JP6925176B2 - 非水系電解液及び非水系電解液二次電池 - Google Patents
非水系電解液及び非水系電解液二次電池 Download PDFInfo
- Publication number
- JP6925176B2 JP6925176B2 JP2017116730A JP2017116730A JP6925176B2 JP 6925176 B2 JP6925176 B2 JP 6925176B2 JP 2017116730 A JP2017116730 A JP 2017116730A JP 2017116730 A JP2017116730 A JP 2017116730A JP 6925176 B2 JP6925176 B2 JP 6925176B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- aqueous electrolyte
- mass
- anhydride
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
しかし、ビニレンカーボネートやフルオロエチレンカーボネート等の負極被膜形成材を含む非水系電解液二次電池は、高温保存時に電解液からガスが発生し、電池が膨れてしまうという問題点があった。
そのため、非水系電解液二次電池のガス発生を抑制するための手段として、正極や負極の活物質、非水系電解液の添加剤分野において数多くの検討がなされている。
特許文献2には、非水系電解液中にリン酸トリクレジル(トリクレジルホスフェート)等のリン酸エステルを加えることで、電池のサイクル特性を改善できることが開示されている。
特許文献3には、非水系電解液中に難燃剤である特定のリン酸エステルと、フォスファゼン化合物とを併用することで、電池の難燃性とサイクル特性を改善できることが開示されている。
特許文献4には、非水系電解液中に特定のリン酸エステルを加えることで、充放電効率や過充電特性を改善できることが開示されている。
特許文献5には、非水系電解液中に特定のリン酸エステルを加えることで、高温状態における有機電解液の重量減少を改善できることが開示されている。
しかし、本発明者等の検討によれば、特許文献1に開示されたリン酸エステルや、特許文献2に開示されたリン酸トリクレジル等のリン酸エステルを含む電解液を用いた二次電池は、高温保存時のガス抑制効果が不十分であった。
上記特許文献3には、特定のリン酸エステルの開示があるものの、該リン酸エステルは難燃剤として電解液中に多量に添加されており、このように多量のリン酸エステルを含む
二次電池は、高温保存時のガス抑制効果を十分に得ることは出来なかった。
本発明は上記状況に鑑みてなされたもので、その目的は、高温保存時のガス抑制効果に優れる電解液を提供することにある。
[1]金属イオンを吸蔵・放出しうる正極及び負極を備える非水系電解液電池用の非水系電解液であって、該非水系電解液が電解質及び非水系溶媒とともに、下記一般式(A)で表される化合物を、非水系電解液の全量に対して0.001質量%以上4.5質量%以下含有する、非水系電解液。
[2]前記、一般式(A)中、R1〜R2はメチル基である、[1]に記載の非水系電解液。
[3]前記、一般式(A)中、a=b=0〜3であり、m=2である[1]または[2]に記載の非水系電解液。
[4]前記、一般式(A)で表される化合物が、下記構造式(B)又は(C)で表される化合物を含む、[1]〜[3]のいずれかに記載の非水系電解液。
[6]前記不飽和結合を有する環状カーボネート化合物、ハロゲン化環状カーボネート化合物、ジフルオロリン酸塩、及びフルオロスルホン酸塩からなる群より選ばれる少なくとも1種の含有量が、非水系電解液の全量に対して0.01質量%以上10.0質量%以下であることを特徴とする[5]に記載の非水系電解液。
[7]リチウムイオンを吸蔵・放出可能な負極及び正極、並びに[1]〜[6]のいずれかに記載の非水系電解液を含む、非水系電解液二次電池。
[8]前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、ケイ素の単体金属、合金及び化合物、スズの単体金属、合金及び化合物、炭素質材料、並びにリチウムチタン複合酸化物からなる群より選択される少なくとも一種を含有する、[7]に記載の非水系電解液二次電池。
[9]前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、リチウム・コバルト複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・マンガン複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル複合酸化物、リチウム・ニッケル・マンガン複合酸化物、及びリチウム・コバルト・ニッケル・マンガン複合酸化物からなる群より選択される少なくとも一種を含有する、[7]または[8]に記載の非水系電解液二次電池。
[10]前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、LixMPO4(Mは周期表の第4周期の4族〜11族の遷移金属からなる群より選択される少なくとも一種の元素、xは0<x<1.2)を含有する、[7]〜[9]のいずれかに記載の非水系電解液二次電池。
中でも、ビニレンカーボネートやフルオロエチレンカーボネートといった高温保存時に発生するガスを増加させる添加剤と併用することで、サイクル特性等の各種電池特性に優れ、ガス発生の少ない非水系電解液及び電池膨れの少ない非水系電解液二次電池を得るこ
とが出来る。
アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、iso‐プロピル基、n−ブチル基、tert‐ブチル基、n−ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。中でも好ましくはメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、ヘキシル基、さらに好ましくは、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、ヘキシル基、特に好ましくはメチル基、エチル基、n−プロピル基、n−ブチル基が挙げられる。化合物(A)を含有することによる電解液粘度の上昇(出力の低下)が抑えられることからメチル基、エチル基が好ましい。
アルキニル基の具体例としては、エチニル基、2‐プロピニル基、2‐ブチニル基、3‐ブチニル基、4‐ペンチニル基、5‐ヘキシニル基等が挙げられる。中でも好ましくは、エチニル基、2‐プロピニル基、2‐ブチニル基、3‐ブチニル基、さらに好ましくは、2‐プロピニル基、3‐ブチニル基、特に好ましくは、2‐プロピニル基が挙げられる
。上述のアルキニル基であると、立体障害が適切であり、正極での被膜の形成反応が好適に制御できるためである。
非水系電解液全量に対する一般式(A)で表される化合物の含有量が上記の範囲であれば、正極での被膜が形成しやすく、高温保存時のガス発生を抑制出来る。
一般式(A)で表される化合物は、分子内に易酸化性部位である炭化水素基が置換した芳香環を有する。そのため、正極上で上述部位が酸化反応を受けることによりラジカル・カチオン種を生成する。また、不飽和結合を有する環状カーボネート化合物、ハロゲン化環状カーボネート、ジフルオロリン酸塩、フルオロスルホン酸塩で表される化合物は分子内に分極基を有する(例えばカーボネート化合部ならカルボニル基)。この分極基と前記ラジカル・カチオン種が反応し、複合的な被膜を正極上に形成する。この被膜は絶縁性を有するため、電解液の構成成分であるリチウム塩、溶媒、その他の添加剤の正極上での酸化反応による分解を抑制し高温保存時のガス発生抑制に資すると推定する。また、一般式(A)で表される化合物の芳香環に置換した炭化水素基の置換数が増えれば芳香環の電子密度が高まり、ラジカル・カチオン種の生成量が高まることで、前記絶縁性被膜を効果的に形成することができると考える。
されない。上記化合物を直接電解液に添加する方法の他に、電池内又は電解液中において上記化合物を発生させる方法が挙げられる。
本発明における一般式(A)で表される化合物の含有量とは、非水系電解液製造時、非水系電解液の電池への注液時点又は電池として出荷された何れかの時点での含有量を意味する。
炭素−炭素不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と記載する場合がある)としては、炭素−炭素二重結合または炭素−炭素三重結合を有する環状カーボネートであれば、特に制限はなく、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。
ビニレンカーボネート類としては、
ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ジビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート等が挙げられる。
ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、4−メチル−5−エチニルエチレンカーボネート、4−ビニル−5−エチニルエチレンカーボネート、4−アリル−5−エチニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、4−フェニル−5−ビニルエチレンカーボネート、4−アリル−5−フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート等が挙げられる。
ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、4−メチル−5−エチニルエチレンカーボネート、4−ビニル−5−エチニルエチレンカーボネートが挙げられる。
ネートはさらに安定な界面保護被膜を形成するので、特に好ましい。
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、80以上、250以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは85以上であり、また、より好ましくは150以下である。不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
フッ素原子、塩素原子、臭素原子、ヨウ素原子などを有するハロゲン化環状カーボネート化合物としては、炭素原子数2〜6のアルキレン基を有する環状カーボネートのフッ素化物、塩化物、臭化物及びヨウ化物、並びにその誘導体が挙げられ、例えばエチレンカーボネートのフッ素化物、及びその誘導体が挙げられる。エチレンカーボネートのフッ素化物の誘導体としては、例えば、アルキル基(例えば、炭素原子数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられる。中でもフッ素原子を1〜8個有するエチレンカーボネート、及びその誘導体が好ましい。
モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート等が挙げられる。
フッ素原子を有する環状カーボネート化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
特に好ましくは1質量%以上であり、また、通常10質量%以下、好ましくは7質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下である。ただし、モノフルオロエチレンカーボネートは溶媒として用いてもよく、その場合は上記の含有量に限定されない。
ジフルオロリン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR13R14R15R16(式中、R13〜R16は、各々独立に、水素原子又は炭素数1〜12の有機基を表わす。)で表されるアンモニウム等がその例として挙げられる。
ジフルオロリン酸リチウム、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウム等が挙げられ、ジフルオロリン酸リチウムが好ましい。
ジフルオロリン酸塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、ジフルオロリン酸塩の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。
この範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
前記フルオロスルホン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR13R14R15R16(式中、R13〜R16は、各々独立に、水素原子又は炭素数1〜12の有機基を表わす。)で表されるアンモニウム等がその例として挙げられる。
上記アンモニウムのR13〜R16で表わされる炭素数1〜12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR13〜R16が、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基であることが好ましい。
フルオロスルホン酸リチウム、フルオロスルホン酸ナトリウム、フルオロスルホン酸カリウム、フルオロスルホン酸ルビジウム、フルオロスルホン酸セシウム等が挙げられ、フ
ルオロスルホン酸リチウムが好ましい。
フルオロスルホン酸塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、フルオロスルホン酸塩の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。
この範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
<リチウム塩>
本発明の非水系電解液における電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
LiPF6等のフルオロリン酸リチウム塩類;
LiWOF5等のタングステン酸リチウム塩類;
HCO2Li、CH3CO2Li、CH2FCO2Li、CHF2CO2Li、CF3CO2Li、CF3CH2CO2Li、CF3CF2CO2Li、CF3CF2CF2CO2Li、CF3CF2CF2CF2CO2Li等のカルボン酸リチウム塩類;
CH3SO3Li等のスルホン酸リチウム塩類;
LiN(FCO2)2、LiN(FCO)(FSO2)、LiN(FSO2)2、LiN(FSO2)(CF3SO2)、LiN(CF3SO2)2、LiN(C2F5SO2)2、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CF3SO2)(C4F9SO2)等のリチウムイミド塩類;
LiC(FSO2)3、LiC(CF3SO2)3、LiC(C2F5SO2)3等のリチウムメチド塩類;
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のリチウムオキサラート塩類;
その他、LiPF4(CF3)2、LiPF4(C2F5)2、LiPF4(CF3SO2)2、LiPF4(C2F5SO2)2、LiBF3CF3、LiBF3C2F5、LiBF3C3F7、LiBF2(CF3)2、LiBF2(C2F5)2、LiBF2(CF3SO2)2、LiBF2(C2F5SO2)2等の含フッ素有機リチウム塩類;等が挙げられる。
2、LiN(FSO2)(CF3SO2)、LiN(CF3SO2)2、LiN(C2F5SO2)2、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO2)3、LiC(CF3SO2)3、LiC(C2F5SO2)3、リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等が低温出力特性やハイレート充放電特性、インピーダンス特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましい。また、上記電解質塩は、単独で用いても、2種以上を併用してもよい。
本発明の非水系電解液は、一般的な非水系電解液と同様、通常はその主成分として、上述した電解質を溶解する非水溶媒を含有する。ここで用いる非水溶媒について特に制限はなく、公知の有機溶媒を用いることができる。有機溶媒としては、飽和環状カーボネート類、鎖状カーボネート類、エーテル系化合物、スルホン類等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
飽和環状カーボネートとしては、通常炭素数2〜4のアルキレン基を有するものが挙げられ、リチウムイオン解離度の向上に由来する電池特性向上の点から炭素数2〜3の飽和環状カーボネートが好ましく用いられる。
飽和環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートが好ましく、酸化・還元されにくいエチレンカーボネートがより好ましい。飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
尚、本発明における体積%とは25℃、1気圧における体積を意味する。
鎖状カーボネートとしては、通常炭素数3〜7のものが用いられ、電解液の粘度を適切な範囲に調整するために、炭素数3〜5の鎖状カーボネートが好ましく用いられる。
具体的には、鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、
n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート等が挙げられる。
中でも、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
フッ素化エチルメチルカーボネート誘導体としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
フッ素化ジエチルカーボネート誘導体としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2’−フルオロエチルカーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチル−2’−フルオロエチルカーボネート、2,2,2−トリフルオロエチル−2’,2’−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等が挙げられる。
鎖状カーボネートの含有量は特に限定されないが、非水系電解液の溶媒全量に対して、通常15体積%以上であり、好ましくは20体積%以上、より好ましくは25体積%以上である。また、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。鎖状カーボネートの含有量を上記範囲とすることによって、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池の出力特性を良好な範囲としやすくなる。
例えば、特定の鎖状カーボネートとしてジメチルカーボネートとエチルメチルカーボネートを選択した場合、エチレンカーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系電解液の溶媒全量に対して、通常15体積%以上、好ましくは20体積%、また通常45体積%以下、好ましくは40体積%以下であり、ジメチルカーボネートの含有量は、非水系電解液の溶媒全量に対して、通常20体
積%以上、好ましくは30体積%以上、また通常50体積%以下、好ましくは45体積%以下であり、エチルメチルカーボネートの含有量は通常20体積%以上、好ましくは30体積%以上、また通常50体積%以下、好ましくは45体積%以下である。含有量を上記範囲内とすることで、高温安定性に優れ、ガス発生が抑制される傾向がある。
エーテル系化合物としては、炭素数3〜10の鎖状エーテル、及び炭素数3〜6の環状エーテルが好ましい。
炭素数3〜10の鎖状エーテルとしては、ジエチルエーテル、ジ(2−フルオロエチル)エーテル、ジ(2,2−ジフルオロエチル)エーテル、ジ(2,2,2−トリフルオロエチル)エーテル、エチル(2−フルオロエチル)エーテル、エチル(2,2,2−トリフルオロエチル)エーテル、エチル(1,1,2,2−テトラフルオロエチル)エーテル、(2−フルオロエチル)(2,2,2−トリフルオロエチル)エーテル、(2−フルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、(2,2,2−トリフルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、エチル−n−プロピルエーテル、エチル(3−フルオロ−n−プロピル)エーテル、エチル(3,3,3−トリフルオロ−n−プロピル)エーテル、エチル(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、エチル(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2−フルオロエチル−n−プロピルエーテル、(2−フルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2−フルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2,2,2−トリフルオロエチル−n−プロピルエーテル、(2,2,2−トリフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、1,1,2,2−テトラフルオロエチル−n−プロピルエーテル、(1,1,2,2−テトラフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−プロピルエーテル、(n−プロピル)(3−フルオロ−n−プロピル)エーテル、(n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3−フルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3,3,3−トリフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2−フルオロエトキシ)メタン、メトキシ(2,2,2−トリフルオロエトキシ)メタンメトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2−フルオロエトキシ)メタン、エト
キシ(2,2,2−トリフルオロエトキシ)メタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(2−フルオロエトキシ)メタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタンジ(2,2,2−トリフルオロエトキシ)メタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(1,1,2,2−テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2−フルオロエトキシ)エタン、メトキシ(2,2,2−トリフルオロエトキシ)エタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2−フルオロエトキシ)エタン、エトキシ(2,2,2−トリフルオロエトキシ)エタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2−フルオロエトキシ)エタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2,2,2−トリフルオロエトキシ)エタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(1,1,2,2−テトラフルオロエトキシ)エタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
これらの中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましい。特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
スルホン系化合物としては、環状スルホン、鎖状スルホンであっても特に制限されないが、環状スルホンの場合、通常炭素数が3〜6、好ましくは炭素数が3〜5であり、鎖状スルホンの場合、通常炭素数が2〜6、好ましくは炭素数が2〜5である化合物が好ましい。また、スルホン系化合物1分子中のスルホニル基の数は、特に制限されないが、通常1又は2である。
メチレンスルホン類(スルホラン類)が特に好ましい。
ル−t−ブチルスルホン等が電解液の高温保存安定性が向上する点で好ましい。
本発明の非水系電解液において、本発明の効果を奏する範囲で以下の助剤を含有してもよい。
<1−8−1.シアノ基を有する化合物>
本発明の非水系電解液において、用いることができるシアノ基を有する化合物としては、分子内にシアノ基を有している化合物であれば特にその種類は限定されないが、下記一般式(1)で表される化合物がより好ましい。シアノ基を有する化合物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル2−メチルブチロニトリル、トリメチルアセトニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3−メチルクロトノニトリル、2−メチル−2−ブテン二トリル、2−ペンテンニトリル、2−メチル−2−ペンテンニトリル、3−メチル−2−ペンテンニトリル、2−ヘキセンニトリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2−フルオロプロピオニトリル、3−フルオロプロピオニトリル、2,2−ジフルオロプロピオニトリル、2,3−ジフルオロプロピオニトリル、3,3−ジフルオロプロピオニトリル、2,2,3−トリフルオロプロピオニトリル、3,3,3−トリフルオロプロピオニトリル、3,3’−オキシジプロピオニトリル、3,3’−チオジプロピオニトリル、1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル、ペンタフルオロプロピオニトリル等のシアノ基を1つ有する化合物;
メチルシアネート、エチルシアネート、プロピルシアネート、ブチルシアネート、ペンチルシアネート、ヘキシルシアネート、ヘプチルシアネートなどのシアネート化合物;
メチルチオシアネート、エチルチオシアネート、プロピルチオシアネート、ブチルチオシアネート、ペンチルチオシアネート、ヘキシルチオシアネート、ヘプチルチオシアネート、メタンスルホニルシアニド、エタンスルホニルシアニド、プロパンスルホニルシアニド、ブタンスルホニルシアニド、ペンタンスルホニルシアニド、ヘキサンスルホニルシアニド、ヘプタンスルホニルシアニド、メチルスルフロシアニダート、エチルスルフロシアニダート、プロピルスルフロシアニダート、ブチルスルフロシアニダート、ペンチルスルフロシアニダート、ヘキシルスルフロシアニダート、ヘプチルスルフロシアニダートなどの含硫黄化合物;
シアノジメチルホスフィン、シアノジメチルホスフィンオキシド、シアノメチルホスフィン酸メチル、シアノメチル亜ホスフィン酸メチル、ジメチルホスフィン酸シアニド、ジメチル亜ホスフィン酸シアニド、シアノホスホン酸ジメチル、シアノ亜ホスホン酸ジメチル、メチルホスホン酸シアノメチル、メチル亜ホスホン酸シアノメチル、リン酸シアノジメチル亜リン酸シアノジメチルなどの含リン化合物;
等が挙げられる。
アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、クロトノニトリル、3‐メチルクロトノニトリル、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリルが保存特性向上の点から好ましく、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル等のシアノ基を2つ有する化合物がより好ましい。
本発明の非水系電解液において、用いることができるジイソシアネート化合物としては、分子内に、窒素原子をイソシアナト基にのみ有し、また、イソシアナト基を2つ有していて、下記一般式(2)で表される化合物が好ましい。
1,2−ジイソシアナトシクロペンタン、1,3−ジイソシアナトシクロペンタン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、等のシクロアルカン環含有ジイソシアネート類;
1,2−フェニレンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、トリレン−2,3−ジイソシアネート、トリレン−2,4−ジイソシアネート、トリレン−2,5−ジイソシアネート、トリレン−2,6−ジイソシアネート、トリレン−3,4−ジイソシアネート、トリレン−3,5−ジイソシアネート、1,2−ビス(イソシアナトメチル)ベンゼン、1,3−ビス(イソシアナトメチル)ベンゼン、1,4−ビス(イソシアナトメチル)ベンゼン、2,4−ジイソシアナトビフェニル、2,6−ジイソシアナトビフェニル、2,2’−ジイソシアナトビフェニル
、3,3’−ジイソシアナトビフェニル、4,4’−ジイソシアナト−2−メチルビフェニル、4,4’−ジイソシアナト−3−メチルビフェニル、4,4’−ジイソシアナト−3,3’−ジメチルビフェニル、4,4’−ジイソシアナトジフェニルメタン、4,4’−ジイソシアナト−2−メチルジフェニルメタン、4,4’−ジイソシアナト−3−メチルジフェニルメタン、4,4’−ジイソシアナト−3,3’−ジメチルジフェニルメタン、1,5−ジイソシアナトナフタレン、1,8−ジイソシアナトナフタレン、2,3−ジイソシアナトナフタレン、1,5−ビス(イソシアナトメチル)ナフタレン、1,8−ビス(イソシアナトメチル)ナフタレン、2,3−ビス(イソシアナトメチル)ナフタレン等の芳香環含有ジイソシアネート類;
などが挙げられる。
1,2−ジイソシアナトシクロペンタン、1,3−ジイソシアナトシクロペンタン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、1,2−フェニレンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、1,2−ビス(イソシアナトメチル)ベンゼン、1,3−ビス(イソシアナトメチル)ベンゼン、1,4−ビス(イソシアナトメチル)ベンゼン、2,4−ジイソシアナトビフェニル、2,6−ジイソシアナトビフェニルが、負極上により緻密な複合的な被膜が形成され、その結果、電池耐久性が向上するため、好ましい。
1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、1,2−ビス(イソシアナトメチル)ベンゼン、1,3−ビス(イソシアナトメチル)ベンゼン、1,4−ビス(イソシアナトメチル)ベンゼンが、その分子の対称性から負極上にリチウムイオン伝導性に有利な被膜が形成され、その結果、低温出力特性及びサイクル特性等の電池特性がさらに向上するため、より好ましい。
また上述したジイソシアネート化合物は、1種類を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
尚、ジイソシアネート化合物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。また、市販品を用いてもよい。
本発明の非水系電解液において、用いることができるカルボン酸無水物としては、下記一般式(3)で表される化合物が好ましい。カルボン酸無水物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
まず、R3、R4が同一である酸無水物の具体例を以下に挙げる。
R3、R4が鎖状アルキル基である酸無水物の具体例としては、無水酢酸、プロピオン酸無水物、ブタン酸無水物、2−メチルプロピオン酸無水物、2,2−ジメチルプロピオン酸無水物、2−メチルブタン酸無水物、3−メチルブタン酸無水物、2,2−ジメチルブタン酸無水物、2,3−ジメチルブタン酸無水物、3,3−ジメチルブタン酸無水物、2,2,3−トリメチルブタン酸無水物、2,3,3−トリメチルブタン酸無水物、2,2,3,3−テトラメチルブタン酸無水物、2−エチルブタン酸無水物等、及びそれらの類縁体などが挙げられる。
R3、R4がアルケニル基である酸無水物の具体例としては、アクリル酸無水物、2−メチルアクリル酸無水物、3−メチルアクリル酸無水物、2,3−ジメチルアクリル酸無水物、3,3−ジメチルアクリル酸無水物、2,3,3−トリメチルアクリル酸無水物、2−フェニルアクリル酸無水物、3−フェニルアクリル酸無水物、2,3−ジフェニルアクリル酸無水物、3,3−ジフェニルアクリル酸無水物、3−ブテン酸無水物、2−メチル−3−ブテン酸無水物、2,2−ジメチル−3−ブテン酸無水物、3−メチル−3−ブテン酸無水物、2−メチル−3−メチル−3−ブテン酸無水物、2,2−ジメチル−3−メチル−3−ブテン酸無水物、3−ペンテン酸無水物、4−ペンテン酸無水物、2−シクロペンテンカルボン酸無水物、3−シクロペンテンカルボン酸無水物、4−シクロペンテンカルボン酸無水物等、及びそれらの類縁体などが挙げられる。
R3、R4がアリール基である酸無水物の具体例としては、安息香酸無水物、4−メチル安息香酸無水物、4−エチル安息香酸無水物、4−tert−ブチル安息香酸無水物、2−メチル安息香酸無水物、2,4,6−トリメチル安息香酸無水物、1−ナフタレンカルボン酸無水物、2−ナフタレンカルボン酸無水物等、及びそれらの類縁体などが挙げられる。
R3、R4がハロゲン原子で置換された鎖状アルキル基である酸無水物の例としては、フルオロ酢酸無水物、ジフルオロ酢酸無水物、トリフルオロ酢酸無水物、2−フルオロプロピオン酸無水物、2,2−ジフルオロプロピオン酸無水物、2,3−ジフルオロプロピオン酸無水物、2,2,3−トリフルオロプロピオン酸無水物、2,3,3−トリフルオロプロピオン酸無水物、2,2,3,3−テトラプロピオン酸無水物、2,3,3,3−テトラプロピオン酸無水物、3−フルオロプロピオン酸無水物、3,3−ジフルオロプロピオン酸無水物、3,3,3−トリフルオロプロピオン酸無水物、パーフルオロプロピオン酸無水物等、及びそれらの類縁体などが挙げられる。
R3、R4がハロゲン原子で置換されたアリール基である酸無水物の例としては、4−フルオロ安息香酸無水物、2,3,4,5,6−ペンタフルオロ安息香酸無水物、4−トリフルオロメチル安息香酸無水物等、及びそれらの類縁体などが挙げられる。
R3、R4がエステル、ニトリル、ケトン、エーテルなどの官能基を有する置換基を有している酸無水物の例としては、メトキシギ酸無水物、エトキシギ酸無水物、メチルシュウ酸無水物、エチルシュウ酸無水物、2−シアノ酢酸無水物、2−オキソプロピオン酸無水物、3−オキソブタン酸無水物、4−アセチル安息香酸無水物、メトキシ酢酸無水物、4−メトキシ安息香酸無水物等、及びそれらの類縁体などが挙げられる。
R3、R4としては上に挙げた例、及びそれらの類縁体の全ての組み合わせが考えられるが、以下に代表的な例を挙げる。
鎖状アルキル基と環状アルキル基の組み合わせの例としては、酢酸シクロペンタン酸無水物、酢酸シクロヘキサン酸無水物、シクロペンタン酸プロピオン酸無水物、などが挙げられる。
鎖状アルキル基とアルケニル基の組み合わせの例としては、酢酸アクリル酸無水物、酢酸3−メチルアクリル酸無水物、酢酸3−ブテン酸無水物、アクリル酸プロピオン酸無水物、などが挙げられる。
鎖状アルキル基とアリール基の組み合わせの例としては、酢酸安息香酸無水物、酢酸4−メチル安息香酸無水物、酢酸1−ナフタレンカルボン酸無水物、安息香酸プロピオン酸無水物、などが挙げられる。
鎖状アルキル基と官能基を有する炭化水素基の組み合わせの例としては、酢酸フルオロ酢酸無水物、酢酸トリフルオロ酢酸無水物、酢酸4−フルオロ安息香酸無水物、フルオロ酢酸プロピオン酸無水物、酢酸アルキルシュウ酸無水物、酢酸2−シアノ酢酸無水物、酢
酸2−オキソプロピオン酸無水物、酢酸メトキシ酢酸無水物、メトキシ酢酸プロピオン酸無水物、などが挙げられる。
環状アルキル基とアルケニル基の組み合わせの例としては、アクリル酸シクロペンタン酸無水物、3−メチルアクリル酸シクロペンタン酸無水物、3−ブテン酸シクロペンタン酸無水物、アクリル酸シクロヘキサン酸無水物、などが挙げられる。
環状アルキル基とアルキニル基の組み合わせの例としては、プロピン酸シクロペンタン酸無水物、2−ブチン酸シクロペンタン酸無水物、プロピン酸シクロヘキサン酸無水物、などが挙げられる。
環状アルキル基とアリール基の組み合わせの例としては、安息香酸シクロペンタン酸無水物、4−メチル安息香酸シクロペンタン酸無水物、安息香酸シクロヘキサン酸無水物、などが挙げられる。
環状アルキル基と官能基を有する炭化水素基の組み合わせの例としては、フルオロ酢酸シクロペンタン酸無水物、シクロペンタン酸トリフルオロ酢酸無水物、シクロペンタン酸2−シアノ酢酸無水物、シクロペンタン酸メトキシ酢酸無水物、シクロヘキサン酸フルオロ酢酸無水物、などが挙げられる。
アルケニル基とアルキニル基の組み合わせの例としては、アクリル酸プロピン酸無水物、アクリル酸2−ブチン酸無水物、2−メチルアクリル酸プロピン酸無水物、などが挙げられる。
アルケニル基とアリール基の組み合わせの例としては、アクリル酸安息香酸無水物、アクリル酸4−メチル安息香酸無水物、2−メチルアクリル酸安息香酸無水物、などが挙げられる。
アルケニル基と官能基を有する炭化水素基の組み合わせの例としては、アクリル酸フルオロ酢酸無水物、アクリル酸トリフルオロ酢酸無水物、アクリル酸2−シアノ酢酸無水物、アクリル酸メトキシ酢酸無水物、2−メチルアクリル酸フルオロ酢酸無水物、などが挙げられる。
アルキニル基とアリール基の組み合わせの例としては、安息香酸プロピン酸無水物、4−メチル安息香酸プロピン酸無水物、安息香酸2−ブチン酸無水物、などが挙げられる。
アルキニル基と官能基を有する炭化水素基の組み合わせの例としては、プロピン酸フルオロ酢酸無水物、プロピン酸トリフルオロ酢酸無水物、プロピン酸2−シアノ酢酸無水物、プロピン酸メトキシ酢酸無水物、2−ブチン酸フルオロ酢酸無水物、などが挙げられる。
アリール基と官能基を有する炭化水素基の組み合わせの例としては、安息香酸フルオロ酢酸無水物、安息香酸トリフルオロ酢酸無水物、安息香酸2−シアノ酢酸無水物、安息香酸メトキシ酢酸無水物、4−メチル安息香酸フルオロ酢酸無水物、などが挙げられる。
酢酸無水物、フルオロ酢酸2−シアノ酢酸無水物、フルオロ酢酸メトキシ酢酸無水物、トリフルオロ酢酸2−シアノ酢酸無水物、などが挙げられる。
無水酢酸、プロピオン酸無水物、2−メチルプロピオン酸無水物、シクロペンタンカルボン酸無水物、シクロヘキサンカルボン酸無水物等、アクリル酸無水物、2−メチルアクリル酸無水物、3−メチルアクリル酸無水物、2,3−ジメチルアクリル酸無水物、3,3−ジメチルアクリル酸無水物、3−ブテン酸無水物、2−メチル−3−ブテン酸無水物、プロピン酸無水物、2−ブチン酸無水物、安息香酸無水物、2−メチル安息香酸無水物、4−メチル安息香酸無水物、4−tert−ブチル安息香酸無水物、トリフルオロ酢酸無水物、3,3,3−トリフルオロプロピオン酸無水物、2−(トリフルオロメチル)アクリル酸無水物、2−(4−フルオロフェニル)アクリル酸無水物、4−フルオロ安息香酸無水物、2,3,4,5,6−ペンタフルオロ安息香酸無水物、メトキシギ酸無水物、エトキシギ酸無水物、であり、
より好ましくは、アクリル酸無水物、2−メチルアクリル酸無水物、3−メチルアクリル酸無水物、安息香酸無水物、2−メチル安息香酸無水物、4−メチル安息香酸無水物、4−tert−ブチル安息香酸無水物、4−フルオロ安息香酸無水物、2,3,4,5,6−ペンタフルオロ安息香酸無水物、メトキシギ酸無水物、エトキシギ酸無水物である。
まず、R3とR4とが互いに結合して5員環構造を形成している酸無水物の具体例としては、無水コハク酸、4−メチルコハク酸無水物、4,4−ジメチルコハク酸無水物、4,5−ジメチルコハク酸無水物、4,4,5−トリメチルコハク酸無水物、4,4,5,5−テトラメチルコハク酸無水物、4−ビニルコハク酸無水物、4,5−ジビニルコハク酸無水物、4−フェニルコハク酸無水物、4,5−ジフェニルコハク酸無水物、4,4−ジフェニルコハク酸無水物、シトラコン酸無水物、無水マレイン酸、4−メチルマレイン酸無水物、4,5−ジメチルマレイン酸無水物、4−フェニルマレイン酸無水物、4,5−ジフェニルマレイン酸無水物、イタコン酸無水物、5−メチルイタコン酸無水物、5,5−ジメチルイタコン酸無水物、無水フタル酸、3,4,5,6−テトラヒドロフタル酸無水物等、及びそれらの類縁体などが挙げられる。
R3とR4とが互いに結合してその他の環状構造を形成している酸無水物の具体例としては、5−ノルボルネン−2,3−ジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、ピロメリット酸無水物、ジグリコール酸無水物等、及びそれらの類縁体などが挙げられる。
R3とR4とが互いに結合して環状構造を形成するとともに、ハロゲン原子で置換された酸無水物の具体例としては、4−フルオロコハク酸無水物、4,4−ジフルオロコハク酸無水物、4,5−ジフルオロコハク酸無水物、4,4,5−トリフルオロコハク酸無水物、4,4,5,5−テトラフルオロコハク酸無水物、4−フルオロマレイン酸無水物、4,5−ジフルオロマレイン酸無水物、5−フルオロイタコン酸無水物、5,5−ジフルオロイタコン酸無水物等、及びそれらの類縁体などが挙げられる。
無水コハク酸、4−メチルコハク酸無水物、4−ビニルコハク酸無水物、4−フェニルコハク酸無水物、シトラコン酸無水物、無水マレイン酸、4−メチルマレイン酸無水物、4−フェニルマレイン酸無水物、イタコン酸無水物、5−メチルイタコン酸無水物、グルタル酸無水物、無水フタル酸、シクロヘキサン−1,2−ジカルボン酸無水物、5−ノルボルネン−2,3−ジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、ピロメリット酸無水物、4−フルオロコハク酸無水物、4−フルオロマレイン酸無水物、5−フルオロイタコン酸無水物、であり、より好ましくは、
無水コハク酸、4−メチルコハク酸無水物、4−ビニルコハク酸無水物、シトラコン酸無水物、シクロヘキサン−1,2−ジカルボン酸無水物、5−ノルボルネン−2,3−ジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、ピロメリット酸無水物、4−フルオロコハク酸無水物である。これらの化合物は、適切にリチウムオキサラート塩との結合を形成して耐久性に優れる被膜を形成することで、特に耐久試験後の容量維持率が向上するために好ましい。
本発明の非水系電解液において、非水系電解液二次電池が過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
ロヘキサン、1,1,3−トリメチル−3−フェニルインダン、3−プロピルフェニルアセテート、2−エチルフェニルアセテート、ベンジルフェニルアセテート、メチルフェニルアセテート、ベンジルアセテート、フェネチルフェニルアセテート、ジフェニルカーボネート、メチルフェニルカーボネートが好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが、過充電防止特性と高温保存特性のバランスの点から好ましい。
本発明の非水系電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、
エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;
メチル−2−プロピニルオギザレート、エチル−2−プロピニルオギザレート、ビス(2−プロピニル)オギザレート、2−プロピニルアセテート、2−プロピニルホルメート、2−プロピニルメタクリレート、ジ(2−プロピニル)グルタレート、メチル−2−プロピニルカーボネート、エチル−2−プロピニルカーボネート、ビス(2−プロピニル)カーボネート、2−ブチン−1,4−ジイル−ジメタンスルホネート、2−ブチン−1,4−ジイル−ジエタンスルホネート、2−ブチン−1,4−ジイル−ジホルメート、2−ブチン−1,4−ジイル−ジアセテート、2−ブチン−1,4−ジイル−ジプロピオネート、4−ヘキサジイン−1,6−ジイル−ジメタンスルホネート、2−プロピニル−メタンスルホネート、1−メチル−2−プロピニル−メタンスルホネート、1,1−ジメチル−2−プロピニル−メタンスルホネート、2−プロピニル−エタンスルホネート、2−プロピニル−ビニルスルホネート、2−プロピニル−2−(ジエトキシホスホリル)アセテート、1−メチル−2−プロピニル−2−(ジエトキシホスホリル)アセテート、1,1−ジメチル−2−プロピニル−2−(ジエトキシホスホリル)アセテート等の三重結合含有化合物;
2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;
エチレンサルファイト、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、硫酸エチレン、硫酸ビニレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド、メチル硫酸トリメチルシリル、エチル硫酸トリメチルシリル、2−プロピニル−トリメチルシリルスルフェート等の含硫黄化合物;
1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等の含窒素化合物;
ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物;
フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド、オルトフルオロトルエン、メタフルオロトルエン、パラフルオロトルエン、1,2−ビス(トリフルオロメチル)ベンゼン、1−トリフルオロメチル−2−ジフルオロメチルベンゼン、1,3−ビス(トリフルオロメチル)ベンゼン、1−トリフルオロメチル−3−ジフルオロメチルベンゼン、1,4−ビス(トリフルオロメチル)ベンゼン、1−トリフルオロメチル−4−ジフルオロメチルベンゼン、1,3,5−トリス(トリフルオロメチル)ベンゼン、ペンタフルオロフェニルメタンスルホネート、ペンタフルオロフェニルトリフルオロメタンスルホネート、酢酸ペンタフルオロフェニル、トリフルオロ酢酸ペンタフルオロフェニル、メチルペンタフルオロフェニルカーボネート等の含フッ素芳香族化合物;
ホウ酸トリス(トリメチルシリル)、ホウ酸トリス(トリメトキシシリル)、リン酸トリス(トリメチルシリル)、リン酸トリス(トリメトキシシリル)、ジメトキシアルミノキシトリメトキシシラン、ジエトキシアルミノキシトリエトキシシラン、ジプロポキシアルミノキシトリエトキシシラン、ジブトキシアルミノキシトリメトキシシラン、ジブトキシアルミノキシトリエトキシシラン、チタンテトラキス(トリメチルシロキシド)、チタンテトラキス(トリエチルシロキシド)、等のシラン化合物;
2−(メタンスルホニルオキシ)プロピオン酸2−プロピニル、2−(メタンスルホニルオキシ)プロピオン酸2−メチル、2−(メタンスルホニルオキシ)プロピオン酸2−エチル、メタンスルホニルオキシ酢酸2−プロピニル、メタンスルホニルオキシ酢酸2−メチル、メタンスルホニルオキシ酢酸2−エチル等のエステル化合物;
リチウムエチルメチルオキシカルボニルホスホネート、リチウムエチルエチルオキシカルボニルホスホネート、リチウムエチル−2−プロピニルオキシカルボニルホスホネート、リチウムエチル−1−メチル−2−プロピニルオキシカルボニルホスホネート、リチウム エチル−1,1−ジメチル−2−プロピニルオキシカルボニルホスホネート等のリチウム塩;
等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
本発明の非水系電解液二次電池は、集電体及び該集電体上に設けられた正極活物質層を有する正極と、集電体及び該集電体上に設けられた負極活物質層を有しかつイオンを吸蔵及び放出し得る負極と、上述した本発明の非水系電解液とを備えるものである。
本発明の非水系電解液二次電池は、上述した本発明の非水系電解液以外の構成については、従来公知の非水系電解液二次電池と同様である。通常は、本発明の非水系電解液が含浸されている多孔膜(セパレータ)を介して正極と負極とが積層され、これらがケース(外装体)に収納された形態を有する。従って、本発明の非水系電解液二次電池の形状は特
に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
非水系電解液としては、上述の本発明の非水系電解液を用いる。なお、本発明の趣旨を逸脱しない範囲において、本発明の非水系電解液に対し、その他の非水系電解液を配合して用いることも可能である。
負極は、集電体上に負極活物質層を有するものであり、負極活物質層は負極活物質を含有する。以下、負極活物質について述べる。
負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。その具体例としては、炭素質材料、金属合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
負極活物質として用いられる炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質を400から3200℃の範囲で一回以上熱処理した炭素質材料、
(3)負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質から成り立ちかつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種類以上の異なる配向性を有する炭素質から成り立ちかつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが初期不可逆容量、高電流密度充放電特性のバランスが良く好ましい。また、(1)〜(4)の炭素質材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい
炭素質材料についての性質や炭素質材料を含有する負極電極及び電極化手法、集電体、非水系電解液二次電池については、次に示す(1)〜(13)の何れか1つ又は複数を同時に満たしていることが望ましい。
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335〜0.340nmであり、特に0.335〜0.338nm、とりわけ0.335〜0.337nmであるものが好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、通常1.0nm以上、好ましくは1.5nm以上、特に好ましくは2nm以上である。
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)が、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。
炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値が、通常0.01以上であり、0.03以上が好ましく、0.1以上がさらに好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm−1
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値が、通常0.1m2・g−1以上であり、0.7m2・g−1以上が好ましく、1.0m2・g−1以上がさらに好ましく、1.5m2・g−1以上が特に好ましく、また、通常100m2・g−1以下であり、25m2・g−1以下が好ましく、15m2・g−1以下がさらに好ましく、10m2・g−1以下が特に好ましい。
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
炭素質材料の粒径が3〜40μmの範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上がより好ましく、0.8以上がさらに好ましく、0.85以上が特に好ましく、0.9以上が最も好ましい。
高電流密度充放電特性は、円形度が大きいほど向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
炭素質材料のタップ密度は、通常0.1g・cm−3以上であり、0.5g・cm−3以上が好ましく、0.7g・cm−3以上がさらに好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下がさらに好ま
しく、1.6g・cm−3以下が特に好ましい。
タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上がより好ましく、また、通常0.67以下である。配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。該測定で算出される配向比を、本発明における炭素質材料の配向比と定義する。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下がより好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50ミクロン以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Pと、それと直交する最短となる径Qを測定し、P/Qの平均値を求める。該測定で求められるアスペクト比(P/Q)を、本発明における炭素質材料のアスペクト比と定義する。
負極の製造は、本発明の効果を著しく制限しない限り、公知の何れの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによ
って形成することができる。
電池の非水系電解液注液工程直前の段階での片面あたりの負極活物質層の厚さは、通常15μm以上であり、20μm以上が好ましく、30μm以上がより好ましく、また、通常150μm以下であり、120μm以下が好ましく、100μm以下がより好ましい。負極活物質の厚さが、この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合があるためである。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合があるためである。また、負極活物質をロール成形してシート電極としてもよく、圧縮成形によりペレット電極としてもよい。
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、さらに好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
また、銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることができる。
集電体と負極活物質層の厚さの比は特には限定されないが、「(非水系電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値は、通常150以下、20以下が好ましく、10以下がより好ましく、また、通常0.1以上、0.4以上が好ましく、1以上がより好ましい。
集電体と負極活物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がより好ましく、1.3g・cm−3以上がさらに好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下がさらに好ましく、1.9g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に
対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分として含有する場合、負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がより好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がより好ましい。
シメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
さらに増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、特に限定されないが、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
負極活物質として用いられる金属化合物系材料としては、リチウムを吸蔵・放出可能であれば、リチウム合金を形成する単体金属若しくは合金、又はそれらの酸化物、炭化物、窒化物、珪化物、硫化物、燐化物等の化合物の何れであっても特に限定はされない。このような金属化合物としては、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn等の金属を含有する化合物が挙げられる。なかでも、リチウム合金を形成する単体金属若しくは合金であることが好ましく、13族又は14族の金属・半金属元素(すなわち炭素を除く)を含む材料あることがより好ましく、さらには、ケイ素(Si)、スズ(Sn)又は鉛(Pb)(以下、これら3種の元素を「特定金属元素」という場合がある。)の単体金属若しくはこれら原子を含む合金、又は、それらの金属(特定金属元素)の化合物であることが好ましく、ケイ素の単体金属、合金及び化合物、並びにスズの単体金属、合金及び化合物が特に好ましい。これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
・ケイ素及び/又はスズと酸素との元素比が通常0.5以上であり、好ましくは0.7以上、より好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、より好ましくは1.1以下の「ケイ素及び/又はスズの酸化物」。
・ケイ素及び/又はスズと窒素との元素比が通常0.5以上であり、好ましくは0.7以上、より好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、より好ましくは1.1以下の「ケイ素及び/又はスズの窒化物」。
・ケイ素及び/又はスズと炭素との元素比が通常0.5以上であり、好ましくは0.7以上、より好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、より好ましくは1.1以下の「ケイ素及び/又はスズの炭化物」。
なお、上述の負極活物質は、何れか1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがあるためである。
負極活物質層を形成するためのスラリーは、通常は負極材に対して結着剤、増粘剤等を加えて作製される。なお、本明細書における「負極材」とは、負極活物質と導電材とを合わせた材料を指すものとする。
となるためである。なお、2以上の導電材を併用する場合には、導電材の合計量が上記範囲を満たすようにすればよい。
上記手法により負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がさらに好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下がさらに好ましく、1.9g・cm−3以下が特に好ましい。
る高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
負極活物質として、金属化合物系材料と前記炭素質材料を含有してもよい。ここで、金属化合物系材料と炭素質材料を含有する負極活物質とは、リチウム合金を形成する単体金属若しくは合金、又はそれらの酸化物、炭化物、窒化物、珪化物、硫化物等の化合物の何れかと、炭素質材料が互いに独立した粒子の状態で混合されている混合物でもよいし、リチウム合金を形成する単体金属若しくは合金、又はそれらの酸化物、炭化物、窒化物、珪化物、硫化物等の化合物が炭素質材料の表面又は内部に存在している複合体でもよい。本明細書において、複合体とは、特に、金属化合物系材料および炭素質材料が含まれていれば特に制限はないが、好ましくは、金属化合物系材料および炭素質材料が物理的及び/又は化学的な結合によって一体化している。より好ましい形態としては、金属化合物系材料および炭素質材料が、少なくとも複合体表面及びバルク内部の何れにも存在する程度に各々の固体成分が分散して存在している状態にあり、それらを物理的及び/又は化学的な結合によって一体化させるために、炭素質材料が存在しているような形態である。
Si)とを原料として得られる。SiOxは、黒鉛と比較して理論容量が大きく、さらに非晶質SiあるいはナノサイズのSi結晶は、リチウムイオン等のアルカリイオンの出入りがしやすく、高容量を得ることが可能となる。
尚、金属化合物系材料が、リチウムと合金化可能な金属材料であることを確認するための手法としては、X線回折による金属粒子相の同定、電子顕微鏡による粒子構造の観察および元素分析、蛍光X線による元素分析などが挙げられる。
尚、平均粒子径(d50)は、レーザー回折・散乱式粒度分布測定方法等で求められる。
また、金属化合物系材料と炭素質材料を含有する負極活物質に用いられる金属化合物系材料の負極作成については、前記<2−3−1>炭素質材料に記載のものを用いることができる。
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば特に限定はされないが、チタンを含むリチウム含有複合金属酸化物材料が好ましく、リチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する。)が特に好ましい。すなわち、スピネル構造を有するリチウムチタン複合酸化物を、非水系電解液二次電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素で置換されているものも好ましい。
LixTiyMzO4 (5)
[一般式(5)中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
(a)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(b)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(c)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
負極活物質として用いられるリチウムチタン複合酸化物のBET比表面積は、BET法を用いて測定した比表面積の値が、0.5m2・g−1以上が好ましく、0.7m2・g−1以上がより好ましく、1.0m2・g−1以上がさらに好ましく、1.5m2・g−1以上が特に好ましく、また、200m2・g−1以下が好ましく、100m2・g−1以下がより好ましく、50m2・g−1以下がさらに好ましく、25m2・g−1以下が特に好ましい。
BET比表面積が、上記範囲を下回ると、負極材料として用いた場合の非水系電解液と接する反応面積が減少し、出力抵抗が増加する場合がある。一方、上記範囲を上回ると、チタンを含有する金属酸化物の結晶の表面や端面の部分が増加し、また、これに起因して、結晶の歪も生じるため、不可逆容量が無視できなくなり、好ましい電池が得られにくい場合がある。
リチウムチタン複合酸化物の体積基準平均粒径(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)で定義される。
リチウムチタン複合酸化物の体積基準平均粒径は、通常0.1μm以上であり、0.5μm以上が好ましく、0.7μm以上がより好ましく、また、通常50μm以下であり、
40μm以下が好ましく、30μm以下がより好ましく、25μm以下がさらに好ましい。
一次粒子が凝集して二次粒子を形成している場合においては、リチウムチタン複合酸化物の平均一次粒子径が、通常0.01μm以上であり、0.05μm以上が好ましく、0.1μm以上がより好ましく、0.2μm以上がさらに好ましく、また、通常2μm以下であり、1.6μm以下が好ましく、1.3μm以下がより好ましく、1μm以下がさらに好ましい。体積基準平均一次粒子径が、上記範囲を上回ると、球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下したりするために、出力特性等の電池性能が低下する可能性が高くなる場合がある。また、上記範囲を下回ると、通常、結晶が未発達になるために充放電の可逆性が劣る等、二次電池の性能を低下させる場合がある。
リチウムチタン複合酸化物の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。
通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子の活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐためである。
リチウムチタン複合酸化物のタップ密度は、0.05g・cm−3以上が好ましく、0.1g・cm−3以上がより好ましく、0.2g・cm−3以上がさらに好ましく、0.4g・cm−3以上が特に好ましく、また、2.8g・cm−3以下がより好ましく、2.4g・cm−3以下がさらに好ましく、2g・cm−3以下が特に好ましい。タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、また粒子間の接触面積が減少するため、粒子間の抵抗が増加し、出力抵抗が増加する場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、非水系電解液の流路
が減少することで、出力抵抗が増加する場合がある。
リチウムチタン複合酸化物の球形の程度として、円形度を測定した場合、以下の範囲に収まることが好ましい。円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
リチウムチタン複合酸化物のアスペクト比は、通常1以上、また、通常5以下であり、4以下が好ましく、3以下がより好ましく、2以下がさらに好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、短時間高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、リチウムチタン複合酸化物のアスペクト比の理論下限値である。
リチウムチタン複合酸化物の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
例えば、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質とLiOH、Li2CO3、LiNO3等のLi源を均一に混合し、高温で焼成して活物質を得る方法が挙げられる。
特に球状又は楕円球状の活物質を作成するには種々の方法が考えられる。一例として、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解
ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、Li2CO3、LiNO3等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
電極の製造は、公知の何れの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合がある。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。また、負極活物質をロール成形してシート電極としてもよく、圧縮成形によりペレット電極としてもよい。
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられ、中でも加工し易さとコストの点から特に銅が好ましい。
極を密に丸めても、鋭角に丸めても割れにくく、小型の円筒状電池に好適に用いることができる。
集電体の厚さが、上記範囲内であると、強度が向上し塗布が容易となったり、電極の形が安定したりといった点で好ましい。
集電体と活物質層の厚さの比は特には限定されないが、「(非水系電解液注液直前の片面の活物質層の厚さ)/(集電体の厚さ)」の値が、通常150以下であり、20以下が好ましく、10以下がより好ましく、また、通常0.1以上であり、0.4以上が好ましく、1以上がより好ましい。
集電体と負極活性物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
負極活物質の電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がより好ましく、1.3g・cm−3以上がさらに好ましく、1.5g・cm−3以上が特に好ましく、また、3g・cm−3以下が好ましく、2.5g・cm−3以下がより好ましく、2.2g・cm−3以下がさらに好ましく、2g・cm−3以下が特に好ましい。
集電体上に存在している活物質の密度が、上記範囲を上回ると、集電体と負極活物質の結着が弱くなり、電極と活物質が乖離する場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大する場合がある。
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の
組み合わせ及び比率で併用してもよい。
水系溶媒の例としては水、アルコール等が挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセトアミド、ヘキサメリルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、上述の増粘剤に併せて分散剤等を加え、SBR等のラテックスを用いてスラリー化する。なお、これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質に対するバインダーの割合が、上記範囲内であるとバインダー量が電池容量に寄与しないバインダー割合が低下し電池容量が増加し、また負極電極の強度が保たれるので、電池作製工程上好ましい。
さらに増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がより好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がより好ましい。負極活物質に対する増粘剤の割合が、上記範囲内であると、粘着剤の塗布性の点で好ましく、また、負極活性物質層に占める活物質の割合が好適であり、電池の容量や負極活性物質間の抵抗の点で好ましい。
正極は、集電体上に正極活物質層を有するものであり、正極活物質層は正極活物質を含有する。以下、正極活物質について述べる。
以下に正極に使用される正極活物質について説明する。
(1)組成
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
なお、上述の「LixMPO4」とは、その組成式で表される組成のものだけでなく、結晶構造における遷移金属(M)のサイトの一部を他の元素で置換したものも含むことを意味する。さらに、化学量論組成のものだけでなく、一部の元素が欠損等した非化学量論組成のものも含むことを意味する。上記他元素置換を行う場合は、通常0.1mol%であり、好ましくは0.2mol%以上である。また、通常5mol%以下であり、好ましくは2.5mol%以下である。
上記正極活物質は、単独で用いてもよく、2種以上を併用してもよい。
上記の正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質(以後、適宜「表面付着物質」という。)が付着したものを用いることもできる。表面付着物質の例としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等
の炭酸塩等が挙げられる。
表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。しかし、付着量が上記範囲を下回ると、その効果は十分に発現せず、また上記範囲を上回ると、リチウムイオンの出入りを阻害するために抵抗が増加する場合があるため、上記範囲が好ましい。
正極活物質粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状又は楕円球状であるものが好ましい。
通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。従って、一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐためである。
また、板状等軸配向性の粒子よりも、球状又は楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作成する際の導電材との混合においても、均一に混合されやすいため好ましい。
正極活物質のタップ密度は、通常0.4g・cm−3以上であり、0.6g・cm−3以上が好ましく、0.8g・cm−3以上がさらに好ましく、1.0g・cm−3以上が特に好ましく、また、通常4.0g・cm−3以下であり、3.8g・cm−3以下が好ましい。
タップ密度の高い金属複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。従って、正極活物質のタップ密度が上記範囲を下回ると、正極活物質層形成時に必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。また、タップ密度は一般に大きいほど好ましく特に上限はないが、上記範囲を下回ると、正極活物質層内における非水系電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合がある。
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折/散乱式粒度分布測定装置を用いても測定することができる。
メジアン径d50は、通常0.1μm以上であり、0.5μm以上が好ましく、1μm以上がより好ましく、3μm以上がさらに好ましく、また、通常20μm以下であり、18μm以下が好ましく、16μm以下がより好ましく、15μm以下がさらに好ましい。メジアン径d50が、上記範囲を下回ると、高嵩密度品が得られなくなる場合があり、上記範囲を上回ると粒子内のリチウムの拡散に時間がかかるため、電池特性の低下や、電池の正極作成すなわち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等が生じる場合がある。
なお、異なるメジアン径d50をもつ正極活物質を2種類以上、任意の比率で混合することで、正極作成時の充填性をさらに向上させることもできる。
一次粒子が凝集して二次粒子を形成している場合、正極活物質の平均一次粒子径は、通常0.03μm以上であり、0.05μm以上が好ましく、0.08μm以上がより好ましく、0.1μm以上がさらに好ましく、また、通常5μm以下であり、4μm以下が好ましく、3μm以下がより好ましく、2μm以下がさらに好ましい。上記範囲を上回ると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。また、上記範囲を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等、二次電池の性能を低下させる場合がある。
なお、平均一次粒子径は、走査型電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
正極活物質のBET比表面積は、BET法を用いて測定した比表面積の値が、通常0.1m2・g−1以上であり、0.2m2・g−1以上が好ましく、0.3m2・g−1以上がより好ましく、また、通常50m2・g−1以下であり、40m2・g−1以下が好ましく、30m2・g−1以下がより好ましい。BET比表面積の値が、上記範囲を下回ると、電池性能が低下しやすくなる。また、上記範囲を上回ると、タップ密度が上がりにくくなり、正極活物質形成時の塗布性が低下する場合がある。
正極活物質の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
特に球状ないし楕円球状の活物質を作製するには種々の方法が考えられるが、例えばその1つとして、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作製回収し、これを必要に応じて乾燥した後、LiOH、Li2CO3、LiNO3等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
さらに別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、Li2CO3、LiNO3等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法が挙げられる。
以下に、本発明に使用される正極の構成及びその作製法について説明する。
(1)正極の作製法
正極は、正極活物質粒子と結着剤とを含有する正極活物質層を、集電体上に形成して作製される。正極活物質を用いる正極の製造は、公知の何れの方法で作製することができる。すなわち、正極活物質と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量が上記範囲よりも下回ると、導電性が不十分となる場合がある。また、上記範囲よりも上回ると、電池容量が低下する場合がある。
正極活物質層の製造に用いる結着剤は、非水系電解液や電極製造時用いる溶媒に対して安定な材料であれば、特に限定されない。
塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴ
ム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
スラリーを形成するための液体媒体としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
スラリーを形成するための液体媒体として水系媒体を用いる場合、増粘剤と、スチレンブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。
増粘剤としては、本発明の効果を著しく制限しない限り制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、1g・cm−3以上が好ましく、1.5g・cm−3以上がより好ましく、2g・cm−3以上がさらに好ましく、また、4g・cm−3以下が好ましく、3.8g・cm−3以下がより好ましく、3.7g・cm−3以下がさらに好ましい。
正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値は、通常20以下、好ましくは15以下、より好ましくは10以下であり、下限は、通常0.5以上、好ましくは0.8以上、より好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限は無く、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
[電極群]
電極群は、前述の正極板と負極板とを前述のセパレータを介してなる積層構造のもの、及び前述の正極板と負極板とを前述のセパレータを介して渦巻き状に捲回した構造のものの何れでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する。)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
集電構造は特に限定されるものではないが、本発明の非水系電解液による放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本発明の非水系電解液を使用した効果は特に良好に発揮される。
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に限定されるものではない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
前述の保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等が挙げられる。前記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、高出力の観点から、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体に制限は無く、本発明の効果を著しく損なわない限り公知のものを任意に採用することができる。
具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン等が用いられる。
また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
<原料>
化合物1:1,3フェニレンビス(ジフェニルホスフェート)
[正極の作製]
正極活物質としてコバルト酸リチウム(LiCoO2)97質量%と、導電材としてアセチレンブラック1.5質量%と、結着材としてポリフッ化ビニリデン(PVdF)1.5質量%とを、N−メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。得られたスラリーを、予め導電助剤を塗布した厚さ15μmのアルミ箔の片面に塗布して、乾燥し、プレス機にてロールプレスしたものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出して正極とした。
炭素質材料98質量部に、増粘剤及びバインダーとして、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)1質量部及びスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出して負極とした。
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)との混合物(体積容量比3:4:3)に、十分に乾燥させたLiPF6を1.2モル/L(非水系電解液中の濃度として)溶解させ、さらに、ビニレンカーボネート(VC)とモノフルオロエチレンカーボネート(FEC)とをそれぞれ2.0質量%ずつ添加した(これを基準電解液1と呼ぶ)。基準電解液1全体に対して、下記表1に記載の割合で化合物を加えて電解液を調製した。ただし、比較例1−1は基準電解液1そのものである。なお、表中の「含有量(質量%)」は、非水系電解液100質量%中の濃度である。
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、上記電解液を袋内に注入し、真空封止を行い、ラミネート型電池を作製した。
[初期コンディショニング]
25℃の恒温槽中、ラミネート型電池を0.05Cに相当する電流で6時間定電流充電した後、0.2Cで3.0Vまで放電した。0.2Cで4.1VまでCC−CV充電を行った。その後、45℃、72時間の条件でエージングを実施した。その後、0.2Cで3
.0Vまで放電し、ラミネート型電池を安定させた。さらに、0.2Cで4.4VまでCC−CV充電を行った後、0.2Cで3.0Vまで放電し、初期コンディショニングを行った。
[充電保存試験]
初期コンディショニング後のラミネート型電池を再度、0.2Cで4.4VまでCC−CV充電を行った後、85℃、6時間の条件で高温保存を行った。電池を十分に冷却させた後、エタノール浴中に浸して体積を測定し、保存試験前後の体積変化から発生ガス量を求め、これを「充電保存ガス量」とした。下記表1に、比較例1の充電保存ガス量を、100とした際の充電保存ガス量の比を示す。
すなわち、実施例1‐1〜実施例1‐4と比較例1‐2〜1‐4との比較により、1,3フェニレン構造を有さないリン酸ホスフェートは、高温保存時の発生ガス量の抑制効果はないが、本発明で規定する一般式(A)の化合物を含む電解液は、高温保存時の発生ガス量が大きく減少していることがわかる。また、化合物1、2の添加量が多い比較例1‐5、1‐6は保存ガス量が比較例1‐1よりも増大しているため、保存ガスを抑制するためには化合物1、2を適正量添加することが重要であることが明らかである。
実施例1‐5より、化合物2と化合物6を併用することにより保存ガスはさらに抑制される。比較例1‐7からもわかるように化合物6を単独で添加すると保存ガスは増大するため、化合物2との組み合わせによる相乗効果が顕著に確認される。
また、本発明の非水系電解液及びこれを用いた非水系電解液二次電池は、非水系電解液二次電池を用いる公知の各種用途に用いることが可能である。具体例としては、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ
電源、モーター、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、家庭用バックアップ電源、事業所用バックアップ電源、負荷平準化用電源、自然エネルギー貯蔵電源、リチウムイオンキャパシタ等が挙げられる。
Claims (10)
- 前記、一般式(A)中、R1〜R2はメチル基である、請求項1に記載の非水系電解液。
- 前記、一般式(A)中、a=b=0〜3である、請求項1または2に記載の非水系電解液。
- 非水系電解液に、ジフルオロリン酸塩を含有する請求項1〜4のいずれか1項に記載の非水系電解液。
- 前記ジフルオロリン酸塩の含有量が、非水系電解液の全量に対して0.01質量%以上10.0質量%以下である、請求項5に記載の非水系電解液。
- リチウムイオンを吸蔵・放出可能な負極及び正極、並びに請求項1〜6の何れか1項に記載の非水系電解液を含む、非水系電解液二次電池。
- 前記負極は、集電体上に負極活物質層を有し、前記負極活物質層は、ケイ素の単体金属、合金及び化合物、スズの単体金属、合金及び化合物、炭素質材料、並びにリチウムチタン複合酸化物からなる群より選択される少なくとも一種を含有する、請求項7に記載の非水系電解液二次電池。
- 前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、リチウム・コバルト複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・マンガン複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル複合酸化物、リチウム・ニッケル・マンガン複合酸化物、及びリチウム・コバルト・ニッケル・マンガン複合酸化物からなる群より選択される少なくとも一種を含有する、請求項7または8に記載の非水系電解液二次電池。
- 前記正極は、集電体上に正極活物質層を有し、前記正極活物質層は、LixMPO4(Mは周期表の第4周期の4族〜11族の遷移金属からなる群より選択される少なくとも一種の元素、xは0<x<1.2)を含有する、請求項7〜9のいずれか1項に記載の非水系電解液二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017116730A JP6925176B2 (ja) | 2017-06-14 | 2017-06-14 | 非水系電解液及び非水系電解液二次電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017116730A JP6925176B2 (ja) | 2017-06-14 | 2017-06-14 | 非水系電解液及び非水系電解液二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019003799A JP2019003799A (ja) | 2019-01-10 |
JP6925176B2 true JP6925176B2 (ja) | 2021-08-25 |
Family
ID=65004961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017116730A Active JP6925176B2 (ja) | 2017-06-14 | 2017-06-14 | 非水系電解液及び非水系電解液二次電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6925176B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220038079A (ko) * | 2019-07-26 | 2022-03-25 | 가부시키가이샤 아데카 | 열폭주 억제제 |
WO2021101922A1 (en) * | 2019-11-18 | 2021-05-27 | Albemarle Corporation | Flame retardants for battery electrolytes |
WO2024043559A1 (ko) * | 2022-08-25 | 2024-02-29 | 에스케이온 주식회사 | 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4092757B2 (ja) * | 1997-12-26 | 2008-05-28 | ソニー株式会社 | 非水電解液二次電池 |
JP2002056889A (ja) * | 2000-08-09 | 2002-02-22 | Toyo Tire & Rubber Co Ltd | 電池用電解液 |
KR100574328B1 (ko) * | 2003-12-30 | 2006-04-26 | 제일모직주식회사 | 전지용 비수전해액 |
JP5418955B2 (ja) * | 2007-04-26 | 2014-02-19 | 三菱化学株式会社 | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
JP5589264B2 (ja) * | 2008-06-06 | 2014-09-17 | 三菱化学株式会社 | 非水系電解液及び非水系電解液電池 |
WO2012032471A1 (de) * | 2010-09-10 | 2012-03-15 | Basf Se | Verfahren zur herstellung von lösungsmittelgemischen mit geringem wassergehalt |
JP2015133255A (ja) * | 2014-01-14 | 2015-07-23 | 旭化成株式会社 | 非水電解液及びリチウムイオン二次電池 |
-
2017
- 2017-06-14 JP JP2017116730A patent/JP6925176B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019003799A (ja) | 2019-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7265673B2 (ja) | 非水系電解液、非水系電解液二次電池、及びエネルギーデバイス | |
JP6750716B2 (ja) | フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池 | |
JP7048674B2 (ja) | 非水系電解液及び非水系電解液二次電池 | |
JP7084464B2 (ja) | 非水系電解液二次電池及び蓄電デバイス | |
JP6187566B2 (ja) | 非水系電解液及び非水系電解液二次電池 | |
JP6604014B2 (ja) | 非水系電解液及び非水系電解液二次電池 | |
JP6997730B2 (ja) | 非水系電解液及び蓄電デバイス | |
JP6520151B2 (ja) | 非水系電解液及び非水系電解液二次電池 | |
JP6890630B2 (ja) | 非水系電解液及び非水系電解液二次電池 | |
JP6031868B2 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP7078482B2 (ja) | 非水系電解液及び非水系電解液二次電池 | |
JP2021015812A (ja) | 非水系電解液及び非水系電解液二次電池 | |
JP6925176B2 (ja) | 非水系電解液及び非水系電解液二次電池 | |
JP6780450B2 (ja) | 非水系電解液及び非水系電解液二次電池 | |
JP2019040676A (ja) | 非水系電解液及び非水系電解液二次電池 | |
JP6690275B2 (ja) | 非水系電解液及び非水系電解液二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201020 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20201104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210212 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20210212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210706 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210803 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6925176 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |