JP6923997B2 - Manufacturing method of water-absorbent resin - Google Patents

Manufacturing method of water-absorbent resin Download PDF

Info

Publication number
JP6923997B2
JP6923997B2 JP2016042597A JP2016042597A JP6923997B2 JP 6923997 B2 JP6923997 B2 JP 6923997B2 JP 2016042597 A JP2016042597 A JP 2016042597A JP 2016042597 A JP2016042597 A JP 2016042597A JP 6923997 B2 JP6923997 B2 JP 6923997B2
Authority
JP
Japan
Prior art keywords
water
absorbent resin
azobis
soluble
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016042597A
Other languages
Japanese (ja)
Other versions
JP2017155194A (en
JP2017155194A5 (en
Inventor
英樹 松下
英樹 松下
翔 礒川
翔 礒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2016042597A priority Critical patent/JP6923997B2/en
Publication of JP2017155194A publication Critical patent/JP2017155194A/en
Publication of JP2017155194A5 publication Critical patent/JP2017155194A5/ja
Application granted granted Critical
Publication of JP6923997B2 publication Critical patent/JP6923997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、吸水性樹脂の製造方法および吸水性樹脂に関する。さらに詳しくは、優れた吸水特性を有する、衛生材料に好適に用いられる吸水性樹脂の製造方法および特定の性能を有する吸水性樹脂に関する。 The present invention relates to a method for producing a water-absorbent resin and a water-absorbent resin. More specifically, the present invention relates to a method for producing a water-absorbent resin preferably used for sanitary materials, which has excellent water-absorbing properties, and a water-absorbent resin having specific performance.

紙おむつや生理用ナプキン等の衛生材料、ペットシート等の日用品およびケ−ブル用止水材等の工業材料において、吸水性樹脂が幅広く用いられている。吸水性樹脂は、その用途に応じた多くの種類のものが知られている。紙おむつや生理用ナプキン等の衛生材料においては、水溶性エチレン性不飽和単量体の重合物からなる吸水性樹脂が主に用いられている。衛生材料に用いられる吸水性樹脂は、一般に、人体に近接して用いられることから、高い安全性が求められており、また、尿や血液等の体液に接した際に多量の体液を速やかに吸収して保持できるような吸水特性が求められる。特に、近年の衛生材料は、装着時の快適性や携行の利便性の要請から薄型化の傾向にあり、吸水性樹脂そのものの吸水量の向上が求められている。 Water-absorbent resins are widely used in sanitary materials such as disposable diapers and sanitary napkins, daily necessities such as pet sheets, and industrial materials such as water-stopping materials for cables. Many types of water-absorbent resins are known according to their uses. In sanitary materials such as disposable diapers and sanitary napkins, water-absorbent resins made of polymers of water-soluble ethylenically unsaturated monomers are mainly used. Water-absorbent resins used as sanitary materials are generally required to be highly safe because they are used in close proximity to the human body, and when they come into contact with body fluids such as urine and blood, they quickly release a large amount of body fluids. Water absorption characteristics that can be absorbed and retained are required. In particular, in recent years, sanitary materials have tended to be thinner due to demands for comfort when worn and convenience for carrying, and improvement in the amount of water absorption of the water-absorbent resin itself is required.

水溶性エチレン性不飽和単量体の重合物からなる吸水性樹脂は、一般に、架橋度を下げることで高吸水量化を達成することが考えられる。吸水性樹脂の製造においては、重合開始剤として、重合反応を制御しやすい等の利点を有する過硫酸塩を用いて単量体を重合することが多い。しかし過硫酸塩を用いると、いわゆる自己架橋が進行しやすくなり、架橋度の低減に制約が生じるため、高吸水量の吸水性樹脂を得ることが困難である。 A water-absorbent resin composed of a polymer of a water-soluble ethylenically unsaturated monomer is generally considered to achieve a high water absorption amount by lowering the degree of cross-linking. In the production of a water-absorbent resin, a monomer is often polymerized using a persulfate as a polymerization initiator, which has advantages such as easy control of the polymerization reaction. However, when a persulfate is used, so-called self-crosslinking tends to proceed, which limits the reduction of the degree of cross-linking, and thus it is difficult to obtain a water-absorbent resin having a high water absorption amount.

かかる問題を解決すべく、特許文献1には、過硫酸塩に代えて、アゾ系化合物を重合開始剤として用いることが記載されている。しかし、アゾ系化合物を重合開始剤として用いた場合は、水溶性エチレン性不飽和単量体の重合率の点で不十分であり、生成した吸水性樹脂に、未反応の単量体(以下、これらを「残存モノマー」と称する)が多く残留する。また、生成した吸水性樹脂を含む反応系から加熱などにより水を除去する脱水工程や乾燥工程において、吸水性樹脂の一部が分解することでも、残存モノマーが生じることもある。このような残存モノマーを多く含む吸水性樹脂は、衛生材料に用いられる場合、吸液後にそれが外部に移行することで、使用者の皮膚において、かぶれや肌荒れなどの原因となる。特に、吸液量が少ない使用初期の場合における残存モノマーの外部への移行が、問題となる傾向にある。 In order to solve such a problem, Patent Document 1 describes that an azo compound is used as a polymerization initiator instead of a persulfate. However, when an azo compound is used as a polymerization initiator, the polymerization rate of the water-soluble ethylenically unsaturated monomer is insufficient, and the produced water-absorbent resin is unreacted with a monomer (hereinafter referred to as “unreacted monomer”). , These are referred to as "residual monomers"). Further, in the dehydration step or the drying step of removing water from the reaction system containing the produced water-absorbent resin by heating or the like, even if a part of the water-absorbent resin is decomposed, residual monomers may be generated. When such a water-absorbent resin containing a large amount of residual monomer is used as a sanitary material, it may cause a rash or rough skin on the user's skin by migrating to the outside after absorbing the liquid. In particular, the transfer of the residual monomer to the outside in the initial stage of use when the amount of liquid absorbed is small tends to be a problem.

そこで、吸水性樹脂における残存モノマーの含有量を抑えるための方法が提案されている。例えば、特許文献2には、逆相懸濁重合法により水溶性エチレン性不飽和単量体を重合することで得られる吸水性樹脂を含むスラリーの乾燥前または乾燥中にラジカル重合開始剤を添加する方法が記載されている。また、特許文献3には、水溶性エチレン性不飽和単量体の重合後に、亜硫酸塩等の還元性物質を添加する方法が記載されている。 Therefore, a method for suppressing the content of the residual monomer in the water-absorbent resin has been proposed. For example, in Patent Document 2, a radical polymerization initiator is added before or during drying of a slurry containing a water-absorbent resin obtained by polymerizing a water-soluble ethylenically unsaturated monomer by a reverse-phase suspension polymerization method. How to do it is described. Further, Patent Document 3 describes a method of adding a reducing substance such as sulfite after the polymerization of the water-soluble ethylenically unsaturated monomer.

特開2006−176570号公報Japanese Unexamined Patent Publication No. 2006-176570 特開2002−105125号公報JP-A-2002-105125 特開昭64−62317号公報Japanese Unexamined Patent Publication No. 64-62317

しかしながら、これらの従来技術では、吸水性樹脂に対して求められる性質、すなわち「高い吸水特性(高い保水能、高い荷重下吸水能)を有し、かつ残存モノマーが少なく、しかも使用初期における残存モノマーの外部への移行量が少ないとの特性を併せ持つ」という観点からは、いまだ十分とは言えない。 However, in these conventional techniques, the properties required for the water-absorbent resin, that is, "high water absorption characteristics (high water retention capacity, high water absorption capacity under load), few residual monomers, and residual monomers at the initial stage of use" From the viewpoint of "having the characteristic that the amount of migration to the outside is small", it cannot be said that it is sufficient yet.

本発明の課題は、高い保水能、高い荷重下での吸水能を有し、かつ残存モノマーが極めて少なく、しかも、使用初期における残存モノマーの外部移行量が少ないとの特性を有する吸水性樹脂の製造方法および特定の性能を有する吸水性樹脂、ならびに該吸水性樹脂が使用されてなる衛生材料を提供することにある。 The subject of the present invention is a water-absorbent resin having high water-retaining ability, water-absorbing ability under a high load, extremely small amount of residual monomer, and a small amount of residual monomer transferred to the outside at the initial stage of use. It is an object of the present invention to provide a water-absorbent resin having a manufacturing method and specific performance, and a sanitary material in which the water-absorbent resin is used.

本発明者は、前記した目的を達成すべく鋭意研究を重ねてきた。その結果、水溶性アゾ系化合物存在下、水溶性エチレン性不飽和単量体を重合して吸水性樹脂を製造する方法において、その脱水工程の特定の時期に反応系へ油溶性ラジカル発生剤を添加することにより、高い保水能、高い荷重下吸水能を有し、かつ、残存モノマーの含有量が少なく、しかも、使用初期における残存モノマーの外部移行量が少ない吸水性樹脂が得られることを見出し、本発明を完成するに至った。 The present inventor has carried out diligent research to achieve the above-mentioned object. As a result, in the method of polymerizing a water-soluble ethylenically unsaturated monomer in the presence of a water-soluble azo compound to produce a water-absorbent resin, an oil-soluble radical generator is added to the reaction system at a specific time of the dehydration step. It was found that by adding the resin, a water-absorbent resin having high water-retaining ability and high water-absorbing ability under load, a small content of residual monomer, and a small amount of residual monomer transferred to the outside at the initial stage of use can be obtained. , The present invention has been completed.

即ち、本発明は、下記の吸水性樹脂の製造方法および特定の性能を有する吸水性樹脂、ならびに該吸水性樹脂が使用されてなる衛生材料を提供するものである。 That is, the present invention provides the following method for producing a water-absorbent resin, a water-absorbent resin having specific performance, and a sanitary material using the water-absorbent resin.

[項1] 水溶性アゾ系化合物存在下、水溶性エチレン性不飽和単量体を重合し、吸水性樹脂前駆体を含む反応系を得る重合工程と、石油系炭化水素分散媒中において前記反応系から水を除去する脱水工程とを含み、前記脱水工程では、下記の式(1)により算出される残水率が5〜75%において前記反応系へ、2,2’-アゾビス(-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス-イソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソ酪酸メチル)および2,2’-アゾビス(2-メチルブチロニトリル)からなる群から選ばれた少なくとも1つである油溶性ラジカル発生剤を添加することを特徴とする、吸水性樹脂の製造方法。

Figure 0006923997
[Item 1] A polymerization step of polymerizing a water-soluble ethylenically unsaturated monomer in the presence of a water-soluble azo compound to obtain a reaction system containing a water-absorbent resin precursor, and the above reaction in a petroleum hydrocarbon dispersion medium. and a dehydration step of removing water from the system, in the dehydration step, to the reaction system in the remaining water ratio is 5 to 75% calculated by the following equation (1), 2, 2'-azobis (4 - Methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis-isobutyronitrile, 1,1'-azobis (cyclohexane-1-carbonitrile), 2,2'-azobis (2,4-dimethyl) Valeronitrile), 2,2'-azobis (methyl isobutyrate) and 2,2'-azobis (2-methylbutyronitrile) are added at least one oil-soluble radical generator selected from the group. A method for producing a water-absorbent resin.
Figure 0006923997

[項2] 前記油溶性ラジカル発生剤の添加量が、前記重合工程で用いる前記水溶性エチレン性不飽和単量体の1モルに対して0.0001〜0.0020モルである、項1に記載の吸水性樹脂の製造方法。 Amount of [Claim 2] The oil-soluble radical generator is from 0.0001 to 0.0020 mol per 1 mol of the water-soluble ethylenically unsaturated monomer used in the polymerization step, to claim 1 The method for producing a water-absorbent resin according to the above.

[項3] 前記水溶性アゾ系化合物が2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2’−アゾビス[2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン]二塩酸塩および2,2’−アゾビス[N−(2−カルボキシエチル)−2−メチルプロピオンアミジン]四水和物からなる群から選ばれた少なくとも1つである、項1または2に記載の吸水性樹脂の製造方法。 [Item 3] The water-soluble azo compound is 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis [2- [1- (2-hydroxyethyl) -2-imidazolin- At least one selected from the group consisting of 2-yl] propane] dihydrochloride and 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate. The method for producing a water-absorbent resin according to 1 or 2.

[項4] 前記重合工程において前記水溶性エチレン性不飽和単量体を逆相懸濁重合法により重合する、項1から3のいずれか1項に記載の吸水性樹脂の製造方法。 [Claim 4] wherein in the polymerization step of polymerizing a water-soluble ethylenically unsaturated monomer by reversed phase suspension polymerization method, a manufacturing method of water absorbing resin according to any one of claim 1 3.

[項5] 前記重合工程において、前記逆相懸濁重合法を2段以上の多段で行うことを特徴とする、項4に記載の吸水性樹脂の製造方法。 In [Claim 5] The polymerization step, and performing the reversed-phase suspension polymerization in two or more stages, the manufacturing method of the water-absorbent resin according to claim 4.

[項6] 前記重合工程後、架橋剤を添加して後架橋反応を行う、項1から5のいずれか1項に記載の吸水性樹脂の製造方法。 Item 6. The method for producing a water-absorbent resin according to any one of Items 1 to 5, wherein a cross-linking agent is added after the polymerization step to carry out a post-cross-linking reaction.

[項7] 水溶性エチレン性不飽和単量体の重合物架橋体を含む吸水性樹脂であって、以下(A)〜(D)をすべて満たす吸水性樹脂。
(A)生理食塩水保水能が38〜65g/g
(B)4.14kPa荷重下での生理食塩水吸水能が18ml/g以上
(C)残存モノマーの含有量が150ppm以下
(D)使用初期の残存モノマーの外部移行量が30ppm以下
[Item 7] A water-absorbent resin containing a crosslinked polymer of a water-soluble ethylenically unsaturated monomer, which satisfies all of the following (A) to (D).
(A) Saline water retention capacity is 38-65 g / g
(B) Physiological saline water absorption capacity under 4.14 kPa load is 18 ml / g or more (C) Residual monomer content is 150 ppm or less (D) External transfer amount of residual monomer at the initial stage of use is 30 ppm or less

[項8]質量基準の中位粒子径が100〜600μmである、項7に記載の吸水性樹脂。以下、「中位粒子径」という場合、質量基準の中位粒子径を意味する。 [Item 8] The water-absorbent resin according to Item 7, wherein the medium particle size based on mass is 100 to 600 μm. Hereinafter, the term "medium particle size" means a mass-based medium particle size.

[項9] 液体透過性シートと、液体不透過性シートと、これらのシートの間に保持された吸収体とを備え、前記吸収体が項7または8に記載の吸水性樹脂を含む、衛生材料。 Item 9. Hygiene comprising a liquid permeable sheet, a liquid permeable sheet, and an absorber held between the sheets, wherein the absorber contains the water-absorbent resin according to Item 7 or 8. material.

本発明によると、高い保水能、高い荷重下での吸水能を有し、かつ、残存モノマーが少なく、しかも、使用初期における残存モノマーの外部移行量が少ないという特性を有する吸水性樹脂を製造する方法が提供され、それにより、衛生材料に好適な特定の性能を併せ持つ吸水性樹脂、ならびにそれが用いられた衛生材料が提供される。 According to the present invention, a water-absorbent resin having a high water-retaining ability, a water-absorbing ability under a high load, a small amount of residual monomer, and a small amount of residual monomer transferred to the outside at the initial stage of use is produced. A method is provided, which provides a water-absorbent resin having specific performance suitable for a sanitary material, as well as a sanitary material in which it is used.

吸水性樹脂の4.14kPa荷重下の生理食塩水吸水能を測定するための装置の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the apparatus for measuring the water absorption capacity of a physiological saline under a load of 4.14 kPa of a water-absorbent resin.

本発明に係る吸水性樹脂の製造方法では、先ず、水溶性アゾ系化合物の存在下、水溶性エチレン性不飽和単量体を重合し、吸水性樹脂のゲル状物を含む反応系を調製する(以下、「重合工程」と称する)。ここで調製される吸水性樹脂のゲル状物は、最終的に得られる吸水性樹脂と区別するため、便宜上「吸水性樹脂前駆体」と称する。 In the method for producing a water-absorbent resin according to the present invention, first, a water-soluble ethylenically unsaturated monomer is polymerized in the presence of a water-soluble azo compound to prepare a reaction system containing a gel-like substance of the water-absorbent resin. (Hereinafter referred to as "polymerization step"). The gel-like product of the water-absorbent resin prepared here is referred to as a "water-absorbent resin precursor" for convenience in order to distinguish it from the finally obtained water-absorbent resin.

本発明で用いる水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸(本明細書においては「アクリ」および「メタクリ」を合わせて「(メタ)アクリ」と表記する。以下同様) およびその塩;2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸およびその塩;(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、N−メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体およびその4級化物等が挙げられる。これらの水溶性エチレン性不飽和単量体は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As the water-soluble ethylenically unsaturated monomer used in the present invention, for example, (meth) acrylic acid (in the present specification, "acry" and "methacryl" are collectively referred to as "(meth) acrylic". (Similar) and salts thereof; 2- (meth) acrylamide-2-methylpropanesulfonic acid and salts thereof; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol. Nonionic monomers such as (meth) acrylamide and polyethylene glycol mono (meth) acrylate; N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylamide and the like. Examples thereof include an unsaturated monomer containing an amino group and a quaternized product thereof. These water-soluble ethylenically unsaturated monomers may be used alone or in combination of two or more.

これらのうち、(メタ)アクリル酸およびその塩、(メタ)アクリルアミド、N,N−ジメチルアクリルアミドは、入手が容易である点で、本発明に係る吸水性樹脂の製造原材料として好ましく、(メタ)アクリル酸およびその塩がより好ましい。 Of these, (meth) acrylic acid and salts thereof, (meth) acrylamide, and N, N-dimethylacrylamide are preferable as raw materials for producing the water-absorbent resin according to the present invention because they are easily available (meth). Acrylic acid and salts thereof are more preferred.

また、アクリル酸およびその塩に、前記の他の水溶性エチレン性不飽和単量体を添加して共重合させることもできる。その場合、アクリル酸およびその塩の使用量は、重合工程で用いられる水溶性エチレン性不飽和単量体の総量(質量)に対して70〜100モル%であることが好ましい。 Further, the other water-soluble ethylenically unsaturated monomer can be added to acrylic acid and a salt thereof for copolymerization. In that case, the amount of acrylic acid and its salt used is preferably 70 to 100 mol% with respect to the total amount (mass) of the water-soluble ethylenically unsaturated monomer used in the polymerization step.

なお、前記の水溶性エチレン性不飽和単量体は、重合中の反応熱除去の容易さの観点から、通常、水溶液として用いられる。このような水溶液中における単量体の濃度は、通常20質量%以上飽和濃度以下が好ましく、25〜70質量%がより好ましく、30〜55質量%がよりさらに好ましい。 The water-soluble ethylenically unsaturated monomer is usually used as an aqueous solution from the viewpoint of easy removal of heat of reaction during polymerization. The concentration of the monomer in such an aqueous solution is usually preferably 20% by mass or more and preferably a saturation concentration or less, more preferably 25 to 70% by mass, still more preferably 30 to 55% by mass.

水溶性エチレン性不飽和単量体が(メタ)アクリル酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸等のように酸基を有する場合、必要に応じてその酸基が予めアルカリ性中和剤により中和されたものを用いてもよい。このようなアルカリ性中和剤としては、例えば水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニア等が挙げられる。これらのアルカリ性中和剤は、中和操作を簡便にするために、通常、水溶液として用いられる。前記のアルカリ性中和剤は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 When the water-soluble ethylenically unsaturated monomer has an acid group such as (meth) acrylic acid, 2- (meth) acrylamide-2-methylpropanesulfonic acid, etc., the acid group is previously alkaline if necessary. Those neutralized with a Japanese agent may be used. Examples of such an alkaline neutralizer include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like. These alkaline neutralizers are usually used as an aqueous solution in order to simplify the neutralization operation. The alkaline neutralizers may be used alone or in combination of two or more.

アルカリ性中和剤による水溶性エチレン性不飽和単量体の中和度は、得られる吸水性樹脂の吸水特性を高め、かつ余剰のアルカリ性中和剤が生じないようにする観点から、水溶性エチレン性不飽和単量体が有する全ての酸基に対して、10〜90モル%であることが好ましく、30〜85モル%であることがより好ましく、40〜82モル%であることがさらに好ましく、50〜80モル%であることがよりさらに好ましい。 The degree of neutralization of the water-soluble ethylenically unsaturated monomer by the alkaline neutralizing agent enhances the water-absorbing property of the obtained water-absorbent resin and prevents excess alkaline neutralizing agent from being generated. It is preferably 10 to 90 mol%, more preferably 30 to 85 mol%, still more preferably 40 to 82 mol%, based on all the acid groups contained in the sex unsaturated monomer. , 50-80 mol% is even more preferred.

前記水溶性エチレン性不飽和単量体に、必要に応じて、架橋剤を添加して重合反応に付してもよい。重合反応前の水溶性エチレン性不飽和単量体に添加する架橋剤(内部架橋剤と称する)としては、例えば、(ポリ)エチレングリコール(なお、本明細書においては、「ポリエチレングリコール」と「エチレングリコール」を合わせて「(ポリ)エチレングリコール」と表記する。以下同様。)、(ポリ)プロピレングリコール、1,4−ブタンジオール、トリメチロールプロパン、(ポリ)グリセリン等のジオール、トリオール等のポリオール類と(メタ)アクリル酸、マレイン酸、フマル酸等の不飽和酸とを反応させて得られる不飽和ポリエステル類;N,N’−メチレンビスアクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジまたはトリ(メタ)アクリル酸エステル類;トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N’’−トリアリルイソシアヌレート、ジビニルベンゼン等の重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のジグリシジル化合物、トリグリシジル化合物等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α−メチルエピクロルヒドリン等のエピハロヒドリン化合物;2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3−メチル−3−オキセタンメタノール、3−エチル−3−オキセタンメタノール、3−ブチル−3−オキセタンメタノール、3−メチル−3−オキセタンエタノール、3−エチル−3−オキセタンエタノール、3−ブチル−3−オキセタンエタノール等のオキセタン化合物等の反応性官能基を2個以上有する化合物が挙げられる。これらの中では、架橋効率の観点から、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテルおよび(ポリ)グリセリンジグリシジルエーテルおよびN,N’−メチレンビスアクリルアミドが好ましい。これらの内部架橋剤は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 If necessary, a cross-linking agent may be added to the water-soluble ethylenically unsaturated monomer and subjected to a polymerization reaction. Examples of the cross-linking agent (referred to as an internal cross-linking agent) added to the water-soluble ethylenically unsaturated monomer before the polymerization reaction include (poly) ethylene glycol (in this specification, "polyethylene glycol" and "polyethylene glycol". "Ethylene glycol" is collectively referred to as "(poly) ethylene glycol". The same shall apply hereinafter.), (Poly) propylene glycol, 1,4-butanediol, trimethylolpropane, (poly) glycerin and other diols, triol and the like. Unsaturated polyesters obtained by reacting polyols with unsaturated acids such as (meth) acrylic acid, maleic acid, and fumaric acid; bisacrylamides such as N, N'-methylenebisacrylamide; polyepoxides and (meth) Di or tri (meth) acrylic acid esters obtained by reacting with acrylic acid; di (meth) obtained by reacting polyisocyanates such as tolylene diisocyanate and hexamethylene diisocyanate with hydroxyethyl (meth) acrylic acid. Acrylic acid carbamil esters; compounds having two or more polymerizable unsaturated groups such as allylated starch, allylated cellulose, diallyl phthalate, N, N', N''-triallyl isocyanurate, divinylbenzene; (poly) ) Diglycidyl compounds such as ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, polyglycidyl compounds such as triglycidyl compound; Epihalohydrin compounds; isocyanate compounds such as 2,4-tolylene diisocyanate, hexamethylene diisocyanate; 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane methanol, 3-butyl-3-oxetane methanol, 3-methyl- Examples thereof include compounds having two or more reactive functional groups such as oxetan compounds such as 3-oxetan ethanol, 3-ethyl-3-oxetan ethanol, and 3-butyl-3-oxetan ethanol. Among these, (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether and N, N'-methylenebisacrylamide are preferable from the viewpoint of cross-linking efficiency. These internal cross-linking agents may be used alone or in combination of two or more.

内部架橋剤の使用量は、通常、得られる吸水性樹脂の吸水特性を高める観点から、重合工程で用いる水溶性エチレン性不飽和単量体の1モルに対して、0.000001〜0.01モルであることが好ましく、0.00001〜0.005モルであることがより好ましい。 The amount of the internal cross-linking agent usually used is 0.000001 to 0.01 with respect to 1 mol of the water-soluble ethylenically unsaturated monomer used in the polymerization step from the viewpoint of enhancing the water absorption characteristics of the obtained water-absorbent resin. It is preferably mol, more preferably 0.00001 to 0.005 mol.

内部架橋剤は、水溶性エチレン性不飽和単量体の水溶液へ添加されてもよいし、水溶性エチレン性不飽和単量体とは別に、重合工程で添加されてもよい。また、吸水性樹脂の吸水特性を制御するために、連鎖移動剤を添加してもよく、そのような連鎖移動剤としては、例えば、次亜リン酸塩類、チオール類、チオール酸類、第2級アルコール類、アミン類等が挙げられる。 The internal cross-linking agent may be added to the aqueous solution of the water-soluble ethylenically unsaturated monomer, or may be added in the polymerization step separately from the water-soluble ethylenically unsaturated monomer. Further, in order to control the water absorption characteristics of the water-absorbent resin, a chain transfer agent may be added, and examples of such a chain transfer agent include hypophosphates, thiols, thiol acids, and secondary. Examples include alcohols and amines.

本発明に用いられる水溶性アゾ系化合物としては、例えば、1−[(1−シアノ−1−メチルエチル)アゾ]ホルムアミド、2,2’−アゾビス[2−(N−フェニルアミジノ)プロパン]二塩酸塩、2,2’−アゾビス[2−[N−(4−クロロフェニル)アミジノ]プロパン]二塩酸塩、2,2’−アゾビス[2−[N−(4−ヒドロキシフェニル)アミジノ]プロパン]二塩酸塩、2,2’−アゾビス[2−(N−ベンジルアミジノ)プロパン]二塩酸塩、2,2’−アゾビス[2−(N−アリルアミジノ)プロパン]二塩酸塩、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2’−アゾビス[2−[N−(2−ヒドロキシエチル)アミジノ]プロパン]二塩酸塩、2,2’−アゾビス[2−(5−メチル−2−イミダゾリン−2−イル)プロパン]二塩酸塩、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]二塩酸塩、2,2’−アゾビス[2−(4,5,6,7−テトラヒドロ−1H−1,3−ジアゼピン−2−イル)二塩酸塩、2,2’−アゾビス[2−(5−ヒドロキシ−3,4,5,6−テトラヒドロピリミジン−2−イル)プロパン]二塩酸塩、2,2’−アゾビス[2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン]二塩酸塩、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]、2,2’−アゾビス[2−メチル−N−[1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド]、2,2’-アゾビス(1−イミノ−1−ピロリジノ−2−メチルプロパン)二塩酸塩、2,2’−アゾビス[2−メチル−N−[1,1−ビス(ヒドロキシメチル)エチル]プロピオンアミド]、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)−プロピオンアミド]、2,2’−アゾビス(2−メチルプロピオンアミド)二水塩、4,4’−アゾビス−4−シアノバレイン酸、2,2’−アゾビス[2−(ヒドロキシメチル)プロピオニトリル]、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]二硫酸塩、2,2’−アゾビス[N−(2−カルボキシエチル)−2−メチルプロピオンアミジン]四水和物および2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド]等が挙げられる。このうち、吸水特性の観点から、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2’−アゾビス[2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン]二塩酸塩および2,2’−アゾビス[N−(2−カルボキシエチル)−2−メチルプロピオンアミジン]四水和物の使用が好ましい。 Examples of the water-soluble azo compound used in the present invention include 1-[(1-cyano-1-methylethyl) azo] formamide and 2,2'-azobis [2- (N-phenylamidino) propane] two. Hydrochloride, 2,2'-azobis [2- [N- (4-chlorophenyl) amidino] propane] dihydrochloride, 2,2'-azobis [2- [N- (4-hydroxyphenyl) amidino] propane] Dihydrochloride, 2,2'-azobis [2- (N-benzylamidino) propane] dihydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2' -Azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis [2- [N- (2-hydroxyethyl) amidino] propane] dihydrochloride, 2,2'-azobis [2- (5- (5-) 5- Methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2-( 4,5,6,7-Tetrahydro-1H-1,3-diazepine-2-yl) dihydrochloride, 2,2'-azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidine) -2-yl) Propane] dihydrochloride, 2,2'-azobis [2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane] dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane], 2,2'-azobis [2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide], 2, 2'-azobis (1-imino-1-pyrrolidino-2-methylpropane) dihydrochloride, 2,2'-azobis [2-methyl-N- [1,1-bis (hydroxymethyl) ethyl] propionamide] , 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide], 2,2'-azobis (2-methylpropionamide) dihydrate, 4,4'-azobis-4 -Cyanovaleic acid, 2,2'-azobis [2- (hydroxymethyl) propionitrile], 2,2'-azobis [2- (2-imidazolin-2-yl) propane] disulfate, 2,2' -Azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate and 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] and the like can be mentioned. Of these, from the viewpoint of water absorption characteristics, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis [2- [1- (2-hydroxyethyl) -2-imidazolin-2- Il] Propane] dihydrochloride and 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate are preferred.

前記水溶性アゾ系化合物は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。なお、本発明に係る製造方法における水溶性とは、25℃において水に5質量%以上の溶解性を示すことをいう。これら水溶性アゾ化合物は、脱窒素反応により窒素原子を含むラジカル種を発生して、該ラジカル種が、アミノ基、イミノ基またはシアノ基等を含有する官能基として、ポリマー鎖の末端基に導入される。 The water-soluble azo compounds may be used alone or in combination of two or more. The water solubility in the production method according to the present invention means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. These water-soluble azo compounds generate a radical species containing a nitrogen atom by a denitrification reaction, and the radical species is introduced into the terminal group of the polymer chain as a functional group containing an amino group, an imino group, a cyano group, or the like. Will be done.

水溶性アゾ系化合物の使用量は、反応時間の観点から、重合工程に用いる水溶性エチレン性不飽和単量体の1モルに対して、0.00005〜0.01モルであることが好ましく、0.0001〜0.008モルであることがより好ましい。 From the viewpoint of reaction time, the amount of the water-soluble azo compound used is preferably 0.00005 to 0.01 mol with respect to 1 mol of the water-soluble ethylenically unsaturated monomer used in the polymerization step. More preferably, it is 0.0001 to 0.008 mol.

水溶性エチレン性不飽和単量体の重合工程における重合方法は、水溶液重合法、乳化重合法および逆相懸濁重合法等の代表的な重合法から選択することができる。例えば、水溶液重合法の場合は、水溶性エチレン性不飽和単量体の水溶液、水溶性アゾ系化合物および必要に応じて内部架橋剤を反応容器に投入し、撹拌混合しながら加熱することで重合を進行させることができる。また、逆相懸濁重合法の場合、石油系炭化水素分散媒中に界面活性剤および/または高分子保護コロイドを投入して溶解し、次いで、水溶性エチレン性不飽和単量体と、水溶性アゾ系化合物と、必要に応じて内部架橋剤とを混合した水溶液をさらに投入し、撹拌しながら加熱することで重合を進行させることができる。重合方法としては、重合反応時において得られる吸水性樹脂の粒子径を広範に制御可能なことから、逆相懸濁重合法が好ましい。 The polymerization method in the polymerization step of the water-soluble ethylenically unsaturated monomer can be selected from typical polymerization methods such as an aqueous solution polymerization method, an emulsion polymerization method and a reverse phase suspension polymerization method. For example, in the case of the aqueous solution polymerization method, an aqueous solution of a water-soluble ethylenically unsaturated monomer, a water-soluble azo compound and, if necessary, an internal cross-linking agent are added to a reaction vessel and heated while stirring and mixing to polymerize. Can proceed. Further, in the case of the reverse phase suspension polymerization method, a surfactant and / or a polymer protective colloid is added into a petroleum-based hydrocarbon dispersion medium to dissolve it, and then a water-soluble ethylenically unsaturated monomer and water-soluble are added. The polymerization can be allowed to proceed by further adding an aqueous solution in which a sex azo compound and an internal cross-linking agent are mixed, if necessary, and heating with stirring. As the polymerization method, a reverse phase suspension polymerization method is preferable because the particle size of the water-absorbent resin obtained during the polymerization reaction can be controlled over a wide range.

なお、前記逆相懸濁重合法においては、逆相懸濁重合によって得られた吸水性樹脂前駆体に、水溶性エチレン性不飽和単量体をさらに添加し、2段以上の多段で重合を行うこともできる。かかる多段逆相懸濁重合法では、1段目の逆相懸濁重合で得られた吸水性樹脂前駆体を凝集させることで、得られる吸水性樹脂の粒子径を適宜調整できるため、例えば、紙おむつ等の衛生材料に所望の粒子径を得ることが、より容易となる。 In the reverse phase suspension polymerization method, a water-soluble ethylenically unsaturated monomer is further added to the water-absorbent resin precursor obtained by the reverse phase suspension polymerization, and the polymerization is carried out in two or more stages. You can also do it. In such a multi-stage reverse phase suspension polymerization method, the particle size of the obtained water-absorbent resin can be appropriately adjusted by aggregating the water-absorbent resin precursor obtained in the first-stage reverse-phase suspension polymerization. It becomes easier to obtain a desired particle size for a sanitary material such as a paper diaper.

また、多段逆相懸濁重合法において、2段目以降に用いる水溶性エチレン性不飽和単量体、水溶性アゾ系重合開始剤および必要に応じて用いられる内部架橋剤の種類と、水溶性アゾ系重合開始剤および必要に応じて用いられる内部架橋剤の水溶性エチレン性不飽和単量体に対する使用量等は、前記と同様である。 Further, in the multi-stage reverse phase suspension polymerization method, the types of the water-soluble ethylenically unsaturated monomer, the water-soluble azo-based polymerization initiator used in the second and subsequent stages, the internal cross-linking agent used as necessary, and the water solubility. The amounts of the azo-based polymerization initiator and the internal cross-linking agent used as necessary for the water-soluble ethylenically unsaturated monomer are the same as described above.

以下、逆相懸濁重合法により重合工程を実施する場合について、より詳細に説明する。 Hereinafter, the case where the polymerization step is carried out by the reverse phase suspension polymerization method will be described in more detail.

逆相懸濁重合法において用いられる石油系炭化水素分散媒としては、例えば、n−ヘキサン、n−ヘプタン、2−メチルヘキサン、3−メチルヘキサン、2,3−ジメチルペンタン、3−エチルペンタン、n−オクタン等の炭素数6〜8の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans−1,2−ジメチルシクロペンタン、cis−1,3−ジメチルシクロペンタン、trans−1,3−ジメチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。これらの石油系炭化水素分散媒は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの石油系炭化水素分散媒のなかでも、工業的に入手が容易であり、品質が安定しており、かつ安価である点で、n−ヘキサン、n−ヘプタンおよびシクロヘキサンが好適に用いられる。また、前記石油系炭化水素分散媒の混合物の例として、市販されているエクソールヘプタン(エクソンモービル社製:ヘプタンおよびその異性体の炭化水素75〜85質量%含有)等を用いてもよい。 Examples of the petroleum hydrocarbon dispersion medium used in the reverse phase suspension polymerization method include n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, and 3-ethylpentane. An aliphatic hydrocarbon having 6 to 8 carbon atoms such as n-octane; cyclohexane, methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans- Alicyclic hydrocarbons such as 1,3-dimethylcyclopentane; aromatic hydrocarbons such as benzene, toluene and xylene can be mentioned. These petroleum-based hydrocarbon dispersion media may be used alone or in combination of two or more. Among these petroleum-based hydrocarbon dispersion media, n-hexane, n-heptane, and cyclohexane are preferably used because they are industrially easily available, have stable quality, and are inexpensive. Further, as an example of the mixture of the petroleum-based hydrocarbon dispersion medium, commercially available exol heptane (manufactured by ExxonMobil: containing 75 to 85% by mass of hydrocarbons of heptane and its isomer) may be used.

石油系炭化水素分散媒の使用量は、重合熱の除去により重合温度を制御しやすいことから、通常、第1段目の重合に用いられる水溶性エチレン性不飽和単量体100質量部に対して100〜1500質量部であることが好ましく、200〜1400質量部であることがより好ましい。前記第1段目の重合とは、単段重合工程および多段重合における1段目重合の工程を意味する。 Since the amount of the petroleum-based hydrocarbon dispersion medium used is easy to control the polymerization temperature by removing the heat of polymerization, it is usually compared with 100 parts by mass of the water-soluble ethylenically unsaturated monomer used for the first-stage polymerization. It is preferably 100 to 1500 parts by mass, and more preferably 200 to 1400 parts by mass. The first-stage polymerization means a first-stage polymerization step in a single-stage polymerization step and a multi-stage polymerization.

逆相懸濁重合法において用いられる界面活性剤としては、例えば、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビトール脂肪酸エステルおよびポリオキシエチレンアルキルフェニルエーテル等のノニオン系界面活性剤、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩およびポリオキシエチレンアルキルエーテルスルホン酸塩等のアニオン系界面活性剤等が挙げられる。このうち、ノニオン系界面活性剤、なかでもソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステルまたはショ糖脂肪酸エステルを用いるのが好ましい。 Examples of the surfactant used in the reverse phase suspension polymerization method include nonionic surfactants such as sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, sorbitol fatty acid ester and polyoxyethylene alkylphenyl ether, and fatty acids. Examples thereof include anionic surfactants such as salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates and polyoxyethylene alkyl ether sulfonates. Of these, nonionic surfactants, particularly sorbitan fatty acid ester, polyglycerin fatty acid ester, or sucrose fatty acid ester are preferably used.

また、高分子保護コロイドとしては、例えば、エチルセルロ−ス、エチルヒドロキシエチルセルロ−ス、ポリエチレンオキサイド、無水マレイン化ポリエチレン、無水マレイン化ポリブタジエンおよび無水マレイン化EPDM(エチレン/プロピレン/ジエン/ターポリマー)等が挙げられる。 Examples of the polymer protective colloid include ethyl cellulose, ethyl hydroxyethyl cellulose, polyethylene oxide, polyethylene anhydride, polybutadiene anhydride, and EPDM anhydride (ethylene / propylene / diene / terpolymer). Can be mentioned.

界面活性剤や高分子保護コロイドの使用量は、逆相懸濁重合法の安定性の観点から、第1段目の重合に用いられる水溶性エチレン性不飽和単量体の水溶液100質量部に対して0.1〜5質量部であることが好ましく、0.2〜3質量部であることがより好ましい。 From the viewpoint of stability of the reverse phase suspension polymerization method, the amount of the surfactant and the polymer protective colloid used should be 100 parts by mass of the aqueous solution of the water-soluble ethylenically unsaturated monomer used for the first-stage polymerization. On the other hand, it is preferably 0.1 to 5 parts by mass, and more preferably 0.2 to 3 parts by mass.

重合工程での反応温度は、20〜110℃であることが好ましく、40〜100℃であることがより好ましい。また、重合反応時間は、0.1〜4時間が好ましい。 The reaction temperature in the polymerization step is preferably 20 to 110 ° C, more preferably 40 to 100 ° C. The polymerization reaction time is preferably 0.1 to 4 hours.

次に、重合工程が終了した反応系、すなわち、吸水性樹脂前駆体を含む反応系から水を除去する(以下、「脱水工程」と称する)。脱水工程の方法としては、吸水性樹脂前駆体を含む反応系を石油系炭化水素分散媒に分散し、外部から熱等のエネルギーを与え、共沸蒸留により水を除去する方法が採用され、逆相懸濁重合法においては、重合工程後に、吸水性樹脂前駆体と石油系炭化水素分散媒とを含む反応系が得られ、そのまま脱水工程に移行できることから、作業効率の点でも好ましい。 Next, water is removed from the reaction system in which the polymerization step is completed, that is, the reaction system containing the water-absorbent resin precursor (hereinafter, referred to as “dehydration step”). As a method of the dehydration step, a method of dispersing a reaction system containing a water-absorbent resin precursor in a petroleum-based hydrocarbon dispersion medium, applying energy such as heat from the outside, and removing water by co-boiling distillation is adopted, and vice versa. In the phase suspension polymerization method, a reaction system containing a water-absorbent resin precursor and a petroleum-based hydrocarbon dispersion medium can be obtained after the polymerization step, and the process can be directly shifted to the dehydration step, which is also preferable in terms of work efficiency.

脱水工程で用いられる石油系炭化水素分散媒は、前記の逆相懸濁重合に用いられる石油系炭化水素分散媒と同様のものが使用可能である。 As the petroleum-based hydrocarbon dispersion medium used in the dehydration step, the same petroleum-based hydrocarbon dispersion medium used in the above-mentioned reverse phase suspension polymerization can be used.

脱水工程で添加される油溶性ラジカル発生剤は、反応系にそのまま添加してもよいし、別に石油系炭化水素分散媒等に溶解させた後、反応系へ添加してもよい。 The oil-soluble radical generator added in the dehydration step may be added to the reaction system as it is, or may be separately dissolved in a petroleum-based hydrocarbon dispersion medium or the like and then added to the reaction system.

油溶性ラジカル発生剤の添加時期は、前記式(1)により算出される反応系の残水率に基づいて定められる。当該式(1)において、「反応系に残存する水の質量」は、残水率の算出時に反応系に存在する水の全量の質量を意味し、重合反応の開始前に反応系に含まれる水および必要に応じて導入された水の総計から、残水率の算出時までに反応系外に除去された水の質量を減じて算出される。 The timing of adding the oil-soluble radical generator is determined based on the residual water content of the reaction system calculated by the above formula (1). In the formula (1), "mass of water remaining in the reaction system" means the mass of the total amount of water existing in the reaction system at the time of calculating the residual water ratio, and is included in the reaction system before the start of the polymerization reaction. It is calculated by subtracting the mass of water removed from the reaction system by the time the residual water ratio is calculated from the total amount of water and water introduced as needed.

油溶性ラジカル発生剤が添加される時の残水率の上限は75%以下であり、好ましくは70%以下、より好ましくは65%以下の任意の脱水段階のときに反応系へ添加される。また、油溶性ラジカル発生剤が添加される時の残水率の下限は、5%以上であり、好ましくは10%以上、より好ましくは15%以上である。反応系の残水率が75%よりも高い段階、あるいは5%よりも低い段階で油溶性ラジカル発生剤を添加すると、吸水性樹脂前駆体に対する油溶性ラジカル発生剤の反応が十分でなくなる傾向にあり、高い吸水特性と少ない残存モノマー含有量を併せ持つことが困難になる。 The upper limit of the residual water content when the oil-soluble radical generator is added is 75% or less, preferably 70% or less, more preferably 65% or less at any dehydration stage. Further, the lower limit of the residual water ratio when the oil-soluble radical generator is added is 5% or more, preferably 10% or more, and more preferably 15% or more. If an oil-soluble radical generator is added at a stage where the residual water content of the reaction system is higher than 75% or lower than 5%, the reaction of the oil-soluble radical generator with the water-absorbent resin precursor tends to be insufficient. Therefore, it becomes difficult to have both high water absorption characteristics and low residual monomer content.

油溶性ラジカル発生剤の反応系への添加後の反応温度は、40〜120℃であることが好ましく、50〜100℃であることがより好ましい。また、油溶性ラジカル発生剤添加後の吸水性樹脂前駆体との反応時間は、通常、10分間〜3時間である。 The reaction temperature after the oil-soluble radical generator is added to the reaction system is preferably 40 to 120 ° C, more preferably 50 to 100 ° C. The reaction time with the water-absorbent resin precursor after the addition of the oil-soluble radical generator is usually 10 minutes to 3 hours.

脱水工程において反応系へ添加される油溶性ラジカル発生剤は、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス-イソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソ酪酸メチル)、2,2’-アゾビス(2-メチルブチロニトリル)の油溶性アゾ化合物が挙げられる。これらの油溶性ラジカル発生剤は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。なお、本発明に係る製造方法における油溶性とは、25℃においてトルエン、シクロヘキサンまたはエタノールの何れかに5質量%以上の溶解性を示すことをいう。 The oil-soluble radical generators added to the reaction system in the dehydration step are 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis-isobutyronitrile, 1, 1'-azobis (cyclohexane-1-carbonitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (methyl isobutyrate), 2,2'-azobis (2-- Examples thereof include oil-soluble azo compounds (methylbutyronitrile). These oil-soluble radical generators may be used alone or in combination of two or more. The oil solubility in the production method according to the present invention means that the solubility in any of toluene, cyclohexane or ethanol at 25 ° C. is 5% by mass or more.

反応系に対する油溶性ラジカル発生剤の添加量は、重合工程で用いられた水溶性エチレン性不飽和単量体の1モルに対して、0.0001〜0.0020モルであることが好ましく、0.0005〜0.0015モルがより好ましい。 The amount of the oil-soluble radical generator added to the reaction system is preferably 0.0001 to 0.0020 mol, preferably 0.0001 to 0.0020 mol, based on 1 mol of the water-soluble ethylenically unsaturated monomer used in the polymerization step. More preferably, 0.05 to 0.0015 mol.

本発明の製造方法では、重合工程において得られた吸水性樹脂前駆体に対して、架橋剤を添加して反応させる後架橋反応を施すことが好ましい。重合工程後に後架橋反応を行うことにより、吸水特性をより高めることができる。 In the production method of the present invention, it is preferable to carry out a cross-linking reaction after adding a cross-linking agent to the water-absorbent resin precursor obtained in the polymerization step. By carrying out a post-crosslinking reaction after the polymerization step, the water absorption characteristics can be further enhanced.

後架橋反応は、通常、重合工程後の任意の時期に実行することができるが、脱水工程において油溶性ラジカル発生剤を添加し、反応させた後に施されるのが好ましい。後架橋反応に用いられる架橋剤(後架橋剤)としては、反応性官能基を2個以上有する化合物を挙げることができる。例えば、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α−メチルエピクロルヒドリン等のハロエポキシ化合物;2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3−メチル−3−オキセタンメタノール、3−エチル−3−オキセタンメタノール、3−ブチル−3−オキセタンメタノール、3−メチル−3−オキセタンエタノール、3−エチル−3−オキセタンエタノール、3−ブチル−3−オキセタンエタノール等のオキセタン化合物;1,2−エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N−ジ(β−ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物が挙げられる。これらの後架橋剤の中でも、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物が好適に用いられる。これらの後架橋剤は、それぞれ単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 The post-crosslinking reaction can usually be carried out at any time after the polymerization step, but it is preferably carried out after the oil-soluble radical generator is added and reacted in the dehydration step. Examples of the cross-linking agent (post-cross-linking agent) used in the post-crosslinking reaction include compounds having two or more reactive functional groups. For example, polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin; (poly) ethylene glycol diglycidyl ether, (poly). Polyglycidyl compounds such as glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether, trimethylolpropane triglycidyl ether; epichlorohydrin, epibromhydrin, α -Haloepoxy compounds such as methyl epichlorohydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane methanol, 3-butyl-3-oxetane methanol , 3-Methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-oxetane ethanol and other oxetane compounds; 1,2-ethylenebisoxazoline and other oxazoline compounds; Examples thereof include hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide. Among these post-crosslinking agents, (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether, etc. Polyglycidyl compound is preferably used. These post-crosslinking agents may be used alone or in combination of two or more.

後架橋剤の使用量は、後架橋剤の種類により異なるが、通常、重合工程で用いられる水溶性エチレン性不飽和単量体の総量の1モルに対して、0.00001〜0.01モルであることが好ましく、0.00005〜0.005モルであることがより好ましく、0.0001〜0.002モルであることがよりさらに好ましい。 The amount of the post-crosslinking agent used varies depending on the type of the post-crosslinking agent, but is usually 0.00001 to 0.01 mol with respect to 1 mol of the total amount of the water-soluble ethylenically unsaturated monomer used in the polymerization step. It is preferably 0.00005 to 0.005 mol, more preferably 0.0001 to 0.002 mol, and even more preferably 0.0001 to 0.002 mol.

吸水性樹脂前駆体と後架橋剤との反応は、水の存在下で行うことが好ましい。このため、後架橋剤を添加するときに、反応系に適度な量の水が残留しているのが好ましく、また、後架橋剤は水溶液として反応系へ添加するのが好ましい。反応系へ後架橋剤を添加するときの反応系における水の量(後架橋剤を水溶液として添加する場合は、当該水溶液に由来の水の量を含む。)は、通常、重合工程で用いられる水溶性エチレン性不飽和単量体の総量100質量部に対し、5〜300質量部であることが好ましく、10〜100質量部であることがより好ましく、10〜50質量部であることがよりさらに好ましい。なお、反応系における水の量は、脱水中の反応系に残留している水と、後架橋のために必要に応じて反応系へ添加される水との合計量を意味する。 The reaction between the water-absorbent resin precursor and the post-crosslinking agent is preferably carried out in the presence of water. Therefore, when the post-crosslinking agent is added, it is preferable that an appropriate amount of water remains in the reaction system, and the post-crosslinking agent is preferably added to the reaction system as an aqueous solution. The amount of water in the reaction system when the post-crosslinking agent is added to the reaction system (when the post-crosslinking agent is added as an aqueous solution, the amount of water derived from the aqueous solution is included) is usually used in the polymerization step. It is preferably 5 to 300 parts by mass, more preferably 10 to 100 parts by mass, and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the total amount of the water-soluble ethylenically unsaturated monomer. More preferred. The amount of water in the reaction system means the total amount of water remaining in the reaction system during dehydration and water added to the reaction system as needed for post-crosslinking.

このようにして、油溶性ラジカル発生剤および、好ましくはさらに後架橋剤を吸水性樹脂前駆体に反応させた後、水、石油系炭化水素分散媒等を除去する乾燥処理を施すことにより、目的の吸水性樹脂が得られる。該乾燥処理としては、例えば、熱等のエネルギーを外部から与え、蒸留や熱風送気による方法が挙げられ、また、かかる乾燥処理は、常圧下で行ってもよく、減圧下で行ってもよく、乾燥効率を高めるために窒素等の気流下で行ってもよく、これらの方法を組み合わせて用いてもよい。前記乾燥処理が常圧の場合の乾燥温度は、好ましくは70〜250℃であり、より好ましくは80〜180℃であり、さらに好ましくは80〜140℃である。また、前記乾燥処理が減圧の場合の乾燥温度は、好ましくは60〜100℃であり、より好ましくは70〜90℃である。 In this way, after reacting the oil-soluble radical generator and preferably the post-crosslinking agent with the water-absorbent resin precursor, a drying treatment for removing water, a petroleum-based hydrocarbon dispersion medium, etc. is performed. Water-absorbent resin can be obtained. Examples of the drying treatment include a method in which energy such as heat is applied from the outside and distillation or hot air blowing is used. The drying treatment may be performed under normal pressure or reduced pressure. , In order to improve the drying efficiency, it may be carried out under an air flow such as nitrogen, or these methods may be used in combination. When the drying treatment is under normal pressure, the drying temperature is preferably 70 to 250 ° C, more preferably 80 to 180 ° C, and even more preferably 80 to 140 ° C. The drying temperature when the drying treatment is reduced pressure is preferably 60 to 100 ° C, more preferably 70 to 90 ° C.

上記の例によって得られる本発明に係る吸水性樹脂は、紙おむつや生理用品等の衛生材料、ペットシート等の日用品、保水材、土壌改良材等の農園芸材料、電力・通信用ケーブル用止水材および結露防止材等の工業資材等種々の分野で使用することができるが、以下(A)〜(D)の各特性を有し、殊に、人体、特に皮膚に対して安全、すなわち、肌への影響(肌荒れ)を低減できる点で、特に、衛生材料として好適である。
(A)生理食塩水保水能が38〜65g/g
(B)4.14kPa荷重下での生理食塩水吸水能が18ml/g以上
(C)残存モノマーの含有量が150ppm以下
(D)使用初期の残存モノマーの外部移行量が30ppm以下
The water-absorbent resin according to the present invention obtained by the above example includes sanitary materials such as disposable diapers and sanitary products, daily necessities such as pet sheets, water-retaining materials, agricultural and horticultural materials such as soil conditioners, and water-stopping for electric power / communication cables. It can be used in various fields such as materials and industrial materials such as dew condensation prevention materials, but it has the following characteristics (A) to (D) and is particularly safe for the human body, especially the skin, that is, It is particularly suitable as a sanitary material because it can reduce the effect on the skin (rough skin).
(A) Saline water retention capacity is 38-65 g / g
(B) Physiological saline water absorption capacity under 4.14 kPa load is 18 ml / g or more (C) Residual monomer content is 150 ppm or less (D) External transfer amount of residual monomer at the initial stage of use is 30 ppm or less

本発明に係る吸水性樹脂の衛生材料としての使用場面において、生理食塩水保水能は、吸収容量を多くし、液体の逆戻り量を少なくするという観点から、40〜55g/gであることが好ましい。 In the use of the water-absorbent resin according to the present invention as a sanitary material, the physiological saline water retention capacity is preferably 40 to 55 g / g from the viewpoint of increasing the absorption capacity and reducing the amount of liquid reversion. ..

また、4.14kPa荷重下の生理食塩水吸水能は、吸液後の衛生材料に圧力がかかった場合における液体の逆戻り量を少なくするという観点から、20ml/g以上であることが好ましく、21ml/g以上であることがより好ましい。 Further, the physiological saline water absorption capacity under a load of 4.14 kPa is preferably 20 ml / g or more, preferably 21 ml, from the viewpoint of reducing the amount of liquid reversion when pressure is applied to the sanitary material after absorption. More preferably, it is / g or more.

残存モノマー含有量は、肌への影響(肌荒れの低減)の観点で、100ppm以下であることが好ましく、80ppm以下であることがより好ましい。 The residual monomer content is preferably 100 ppm or less, more preferably 80 ppm or less, from the viewpoint of the effect on the skin (reduction of rough skin).

本発明に係る吸水性樹脂は、使用の初期のような吸水性樹脂の膨潤倍率が低い場合において、残存モノマーが外部へ移行する量が著しく少ないとの優れた性質を有することから、衛生材料に用いられた際に、肌への影響(肌荒れ)を顕著に低減できる。使用初期の残存モノマーの外部移行量は、20ppm以下であることが好ましく、15ppm以下であることがより好ましい。 The water-absorbent resin according to the present invention has an excellent property that the amount of residual monomer transferred to the outside is remarkably small when the swelling ratio of the water-absorbent resin is low as in the initial stage of use. When used, the effect on the skin (rough skin) can be significantly reduced. The amount of residual monomer transferred to the outside at the initial stage of use is preferably 20 ppm or less, more preferably 15 ppm or less.

また、粒子径としては、粉体としてのハンドリング性の観点から、中位粒子径が100〜600μmであることが好ましく、200〜550μmであることがより好ましく、250〜500μmであることがさらに好ましく、300〜450μmであることがよりさらに好ましい。 The particle size is preferably 100 to 600 μm, more preferably 200 to 550 μm, and even more preferably 250 to 500 μm from the viewpoint of handleability as a powder. , 300-450 μm is even more preferable.

本発明の吸水性樹脂を用いた衛生材料は、液体透過性シートと液体不透過性シートとの間に当該吸水性樹脂を含む吸収体を挟んで保持した形態のものが好ましい。ここで用いられる液体透過性シートは、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂およびポリアミド樹脂などからなる不織布や多孔質シートである。一方、液体不透過性シートは、例えば、ポリエチレン樹脂、ポリプロピレン樹脂およびポリ塩化ビニル樹脂などの合成樹脂からなるフイルムや当該合成樹脂と不織布との複合材料からなるフイルムである。 The sanitary material using the water-absorbent resin of the present invention preferably has a form in which an absorber containing the water-absorbent resin is sandwiched between a liquid-permeable sheet and a liquid-impermeable sheet. The liquid permeable sheet used here is, for example, a non-woven fabric or a porous sheet made of a polyethylene resin, a polypropylene resin, a polyester resin, a polyamide resin, or the like. On the other hand, the liquid impermeable sheet is, for example, a film made of a synthetic resin such as a polyethylene resin, a polypropylene resin and a polyvinyl chloride resin, or a film made of a composite material of the synthetic resin and a non-woven fabric.

また、ここで用いられる吸収体は、吸水性樹脂と親水性繊維との複合体が好ましい。この複合体は、例えば、吸水性樹脂と親水性繊維とを均一にブレンドしたミキシング構造、層状の親水性繊維の間に吸水性樹脂を保持したサンドイッチ構造、吸水性樹脂と親水性繊維との混合物をティッシュペーパーなどの通液性を有する包装シートで包んだ包装構造のものが好ましい。複合体において用いられる親水性繊維は、例えば、木材から得られる綿状パルプ、メカニカルパルプ、ケミカルパルプおよびセミケミカルパルプなどのセルロース繊維、レーヨンやアセテートなどの人工セルロース繊維などである。親水性繊維は、ポリアミド樹脂繊維、ポリエステル樹脂繊維およびポリオレフィン樹脂繊維などの合成繊維を含有していてもよい。 Further, the absorber used here is preferably a composite of a water-absorbent resin and hydrophilic fibers. This composite has, for example, a mixing structure in which a water-absorbent resin and a hydrophilic fiber are uniformly blended, a sandwich structure in which a water-absorbent resin is held between layered hydrophilic fibers, and a mixture of the water-absorbent resin and the hydrophilic fiber. Is preferably wrapped in a wrapping sheet having liquid permeability such as tissue paper. The hydrophilic fibers used in the composite include, for example, cotton-like pulp obtained from wood, mechanical pulp, cellulose fibers such as chemical pulp and semi-chemical pulp, artificial cellulose fibers such as rayon and acetate, and the like. The hydrophilic fiber may contain synthetic fibers such as polyamide resin fiber, polyester resin fiber and polyolefin resin fiber.

以下に、実施例および比較例に基づいて、本発明を詳細に説明するが、本発明はこれら実施例等により限定されるものではない。 Hereinafter, the present invention will be described in detail based on Examples and Comparative Examples, but the present invention is not limited to these Examples and the like.

実施例1
<重合工程>
撹拌機、還流冷却器、滴下ロート、温度計および窒素ガス導入管を備えた2L容の五つ口円筒型丸底フラスコにn−ヘプタン300gを仕込み、これにHLBが3.0のショ糖脂肪酸エステル(三菱化学株式会社の商品名「S−370」)0.74gを加えて撹拌しながら80℃まで昇温して溶解させた後、55℃まで冷却した。
Example 1
<Polymerization process>
A 2 L five-necked cylindrical round-bottom flask equipped with a stirrer, a reflux condenser, a dropping funnel, a thermometer, and a nitrogen gas introduction tube is charged with 300 g of n-heptane, and a sucrose fatty acid having an HLB of 3.0. 0.74 g of an ester (trade name "S-370" of Mitsubishi Chemical Corporation) was added, and the temperature was raised to 80 ° C. to dissolve the mixture while stirring, and then the mixture was cooled to 55 ° C.

別途、500mL容の三角フラスコに80.5質量%アクリル酸水溶液92g(1.03モル)を入れ、これに冷却しながら、20.9質量%水酸化ナトリウム水溶液147.6g(0.77モル)を滴下し、アクリル酸を中和した。この中和液に、さらに水溶性アゾ系化合物である2,2’−アゾビス(2−アミジノプロパン)二塩酸塩0.055g(0.0002モル)および内部架橋剤であるエチレングリコールジグリシジルエーテル0.012g(0.00007モル)を添加し、1段目重合用の単量体水溶液を調製した。 Separately, 92 g (1.03 mol) of an 80.5 mass% acrylic acid aqueous solution was placed in a 500 mL Erlenmeyer flask, and 147.6 g (0.77 mol) of a 20.9 mass% sodium hydroxide aqueous solution was cooled therein. Was added dropwise to neutralize the acrylic acid. In addition to this neutralizing solution, 0.055 g (0.0002 mol) of 2,2'-azobis (2-amidinopropane) dihydrochloride which is a water-soluble azo compound and ethylene glycol diglycidyl ether 0 which is an internal cross-linking agent are added. 1.012 g (0.00007 mol) was added to prepare a monomer aqueous solution for the first-stage polymerization.

また、別の500mL容の三角フラスコに80.5質量%アクリル酸水溶液128.8g(1.44モル)を入れ、これに冷却しながら26.9質量%水酸化ナトリウム水溶液160.6g(1.08モル)を滴下し、アクリル酸の75モル%を中和した。さらに、水溶性アゾ系化合物である2,2’−アゾビス(2−アミジノプロパン)二塩酸塩0.077g(0.0003モル)および内部架橋剤であるエチレングリコールジグリシジルエーテル0.008g(0.00005モル)を添加し、2段目重合用の単量体水溶液を調製した。 In addition, 128.8 g (1.44 mol) of an 80.5 mass% acrylic acid aqueous solution was placed in another 500 mL Erlenmeyer flask, and 160.6 g (1. 08 mol) was added dropwise to neutralize 75 mol% of acrylic acid. Furthermore, 0.077 g (0.0003 mol) of 2,2'-azobis (2-amidinopropane) dihydrochloride which is a water-soluble azo compound and 0.008 g (0.03 mol) of ethylene glycol diglycidyl ether which is an internal cross-linking agent. 0005 mol) was added to prepare a monomer aqueous solution for the second stage polymerization.

前記五つ口円筒型丸底フラスコに、前記で得た1段目重合用の単量体水溶液を、撹拌下に全量加えて分散させ、系内を窒素で十分に置換した後、該フラスコを70℃の水浴に浸漬しながら1時間撹拌した。そして、得られた重合スラリー液を26℃まで冷却した後、2段目重合用の単量体水溶液の全量を撹拌下に添加した。再び系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬しながら2時間撹拌し、吸水性樹脂前駆体を含む反応系を得た。 In the five-necked cylindrical round-bottom flask, the entire amount of the monomer aqueous solution for first-stage polymerization obtained above was added and dispersed under stirring, and the inside of the system was sufficiently replaced with nitrogen, and then the flask was placed. The mixture was stirred for 1 hour while being immersed in a water bath at 70 ° C. Then, after cooling the obtained polymerization slurry liquid to 26 ° C., the whole amount of the monomer aqueous solution for the second stage polymerization was added under stirring. After sufficiently replacing the inside of the system with nitrogen, the flask was stirred for 2 hours while being immersed in a water bath at 70 ° C. to obtain a reaction system containing a water-absorbent resin precursor.

<脱水工程>
次いで、前記五つ口円筒型丸底フラスコを120℃の油浴で加熱し、反応系の水とn−ヘプタンとを共沸させ、n−ヘプタンを還流しながら、177gの水を系外へ抜き出した(残水率:61%)。ここで、油溶性ラジカル発生剤として、2,2’-アゾビス-イソブチロニトリル0.575g(0.0035モル)をn−ヘプタン28gに溶解した溶液を添加し、80℃で20分間保持した。続いて、水とn−ヘプタンとを共沸させ、n−ヘプタンを環流しながら、さらに79gの水を系外へ抜き出した後、後架橋剤であるエチレングリコールジグリシジルエーテルの2%水溶液4.42g(0.0005モル)を添加し、80℃で2時間保持した。以後、n−へプタンおよび水を留去し、球状粒子の凝集体として、吸水性樹脂229.0gを得た。
<Dehydration process>
Next, the five-necked cylindrical round-bottom flask is heated in an oil bath at 120 ° C. to azeotrope the water of the reaction system and n-heptane, and 177 g of water is discharged to the outside of the system while refluxing n-heptane. Extracted (residual water rate: 61%). Here, as an oil-soluble radical generator, a solution prepared by dissolving 0.575 g (0.0035 mol) of 2,2'-azobis-isobutyronitrile in 28 g of n-heptane was added, and the mixture was held at 80 ° C. for 20 minutes. .. Subsequently, water and n-heptane were azeotroped, and 79 g of water was extracted out of the system while circulating n-heptane, and then a 2% aqueous solution of ethylene glycol diglycidyl ether as a post-crosslinking agent. 42 g (0.0005 mol) was added and kept at 80 ° C. for 2 hours. After that, n-heptane and water were distilled off to obtain 229.0 g of a water-absorbent resin as an aggregate of spherical particles.

実施例2
実施例1において、油溶性ラジカル発生剤を2,2’-アゾビス(イソ酪酸メチル)0.806g(0.0035モル)に変更した以外は、実施例1と同様の操作を行い、球状粒子の凝集体として、吸水性樹脂228.9gを得た。
Example 2
In Example 1, the same operation as in Example 1 was carried out except that the oil-soluble radical generator was changed to 0.806 g (0.0035 mol) of 2,2'-azobis (methyl isobutyrate). As an agglomerate, 228.9 g of a water-absorbent resin was obtained.

実施例3
実施例2において、油溶性ラジカル発生剤添加時の脱水量を177gから214g(残水率:44%)に変更し、油溶性ラジカル発生剤添加後から後架橋剤添加前まで系外に除去した水量を42gに変更した以外は、実施例2と同様の操作を行い、球状粒子の凝集体として、吸水性樹脂228.4gを得た。
Example 3
In Example 2, the amount of dehydration when the oil-soluble radical generator was added was changed from 177 g to 214 g (residual water ratio: 44%), and was removed from the system from after the addition of the oil-soluble radical generator to before the addition of the post-crosslinking agent. The same operation as in Example 2 was carried out except that the amount of water was changed to 42 g, and 228.4 g of a water-absorbent resin was obtained as an aggregate of spherical particles.

実施例4
実施例2において、油溶性ラジカル発生剤添加時の脱水量を177gから240g(残水率:32%)に変更し、油溶性ラジカル発生剤添加後から後架橋剤添加前まで系外に除去した水量を16gに変更した以外は、実施例2と同様の操作を行い、球状粒子の凝集体として、吸水性樹脂228.1gを得た。
Example 4
In Example 2, the amount of dehydration when the oil-soluble radical generator was added was changed from 177 g to 240 g (residual water ratio: 32%), and was removed from the system from after the addition of the oil-soluble radical generator to before the addition of the post-crosslinking agent. The same operation as in Example 2 was carried out except that the amount of water was changed to 16 g, and 228.1 g of a water-absorbent resin was obtained as an aggregate of spherical particles.

実施例5
実施例1において、油溶性ラジカル発生剤を1,1’-アゾビス(シクロヘキサン--カルボニトリル)0.855g(0.0035モル)に変更した以外は、実施例1と同様の操作を行い、球状粒子の凝集体として、吸水性樹脂228.2gを得た。
Example 5
In Example 1, the same operation as in Example 1 was carried out except that the oil-soluble radical generator was changed to 0.855 g (0.0035 mol) of 1,1'-azobis (cyclohexane-1-carbonitrile). 228.2 g of a water-absorbent resin was obtained as an agglomerate of spherical particles.

実施例6
実施例1において、油溶性ラジカル発生剤を2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.497g(0.002モル)に変更した以外は、実施例1と同様の操作を行い、球状粒子の凝集体として、吸水性樹脂228.5gを得た。
Example 6
In Example 1, the same operation as in Example 1 was performed except that the oil-soluble radical generator was changed to 0.497 g (0.002 mol) of 2,2'-azobis (2,4-dimethylvaleronitrile). , 228.5 g of water-absorbent resin was obtained as an agglomerate of spherical particles.

比較例1
実施例1において、脱水工程中に油溶性ラジカル発生剤を添加しなかった以外は、実施例1と同様の操作を行い、球状粒子の凝集体として、吸水性樹脂228.3gを得た。
Comparative Example 1
In Example 1, the same operation as in Example 1 was carried out except that the oil-soluble radical generator was not added during the dehydration step, and 228.3 g of a water-absorbent resin was obtained as an agglomerate of spherical particles.

比較例2
実施例1において、脱水工程中に添加する油溶性ラジカル発生剤の代わりに、水溶性アゾ系化合物である、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩0.949g(0.0035モル)を水8gに溶解した水溶液を添加した以外は、実施例1と同様の操作を行い、球状粒子の凝集体として、吸水性樹脂229.5gを得た。
Comparative Example 2
In Example 1, 0.949 g (0.0035) of 2,2'-azobis (2-amidinopropane) dihydrochloride, which is a water-soluble azo compound, is used instead of the oil-soluble radical generator added during the dehydration step. The same operation as in Example 1 was carried out except that an aqueous solution prepared by dissolving mol) in 8 g of water was added to obtain 229.5 g of a water-absorbent resin as an agglomerate of spherical particles.

比較例3
実施例2において、油溶性ラジカル発生剤添加時の脱水量を177gから90g(残水率:101%)に変更した以外は、実施例2と同様の操作を行い、球状粒子の凝集体として、吸水性樹脂228.8gを得た。
Comparative Example 3
In Example 2, the same operation as in Example 2 was carried out except that the amount of dehydration when the oil-soluble radical generator was added was changed from 177 g to 90 g (residual water ratio: 101%), and as an agglomerate of spherical particles. 228.8 g of water-absorbent resin was obtained.

比較例4
実施例2において、1段目重合用の単量体水溶液に添加する、水溶性アゾ系化合物である2,2’−アゾビス(2−アミジノプロパン)二塩酸塩の代わりに、水溶性過酸化物である過硫酸カリウム0.054g(0.0002モル)を用い、さらに、2段目重合用の単量体水溶液に添加する、水溶性アゾ系化合物である2,2’−アゾビス(2−アミジノプロパン)二塩酸塩の代わりに、水溶性過酸化物である過硫酸カリウム0.076g(0.0003モル)を用い、かつ油溶性ラジカル発生剤添加後から後架橋剤添加前まで系外に除去した水量を87gに変更した以外は、実施例2と同様の操作を行い、球状粒子の凝集体として、吸水性樹脂228.4gを得た。
Comparative Example 4
In Example 2, instead of the water-soluble azo compound 2,2'-azobis (2-amidinopropane) dihydrochloride added to the monomer aqueous solution for the first-stage polymerization, a water-soluble peroxide is used. 2,2'-Azobis (2-amidino), which is a water-soluble azo compound, is added to the monomer aqueous solution for the second-stage polymerization using 0.054 g (0.0002 mol) of potassium persulfate. Propane) Use 0.076 g (0.0003 mol) of potassium persulfate, which is a water-soluble peroxide, instead of dihydrochloride, and remove it from the system after the addition of the oil-soluble radical generator and before the addition of the post-crosslinking agent. The same operation as in Example 2 was carried out except that the amount of water obtained was changed to 87 g, and 228.4 g of a water-absorbent resin was obtained as an agglomerate of spherical particles.

評価方法
各実施例および比較例で得られた吸水性樹脂について、生理食塩水保水能、4.14kPa荷重下の生理食塩水吸水能、残存モノマー含有量、使用初期の残存モノマーの外部移行量および中位粒子径を、以下の方法により測定した。結果を表1に示す。
Evaluation Method For the water-absorbent resins obtained in each Example and Comparative Example, the saline water-retaining ability, the saline water-absorbing ability under a load of 4.14 kPa, the residual monomer content, the amount of residual monomer transferred to the outside at the initial stage of use, and The medium particle size was measured by the following method. The results are shown in Table 1.

(生理食塩水保水能)
500mL容のビーカーに0.9質量%塩化ナトリウム水溶液(生理食塩水)500gを入れ、これに600r/minで撹拌しながら、吸水性樹脂2.0gを継粉(ダマ)が発生しないように加え、分散させた。30分間撹拌を続け、吸水性樹脂を膨潤させた後、ビーカーの内容物の全てを綿袋(メンブロード60番、横100mm×縦200mm)の中に注ぎ込んだ。そして、上部を輪ゴムで縛ったこの綿袋を、遠心力が167Gとなるよう設定した脱水機(国産遠心機株式会社製の品番「H−122」)を用いて1分間脱水した後、脱水後の膨潤ゲルを含んだ綿袋の質量Wa(g)を測定した。また、比較対照として、生理食塩水への吸水性樹脂の添加をすることなく、同様の操作を施し、湿潤状態の綿袋の質量Wb(g)を測定した。そして、次の式から生理食塩水保水能を算出した。
生理食塩保水能(g/g)=[Wa−Wb](g)/吸水性樹脂の質量(g)
(Saline water retention capacity)
Put 500 g of 0.9 mass% sodium chloride aqueous solution (physiological saline) in a 500 mL beaker, and add 2.0 g of water-absorbent resin to this while stirring at 600 r / min so as not to generate lumps. , Distributed. Stirring was continued for 30 minutes to swell the water-absorbent resin, and then all the contents of the beaker were poured into a cotton bag (Membroad No. 60, width 100 mm x length 200 mm). Then, this cotton bag whose upper part is tied with a rubber band is dehydrated for 1 minute using a dehydrator (product number "H-122" manufactured by Japan Centrifuge Co., Ltd.) set to have a centrifugal force of 167 G, and after dehydration. The mass Wa (g) of the cotton bag containing the swollen gel was measured. Further, as a comparative control, the same operation was carried out without adding the water-absorbent resin to the physiological saline, and the mass Wb (g) of the wet cotton bag was measured. Then, the physiological saline water retention capacity was calculated from the following formula.
Physiological salt water retention capacity (g / g) = [Wa-Wb] (g) / mass of water-absorbent resin (g)

(4.14kPa荷重下の生理食塩水吸水能)
図1に概略を示した測定装置100を用いて測定した。図において、測定装置100は、ビュレット部1、導管2、測定台3および測定台3上に置かれた測定部4を備えている。ビュレット部1はビュレット10を有している。このビュレット10は、上部がゴム栓14で閉鎖可能であり、下部に空気導入管11とコック12とが連結されている。空気導入管11は、先端にコック13を有している。導管2は、内径が6mmであり、ビュレット部1のコック12と測定台3とを連結している。測定台3は、上下方向に可動なように用意されており、その中央部に直径2mmの孔(導管口)が設けられており、該孔に導管2の一端が連結されている。測定部4は、プレキシグラス製の円筒40、この円筒40の一方の部開口部に接着されたポリアミドメッシュ41および円筒40内で上下方向に可動な重り42を有している。円筒40は、該メッシュ41を介して、測定台3上に載置されており、内径は20mmである。ポリアミドメッシュ41の目開きは、75μm(200メッシュ)である。重り42は、直径19mm、質量119.6gであり、後記するようにポリアミドメッシュ41上に均一に配置された吸水性樹脂5に対して4.14kPaの荷重を加えることができる。
(Saline water absorption capacity under 4.14 kPa load)
The measurement was performed using the measuring device 100 outlined in FIG. In the figure, the measuring device 100 includes a burette unit 1, a conduit 2, a measuring table 3, and a measuring unit 4 placed on the measuring table 3. The burette unit 1 has a burette 10. The upper part of the burette 10 can be closed with a rubber stopper 14, and the air introduction pipe 11 and the cock 12 are connected to the lower part. The air introduction pipe 11 has a cock 13 at its tip. The conduit 2 has an inner diameter of 6 mm, and connects the cock 12 of the burette portion 1 and the measuring table 3. The measuring table 3 is prepared so as to be movable in the vertical direction, and a hole (conduit port) having a diameter of 2 mm is provided in the center thereof, and one end of the conduit 2 is connected to the hole. The measuring unit 4 has a cylinder 40 made of plexiglass, a polyamide mesh 41 adhered to one opening of the cylinder 40, and a weight 42 movable in the vertical direction in the cylinder 40. The cylinder 40 is placed on the measuring table 3 via the mesh 41, and has an inner diameter of 20 mm. The opening of the polyamide mesh 41 is 75 μm (200 mesh). The weight 42 has a diameter of 19 mm and a mass of 119.6 g, and a load of 4.14 kPa can be applied to the water-absorbent resin 5 uniformly arranged on the polyamide mesh 41 as described later.

この測定装置100による4.14kPa荷重下の生理食塩水吸水能の測定は、25℃の室内で行なった。具体的な測定手順は、先ず、ビュレット部1のコック12およびコック13を閉め、25℃に調節された生理食塩水をビュレット10上部から入れた。次に、ゴム栓14でビュレット10の上部を閉鎖した後、コック12およびコック13を開け、導管2を通じて測定台3の導管口から出てくる生理食塩水の水面と測定台3の上面とが同じ高さになるように測定台3を高さ調整した。一方、測定部4では、円筒40内のポリアミドメッシュ41上に0.10gの吸水性樹脂5を均一に配置し、この吸水性樹脂5上に重り42を配置し、円筒40を、その中心部が測定台3中心部の導管口に一致するように設置した。 The physiological saline water absorption capacity under a load of 4.14 kPa was measured by this measuring device 100 in a room at 25 ° C. As a specific measurement procedure, first, the cock 12 and the cock 13 of the burette portion 1 were closed, and physiological saline adjusted to 25 ° C. was put into the burette 10 from the upper part. Next, after closing the upper part of the burette 10 with the rubber stopper 14, the cock 12 and the cock 13 are opened, and the water surface of the physiological saline solution that comes out from the conduit port of the measuring table 3 through the conduit 2 and the upper surface of the measuring table 3 are contacted. The height of the measuring table 3 was adjusted so as to have the same height. On the other hand, in the measuring unit 4, 0.10 g of the water-absorbent resin 5 is uniformly arranged on the polyamide mesh 41 in the cylinder 40, the weight 42 is arranged on the water-absorbent resin 5, and the cylinder 40 is placed in the center thereof. Was installed so as to coincide with the conduit port at the center of the measuring table 3.

吸水性樹脂5が導管2からの生理食塩水を吸水し始めた時から60分後のビュレット10内の生理食塩水の減少量(すなわち、吸水性樹脂5が吸水した生理食塩水量)Wc(ml)を読み取り、以下の式により吸水性樹脂5の4.14kPa荷重下の生理食塩水吸水能を算出した。 The amount of decrease in the saline solution in the burette 10 60 minutes after the water-absorbent resin 5 starts absorbing the saline solution from the conduit 2 (that is, the amount of the saline solution absorbed by the water-absorbent resin 5) Wc (ml) ) Was read, and the physiological saline water absorption capacity of the water-absorbent resin 5 under a load of 4.14 kPa was calculated by the following formula.

4.14kPa荷重下の生理食塩水吸水能(ml/g)=Wc(ml)/吸水性樹脂の質量(g) 4. Physiological saline water absorption capacity under a load of 14 kPa (ml / g) = Wc (ml) / mass of water-absorbent resin (g)

(残存モノマー含有量)
500mL容のビーカーに生理食塩水500gを入れ、これに吸水性樹脂2.0gを添加して60分間撹拌した。ビーカーの内容物を、目開き75μmのJIS標準ふるいに通過させた後、濾紙(ADVANTEC社製のNo.3)により濾過し、吸水したゲル状の樹脂と濾液としての生理食塩水とを分離した。そして、得られた濾液中に溶解している残存モノマーの量を高速液体クロマトグラフィーにより測定した。ここで測定対象とした残存モノマーは、アクリル酸およびそのアルカリ金属塩である。この測定値を、吸水性樹脂の質量当たりの値に換算し、残存モノマー含有量(ppm)とした。
(Residual monomer content)
500 g of physiological saline was placed in a 500 mL beaker, 2.0 g of a water-absorbent resin was added thereto, and the mixture was stirred for 60 minutes. The contents of the beaker were passed through a JIS standard sieve having a mesh size of 75 μm, and then filtered through a filter paper (No. 3 manufactured by ADVANTEC) to separate the absorbed gel-like resin and physiological saline as a filtrate. .. Then, the amount of residual monomer dissolved in the obtained filtrate was measured by high performance liquid chromatography. The residual monomer to be measured here is acrylic acid and its alkali metal salt. This measured value was converted into a value per mass of the water-absorbent resin and used as the residual monomer content (ppm).

(使用初期の残存モノマーの外部移行量)
液通過部の内径が35mmであるフィルターホルダーを有する減圧吸引濾過装置(アルバック機工、ポータブルアスピレータMDA−015)において、フィルターホルダー部に濾紙(ADVANTEC、No.3)を載置し、該濾紙上に吸水性樹脂0.5gを均一に配置した。吸引圧力調整バルブを閉(すなわち、最大減圧度)にした状態で、濾紙上部から生理食塩水50gを一時に注下した。そして、得られた濾液中に溶解している残存モノマーの量を高速液体クロマトグラフィーにより測定した。この測定値を、吸水性樹脂の質量当たりの値に換算し、使用初期の残存モノマーの外部移行量(ppm)とした。
(Amount of residual monomer transferred to the outside at the initial stage of use)
In a vacuum suction filtration device (Albac Kiko, Portable Aspirator MDA-015) having a filter holder having an inner diameter of a liquid passing portion of 35 mm, a filter paper (ADVANTEC, No. 3) is placed on the filter holder portion and placed on the filter paper. 0.5 g of the water-absorbent resin was uniformly arranged. With the suction pressure adjusting valve closed (that is, the maximum decompression degree), 50 g of physiological saline was poured from the upper part of the filter paper at one time. Then, the amount of residual monomer dissolved in the obtained filtrate was measured by high performance liquid chromatography. This measured value was converted into a value per mass of the water-absorbent resin and used as the amount of residual monomer transferred to the outside (ppm) at the initial stage of use.

(中位粒子径)
吸水性樹脂50gに、滑剤として、0.25gの非晶質シリカ(デグサジャパン(株)、Sipernat 200)を混合した。これを、JIS標準篩の目開き250μmの篩を用いて通過させ、篩上に残る量がその50質量%以上の場合には、以下に示す(A)のJIS標準篩の組み合わせ(組み合わせA)を、50質量%未満の場合には、以下に示す(B)のJIS標準篩の組み合わせ(組み合わせB)を、用いて中位粒子径を測定した。
(Medium particle size)
0.25 g of amorphous silica (Degussa Japan Co., Ltd., Sipernat 200) was mixed with 50 g of the water-absorbent resin as a lubricant. This is passed through a sieve having a mesh size of 250 μm of a JIS standard sieve, and when the amount remaining on the sieve is 50% by mass or more, the combination of JIS standard sieves (A) shown below (combination A). In the case of less than 50% by mass, the medium particle size was measured using the combination of JIS standard sieves (combination B) shown below (B).

(A)上から下に向かい、目開き710μmの篩、目開き600μmの篩、目開き500μmの篩、目開き400μmの篩、目開き300μmの篩、目開き250μmの篩、目開き150μmの篩および受け皿の順。 (A) From top to bottom, a sieve with an opening of 710 μm, a sieve with an opening of 600 μm, a sieve with an opening of 500 μm, a sieve with an opening of 400 μm, a sieve with an opening of 300 μm, a sieve with an opening of 250 μm, and a sieve with an opening of 150 μm. And the order of the saucer.

(B)上から下に向かい、目開き400μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、目開き106μmの篩、目開き75μmの篩、目開き45μmの篩および受け皿の順。 (B) From top to bottom, a sieve with a mesh size of 400 μm, a sieve with a mesh size of 250 μm, a sieve with a mesh size of 180 μm, a sieve with a mesh size of 150 μm, a sieve with a mesh size of 106 μm, a sieve with a mesh size of 75 μm, and a sieve with a mesh size of 45 μm. And the order of the saucer.

組み合わせた最上の篩に、前記吸水性樹脂を配置し、ロータップ式振とう器を用いて10分間振とうさせて分級した。分級後、各篩上に残った吸水性樹脂の質量を全量に対する質量百分率として計算し、粒子径の大きい方から順に積算することにより、篩の目開きと篩上に残った吸水性樹脂の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径とした。 The water-absorbent resin was placed on the best combined sieve and shaken for 10 minutes using a low-tap shaker to classify. After classification, the mass of the water-absorbent resin remaining on each sieve is calculated as a mass percentage with respect to the total amount, and by integrating in order from the one with the largest particle size, the mesh size of the sieve and the mass of the water-absorbent resin remaining on the sieve are calculated. The relationship with the integrated value of the percentage was plotted on a logarithmic probability paper. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was defined as the medium particle size.

Figure 0006923997
Figure 0006923997

表1によると、実施例で得られた吸水性樹脂は、いずれも高い生理食塩水保水能、高い4.14kPa荷重下での生理食塩水吸水能を有し、さらに残存モノマー含有量が極めて少なく、かつ使用初期の残存モノマーの外部移行量が少ないものであることが分かる。 According to Table 1, the water-absorbent resins obtained in the examples all have high physiological saline water-retaining ability, physiological saline water-absorbing ability under a high 4.14 kPa load, and the residual monomer content is extremely low. Moreover, it can be seen that the amount of residual monomer transferred to the outside at the initial stage of use is small.

100 測定装置
1 ビュレット部
10 ビュレット
11 空気導入管
12 コック
13 コック
14 ゴム栓
2 導管
3 測定台
4 測定部
40 円筒
41 ナイロンメッシュ
42 重り
5 吸水性樹脂
100 Measuring device 1 Burette part 10 Burette 11 Air introduction pipe 12 Cock 13 Cock 14 Rubber stopper 2 Conduit 3 Measuring table 4 Measuring part 40 Cylindrical 41 Nylon mesh 42 Weight 5 Water-absorbent resin

Claims (6)

水溶性アゾ系化合物存在下、水溶性エチレン性不飽和単量体を重合し、吸水性樹脂前駆体を含む反応系を得る重合工程と、石油系炭化水素分散媒中において前記反応系から水を除去する脱水工程とを含み、前記脱水工程では、下記の式(1)により算出される残水率が5〜75%において前記反応系へ、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス-イソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソ酪酸メチル)および2,2’-アゾビス(2-メチルブチロニトリル)からなる群から選ばれた少なくとも1つである油溶性ラジカル発生剤を添加することを特徴とする、吸水性樹脂の製造方法。
Figure 0006923997
A polymerization step of polymerizing a water-soluble ethylenically unsaturated monomer in the presence of a water-soluble azo compound to obtain a reaction system containing a water-absorbent resin precursor, and water from the reaction system in a petroleum-based hydrocarbon dispersion medium. In the dehydration step, when the residual water ratio calculated by the following formula (1) is 5 to 75%, the reaction system is subjected to 2,2'-azobis (4-methoxy-2, 2). 4-Dimethylvaleronitrile), 2,2'-azobis-isobutyronitrile, 1,1'-azobis (cyclohexane-1-carbonitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), It is characterized by adding at least one oil-soluble radical generator selected from the group consisting of 2,2'-azobis (methyl isobutyrate) and 2,2'-azobis (2-methylbutyronitrile). A method for producing a water-absorbent resin.
Figure 0006923997
前記油溶性ラジカル発生剤の添加量が、前記重合工程で用いる前記水溶性エチレン性不飽和単量体の1モルに対して0.0001〜0.0020モルである、請求項1に記載の吸水性樹脂の製造方法。 The water absorption according to claim 1, wherein the amount of the oil-soluble radical generator added is 0.0001 to 0.0020 mol with respect to 1 mol of the water-soluble ethylenically unsaturated monomer used in the polymerization step. A method for producing a sex resin. 前記水溶性アゾ系化合物が2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2’−アゾビス[2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン]二塩酸塩および2,2’−アゾビス[N−(2−カルボキシエチル)−2−メチルプロピオンアミジン]四水和物からなる群から選ばれた少なくとも1つである、請求項1または2に記載の吸水性樹脂の製造方法。 The water-soluble azo compound is 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis [2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl]. Claim 1 or 2 which is at least one selected from the group consisting of [propane] dihydrochloride and 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate. The method for producing a water-absorbent resin according to. 前記重合工程において前記水溶性エチレン性不飽和単量体を逆相懸濁重合法により重合する、請求項1から3のいずれか1項に記載の吸水性樹脂の製造方法。 The method for producing a water-absorbent resin according to any one of claims 1 to 3, wherein the water-soluble ethylenically unsaturated monomer is polymerized by a reverse phase suspension polymerization method in the polymerization step. 前記重合工程において、前記逆相懸濁重合法を2段以上の多段で行うことを特徴とする、請求項4に記載の吸水性樹脂の製造方法。 The method for producing a water-absorbent resin according to claim 4, wherein in the polymerization step, the reverse phase suspension polymerization method is carried out in multiple stages of two or more stages. 前記重合工程後、架橋剤を添加して後架橋反応を行う、請求項1から5のいずれか1項に記載の吸水性樹脂の製造方法。 The method for producing a water-absorbent resin according to any one of claims 1 to 5, wherein a cross-linking agent is added after the polymerization step to carry out a post-cross-linking reaction.
JP2016042597A 2016-03-04 2016-03-04 Manufacturing method of water-absorbent resin Active JP6923997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016042597A JP6923997B2 (en) 2016-03-04 2016-03-04 Manufacturing method of water-absorbent resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016042597A JP6923997B2 (en) 2016-03-04 2016-03-04 Manufacturing method of water-absorbent resin

Publications (3)

Publication Number Publication Date
JP2017155194A JP2017155194A (en) 2017-09-07
JP2017155194A5 JP2017155194A5 (en) 2019-04-04
JP6923997B2 true JP6923997B2 (en) 2021-08-25

Family

ID=59808117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016042597A Active JP6923997B2 (en) 2016-03-04 2016-03-04 Manufacturing method of water-absorbent resin

Country Status (1)

Country Link
JP (1) JP6923997B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210139287A (en) * 2019-03-08 2021-11-22 스미토모 세이카 가부시키가이샤 Absorbent resin particles, absorbent articles, methods for producing water absorbent resin particles, and methods for increasing the rate of penetration of physiological saline into an absorbent body
WO2020184388A1 (en) * 2019-03-08 2020-09-17 住友精化株式会社 Water-absorbing resin particles, water-absorbing article, method for producing water-absorbing resin particles, and method for increasing absorbed amount of absorber under pressure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026510A (en) * 1998-07-06 2000-01-25 Sanyo Chem Ind Ltd Production of resin and water-absorbing resin
JP4476822B2 (en) * 2005-01-20 2010-06-09 旭化成ケミカルズ株式会社 Ammonium salt-containing water-absorbent resin and method for producing the same
JP5000198B2 (en) * 2006-05-30 2012-08-15 旭化成ケミカルズ株式会社 Absorber and body fluid absorbent article with little leakage
WO2012132861A1 (en) * 2011-03-28 2012-10-04 住友精化株式会社 Process for producing water-absorbing resin
JP5719078B1 (en) * 2014-07-11 2015-05-13 住友精化株式会社 Method for producing water absorbent resin

Also Published As

Publication number Publication date
JP2017155194A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP5719078B1 (en) Method for producing water absorbent resin
JP5823497B2 (en) Method for producing water absorbent resin
JP5893117B2 (en) Water absorbent resin and absorbent article
TWI681976B (en) Water-absorbing resin and absorbent articles
JP4969778B2 (en) Method for producing water-absorbent resin particles and sanitary material using the same
JP6993878B2 (en) Water-absorbent resin and water-absorbent
WO2016104374A1 (en) Water-absorbent resin composition
JP7021300B2 (en) Absorber and absorbent article
EP3896115A1 (en) Water absorbent resin particles
JP6923997B2 (en) Manufacturing method of water-absorbent resin
JP7129490B2 (en) Water Absorbent Resin Particles, Absorbent, Absorbent Article, and Method for Measuring Liquid Suction Force
JPWO2020122202A1 (en) Absorbent article
JPWO2019074099A1 (en) Water-absorbent resin and absorbent articles
JP7194197B2 (en) Absorbent bodies and absorbent articles
JP7233443B2 (en) Water absorbent resin, absorbent body, absorbent article, and method for producing water absorbent resin
JP2012001735A (en) Method of manufacturing water-absorbing resin particle, and sanitation material using the particle
JP2016027845A (en) Water-absorbing resin, and absorbent article

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210730

R150 Certificate of patent or registration of utility model

Ref document number: 6923997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250