JP6924561B2 - 近赤外インタラクタンス分光測定用基準白色板ユニット及び近赤外インタラクタンス分光測定における基準分光強度取得方法 - Google Patents

近赤外インタラクタンス分光測定用基準白色板ユニット及び近赤外インタラクタンス分光測定における基準分光強度取得方法 Download PDF

Info

Publication number
JP6924561B2
JP6924561B2 JP2016132926A JP2016132926A JP6924561B2 JP 6924561 B2 JP6924561 B2 JP 6924561B2 JP 2016132926 A JP2016132926 A JP 2016132926A JP 2016132926 A JP2016132926 A JP 2016132926A JP 6924561 B2 JP6924561 B2 JP 6924561B2
Authority
JP
Japan
Prior art keywords
light
white plate
light source
region
reference white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016132926A
Other languages
English (en)
Other versions
JP2018004498A (ja
Inventor
力 大倉
力 大倉
明子 浦
明子 浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOMA OPTICS, LTD.
Original Assignee
SOMA OPTICS, LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOMA OPTICS, LTD. filed Critical SOMA OPTICS, LTD.
Priority to JP2016132926A priority Critical patent/JP6924561B2/ja
Publication of JP2018004498A publication Critical patent/JP2018004498A/ja
Application granted granted Critical
Publication of JP6924561B2 publication Critical patent/JP6924561B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本願の発明は、近赤外インタラクタンス分光測定の技術に関するものである。
分光測定は、各種試料の分析や光源の発光スペクトルの分析などの目的で広く行われているが、近赤外域の分光測定では、インタラクタンス分光測定と呼ばれる手法がしばしば採用される。図8は、インタラクタンス分光測定の原理図である。
図8に示すように、インタラクタンス分光測定を行う場合、光源2からの光を照射光学系21によって試料Mに照射する。この際、試料Mの表面からの反射光ではなく、試料Mの表面を透過し内部で散乱されたのち表面から出てきた光を捉えて分光器3で分光し、検出器4で各波長の強度(スペクトル)を得る。そして、予め測定しておいた参照用の基準となる分光スペクトルと比較し、内部散乱の分光特性を評価する。これにより、試料の成分や性質を知ることができる。
例えば、特許文献1に開示されているように、食肉の脂肪酸の含有量を近赤外インタラクタンス分光測定により知ることができる。この公報の手法では、700〜1000nmの光の吸収率を測定し、それを検量線に当てはめることで脂肪酸組成値を検出している。
尚、特許文献1でも教示されているように、この場合の反射光は、内部散乱光と呼ぶべきである。本明細書では、インタラクタンス光と呼ぶ。
特開2009−115669号公報
インタラクタンス分光測定では、上記のように、参照用の基準となる分光スペクトルが必要である。以下、このスペクトルを、基準分光強度という。
基準分光強度は、全く同じ光源、照射光学系、分光器及び検出系を使用しつつ試料を経ないで取得したスペクトルである。分光測定において、このような基準分光強度を得る場合、基準白色板が使用される。基準白色板は、反射率が波長によらずほぼ100%である反射板である。図9は、インタラクタンス分光測定において基準分光強度を得る従来の方法について概念的に示した図である。
基準分光強度は、試料の測定の際に得られたデータを評価する際の参照用の分光強度であるから、基準分光強度を測定する際には、図9(1)に示すように試料と同じ位置に(同じ照射距離で)基準白色板110を配置すべきである。
しかしながら、基準白色板110はほぼ100%反射の反射板であるので、図9(1)に示すように、試料と同じ位置に基準白色板110を配置すると検出器4は光を捉えることができず、したがって基準分光強度を得ることができない。このため、図9(2)に示すように、やむを得ず基準白色板110を光源2から少し遠い位置に配置し、反射光が分光器3を経て検出器4に入るようにして測定が行われる。
この場合、図9(2)から解るように、検出器4に捉えられる光は、光源2からの光の全てではなく、基準白色板110に反射する光の一部が分光器3を経て検出器4に捉えられるに過ぎない。したがって、得られる基準分光強度は、光源2を含む測定系の分光特性を正確に反映したものではない。例えば光源2において光が放出される領域は有限な領域であり、その領域内で分光特性(発光スペクトル分布)が微妙に異なる。より具体的には、例えば光源2としてレンズランプ(光出射部がレンズ状に形成されているランプ)を採用した場合、当然ながら、レンズ状の光出射部のどの箇所から出てきたかによってスペクトルが異なる(色収差と同様の状況)。レンズランプでない場合でも、光源2は、石英ガラス等の透明な材料の封体(バルブ)で覆われているから、その厚さや形状に応じてレンズ効果が少なからず生じ、やはり出射箇所によって微妙にスペクトルが異なる。このため、図9(2)に示す手法では、正確な基準分光強度を得ることができず、結果としてインタラクタンス分光測定の精度が低下してしまう。
また、基準白色板110は、反射率ほぼ100%の反射板であるので、検出器4に入射する光の強度はかなり高い。一方、試料の測定の際にはかなりの量の光が試料に吸収されるので、検出器4に入射する光の強度は低い。したがって、基準白色板110をそのまま使用して基準分光強度を取得すると、試料の測定時に得られる検出値を大きく上回り、測定装置のダイナミックレンジの不足が発生する。このため、基準分光強度の取得時に、検出器4に入射する光を弱くすることが必要で、このため、図9(2)中に破線で示すように、基準白色板110を少し光源2側にシフトさせ、分光器3を介して取り込まれる光の量を少なくすることが行われる。しかしながら、このようにすると、光の一部のみしか捉えていない問題がさらに顕著になるのに加え、シフトによる光強度の変化が大きいので、適切なダイナミックレンジの基準分光強度を得る調節が難しいという問題がある。尚、「実質的に全ての光」とは、迷光のような異常光を除いて全てという意味であり、設計通りに進む光の全てという意味である。
図10は、このような従来の方法の問題を、特許文献1のようなプローブタイプの近赤外インタラクタンス分光測定装置について示した図であり、図10(1)は、試料の測定の場合を示し、(2)は基準分光強度の取得の場合を示す。図10に示すように、プローブ9内には光源2が収容され、また取り込み用の光学系として光ファイバ31が収容されている。プローブタイプの測定装置を使用する場合も、試料Mと同じ位置に基準白色板110を置くと光を捉えることができないので、図10(2)に示すように少し離れた位置に基準白色板110を置くが、光源2からの光の一部しか捉えることができない。
本願の発明は、上記各課題を解決するために為されたものであり、インタラクタンス分光測定において、正確な基準分光強度を容易に得ることのできる基準白色板を提供するとともに、この基準白色板を使用して正確な基準分光強度を簡便に得ることができるツール及び方法を提供することを目的としている。
上記課題を解決するため、本願の請求項1記載の発明は、近赤外インタラクタンス分光測定を行う際、参照用の基準分光強度を得るために使用される近赤外インタラクタンス分光測定用基準白色板ユニットであって、
一方の表面である機能面が、白色の面であって球面の一部を成す凹面であり、且つ完全拡散面となっている基準白色板と、
光出射部と光入射部とを備えたプローブを基準白色板に対して位置決めする位置決め機構とを備えており、
位置決め機構は、光出射部からの全ての光が前記機能面の一部の領域に照射された際に、当該照射された領域以外の前記機能面内の領域を光入射部が見込むようプローブを位置決めする機構であるという構成を有する。
また、上記課題を解決するため、請求項2記載の発明は、
近赤外域の光を発する光源と、
光源からの光が照射された試料からのインタラクタンス光を取り込んで分光する分光器と、
分光器で分光された光を検出する検出器と
を備えた近赤外インタラクタンス分光測定器を使用した測定に際して行われる基準分光強度の取得方法であって、
請求項1記載の近赤外インタラクタンス分光測定用基準白色板ユニットにおける基準白色板の機能面に対して前記光源により光照射する照射ステップと、
照射ステップにおいて機能面に照射された光の反射光を分光器に取り込んで分光し、検出器により検出して分光強度を得る検出ステップと
を有しており、
照射ステップは、機能面の一部の領域である照射領域に光を照射するステップであり、
照射領域は、前記光源からの全ての光が照射される領域であり、
検出ステップは、機能面内のうちの照射領域以外の領域からの拡散光を取り込むステップであって、照射領域に光源から直接照射されて拡散した光のうち当該照射領域以外の機能面内の領域を経ない光を取り込まないステップであるという構成を有する。
以下に説明する通り、本願の請求項1の発明によれば、基準白色板の機能面が白色の面であって球面の一部を成す凹面であり、且つ完全拡散面となっているので、光源からの実質的に全ての光を反映した状態で基準分光強度を容易に取得できる。
また、位置決め機構によってプローブが近赤外インタラクタンス分光測定用基準白色板に対して位置決めされるので、正確な基準分光強度を容易に得ることができる。
また、請求項記載の発明によれば、正確な基準分光強度が取得できるので、精度の高い近赤外インタラクタンス分光測定が可能となる。
実施形態の近赤外インタラクタンス分光測定用基準白色板の正面断面図である。 完全拡散面について示した図である。 図1に示す基準白色板を使用して基準分光強度を得る方法について示した正面概略図である。 実施形態の基準白色板が利用する等照度球面の原理について概念的に示した図である。 実施形態の基準白色板が好適に使用される近赤外インタラクタンス分光測定装置の概略図である。 図5に示すプローブ9の正面断面概略図である。 基準白色板ユニットの発明の実施形態を示した正面断面概略図である。 インタラクタンス分光測定の原理図である。 インタラクタンス分光測定において基準分光強度を得る従来の方法について概念的に示した図である。 従来の方法の問題を、特許文献1のようなプローブタイプの近赤外インタラクタンス分光測定装置について示した図であり、(1)は試料の測定の場合を示し、(2)は基準分光強度の取得の場合を示す。
次に、本願発明を実施するための形態(以下、実施形態)について説明する。
図1は、実施形態の近赤外インタラクタンス分光測定用基準白色板の正面断面図である。図1に示すように、実施形態の近赤外インタラクタンス分光測定用基準白色板(以下、単に基準白色板という)は、一方の側の面10が凹面となっている。この凹面10は、白色の面であって球面の一部(球凹面)を成し、且つ完全拡散面となっている。以下、この面を機能面と呼ぶ。尚、図1に示すように、球面を成す機能面10の中心軸(球の中心と球面の縁を成す円の中心とを結ぶ仮想線)は、基準白色板の板厚方向に沿っている。
図2は、完全拡散面について示した図である。ある面に光を照射した際、その面内のいずれの点もその輝度が方向によらず一定となっている面(どの方向から見ても同じ輝度に見える面)は、均等反射面とか均等拡散反射面とか呼ばれる。即ち、ある点から出る光の強さ(光束)が、その出射角をθとした際のcosθに比例するということであり、ランベルト(Lambert) 面とも呼ばれる。完全拡散面とは、均等反射面ないし均等拡散反射面のうち、特に反射率が100%又はそれに近いものを指している。
図3は、図1に示す基準白色板を使用して基準分光強度を得る方法について示した正面概略図である。実施形態の基準白色板を使用して基準分光強度を得る場合、試料の測定の際に使用するのと同じ光源2を使用し、同じ条件で基準白色板1に光を照射する。この際、基準白色板1の機能面10内のある領域(以下、照射領域という)11に光源2からの全ての光が照射されるようにする。その上で、分光器3に光を取り込む際に見込む領域は、機能面10内の領域であって照射領域11以外の領域(以下、取り込み領域という)12とする。取り込み領域12は、照射領域11以外の機能面10内の領域であれば、どこでも構わない。このようにすることで、光源2からのすべての光を忠実に反映したスペクトルの光が分光器3を経て検出器4に入射し、基準分光強度が高い精度で得られる。
上述した実施形態の基準白色板は、完全拡散面による等照度球面の原理を利用している。以下、この点について説明する。図4は、実施形態の基準白色板が利用する等照度球面の原理について概念的に示した図である。
図4において、内面が全て完全拡散面である球体5内に光源2を配置し、光源2からの光を内面に照射する。この際、内面の一点をAとし、この点Aの照度をeとする。点Aに入射した照度eの光はすべて反射され、点Aを微小面積dSの光源とみなすことができる。その時、微小面積光源dSの輝度をLとする。そして、微小面積光源dSにより照射を受ける球面内の他の任意の点Pにおける照度をdEとし、球面の半径をRとすると、AP間の距離は2Rcosαであるから、dEは、以下の式1で表される。
Figure 0006924561
点Pは、dS以外の球面内の各点から拡散光の照射を受けるから、式1を全球面で積分すると、式2となる。
Figure 0006924561
輝度Lは、光源2からの光による照度eによるものであり、反射率100%であるから、以下の式3で表される。
Figure 0006924561
式2と式3から、点Pにおける照度Eは、以下の式4となる。
Figure 0006924561
式4でわかるように、点Pの照度Eは角度αに依存していない。つまり、球面内のいずれの点においても照度は同じである。これが等照度球面の定理である。この際、点Pの輝度は、以下の式5で表される。式5において、Iは、点Aの照度eを全球面で積分した値である。
Figure 0006924561
このように、球体5内に光源2を配置し、光源2からの光がすべて内面に照射されたとすると、任意の一点Pの輝度Kは、Pの位置によらず一定で、且つ光源2からの光による照度の積分値(全光束)に比例した値となる。したがって、点Pの輝度を測定すれば、光源2の全光束を知ることができる。そして、点Pからの光を、分光器を介して捉えれば、光源2の分光発光特性(発光スペクトル)を知ることができる。この場合、光源2からの全ての光を捉えているので、光源2上の光出射箇所による依存性の影響はない。
上記のような等照度球面の原理は、分光発光特性のような相対的な値を得る場合、完全な球面である必要はなく、部分的な球面であっても成立する。即ち、式1から解るように、微小面積光源dSによる点Pでの照度dE自体が、微小面積光源dSの位置によらないから、微小面積光源dSを全球面で積分する必要はなく、ある範囲の積分であっても、光源2の分光発光特性を知ることができる。
図3に示すように、光源2からの光のすべてが球面内のある領域に照射されるようにすれば、その領域外のある一点Pにおける輝度は、光源2からの全ての光による照度に応じたものとなり、分光発光特性のような相対的な値を知る場合には十分となる。
この場合に注意すべきは、輝度を測定する箇所は、上述したように光源2からの光を直接照射する領域(照射領域11)外とすることである。直射光が当たっている領域内の点の輝度は、領域外の箇所からの拡散光が照射されることによる輝度と、直射光の反射による輝度(即ち直射光が領域外を経ないで直接捉えられることにより測定される輝度)との合算となり、上記式1〜式5の関係が成立しなくなる。図3に示すように、直射光が照射される照射領域11外の位置の輝度を測定する必要がある。
このような原理である実施形態の基準白色板は、機能面10が球面を成し、白色の完全拡散面である限り、任意の材質で形成することができる。例えば、通常の平板状の基準白色板を加工することで製作することができる。例えば、ポリテトラフルオロエチレン(PTFE,デュポン社の商品名(商標名)テフロン)製の基準白色板が市販されているので、これを切削加工して球凹面を形成することで実施形態の基準白色板とすることができる。切削加工後の表面も、完全拡散面となることが発明者によって確認されている。必要であれば、切削加工後、サンドペーパー等で粗面化処理をしても良い。
また、セラミックス製の基準白色板も市販されており、これについても同様に切削加工して球凹面を形成し、必要に応じて粗面化処理をして実施形態の基準白色板とすることができる。
また、基板に硫酸バリウムを塗布すること基準白色板とする技術も知られており、これを応用しても良い。例えばアルミ等の金属を加工して一方の側の表面が所定の曲率の球凹面となっている基板を製作する。そして、その表面に、硫酸バリウム粉末を分散剤中に分散させた硫酸バリウム塗料を吹き付け、分散剤を蒸発させて硫酸バリウムを固定する。これにより、実施形態の基準白色板が得られる。
次に、このような実施形態の基準白色板が好適に使用される近赤外インタラクタンス分光測定器や測定方法等について説明する。
図5は、実施形態の基準白色板が好適に使用される近赤外インタラクタンス分光測定装置の概略図である。図5に示すように、この測定装置は、装置本体8とプローブ9とを備えている。そして、フレキシブルケーブル32が装置本体8とプローブ9とをつなぐようにして設けられており、光ファイバ31はこのフレキシブルケーブル32内に収められている。装置本体8内には、分光器3、検出器4、コンピュータ6の他、データ処理回路81及びインターフェース82等が設けられている。
図6は、図5に示すプローブ9の正面断面概略図である。図5及び図6に示すように、この近赤外インタラクタンス分光測定装置は、少なくとも700nmから1000nmの範囲の波長の光を発する光源2と、試料Mに光源2からの光が照射されるように光源2を保持するホルダー22と、光源2からの光が照射された試料からのインタラクタンス光が入射する位置に入射端が配置された光ファイバ31と、光ファイバ31の出射端から出射される光が入射する位置に配置された分光器3と、分光器3で分光された光の強度を検出する検出器4と、検出器4からの出力データ(光強度信号)を処理する演算処理部を含むコンピュータ6と、コンピュータ6による測定結果を出力する出力部7とを備えている。
プローブ9は、試料に対して照射する光を出射する光出射部と、光照射された試料からのインタラクタンス光が入射する光入射部とを備えている。この例では、光出射部は光源2であり、光入射部は光ファイバ31の入射端である。この他、光源2からの光を、レンズ系を介して試料Mに照射する場合にはそのレンズ系が光出射部になるし、レンズ系によって光を分光器3に取り込んでいる場合、そのレンズ系が光入射部になる。
図6に示すように、プローブ9は、把持部91と、把持部91の先端に設けられた筐体92とを備えている。筐体92は、高さの低い円筒状である。筐体92の前板部921の中央には、測定用開口93が形成されている。測定用開口93の上方であって筐体92の中心軸上には、直角プリズム94が設けられている。光ファイバ3の入射端は、直角プリズム94と同じ高さの位置に設けられている。尚、測定用開口93には、筐体92内の汚染を防止するために光学窓が必要に応じて嵌め込まれる。
筐体92内には、試料に対して光を照射する際の光軸(以下、照射光軸)A1と、光照射された試料からのインタラクタンス光を取り込む際の光軸(以下、取り込み光軸)A2とが設定されている。取り込み光軸A2は、直角プリズム94の全反射面の中心を通る軸であり、光ファイバ31の入射端の中心からその入射端に垂直に延びる線に一致した軸である。
また、取り込み光軸A2上には、集光レンズ95が設けられている。集光レンズ95は、試料Mからの光を集光して光ファイバ31に入射させることで測定精度や測定効率を高めるためのものである。取り込み光軸A2は、測定用開口93から筐体92と同軸上に上方に延び、直角プリズム94によって直角に折れ曲がって光ファイバ31の入射端に達している。尚、光ファイバ31は、筐体92の側部を貫通して設けられている。
この測定装置では、特許文献1の装置と同様、五つの光源2が用いられており、照射光軸A1は五つ設定されている。各光源2は、取り込み光軸A2と同軸の円周上に設けられている。五つの光源2は等間隔(即ち72度間隔)である。
光源2としては、上記使用波長範囲の光を発する高輝度の点光源であることが好ましく、本実施形態ではハロゲンランプが使用されている。この他、クリプトンランプ等も使用できる場合がある。また、小さなスポットに光を照射して測定精度や測定効率を高める観点から、封体の先端(光出射端)がレンズ状になっているレンズランプが好適に用いられる。
ホルダー22は、所定の姿勢で各光源2を保持するものとなっている。所定の姿勢とは、例えば取り込み光軸A2に対して照射光軸A1が30〜35°となる姿勢である。ホルダー22は全体としては円板状の部材であり、筐体92内に水平な姿勢で設けられている。ホルダー22には、光源2を保持するための保持孔20が五つ設けられている。また、直角プリズム94を配置したり、集光レンズ95を配置したりするための切り欠き23が形成されている。
光源2は、全体としては円筒形のロッド状となっている。この光源2では、円筒の中心軸が照射光軸A1となっている。各光源2は、それぞれの光軸A1が筐体92の中心軸に向かう状態で斜めに配置されている。即ち、各光軸A1は、筐体92の中心軸上の同一の点で交差している。この光軸が交差する点は、筐体92の下方位置であり、測定状態で試料Mの内部である。
尚、装置本体8内には、各光源2への給電回路83が設けられている。給電回路83と各光源2は、給電ケーブル84で接続されている。光ファイバ31と給電ケーブル84を一つのフレキシブルケーブル32として束ねられている。
分光器3は、使用波長範囲において光を波長ごとに必要な分解能で分解できるものである。分光器3としては、回折格子を使用したもの、またフーリエ変換型の分光器、その他すべての分光器を採用し得る。
検出器4は、分光器3で分光された光を受光し、電気信号に変換するものである。図5に示す装置では、検出器4にはリニアアレイセンサが使用されており、回折格子の掃引無しに使用波長範囲で光電変換されるようになっている。また、測定精度を高めるには、雑音レベルに対して測定有効光(意味のある光の量)の受光量を充分に大きくすることが重要であり、このため、飽和受光量の大きなシリコンリニアセンサ等を検出器4として用いることが望ましい。
検出器4とコンピュータ6は、データ処理回路81及びインターフェース82を介して接続されている。データ処理回路81は、増幅、A/D変換等のデータ処理を行う回路となっている。インターフェース82は、処理されたデータをコンピュータ6に取り込むためのもので、USBインターフェース等、適宜選択して採用し得る。
コンピュータ6は、演算処理部としてのマイクロプロセッサ、ROMやRAM等のメモリ等を備えたものである。本実施形態では、出力部7はコンピュータ6が備えるディスプレイとなっている。また、コンピュータ6の記憶部(例えばメモリ)には、測定用のソフトウェアがインストールされている。このソフトウェアは、データ処理回路81及びインターフェース82を介して送られたデータから分光強度分布を算出し、参照用の分光強度分布と比較して評価するプログラムが含まれている。
図5及び図6に示す測定装置を使用して試料の近赤外インタラクタンス分光測定を行う場合、光源2を点灯させた状態でプローブ9を手に持ち、筐体92の前板部921を試料Mの表面に当接させる。光源2からの光は、試料Mの内部で反射又は散乱して戻り、試料Mの表面を通して出射する。この光(インタラクタンス光)は、光ファイバ31の入射端に達し、光ファイバ31で導かれて分光器3に達する。そして、分光器3で各波長の光に分光された後、検出器4に達して光電変換され、検出器4から出力データがコンピュータ6に送られる。
コンピュータ6では測定用のプログラムが起動しており、測定用のプログラムは、送られた出力データを処理して分光強度分布を算出するとともに、メモリに記憶された基準分光強度を読み出し、算出された試料の分光強度と比較して試料の評価を行う。評価結果は、測定結果として出力部に表示される。例えば特定の波長域の光の吸収率を基準分光強度との比較から行い、その結果から特定の成分の含有率を算出して表示する。より具体的には、例えば特許文献1に開示されたような食肉脂質の脂肪酸組成値の測定を行う場合、700〜1100nmの範囲の光の吸収率を算出し、検量線に当てはめて算出する。
このような近赤外インタラクタンス分光測定を行う際、基準分光強度の取得が予め行われる。具体的には、図3に示すように、プローブに対して所定の位置に実施形態の基準白色板1を配置し、試料に対する測定時と同じ条件で光を照射する。この際、基準白色板1の位置は、各光源2からの光がすべて機能面10内の照射領域11に照射されるとともに、光ファイバ31の臨界入射角との関係で、照射領域11からの光が取り込み領域12に直接入射しない位置とされる。
より具体的に説明すると、周知のように、光ファイバは、大きな角度で入射する光については内部で全反射されないので、導くことができない。全反射が可能な最も大きな角度が臨界入射角であり、臨界入射角以下の角度の光に限って光ファイバで導かれる。この場合、光ファイバ31の入射端から臨界入射角で見込む領域が、取り込み領域12である。この領域12が、照射領域11に重ならないよう基準白色板1の位置が調節される。
一方、光源2としてはレンズランプが使用されているので、光は集光されながら基準白色板1に照射される。したがって、照射領域11の大きさは照射距離で調節され、取り込み領域12の外側に照射領域11が形成されるように調節される。実際には、光源2及び光ファイバ31の入射端は筐体92で保持されていてお互いの位置関係は固定であるので、筐体92を基準白色板1に対してある位置に配置した際、上記関係が成立するようになっている。
光ファイバ31に入射するのは、基準白色板1の機能面(完全拡散面)10のうちの取り込み領域12からの光である。この光は、試料の測定時と同様に分光器3で分光され、検出器4で光電変換される。そして、コンピュータ6での処理等により基準分光強度が得られ、コンピュータ6の記憶部に記憶される。
上記のように、基準白色板の機能面10は光源2からの実質的に全ての光を捉えており、この光の拡散光が取り込み領域12に達し、取り込み領域12で拡散した光が光ファイバ31に入射して捉えられる。取り込み領域12の光は、光源2からの実質的に全ての光を反映したものであり、したがってそのスペクトル成分も全ての光を反映したものとなっている。このため、正確な基準分光強度が得られることになり、この基準分光強度を利用することで高い精度の近赤外インタラクタンス分光測定が実現される。
次に、基準白色板ユニットの発明の実施形態について説明する。図7は、基準白色板ユニットの発明の実施形態を示した正面断面概略図である。基準白色板ユニットは、上述した基準白色板1と、基準白色板1をプローブ9に対して位置決めする位置決め機構とを備えている。この実施形態では、位置決め機構としてフレーム100が使用されれており、フレーム100の形状により位置決めが行われるようになっている。
この実施形態では、フレーム100は円筒状の部材となっている。フレーム100の底板部には、基準板用開口が形成されている。基準板用開口はフレーム100と同軸の円形であり、基準板用開口の縁には段差が形成されている。段差の径は、白色基準板1の外径に適合しており、段差に落とし込まれることで白色基準板1が装着されている。
プローブ9に対する基準白色板1の位置決めは、円筒状のフレーム100の上縁で達成されるようになっている。図8に示すように、円筒状のフレーム100の上縁にも段差が形成されている。段差の径は、プローブ9の筐体92の外径に適合しており、図7に示すように筐体92を段差に落とし込むことでプローブ9が基準白色板に対して所定の位置関係で配置される。所定の位置関係とは、上述したように取り込み領域12が照射領域11の外側となる位置関係である。
この基準白色板ユニットによれば、フレーム100の上縁の段差にプローブ9の筐体92を落とし込むだけで、筐体92内の光源及び光ファイバ31の入射端が基準白色板1に対して位置決めされ、照射領域11と取り込み領域12とが重ならない状態となる。このため、正確な基準分光強度を容易に得ることができる。
上記実施形態では、フレーム100は、段差に落とし込むことでプローブ9の位置決めがされる構造であったが、これはあくまで一例であり、他に多くの構造が考えられる。例えば、プローブ9の筐体92の前板部921に突起が少なくとも二つ形成されており、突起が嵌り込む孔又は凹部がフレームに形成されていて、突起が孔又は凹部に嵌り込むことで位置決めがされる構造が考えられる。このように特定の部材の形状によって位置決めがされる場合の他、動く機構(駆動機構)によって位置決めがされる場合もある。例えば、基準白色板1を保持するホルダーに対してマイクロメーターのような精密送り機構を設けて位置決めしたり、サーボモータを含むサーボ機構を設けて位置決めしたりする構成が考えられる。
また、上記各実施形態では、取り込み領域12が機能面10の中央であり、照射領域11がその外側であったが、これは何ら必須ではなく、両者が重ならない位置であれば、機能面10内のどの位置であっても良い。例えば、機能面10の中央に光源2からの光を照射し、その外側のいずれかの領域からの光を捉えて基準分光強度としても良い。
尚、上記実施形態では、機能面10に対して光源2からの実質的にすべての光を照射して基準分光強度を取得したが、これは、試料の測定の際と全く同じ条件にすることの一環である。したがって、試料の測定の際に光源2からの光の一部のみを照射する場合には、全く同じ条件で一部のみの光を機能面10に対して照射することになる。例えば、試料の測定の際、光源2からの光を、アパーチャを通して(アパーチャによって制限して)照射する場合、基準分光強度の取得の際にも全く同じようにアパーチャを通して機能面10に光を照射し、照射領域11を外れた位置からの光を捉えて基準分光強度とする。但し、通常は、光源の利用効率を高くする観点から実質的に全ての光を照射して測定を行うので、基準分光強度の取得の際にも全ての光を照射して行う場合が多い。
また、基準白色板が使用される近赤外インタラクタンス分光測定装置としては、上述した構成のものには限定されず、各種の装置について基準白色板が使用される。例えば、光源を含む照射系が取り込み用光学系と別々になっている構成のプローブを備えた測定装置でも良く、光ファイバではなくてミラー等を使用して光を取り込む構成の測定装置でも良い。
1 基準白色板
10 機能面
11 照射領域
12 取り込み領域
100 フレーム
2 光源
3 分光器
31 光ファイバ
4 検出器
6 コンピュータ

Claims (2)

  1. 近赤外インタラクタンス分光測定を行う際、参照用の基準分光強度を得るために使用される近赤外インタラクタンス分光測定用基準白色板ユニットであって、
    一方の表面である機能面が、白色の面であって球面の一部を成す凹面であり、且つ完全拡散面となっている基準白色板と、
    光出射部と光入射部とを備えたプローブを基準白色板に対して位置決めする位置決め機構とを備えており、
    位置決め機構は、光出射部からの全ての光が前記機能面の一部の領域に照射された際に、当該照射された領域以外の前記機能面内の領域を光入射部が見込むようプローブを位置決めする機構であることを特徴する近赤外インタラクタンス分光測定用基準白色板ユニット。
  2. 近赤外域の光を発する光源と、
    光源からの光が照射された試料からのインタラクタンス光を取り込んで分光する分光器と、
    分光器で分光された光を検出する検出器と
    を備えた近赤外インタラクタンス分光測定器を使用した測定に際して行われる基準分光強度の取得方法であって、
    請求項1記載の近赤外インタラクタンス分光測定用基準白色板ユニットにおける基準白色板の機能面に対して前記光源により光照射する照射ステップと、
    照射ステップにおいて機能面に照射された光の反射光を分光器に取り込んで分光し、検出器により検出して分光強度を得る検出ステップと
    を有しており、
    照射ステップは、機能面の一部の領域である照射領域に光を照射するステップであり、
    照射領域は、前記光源からの全ての光が照射される領域であり、
    検出ステップは、機能面内のうちの照射領域以外の領域からの拡散光を取り込むステップであって、照射領域に光源から直接照射されて拡散した光のうち当該照射領域以外の機能面内の領域を経ない光を取り込まないステップであることを特徴とする近赤外インタラクタンス分光測定における基準分光強度取得方法。
JP2016132926A 2016-07-04 2016-07-04 近赤外インタラクタンス分光測定用基準白色板ユニット及び近赤外インタラクタンス分光測定における基準分光強度取得方法 Active JP6924561B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016132926A JP6924561B2 (ja) 2016-07-04 2016-07-04 近赤外インタラクタンス分光測定用基準白色板ユニット及び近赤外インタラクタンス分光測定における基準分光強度取得方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016132926A JP6924561B2 (ja) 2016-07-04 2016-07-04 近赤外インタラクタンス分光測定用基準白色板ユニット及び近赤外インタラクタンス分光測定における基準分光強度取得方法

Publications (2)

Publication Number Publication Date
JP2018004498A JP2018004498A (ja) 2018-01-11
JP6924561B2 true JP6924561B2 (ja) 2021-08-25

Family

ID=60944876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132926A Active JP6924561B2 (ja) 2016-07-04 2016-07-04 近赤外インタラクタンス分光測定用基準白色板ユニット及び近赤外インタラクタンス分光測定における基準分光強度取得方法

Country Status (1)

Country Link
JP (1) JP6924561B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953733B2 (en) 2020-12-28 2024-04-09 Hamamatsu Photonics K.K. Light source unit and optical head

Also Published As

Publication number Publication date
JP2018004498A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
JP3115162U (ja) 光表面特性の測角検査装置
JP3406640B2 (ja) 携帯可能な分光光度計
US6424416B1 (en) Integrated optics probe for spectral analysis
JP2006030204A (ja) 光表面特性の測角検査装置
JP5808519B2 (ja) 2つの測定ユニットを有する表面測定装置
KR101690073B1 (ko) 컴팩트한 구조를 갖는 분광분석장치
US10088363B2 (en) Biometric sensor and biometric analysis system including the same
HU229699B1 (en) Imaging optical checking device with pinhole camera (reflectometer, polarimeter, ellipsicmeter)
US20090002718A1 (en) Optical Measurement Device
CN106018330A (zh) 一种口袋式近红外光谱仪
JP2012255781A (ja) 反射光の基準測定装置及びその装置の較正方法
JP2010133934A5 (ja)
CN208125613U (zh) 一种反射率测定装置
JP5576588B2 (ja) 食肉脂肪酸含有量測定装置
JP6924561B2 (ja) 近赤外インタラクタンス分光測定用基準白色板ユニット及び近赤外インタラクタンス分光測定における基準分光強度取得方法
US20140152841A1 (en) Method and system for emissivity determination
JPH02114151A (ja) 屈折率に依存するアパーチャ分布を有する屈折計
JP4470939B2 (ja) 生体スペクトル測定装置
AU2015281304A1 (en) Device and method for calibrating a scattered light meter
WO2018135233A1 (ja) 異物検査装置、異物検査方法および製造装置
EP3830553B1 (en) Diffuse reflectance apparatus
JP2014215257A (ja) ヘーズ値計測装置
Mantena et al. Diffuse Reflectance Illumination Module Improvements in Near-Infrared Spectrometer for Heterogeneous Sample Analysis
Hahlweg et al. Design of a full-hemispherical spectro-radiometer with high dynamic range for characterization of surface properties using multispectral BRDF data from VIS to NIR
CN212379290U (zh) 一种散射自动分析装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210802

R150 Certificate of patent or registration of utility model

Ref document number: 6924561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150