches a third supply reaching pressure higher than the ultimate pressure and the vaporization of the processing fluid in the processing container does not occur. Yes, and
The first discharge ultimate pressure is lower than the second discharge ultimate pressure and the third discharge ultimate pressure .
JP2020142936A 2016-10-04 2020-08-26 Substrate processing method, substrate processing equipment and recording medium Active JP6926303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020142936A JP6926303B2 (en) 2016-10-04 2020-08-26 Substrate processing method, substrate processing equipment and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016196630A JP6759042B2 (en) 2016-10-04 2016-10-04 Substrate processing method, substrate processing equipment and recording medium
JP2020142936A JP6926303B2 (en) 2016-10-04 2020-08-26 Substrate processing method, substrate processing equipment and recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016196630A Division JP6759042B2 (en) 2016-10-04 2016-10-04 Substrate processing method, substrate processing equipment and recording medium

Publications (2)

Publication Number Publication Date
JP2020191479A JP2020191479A (en) 2020-11-26
JP6926303B2 true JP6926303B2 (en) 2021-08-25

Family

ID=73453945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020142936A Active JP6926303B2 (en) 2016-10-04 2020-08-26 Substrate processing method, substrate processing equipment and recording medium

Country Status (1)

Country Link
JP (1) JP6926303B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500605B1 (en) * 1997-05-27 2002-12-31 Tokyo Electron Limited Removal of photoresist and residue from substrate using supercritical carbon dioxide process
US20060185693A1 (en) * 2005-02-23 2006-08-24 Richard Brown Cleaning step in supercritical processing
JP5544666B2 (en) * 2011-06-30 2014-07-09 セメス株式会社 Substrate processing equipment
KR20160026302A (en) * 2014-08-29 2016-03-09 삼성전자주식회사 Substrate processing apparatus, apparatus for manufacturing integrated circuit device, substrate processing method and method of manufacturing integrated circuit device

Also Published As

Publication number Publication date
JP2020191479A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP6759042B2 (en) Substrate processing method, substrate processing equipment and recording medium
KR102433528B1 (en) Substrate processing apparatus, substrate processing method, and recording medium
JP6740098B2 (en) Substrate processing apparatus, substrate processing method and storage medium
JP6804278B2 (en) Supercritical fluid manufacturing equipment and substrate processing equipment
KR102480691B1 (en) Substrate processing apparatus, substrate processing method, and storage medium
CN108155116A (en) The cleaning method of substrate board treatment and the cleaning system of substrate board treatment
JP2018082043A (en) Substrate processing device
JP2021086857A (en) Substrate processing apparatus and substrate processing method
JP6836939B2 (en) Substrate processing equipment and substrate processing method
JP2020025013A (en) Particle removal method for substrate processing apparatus and substrate processing apparatus
JP2019033246A (en) Substrate processing method, storage medium, and substrate processing system
US20200388512A1 (en) Substrate processing apparatus and control method thereof
KR102482206B1 (en) Substrate processing apparatus and substrate processing method
JP6926303B2 (en) Substrate processing method, substrate processing equipment and recording medium
JP6922048B2 (en) Substrate processing equipment, substrate processing method and recording medium
JP6840001B2 (en) Substrate processing equipment and substrate processing method
JP7104190B2 (en) Board processing equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210804

R150 Certificate of patent or registration of utility model

Ref document number: 6926303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150