JP4969778B2 - Method for producing water-absorbent resin particles and sanitary material using the same - Google Patents

Method for producing water-absorbent resin particles and sanitary material using the same Download PDF

Info

Publication number
JP4969778B2
JP4969778B2 JP2004368996A JP2004368996A JP4969778B2 JP 4969778 B2 JP4969778 B2 JP 4969778B2 JP 2004368996 A JP2004368996 A JP 2004368996A JP 2004368996 A JP2004368996 A JP 2004368996A JP 4969778 B2 JP4969778 B2 JP 4969778B2
Authority
JP
Japan
Prior art keywords
water
mol
absorbent resin
resin particles
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004368996A
Other languages
Japanese (ja)
Other versions
JP2006176570A (en
Inventor
裕一 小野田
秀樹 横山
昌良 半田
康博 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2004368996A priority Critical patent/JP4969778B2/en
Publication of JP2006176570A publication Critical patent/JP2006176570A/en
Application granted granted Critical
Publication of JP4969778B2 publication Critical patent/JP4969778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、吸水性樹脂粒子の製造方法に関する。更に詳しくは、高い保水能、荷重下での高い吸水能、優れた吸水速度を持ち、かつ水可溶分が少なく、衛生材料に好適に使用できる吸水性樹脂粒子の製造方法およびそれによって得られる吸水性樹脂粒子、ならびにそれを用いた衛生材料に関する。   The present invention relates to a method for producing water absorbent resin particles. More specifically, a method for producing water-absorbent resin particles having high water retention capacity, high water absorption capacity under load, excellent water absorption speed, low water-soluble content, and suitable for use in sanitary materials, and obtained thereby. The present invention relates to water absorbent resin particles and sanitary materials using the same.

従来から、吸水性樹脂は、紙おむつ、生理用ナプキン等の衛生材料、ケーブル用止水材等の工業材料に幅広く用いられている。吸水性樹脂としては、例えば、澱粉−アクリロニトリルグラフト共重合体の加水分解物、澱粉−アクリル酸グラフト重合体の中和物、酢酸ビニル−アクリル酸エステル共重合体のケン化物、ポリアクリル酸部分中和物等が知られている。   Conventionally, water-absorbing resins have been widely used in industrial materials such as sanitary materials such as disposable diapers and sanitary napkins, and water-stopping materials for cables. Examples of water-absorbing resins include starch-acrylonitrile graft copolymer hydrolysates, starch-acrylic acid graft polymer neutralized products, vinyl acetate-acrylic ester copolymer saponified products, and polyacrylic acid moieties. Japanese products are known.

紙オムツ、生理用ナプキンなどの衛生材料において、吸水性樹脂に望まれる特性として、高い保水能、優れた吸水速度、荷重下での高い吸水能、少ない水可溶分等が挙げられる。しかしながら、これら特性のバランスを十分に満たすことは困難である。   In sanitary materials such as paper diapers and sanitary napkins, properties desired for the water-absorbent resin include high water retention capacity, excellent water absorption speed, high water absorption capacity under load, and low water-soluble content. However, it is difficult to sufficiently satisfy the balance of these characteristics.

特に、保水能と吸水速度、荷重下での吸水能とは相反する関係にある。一般的に、高い保水能を得るには、吸水性樹脂の架橋密度を下げる必要があるが、架橋密度を下げるとゲル強度は低くなり、吸水性樹脂の荷重下での吸水能は低下する。その結果、衛生材料として用いた際に吸水性樹脂同士がゲルブロッキングを起こし、拡散性の低下および逆戻り量の増加を引き起こす。また、吸水性樹脂の架橋密度を下げると、未架橋成分が増加し、液体と接した際、ママコ状態となることで吸水速度は低下する傾向にあり、更に、水可溶分が溶出しやすくなる。その結果、おむつとして使用すると水可溶分によるかぶれや体液の漏れの原因となり着用者の快適性が損なわれる。   In particular, there is a contradictory relationship between water retention capacity, water absorption speed, and water absorption capacity under load. Generally, in order to obtain a high water retention capacity, it is necessary to lower the crosslink density of the water absorbent resin. However, when the crosslink density is lowered, the gel strength is lowered, and the water absorbability under the load of the water absorbent resin is lowered. As a result, when used as a sanitary material, the water-absorbent resins cause gel blocking, causing a decrease in diffusibility and an increase in the amount of reversion. In addition, when the crosslink density of the water absorbent resin is lowered, uncrosslinked components increase, and when it comes into contact with the liquid, the water absorption rate tends to decrease due to the Mamako state, and water-soluble components are likely to elute. Become. As a result, when it is used as a diaper, it causes a rash caused by water-soluble components and leakage of body fluids, and the wearer's comfort is impaired.

衛生材料に好適に用いられる前記特性の性能を向上させるための技術としては、特定の高分子保護コロイドおよび界面活性剤を特定量用いて逆相懸濁重合を行う方法(特許文献1参照)、逆相懸濁重合を2段以上の多段で行う方法(特許文献2参照)、β−1,3−グルカン類の共存下に、逆相懸濁重合して吸水性樹脂を得、さらに得られた吸水性樹脂に架橋剤を添加することにより架橋反応を行う方法(特許文献3参照)、重合開始剤の過硫酸塩を特定量用いて逆相懸濁重合を行う方法(特許文献4参照)、亜リン酸および/またはその塩の存在下で水溶液重合させて吸水性樹脂前駆体を得た後、該吸水性樹脂前駆体と表面架橋剤を混合して加熱する方法(特許文献5参照)等が知られている。しかしながら、これらの吸水性樹脂は、前記した高い保水能、荷重下での高い吸水能、優れた吸水速度、少ない水可溶分といった性能のすべてを十分満足するものではなく未だ改良の余地がある。   As a technique for improving the performance of the above characteristics suitably used for sanitary materials, a method of performing reverse phase suspension polymerization using a specific amount of a specific polymer protective colloid and a surfactant (see Patent Document 1), A method in which reverse phase suspension polymerization is carried out in two or more stages (see Patent Document 2), and in the presence of β-1,3-glucans, reverse phase suspension polymerization is performed to obtain a water-absorbing resin. A cross-linking reaction by adding a cross-linking agent to a water-absorbent resin (see Patent Document 3), and a reverse-phase suspension polymerization using a specific amount of persulfate as a polymerization initiator (see Patent Document 4) A method of polymerizing an aqueous solution in the presence of phosphorous acid and / or a salt thereof to obtain a water-absorbent resin precursor, and then mixing and heating the water-absorbent resin precursor and a surface cross-linking agent (see Patent Document 5) Etc. are known. However, these water-absorbing resins do not fully satisfy all of the above-mentioned performances such as high water retention capacity, high water absorption capacity under load, excellent water absorption speed, and low water-soluble content, and there is still room for improvement. .

特開平6−345819号公報JP-A-6-345819 特開平3−227301号公報Japanese Patent Laid-Open No. 3-227301 特開平8−120013号公報JP-A-8-120013 特開平6−287233号公報JP-A-6-287233 特開平9−124710号公報JP-A-9-124710

本発明は、高い保水能、荷重下での高い吸水能、優れた吸水速度を持ち、かつ水可溶分が少ない、衛生材料に好適に使用できる吸水性樹脂粒子の製造方法およびそれによって得られる吸水性樹脂粒子、ならびにそれを用いた衛生材料を提供することを課題とする。   The present invention provides a method for producing water-absorbent resin particles that have high water retention capacity, high water absorption capacity under load, excellent water absorption speed and low water-soluble content, and can be suitably used for sanitary materials, and thereby obtained. It is an object of the present invention to provide water-absorbent resin particles and sanitary materials using the same.

すなわち、本発明は、水溶性エチレン性不飽和単量体を重合させて吸水性樹脂を製造する方法であって、内部架橋剤としての多価グリシジル化合物の存在下、水溶性アゾ系ラジカル重合開始剤を用いて2〜3段の逆相懸濁重合を行なった後、得られた吸水性樹脂を後架橋剤で後架橋することを特徴とする吸水性樹脂粒子の製造方法、および、該方法で得られる、以下の性能を満たす吸水性樹脂粒子、
生理食塩水の吸水速度:60秒以内
生理食塩水の保水能:40〜60g/g
4.14kPa荷重下の生理食塩水吸水能:15ml/g以上
水可溶分:20質量%以下
質量平均粒子径:200〜600μm
ならびに、該吸水性樹脂粒子と親水性繊維とからなる衛生材料、に関する。
That is, the present invention is a method for producing a water-absorbent resin by polymerizing a water-soluble ethylenically unsaturated monomer, and starts water-soluble azo radical polymerization in the presence of a polyvalent glycidyl compound as an internal crosslinking agent. after agent performing reverse phase suspension polymerization of 2-3 stages using a method for producing a water-absorbent resin particles, characterized by post-crosslinking the resultant water-absorbent resin in the post-crosslinking agent, and the method Water-absorbent resin particles that satisfy the following performance obtained in
Saline water absorption rate: within 60 seconds Saline retention capacity: 40-60 g / g
4. Saline water absorption capacity under a load of 14.14 kPa: 15 ml / g or more Water soluble content: 20% by mass or less Mass average particle size: 200 to 600 μm
In addition, the present invention relates to a sanitary material comprising the water-absorbent resin particles and hydrophilic fibers.

本発明によると、高い保水能、荷重下での高い吸水能、優れた吸水速度を持ち、かつ水可溶分が少ない、衛生材料に好適に使用できる吸水性樹脂粒子を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the water-absorbing resin particle which can be used suitably for a sanitary material which has a high water retention ability, a high water absorption ability under load, an excellent water absorption rate, and a small water-soluble content can be produced.

水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸〔「(メタ)アクリル」とは「アクリル」または「メタクリル」を意味する。以下同じ〕、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸またはそのアルカリ金属塩;(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、N−メチロール(メタ)アクリルアミド等のノニオン性単量体;ジエチルアミノエチル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリレート等のアミノ基含有不飽和単量体またはその四級化物等が挙げられる。これらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。なお、アルカリ金属塩におけるアルカリ金属としては、リチウム、ナトリウム、カリウム等が挙げられる。     Examples of the water-soluble ethylenically unsaturated monomer include (meth) acrylic acid [“(meth) acryl” means “acryl” or “methacryl”. The same shall apply hereinafter), 2- (meth) acrylamide-2-methylpropanesulfonic acid or alkali metal salts thereof; (meth) acrylamide, N, N-dimethylacrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) Nonionic monomers such as acrylamide; amino group-containing unsaturated monomers such as diethylaminoethyl (meth) acrylate and diethylaminopropyl (meth) acrylate, or quaternized products thereof. These may be used alone or in combination of two or more. In addition, lithium, sodium, potassium etc. are mentioned as an alkali metal in an alkali metal salt.

水溶性エチレン性不飽和単量体のうち好ましいものとしては、工業的に入手が容易である観点から、(メタ)アクリル酸またはそのアルカリ金属塩、アクリルアミド、メタクリルアミドおよびN,N−ジメチルアクリルアミドが挙げられる。さらに好ましいものとしては、経済的な観点から、(メタ)アクリル酸またはそのアルカリ金属塩が挙げられる。   Among the water-soluble ethylenically unsaturated monomers, (meth) acrylic acid or an alkali metal salt thereof, acrylamide, methacrylamide and N, N-dimethylacrylamide are preferable from the viewpoint of easy industrial availability. Can be mentioned. More preferable is (meth) acrylic acid or an alkali metal salt thereof from an economical viewpoint.

水溶性エチレン性不飽和単量体は、通常、水溶液として用いることができる。水溶性エチレン性不飽和単量体の水溶液における水溶性エチレン性不飽和単量体の濃度は、15質量%〜飽和濃度であることが好ましい。   The water-soluble ethylenically unsaturated monomer can be usually used as an aqueous solution. The concentration of the water-soluble ethylenically unsaturated monomer in the aqueous solution of the water-soluble ethylenically unsaturated monomer is preferably 15% by mass to a saturated concentration.

水溶性エチレン性不飽和単量体の水溶液は、用いられる水溶性エチレン性単量体が酸基を含む場合、その酸基をアルカリ金属によって中和してもよい。アルカリ金属による中和度は、得られる吸水性樹脂粒子の浸透圧を高くし、吸水速度を早め、余剰のアルカリ金属の存在により安全性等に問題が生じないようにする観点から、中和前の水溶性エチレン性不飽和単量体の酸基の10〜100モル%の範囲内にあることが好ましい。アルカリ金属としては、リチウム、ナトリウム、カリウム等を挙げることができる。これらの中では、ナトリウムおよびカリウムが好ましく、ナトリウムがさらに好ましい。   When the water-soluble ethylenic monomer used in the aqueous solution of the water-soluble ethylenically unsaturated monomer contains an acid group, the acid group may be neutralized with an alkali metal. The degree of neutralization with an alkali metal increases the osmotic pressure of the resulting water-absorbent resin particles, speeds up the water absorption rate, and prevents the presence of excess alkali metal from causing problems such as safety before neutralization. It is preferable that it exists in the range of 10-100 mol% of the acid group of the water-soluble ethylenically unsaturated monomer. Examples of the alkali metal include lithium, sodium, and potassium. Among these, sodium and potassium are preferable, and sodium is more preferable.

水溶性エチレン性不飽和単量体重合方法は特に限定されず、代表的な重合法である水溶液重合法、乳化重合法、逆相懸濁重合法等が用いられる。水溶液重合法では、水溶性エチレン性不飽和単量体水溶液、内部架橋剤および水溶性ラジカル重合開始剤を、必要に応じて攪拌しながら、加熱することにより重合が行われる。また、逆相懸濁重合では、水溶性エチレン性不飽和単量体水溶液、界面活性剤および/または高分子保護コロイド、水溶性ラジカル重合開始剤ならびに内部架橋剤を炭化水素系溶媒中、攪拌下で加熱することにより重合が行われる。本発明においては、精密な重合反応制御と広範な粒子径の制御が可能な観点から逆相懸濁重合法が好ましい。 The water-soluble ethylenically unsaturated monomer polymerization method is not particularly limited, and a typical polymerization method such as an aqueous solution polymerization method, an emulsion polymerization method, a reverse phase suspension polymerization method, or the like is used. In the aqueous solution polymerization method, polymerization is performed by heating a water-soluble ethylenically unsaturated monomer aqueous solution, an internal cross-linking agent, and a water-soluble radical polymerization initiator while stirring as necessary. In reverse phase suspension polymerization, a water-soluble ethylenically unsaturated monomer aqueous solution, a surfactant and / or polymer protective colloid, a water-soluble radical polymerization initiator and an internal crosslinking agent are stirred in a hydrocarbon solvent. Polymerization is carried out by heating at. In the present invention, the reverse phase suspension polymerization method is preferred from the viewpoint of precise polymerization reaction control and wide particle size control.

以下に、本発明の実施形態の一例として、逆相懸濁重合法についてより詳しく説明する。   Hereinafter, the reverse phase suspension polymerization method will be described in more detail as an example of an embodiment of the present invention.

逆相懸濁重合法で用いられる界面活性剤としては、例えば、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル〔「(ポリ)」とは「ポリ」の接頭語がある場合とない場合の双方を意味する。以下同じ〕、ショ糖脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル等のノニオン系界面活性剤;脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩等のアニオン系界面活性剤等が挙げられる。これらの中では、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステルおよびショ糖脂肪酸エステルが好ましい。   Examples of the surfactant used in the reverse phase suspension polymerization method include, for example, sorbitan fatty acid ester, polyglycerin fatty acid ester [“(poly)” means both with and without the prefix “poly”. . The same shall apply hereinafter), nonionic surfactants such as sucrose fatty acid ester, sorbitol fatty acid ester, polyoxyethylene alkylphenyl ether; fatty acid salt, alkylbenzene sulfonate, alkylmethyl taurate, polyoxyethylene alkylphenyl ether sulfate And anionic surfactants such as polyoxyethylene alkyl ether sulfonates. Among these, sorbitan fatty acid ester, polyglycerin fatty acid ester and sucrose fatty acid ester are preferable.

高分子保護コロイドとしては、例えば、エチルセルロース、エチルヒドロキシエチルセルロース、ポリエチレンオキサイド、無水マレイン化ポリエチレン、無水マレイン化ポリブタジエン、無水マレイン化EPDM(エチレン/プロピレン/ジエン/ターポリマー)等が挙げられる。   Examples of the polymer protective colloid include ethyl cellulose, ethyl hydroxyethyl cellulose, polyethylene oxide, anhydrous maleated polyethylene, anhydrous maleated polybutadiene, and anhydrous maleated EPDM (ethylene / propylene / diene / terpolymer).

界面活性剤および高分子保護コロイドは、それぞれ単独で用いてもよく、併用してもよい。   The surfactant and the polymer protective colloid may be used alone or in combination.

界面活性剤および/または高分子保護コロイドの使用量は、水溶性エチレン性不飽和単量体の水溶液100質量部に対して0.1〜5質量部が好ましく、0.2〜3質量部がより好ましい。   The amount of the surfactant and / or polymer protective colloid used is preferably 0.1 to 5 parts by mass, and 0.2 to 3 parts by mass with respect to 100 parts by mass of the aqueous solution of the water-soluble ethylenically unsaturated monomer. More preferred.

内部架橋剤としては、例えば、(ポリ)エチレンジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等の多価グリシジル化合物が挙げられる。これらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。これらの中でも(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテルが荷重下での高い吸水能、優れた吸水速度、及び少ない水可溶分の吸水性樹脂粒子が得られる観点から好ましい。   Examples of the internal crosslinking agent include (poly) ethylene diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin di Examples thereof include polyvalent glycidyl compounds such as glycidyl ether. These may be used alone or in combination of two or more. Among these, (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether have high water absorption capacity under load, excellent water absorption speed, and water absorption of a small amount of water-soluble matter. From the viewpoint of obtaining conductive resin particles.

内部架橋剤の使用量は、得られる重合体が適度な架橋により水溶性の性質が抑制され、十分な吸水性を示すようにする観点から、水溶性エチレン性不飽和単量体1モルに対して、0.000001〜0.001モル、好ましくは0.00001〜0.01モルである。   The amount of the internal crosslinking agent used is from 1 mol of the water-soluble ethylenically unsaturated monomer from the viewpoint that the obtained polymer is suppressed in water-soluble properties by appropriate crosslinking and exhibits sufficient water absorption. 0.000001 to 0.001 mol, preferably 0.00001 to 0.01 mol.

水溶性アゾ系ラジカル重合開始剤としては、例えば、1-{(1-シアノ-1-メチルエチル)アゾ}ホルムアミド、2,2'-アゾビス[2-(N-フェニルアミジノ)プロパン]二塩酸塩、2,2'-アゾビス{2-[N-(4-クロロフェニル)アミジノ]プロパン}二塩酸塩、2,2'-アゾビス{2-[N-(4-ヒドロキシフェニル)アミジノ]プロパン}二塩酸塩、2,2'-アゾビス[2-(N-ベンジルアミジノ)プロパン]二塩酸塩、2,2'-アゾビス[2-(N-アリルアミジノ)プロパン]二塩酸塩、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2'-アゾビス{2-[N-(2-ヒドロキシエチル)アミジノ]プロパン}二塩酸塩、2,2'-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2'-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)二塩酸塩、2.2'-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]二塩酸塩、2,2'-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2'-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2'-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド}、2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、2,2'-アゾビス(2-メチルプロピオンアミド)二水塩、4,4’−アゾビス−4−シアノバレイン酸、2,2'-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二硫酸塩、2,2'-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物、2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]等のアゾ化合物等が挙げられる。これらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。これらの中でも、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2'-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩および2,2'-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物が高い保水能、少ない水可溶分の吸水性樹脂粒子が得られる観点から特に好ましい。   Examples of the water-soluble azo radical polymerization initiator include 1-{(1-cyano-1-methylethyl) azo} formamide, 2,2′-azobis [2- (N-phenylamidino) propane] dihydrochloride 2,2′-azobis {2- [N- (4-chlorophenyl) amidino] propane} dihydrochloride, 2,2′-azobis {2- [N- (4-hydroxyphenyl) amidino] propane} dihydrochloride Salt, 2,2′-azobis [2- (N-benzylamidino) propane] dihydrochloride, 2,2′-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2′-azobis (2-Amidinopropane) dihydrochloride, 2,2'-azobis {2- [N- (2-hydroxyethyl) amidino] propane} dihydrochloride, 2,2'-azobis [2- (5-methyl- 2-Imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- ( , 5,6,7-Tetrahydro-1H-1,3-diazepin-2-yl) dihydrochloride, 2.2'-azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidine- 2-yl) propane] dihydrochloride, 2,2′-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2′-azobis [ 2- (2-imidazolin-2-yl) propane], 2,2′-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, 2,2 '-Azobis {2-methyl-N- [1,1-bis (hydroxymethyl) ethyl] propionamide}, 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide], 2,2′-azobis (2-methylpropionamide) dihydrate, 4,4′-azobis-4-cyanovaleric acid, 2,2′-azobis [2- (hydroxymethyl) propionitrile], 2,2 ' -Azobis [2- (2-imidazolin-2-yl) propane] disulfate, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate, 2,2 Examples include azo compounds such as' -azobis [2-methyl-N- (2-hydroxyethyl) propionamide]. These may be used alone or in combination of two or more. Among these, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} Especially from the viewpoint of obtaining water-absorbing resin particles having high water retention ability and low water-soluble content with hydrochloride and 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate. preferable.

水溶性アゾ系ラジカル重合開始剤の使用量は、重合反応の時間を短縮し、急激な重合反応を防ぐ観点から、通常水溶性エチレン性不飽和単量体1モルに対して好ましくは0.00005〜0.001モル、より好ましくは0.0001〜0.001モルである。   The amount of the water-soluble azo radical polymerization initiator used is preferably 0.00005 with respect to 1 mol of the water-soluble ethylenically unsaturated monomer, from the viewpoint of shortening the polymerization reaction time and preventing a rapid polymerization reaction. It is -0.001 mol, More preferably, it is 0.0001-0.001 mol.

炭化水素系溶媒としては、例えば、n−ヘキサン、n−ヘプタン、リグロイン等の脂肪族炭化水素;シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。これらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。これらの中では、工業的に入手が容易で、品質が安定し、かつ安価である観点から、n−ヘキサン、n−ヘプタンおよびシクロヘキサンが好ましい。   Examples of the hydrocarbon solvent include aliphatic hydrocarbons such as n-hexane, n-heptane, and ligroin; alicyclic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, and methylcyclohexane; benzene, toluene, xylene, and the like And aromatic hydrocarbons. These may be used alone or in combination of two or more. Among these, n-hexane, n-heptane, and cyclohexane are preferable from the viewpoint of industrial availability, stable quality, and low cost.

前記炭化水素系溶媒の使用量は、重合熱を除去し、重合温度を制御しやすい観点から、通常水溶性エチレン性不飽和単量体100質量部に対して50〜600質量部が好ましく、80〜550質量部がより好ましい。   The amount of the hydrocarbon solvent used is usually preferably 50 to 600 parts by mass with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer, from the viewpoint of easily removing the heat of polymerization and controlling the polymerization temperature. -550 mass parts is more preferable.

重合反応の反応温度は、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めるとともに、容易に重合熱を除去して円滑に反応を行う観点から、20〜110℃が好ましく、40〜90℃がより好ましい。反応時間は、通常、0.5〜4時間である。   The reaction temperature of the polymerization reaction is preferably 20 to 110 ° C. from the viewpoint of increasing the economic efficiency by rapidly advancing the polymerization and shortening the polymerization time, and from the viewpoint of easily removing the heat of polymerization and performing the reaction smoothly. 40 to 90 ° C. is more preferable. The reaction time is usually 0.5 to 4 hours.

なお、本発明においては、逆相懸濁重合は、1段もしくは2段以上の多段で行われるが、その段数は生産性を高めることから2〜3段であることが好ましい。   In the present invention, the reverse phase suspension polymerization is carried out in one or more stages, but the number of stages is preferably 2 to 3 in order to increase productivity.

本発明においては、前記重合により得られた吸水性樹脂を後架橋剤で後架橋する。後架橋剤としては、吸水性樹脂のカルボキシル基と反応し得るものであればよく、例えば、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、1,4−ブタンジオール、トリメチロールプロパン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、(ポリ)グリセリン等のジオール、トリオールまたはポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のジグリシジルエーテル化合物;エピクロルヒドリン、エピブロムヒドリン、α−メチルエピクロルヒドリン等のエピハロヒドリン化合物;2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物等が挙げられる。これらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。   In the present invention, the water-absorbent resin obtained by the polymerization is post-crosslinked with a post-crosslinking agent. Any post-crosslinking agent may be used as long as it can react with the carboxyl group of the water-absorbent resin. For example, (poly) ethylene glycol, (poly) propylene glycol, 1,4-butanediol, trimethylolpropane, polyoxyethylene Diols such as glycol, polyoxypropylene glycol, (poly) glycerin, triols or polyols; diglycidyl ethers such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether Compounds; epihalohydrin compounds such as epichlorohydrin, epibromohydrin, α-methylepichlorohydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate Compounds having a reactive functional group 2 or more thereof. These may be used alone or in combination of two or more.

これらの中でも、(ポリ)エチレンジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等の多価グリシジル化合物が荷重下での高い吸水能、優れた吸水速度、及び少ない水可溶分の吸水性樹脂粒子が得られる観点から好ましい。   Among these, (poly) ethylene diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, etc. A polyvalent glycidyl compound is preferable from the viewpoint of obtaining water-absorbing resin particles having a high water absorption capacity under load, an excellent water absorption rate, and a small water-soluble content.

後架橋剤の使用量は、後架橋剤の種類により異なるが、通常、重合に付された水溶性エチレン性不飽和単量体の総量1モルに対して、0.00001〜0.01モル、好ましくは0.00005〜0.005モル、さらに好ましくは、0.0001〜0.002モルである。後架橋剤の使用量が0.00001モルより少ない場合、吸水性樹脂の架橋密度を十分に高めることができないため、水可溶分が多くなったり、荷重下での吸水能が低下するおそれがある。また、後架橋剤の使用量が0.01モルを超える場合、架橋反応が著しく進行するために、保水能が低下するおそれがある。   The amount of the post-crosslinking agent used varies depending on the type of the post-crosslinking agent, but is usually 0.00001 to 0.01 mol with respect to 1 mol of the total amount of the water-soluble ethylenically unsaturated monomer subjected to the polymerization. Preferably it is 0.00005-0.005 mol, More preferably, it is 0.0001-0.002 mol. When the amount of the post-crosslinking agent used is less than 0.00001 mol, the crosslink density of the water-absorbent resin cannot be sufficiently increased, so that the water-soluble component may increase or the water absorption capacity under load may be reduced. is there. Moreover, when the usage-amount of post-crosslinking agent exceeds 0.01 mol, since a crosslinking reaction advances remarkably, there exists a possibility that water retention ability may fall.

後架橋剤の添加時期は、ほぼすべての単量体の重合反応終了後であればよく、特に限定されない。   The timing for adding the post-crosslinking agent is not particularly limited as long as it is after the completion of the polymerization reaction of almost all the monomers.

吸水性樹脂と後架橋剤との混合は、水の存在下で行うことが好ましい。吸水性樹脂と後架橋剤とを混合する際の水の量は、吸水性樹脂の種類、粒度および含水率によって異なるが、通常、重合に付された水溶性エチレン性不飽和単量体の総量100質量部に対して、好ましくは5〜300質量部、より好ましくは10〜100質量部、さらに好ましくは10〜50質量部である。重合に付された水溶性エチレン性不飽和単量体の総量100質量部に対する水の量が5質量部未満の場合、荷重下での吸水能が低下する傾向があり、300質量部を超える場合、架橋反応が過度に促進され、得られる吸水性樹脂の保水能が低くなりすぎる傾向がある。なお、前記水の量は、重合反応系に含まれる水と後架橋剤を添加する際に必要に応じて用いられる水との合計量を意味する。   The mixing of the water absorbent resin and the postcrosslinking agent is preferably performed in the presence of water. The amount of water when mixing the water-absorbent resin and the post-crosslinking agent varies depending on the type, particle size and water content of the water-absorbent resin, but usually the total amount of water-soluble ethylenically unsaturated monomers subjected to polymerization Preferably it is 5-300 mass parts with respect to 100 mass parts, More preferably, it is 10-100 mass parts, More preferably, it is 10-50 mass parts. When the amount of water with respect to 100 parts by mass of the total amount of water-soluble ethylenically unsaturated monomers subjected to polymerization is less than 5 parts by mass, the water absorption capacity under load tends to decrease, and when it exceeds 300 parts by mass The crosslinking reaction is excessively promoted, and the water-retaining ability of the resulting water-absorbent resin tends to be too low. The amount of water means the total amount of water contained in the polymerization reaction system and water used as necessary when the post-crosslinking agent is added.

後架橋処理が終了した後、水および炭化水素系溶媒を留去することにより、本発明の吸水性樹脂粒子が得られる。   After completion of the post-crosslinking treatment, the water-absorbing resin particles of the present invention are obtained by distilling off water and the hydrocarbon solvent.

かかる吸水性樹脂粒子は、生理食塩水の吸水速度が60秒以内、生理食塩水の保水能が40〜60g/g、4.14kPa荷重下の生理食塩水吸水能が15ml/g以上、水可溶分が20質量%以下、質量平均粒子径が200〜600μmであるので、水可溶分が少なく、高い保水能を有し、かつ荷重下での吸水能が高く、優れた吸水速度を有し、衛生材料に好適に使用できるものである。   Such water-absorbing resin particles have a physiological saline water absorption rate of 60 seconds or less, a physiological saline water retention capacity of 40 to 60 g / g, a physiological saline water absorption capacity under a load of 4.14 kPa of 15 ml / g or more, Since the dissolved content is 20% by mass or less and the mass average particle size is 200 to 600 μm, the water-soluble content is small, the water retention capability is high, the water absorption capability under load is high, and the water absorption rate is excellent. And can be suitably used for sanitary materials.

生理食塩水の吸水速度は、速いものの方が、衛生材料として用いた場合、逆戻り量が少なく、拡散性が良いという利点を有する観点から、好ましくは60秒以内、より好ましくは55秒以内、更に好ましくは50秒以内である。生理食塩水の保水能は好ましくは40〜60g/g、より好ましくは40〜50g/gである。   The physiological saline water absorption rate is preferably within 60 seconds, more preferably within 55 seconds, more preferably within 55 seconds, from the viewpoint of having the advantage that the faster one is used as a sanitary material, the amount of reversion is small and the diffusibility is good. Preferably, it is within 50 seconds. The water retention capacity of physiological saline is preferably 40 to 60 g / g, more preferably 40 to 50 g / g.

4.14kPa荷重下の生理食塩水吸水能は、高いものの方が衛生材料として用いた場合、衛生材料に圧力がかかった場合における逆戻り量が少なくなるという利点を有する観点から好ましくは15ml/g、より好ましくは20ml/gである。   4. Saline water absorption capacity under a load of 14.14 kPa is preferably 15 ml / g from the viewpoint of having the advantage that when the higher one is used as a sanitary material, the amount of reversal when pressure is applied to the sanitary material is reduced, More preferably, it is 20 ml / g.

水可溶分は衛生材料として用いた場合、低いものの方が水可溶分による「かぶれ」や「ぬめり」が少なく、衛生材料を着用した際の快適性が向上することから、好ましくは20質量%以下、より好ましくは15質量%以下である。   When the water-soluble component is used as a sanitary material, the lower one has less “rash” and “slimming” due to the water-soluble component, and the comfort when the sanitary material is worn is improved. % Or less, more preferably 15% by mass or less.

質量平均粒子径は、好ましくは200〜600μm、より好ましくは250〜500μm、更に好ましくは300〜400μmである。吸水性樹脂粒子の質量平均粒子径が200μm未満の場合、小粒子の存在割合が多くなり、粉立ち等により粉体の取り扱い性が悪化するおそれがある。また、衛生材料として使用した場合、ゲルブロッキングを起こしやすく、その結果、拡散性の低下および逆戻り量が増加するおそれがある。吸水性樹脂粒子の質量平均粒子径が600μmを超える場合、吸水速度が遅くなり、衛生材料として使用した場合、衛生材料からの漏れを引き起こしやすく、着用者が衛生材料を快適に使用できなくなるおそれがある。   The mass average particle diameter is preferably 200 to 600 μm, more preferably 250 to 500 μm, and still more preferably 300 to 400 μm. When the mass average particle diameter of the water-absorbent resin particles is less than 200 μm, the existing ratio of small particles increases, and the handleability of the powder may deteriorate due to powdering or the like. Moreover, when used as a sanitary material, gel blocking is likely to occur, and as a result, there is a risk that the diffusibility is lowered and the amount of reversion is increased. When the mass average particle diameter of the water-absorbent resin particles exceeds 600 μm, the water absorption rate is slow, and when used as a sanitary material, it tends to cause leakage from the sanitary material, and the wearer may not be able to use the sanitary material comfortably. is there.

なお、吸水速度、保水能、4.14kPa荷重下における生理食塩水に対する吸水能、水可溶分、質量平均粒子径は、いずれも、後述する実施例に記載の測定方法によって測定したときの値である。   The water absorption rate, water retention capacity, water absorption capacity for physiological saline under a load of 4.14 kPa, water-soluble content, and mass average particle diameter are all values measured by the measurement methods described in the examples described later. It is.

本発明の衛生材料は、水性液体を吸収・保持する吸収体を、水性液体が通過することのできる液体透過性シート(トップシート)と、水性液体が通過することのない液体不透過性シート(バックシート)との間に保持した構造を有している。液体透過性シートは、身体と接触する側に配されており、液体不透過性シートは、身体と接触することのない側に配されている。   The sanitary material of the present invention includes a liquid permeable sheet (top sheet) that allows an aqueous liquid to pass through an absorber that absorbs and retains an aqueous liquid, and a liquid impermeable sheet that does not allow an aqueous liquid to pass through (top sheet). (Back sheet). The liquid permeable sheet is disposed on the side that contacts the body, and the liquid impermeable sheet is disposed on the side that does not contact the body.

液体透過性シートとしては、例えば、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等からなる不織布、多孔質の合成樹脂シートなどが挙げられるが、本発明はこれらに限定されるものではない。   Examples of the liquid permeable sheet include a nonwoven fabric made of polyethylene, polypropylene, polyester, polyamide, and the like, and a porous synthetic resin sheet. However, the present invention is not limited to these.

液体不透過性シートとしては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニルなどの合成樹脂からなるフィルム、これら合成樹脂と不織布との複合材料からなるシートなどが挙げられるが、本発明はこれらに限定されるものではない。   Examples of the liquid-impermeable sheet include films made of synthetic resins such as polyethylene, polypropylene, and polyvinyl chloride, and sheets made of composite materials of these synthetic resins and nonwoven fabrics, but the present invention is not limited thereto. It is not something.

前記衛生材料に使用される吸収体は、親水性繊維と吸水性樹脂粒子から構成されている。親水性繊維としては、特に限定されるものではないが、例えば、木材から得られる綿状パルプ、メカニカルパルプ、ケミカルパルプ、セミケミカルパルプなどのセルロース繊維、レーヨン、アセテートなどの人工セルロース繊維などが挙げられる。親水性繊維は、ポリアミドやポリエステル、ポリオレフィンなどの合成繊維を含有してもよい。   The absorber used for the sanitary material is composed of hydrophilic fibers and water-absorbing resin particles. Examples of hydrophilic fibers include, but are not limited to, cellulose fibers such as cotton pulp, mechanical pulp, chemical pulp, and semi-chemical pulp obtained from wood, and artificial cellulose fibers such as rayon and acetate. It is done. The hydrophilic fiber may contain synthetic fibers such as polyamide, polyester, and polyolefin.

以下に、実施例および比較例により本発明を具体的に説明するが、本発明がこれら実施例等により限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples and the like.

実施例1
撹拌機、還流冷却器、滴下ロート、温度計および窒素ガス導入管を備えた1000mL容の五つ口円筒型丸底フラスコにn−ヘプタン340g、HLBが3.0のショ糖脂肪酸エステル(三菱化学株式会社の商品名:S−370)0.92gを加え、分散、昇温して溶解後、55℃まで冷却した。
Example 1
A 1000 mL five-necked cylindrical round bottom flask equipped with a stirrer, reflux condenser, dropping funnel, thermometer and nitrogen gas inlet tube is 340 g of n-heptane and sucrose fatty acid ester having an HLB of 3.0 (Mitsubishi Chemical) Trade name: S-370) 0.92 g was added, dispersed, heated and dissolved, and then cooled to 55 ° C.

これとは別に、500mL容の三角フラスコに、80質量%アクリル酸水溶液92g(1.02モル)を仕込み、これを外部から冷却しつつ、30質量%水酸化ナトリウム水溶液102.2g(0.77モル)を滴下して、アクリル酸の75モル%を中和した。さらに、水36.9g、水溶性アゾ系重合開始剤の2,2’−アゾビス(2−アミジノプロパン)二塩酸塩0.11g(0.00041モル)および内部架橋剤のエチレングリコールジグリシジルエーテル8.3mg(0.000048モル)を添加し、1段目重合用の単量体水溶液を調製した。   Separately, a 500 mL Erlenmeyer flask was charged with 92 g (1.02 mol) of an 80% by weight aqueous acrylic acid solution, and 102.2 g (0.77%) of a 30% by weight aqueous sodium hydroxide solution was cooled from the outside. Mol) was added dropwise to neutralize 75 mol% of acrylic acid. Further, 36.9 g of water, 0.11 g (0.00041 mol) of 2,2′-azobis (2-amidinopropane) dihydrochloride as a water-soluble azo polymerization initiator, and ethylene glycol diglycidyl ether 8 as an internal crosslinking agent .3 mg (0.000048 mol) was added to prepare an aqueous monomer solution for the first stage polymerization.

この1段目重合用の単量体水溶液を、前記の五つ口円筒型丸底フラスコに、撹拌下で全量加えて分散させ、系内を窒素で十分に置換した後に昇温し、浴温を70℃に保持して、重合反応を1時間行った後、重合スラリー液を室温まで冷却した。   The monomer aqueous solution for the first stage polymerization is added to and dispersed in the five-necked cylindrical round bottom flask with stirring, and the system is sufficiently replaced with nitrogen. Was kept at 70 ° C. and the polymerization reaction was carried out for 1 hour, and then the polymerization slurry was cooled to room temperature.

別の500mL容の三角フラスコに、80質量%アクリル酸水溶液119.1g(1.32モル)を仕込み、これを冷却しつつ30質量%水酸化ナトリウム水溶液132.2g(0.99モル)を滴下して、アクリル酸の75モル%を中和し、さらに水5.8g、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩0.14g(0.00052モル)およびエチレングリコールジグリシジルエーテル10.7mg(0.000061モル)を添加し、2段目重合用の単量体水溶液を調製し、氷水浴を用いて冷却した。   Into another 500 mL Erlenmeyer flask, 119.1 g (1.32 mol) of 80 mass% acrylic acid aqueous solution was charged, and 132.2 g (0.99 mol) of 30 mass% sodium hydroxide aqueous solution was dropped while cooling this. 75 mol% of acrylic acid was neutralized, and further 5.8 g of water, 2,4′-azobis (2-amidinopropane) dihydrochloride 0.14 g (0.00052 mol) and ethylene glycol diglycidyl ether 10.7 mg (0.000061 mol) was added to prepare a monomer aqueous solution for the second stage polymerization, and cooled using an ice water bath.

この2段目重合用の単量体水溶液を、前記重合スラリー液に全量添加した後、再び系内を窒素で十分に置換した後に昇温し、浴温を70℃に保持して、2段目の重合反応を2時間行った。重合終了後、120℃の油浴で加熱し、共沸蒸留により水のみを系外に除去し、ゲル状物を得た。次いで、後架橋剤として2質量%エチレングリコールジグリシジルエーテル水溶液7.81g(0.00089モル)を添加、混合して後架橋反応を行い、さらに水分およびn−ヘプタンを蒸留により除去して乾燥し、質量平均粒子径が380μmの吸水性樹脂粒子215.5gを得た。   After adding the entire amount of the monomer aqueous solution for the second stage polymerization to the polymerization slurry liquid, the system was again sufficiently replaced with nitrogen, and then the temperature was raised and the bath temperature was maintained at 70 ° C. The eye polymerization reaction was carried out for 2 hours. After completion of the polymerization, the mixture was heated in an oil bath at 120 ° C., and only water was removed from the system by azeotropic distillation to obtain a gel-like product. Next, 7.81 g (0.00089 mol) of a 2% by weight ethylene glycol diglycidyl ether aqueous solution as a post-crosslinking agent was added and mixed to carry out a post-crosslinking reaction, and water and n-heptane were removed by distillation and dried. 215.5 g of water-absorbing resin particles having a mass average particle diameter of 380 μm were obtained.

実施例2
実施例1において、1段目重合用単量体水溶液に用いた2,2’−アゾビス(2−アミジノプロパン)二塩酸塩の使用量を0.11gから0.17g(0.00063モル)に、2段目単量体水溶液に用いた2,2’−アゾビス(2−アミジノプロパン)二塩酸塩の使用量を0.14gから0.21g(0.00077モル)に変更した以外は、実施例1と同様の方法にて、質量平均粒子径が325μmの吸水性樹脂粒子214.7gを得た。
Example 2
In Example 1, the amount of 2,2′-azobis (2-amidinopropane) dihydrochloride used in the first stage monomer aqueous solution was changed from 0.11 g to 0.17 g (0.00063 mol). Except for changing the amount of 2,2′-azobis (2-amidinopropane) dihydrochloride used in the second-stage monomer aqueous solution from 0.14 g to 0.21 g (0.00077 mol) In the same manner as in Example 1, 214.7 g of water absorbent resin particles having a mass average particle diameter of 325 μm were obtained.

実施例3
実施例1において、1段目重合用単量体水溶液に用いた2,2’−アゾビス(2−アミジノプロパン)二塩酸塩の使用量を0.11gから0.06g(0.00022モル)に、2段目単量体水溶液に用いた2,2’−アゾビス(2−アミジノプロパン)二塩酸塩の使用量を0.14gから0.07g(0.00026モル)に変更した以外は、実施例1と同様の方法にて、質量平均粒子径が372μmの吸水性樹脂粒子215.1gを得た。
Example 3
In Example 1, the amount of 2,2′-azobis (2-amidinopropane) dihydrochloride used in the first-stage polymerization monomer aqueous solution was changed from 0.11 g to 0.06 g (0.00022 mol). Implementation was performed except that the amount of 2,2′-azobis (2-amidinopropane) dihydrochloride used in the second-stage monomer aqueous solution was changed from 0.14 g to 0.07 g (0.00026 mol). In the same manner as in Example 1, 215.1 g of water absorbent resin particles having a mass average particle diameter of 372 μm was obtained.

実施例4
実施例1において、後架橋剤として用いた2質量%エチレングリコールジグリシジルエーテル水溶液の使用量を7.81gから15.83g(0.00180モル)に変更した以外は、実施例1と同様の方法にて、質量平均粒子径が320μmの吸水性樹脂粒子216.9gを得た。
Example 4
In Example 1, the same method as in Example 1 except that the amount of the 2 mass% ethylene glycol diglycidyl ether aqueous solution used as the post-crosslinking agent was changed from 7.81 g to 15.83 g (0.00180 mol). As a result, 216.9 g of water-absorbing resin particles having a mass average particle diameter of 320 μm were obtained.

実施例5
実施例1において、1段目重合用単量体水溶液に用いたエチレングリコールジグリシジルエーテルの使用量を8.3mgから18.4mg(0.00011モル)に、2段目重合用単量体水溶液に用いたエチレングリコールジグリシジルエーテルの使用量を10.7mgから23.8mg(0.00014モル)に変更した以外は、実施例1と同様の方法にて、質量平均粒子径が313μmの吸水性樹脂粒子212.2gを得た。
Example 5
In Example 1, the amount of ethylene glycol diglycidyl ether used in the first-stage polymerization monomer aqueous solution was changed from 8.3 mg to 18.4 mg (0.00011 mol) to the second-stage polymerization monomer aqueous solution. A water-absorbing agent having a mass average particle diameter of 313 μm was obtained in the same manner as in Example 1 except that the amount of ethylene glycol diglycidyl ether used in 1 was changed from 10.7 mg to 23.8 mg (0.00014 mol). 212.2 g of resin particles were obtained.

実施例6
実施例1において、1段目及び2段目の重合開始剤に用いた2,2’−アゾビス(2−アミジノプロパン)二塩酸塩をそれぞれ2,2'−アゾビス[N−(2−カルボキシエチル)−2−メチルプロピオンアミジン]四水和物に変更した以外は、実施例1と同様の方法にて、質量平均粒子径が390μmの吸水性樹脂粒子219.3gを得た。
Example 6
In Example 1, 2,2′-azobis (2-amidinopropane) dihydrochloride used for the first and second stage polymerization initiators was converted to 2,2′-azobis [N- (2-carboxyethyl), respectively. ) -2-Methylpropionamidine] 219.3 g of water-absorbing resin particles having a mass average particle diameter of 390 μm were obtained in the same manner as in Example 1 except that the tetrahydrate was changed.

実施例7(ただし、参考例である。)
攪拌機、還流冷却器、滴下ロート、温度計および窒素ガス導入管を備えた2000mL容の五つ口円筒丸底フラスコに、80質量%アクリル酸水溶液92g(1.02モル)を仕込み、これを外部から冷却しつつ、30質量%水酸化ナトリウム水溶液102.2g(0.77モル)を滴下して、アクリル酸の75モル%を中和した。さらに、水36.9g、2,2'−アゾビス(2−アミジノプロパン)二塩酸塩0.11g(0.00041モル)を攪拌下で添加して溶解させ、系内を窒素で十分置換した後に昇温し、浴温を65℃に保持して、重合反応を1時間行った。重合終了後、120℃の油浴で加熱し、水分を系外に除去し、ゲル状物を得た。引き続き、2質量%エチレングリコールジグリシジルエーテル水溶液3.40g(0.00039モル)を添加、混合して後架橋反応を行い、さらに水分を蒸留により除去して乾燥し、塊状の吸水性樹脂を得た。これを卓上ミキサーで粉砕し、次いで、目開き850μmのJIS標準篩を用いて分級し、質量平均粒子径356μmの吸水性樹脂粒子112.8gを得た。
Example 7 (However, it is a reference example.)
A 2000 mL 5-neck cylindrical round bottom flask equipped with a stirrer, reflux condenser, dropping funnel, thermometer and nitrogen gas inlet tube was charged with 92 g (1.02 mol) of an 80% by weight acrylic acid aqueous solution, and this was externally added. Then, 102.2 g (0.77 mol) of a 30% by mass aqueous sodium hydroxide solution was added dropwise while cooling to neutralize 75 mol% of acrylic acid. Further, after 36.9 g of water and 0.11 g (0.00041 mol) of 2,2′-azobis (2-amidinopropane) dihydrochloride were added and dissolved under stirring, and the system was sufficiently substituted with nitrogen. The temperature was raised and the bath temperature was kept at 65 ° C., and the polymerization reaction was carried out for 1 hour. After completion of the polymerization, the mixture was heated in an oil bath at 120 ° C. to remove moisture from the system, and a gel-like product was obtained. Subsequently, 2.40 g (0.00039 mol) of a 2% by weight ethylene glycol diglycidyl ether aqueous solution was added and mixed to carry out a post-crosslinking reaction, and water was removed by distillation, followed by drying to obtain a massive water absorbent resin. It was. This was pulverized with a desktop mixer and then classified using a JIS standard sieve having an opening of 850 μm to obtain 112.8 g of water-absorbing resin particles having a mass average particle diameter of 356 μm.

比較例1
撹拌機、還流冷却器、滴下ロート、温度計および窒素ガス導入管を備えた1000mL容の五つ口円筒型丸底フラスコにn−ヘプタン340g、HLBが3.0のショ糖脂肪酸エステル(三菱化学株式会社の商品名:S−370)0.92gを加え、分散、昇温して溶解後、55℃まで冷却した。
Comparative Example 1
A 1000 mL five-necked cylindrical round bottom flask equipped with a stirrer, reflux condenser, dropping funnel, thermometer and nitrogen gas inlet tube is 340 g of n-heptane and sucrose fatty acid ester having an HLB of 3.0 (Mitsubishi Chemical) Trade name: S-370) 0.92 g was added, dispersed, heated and dissolved, and then cooled to 55 ° C.

これとは別に、500mL容の三角フラスコに、80質量%アクリル酸水溶液92g(1.02モル)を仕込み、これを外部から冷却しつつ、30質量%水酸化ナトリウム水溶液102.2g(0.77モル)を滴下して、アクリル酸の75モル%を中和した。さらに、水36.9g、水溶性ラジカル重合開始剤の過硫酸カリウム0.11g(0.00041モル)および内部架橋剤のエチレングリコールジグリシジルエーテル8.3mg(0.000048モル)を添加し、1段目重合用の単量体水溶液を調製した。   Separately, a 500 mL Erlenmeyer flask was charged with 92 g (1.02 mol) of an 80% by weight aqueous acrylic acid solution, and 102.2 g (0.77%) of a 30% by weight aqueous sodium hydroxide solution was cooled from the outside. Mol) was added dropwise to neutralize 75 mol% of acrylic acid. Furthermore, 36.9 g of water, 0.11 g (0.00041 mol) of potassium persulfate as a water-soluble radical polymerization initiator and 8.3 mg (0.000048 mol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added. A monomer aqueous solution for stage polymerization was prepared.

この1段目重合用の単量体水溶液を、前記の五つ口円筒型丸底フラスコに、撹拌下で全量加えて分散させ、系内を窒素で十分に置換した後に昇温し、浴温を70℃に保持して、重合反応を1時間行った後、重合スラリー液を室温まで冷却した。   The monomer aqueous solution for the first stage polymerization is added to and dispersed in the five-necked cylindrical round bottom flask with stirring, and the system is sufficiently replaced with nitrogen. Was kept at 70 ° C. and the polymerization reaction was carried out for 1 hour, and then the polymerization slurry was cooled to room temperature.

別の500mL容の三角フラスコに、80質量%アクリル酸水溶液119.1g(1.32モル)を仕込み、これを冷却しつつ30質量%水酸化ナトリウム水溶液132.2g(0.99モル)を滴下して、アクリル酸の75モル%を中和し、さらに水5.8g、過硫酸カリウム0.14g(0.00052モル)およびエチレングリコールジグリシジルエーテル10.7mg(0.000061モル)を添加し、2段目重合用の単量体水溶液を調製し、氷水浴を用いて冷却した。   Into another 500 mL Erlenmeyer flask, 119.1 g (1.32 mol) of 80 mass% acrylic acid aqueous solution was charged, and 132.2 g (0.99 mol) of 30 mass% sodium hydroxide aqueous solution was dropped while cooling this. Then, 75 mol% of acrylic acid was neutralized, and 5.8 g of water, 0.14 g (0.00052 mol) of potassium persulfate and 10.7 mg (0.000061 mol) of ethylene glycol diglycidyl ether were added. A monomer aqueous solution for the second stage polymerization was prepared and cooled using an ice water bath.

この2段目重合用の単量体水溶液を、前記重合スラリー液に全量添加した後、再び系内を窒素で十分に置換した後に昇温し、浴温を70℃に保持して、2段目の重合反応を2時間行った。重合終了後、120℃の油浴で加熱し、共沸蒸留により水のみを系外に除去し、ゲル状物を得た。次いで、後架橋剤として2質量%エチレングリコールジグリシジルエーテル水溶液7.81g(0.00089モル)を添加、混合して後架橋処理を行い、さらに水分およびn−ヘプタンを蒸留により除去して乾燥し、質量平均粒子径が345μmの吸水性樹脂粒子214.5gを得た。   After adding the entire amount of the monomer aqueous solution for the second stage polymerization to the polymerization slurry liquid, the system was again sufficiently replaced with nitrogen, and then the temperature was raised and the bath temperature was maintained at 70 ° C. The eye polymerization reaction was carried out for 2 hours. After completion of the polymerization, the mixture was heated in an oil bath at 120 ° C., and only water was removed from the system by azeotropic distillation to obtain a gel-like product. Subsequently, 7.81 g (0.00089 mol) of a 2% by weight ethylene glycol diglycidyl ether aqueous solution was added and mixed as a post-crosslinking agent, followed by post-crosslinking treatment, and further, moisture and n-heptane were removed by distillation and dried. 214.5 g of water-absorbing resin particles having a mass average particle diameter of 345 μm were obtained.

比較例2
撹拌機、還流冷却器、滴下ロート、温度計および窒素ガス導入管を備えた1000mL容の五つ口円筒型丸底フラスコにn−ヘプタン340g、HLBが3.0のショ糖脂肪酸エステル(三菱化学株式会社の商品名:S−370)0.92gを加え、分散、昇温して溶解後、55℃まで冷却した。
Comparative Example 2
A 1000 mL five-necked cylindrical round bottom flask equipped with a stirrer, reflux condenser, dropping funnel, thermometer and nitrogen gas inlet tube is 340 g of n-heptane and sucrose fatty acid ester having an HLB of 3.0 (Mitsubishi Chemical) Trade name: S-370) 0.92 g was added, dispersed, heated and dissolved, and then cooled to 55 ° C.

これとは別に、500mL容の三角フラスコに、80質量%アクリル酸水溶液92g(1.02モル)を仕込み、これを外部から冷却しつつ、30質量%水酸化ナトリウム水溶液102.2g(0.77モル)を滴下して、アクリル酸の75モル%を中和した。さらに、水36.9g、水溶性アゾ系重合開始剤の2,2’−アゾビス(2−アミジノプロパン)二塩酸塩0.11g(0.00041モル)を添加し、1段目重合用の単量体水溶液を調製した。   Separately, a 500 mL Erlenmeyer flask was charged with 92 g (1.02 mol) of an 80% by weight aqueous acrylic acid solution, and 102.2 g (0.77%) of a 30% by weight aqueous sodium hydroxide solution was cooled from the outside. Mol) was added dropwise to neutralize 75 mol% of acrylic acid. Further, 36.9 g of water and 0.11 g (0.00041 mol) of 2,2′-azobis (2-amidinopropane) dihydrochloride as a water-soluble azo polymerization initiator were added, and a single unit for the first stage polymerization was added. A meter aqueous solution was prepared.

この1段目重合用の単量体水溶液を、前記の五つ口円筒型丸底フラスコに、撹拌下で全量加えて分散させ、系内を窒素で十分に置換した後に昇温し、浴温を70℃に保持して、重合反応を1時間行った後、重合スラリー液を室温まで冷却した。   The monomer aqueous solution for the first stage polymerization is added to and dispersed in the five-necked cylindrical round bottom flask with stirring, and the system is sufficiently replaced with nitrogen. Was kept at 70 ° C. and the polymerization reaction was carried out for 1 hour, and then the polymerization slurry was cooled to room temperature.

別の500mL容の三角フラスコに、80質量%アクリル酸水溶液119.1g(1.32モル)を仕込み、これを冷却しつつ30質量%水酸化ナトリウム水溶液132.2g(0.99モル)を滴下して、アクリル酸の75モル%を中和し、さらに水5.8g、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩0.14g(0.00052モル)を添加し、2段目重合用の単量体水溶液を調製し、氷水浴を用いて冷却した。   Into another 500 mL Erlenmeyer flask, 119.1 g (1.32 mol) of 80 mass% acrylic acid aqueous solution was charged, and 132.2 g (0.99 mol) of 30 mass% sodium hydroxide aqueous solution was dropped while cooling this. Then, 75 mol% of acrylic acid was neutralized, and further 5.8 g of water and 0.14 g (0.00052 mol) of 2,2′-azobis (2-amidinopropane) dihydrochloride were added. A monomer aqueous solution for eye polymerization was prepared and cooled using an ice water bath.

この2段目重合用の単量体水溶液を、前記重合スラリー液に全量添加した後、再び系内を窒素で十分に置換した後に昇温し、浴温を70℃に保持して、2段目の重合反応を2時間行った。重合終了後、120℃の油浴で加熱し、共沸蒸留により水のみを系外に除去し、ゲル状物を得た。次いで、後架橋剤として2質量%エチレングリコールジグリシジルエーテル水溶液7.81g(0.00089モル)を添加、混合して後架橋反応を行い、さらに水分およびn−ヘプタンを蒸留により除去して乾燥し、質量平均粒子径が367μmの吸水性樹脂粒子213.7gを得た。   After adding the entire amount of the monomer aqueous solution for the second stage polymerization to the polymerization slurry liquid, the system was again sufficiently replaced with nitrogen, and then the temperature was raised and the bath temperature was maintained at 70 ° C. The eye polymerization reaction was carried out for 2 hours. After completion of the polymerization, the mixture was heated in an oil bath at 120 ° C., and only water was removed from the system by azeotropic distillation to obtain a gel-like product. Next, 7.81 g (0.00089 mol) of a 2% by weight ethylene glycol diglycidyl ether aqueous solution as a post-crosslinking agent was added and mixed to carry out a post-crosslinking reaction, and water and n-heptane were removed by distillation and dried. Thus, 213.7 g of water-absorbing resin particles having a mass average particle diameter of 367 μm were obtained.

比較例3
撹拌機、還流冷却器、滴下ロート、温度計および窒素ガス導入管を備えた1000mL容の五つ口円筒型丸底フラスコにn−ヘプタン340g、HLBが3.0のショ糖脂肪酸エステル(三菱化学株式会社の商品名:S−370)0.92gを加え、分散、昇温して溶解後、55℃まで冷却した。
Comparative Example 3
A 1000 mL five-necked cylindrical round bottom flask equipped with a stirrer, reflux condenser, dropping funnel, thermometer and nitrogen gas inlet tube is 340 g of n-heptane and sucrose fatty acid ester having an HLB of 3.0 (Mitsubishi Chemical) Trade name: S-370) 0.92 g was added, dispersed, heated and dissolved, and then cooled to 55 ° C.

これとは別に、500mL容の三角フラスコに、80質量%アクリル酸水溶液92g(1.02モル)を仕込み、これを外部から冷却しつつ、30質量%水酸化ナトリウム水溶液102.2g(0.77モル)を滴下して、アクリル酸の75モル%を中和した。さらに、水36.9g、水溶性アゾ系重合開始剤の2,2’−アゾビス(2−アミジノプロパン)二塩酸塩0.11g(0.00041モル)および内部架橋剤のエチレングリコールジグリシジルエーテル8.3mg(0.000048モル)を添加し、1段目重合用の単量体水溶液を調製した。   Separately, a 500 mL Erlenmeyer flask was charged with 92 g (1.02 mol) of an 80% by weight aqueous acrylic acid solution, and 102.2 g (0.77%) of a 30% by weight aqueous sodium hydroxide solution was cooled from the outside. Mol) was added dropwise to neutralize 75 mol% of acrylic acid. Further, 36.9 g of water, 0.11 g (0.00041 mol) of 2,2′-azobis (2-amidinopropane) dihydrochloride as a water-soluble azo polymerization initiator, and ethylene glycol diglycidyl ether 8 as an internal crosslinking agent .3 mg (0.000048 mol) was added to prepare an aqueous monomer solution for the first stage polymerization.

この1段目重合用の単量体水溶液を、前記の五つ口円筒型丸底フラスコに、撹拌下で全量加えて分散させ、系内を窒素で十分に置換した後に昇温し、浴温を70℃に保持して、重合反応を1時間行った後、重合スラリー液を室温まで冷却した。   The monomer aqueous solution for the first stage polymerization is added to and dispersed in the five-necked cylindrical round bottom flask with stirring, and the system is sufficiently replaced with nitrogen. Was kept at 70 ° C. and the polymerization reaction was carried out for 1 hour, and then the polymerization slurry was cooled to room temperature.

別の500mL容の三角フラスコに、80質量%アクリル酸水溶液119.1g(1.32モル)を仕込み、これを冷却しつつ30質量%水酸化ナトリウム水溶液132.2g(0.99モル)を滴下して、アクリル酸の75モル%を中和し、さらに水5.8g、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩0.14g(0.00052モル)およびエチレングリコールジグリシジルエーテル10.7mg(0.000061モル)を添加し、2段目重合用の単量体水溶液を調製し、氷水浴を用いて冷却した。   Into another 500 mL Erlenmeyer flask, 119.1 g (1.32 mol) of 80 mass% acrylic acid aqueous solution was charged, and 132.2 g (0.99 mol) of 30 mass% sodium hydroxide aqueous solution was dropped while cooling this. 75 mol% of acrylic acid was neutralized, and further 5.8 g of water, 2,4′-azobis (2-amidinopropane) dihydrochloride 0.14 g (0.00052 mol) and ethylene glycol diglycidyl ether 10.7 mg (0.000061 mol) was added to prepare a monomer aqueous solution for the second stage polymerization, and cooled using an ice water bath.

この2段目重合用の単量体水溶液を、前記重合スラリー液に全量添加した後、再び系内を窒素で十分に置換した後に昇温し、浴温を70℃に保持して、2段目の重合反応を2時間行った。重合終了後、120℃の油浴で加熱し、共沸蒸留により水のみを系外に除去し、ゲル状物を得た。次いで、水分およびn−ヘプタンを蒸留により除去して乾燥し、質量平均粒子径が383μmの吸水性樹脂粒子213.8gを得た。   After adding the entire amount of the monomer aqueous solution for the second stage polymerization to the polymerization slurry liquid, the system was again sufficiently replaced with nitrogen, and then the temperature was raised and the bath temperature was maintained at 70 ° C. The eye polymerization reaction was carried out for 2 hours. After completion of the polymerization, the mixture was heated in an oil bath at 120 ° C., and only water was removed from the system by azeotropic distillation to obtain a gel-like product. Subsequently, moisture and n-heptane were removed by distillation and dried to obtain 213.8 g of water absorbent resin particles having a mass average particle diameter of 383 μm.

比較例4
撹拌機、還流冷却器、滴下ロート、温度計および窒素ガス導入管を備えた1000mL容の五つ口円筒型丸底フラスコにn−ヘプタン340g、HLBが3.0のショ糖脂肪酸エステル(三菱化学株式会社の商品名:S−370)0.92gを加え、分散、昇温して溶解後、55℃まで冷却した。
Comparative Example 4
A 1000 mL five-necked cylindrical round bottom flask equipped with a stirrer, reflux condenser, dropping funnel, thermometer and nitrogen gas inlet tube is 340 g of n-heptane and sucrose fatty acid ester having an HLB of 3.0 (Mitsubishi Chemical) Trade name: S-370) 0.92 g was added, dispersed, heated and dissolved, and then cooled to 55 ° C.

これとは別に、500mL容の三角フラスコに、80質量%アクリル酸水溶液92g(1.02モル)を仕込み、これを外部から冷却しつつ、30質量%水酸化ナトリウム水溶液102.2g(0.77モル)を滴下して、アクリル酸の75モル%を中和した。さらに、水36.9g、水溶性アゾ系重合開始剤の2,2’−アゾビス(2−アミジノプロパン)二塩酸塩0.11g(0.00041モル)および共重合性架橋剤のN,N'−メチレンビスアクリルアミド8.3mg(0.000054モル)を添加し、1段目重合用の単量体水溶液を調製した。   Separately, a 500 mL Erlenmeyer flask was charged with 92 g (1.02 mol) of an 80% by weight aqueous acrylic acid solution, and 102.2 g (0.77%) of a 30% by weight aqueous sodium hydroxide solution was cooled from the outside. Mol) was added dropwise to neutralize 75 mol% of acrylic acid. Further, 36.9 g of water, 0.12 g (0.00041 mol) of 2,2′-azobis (2-amidinopropane) dihydrochloride as a water-soluble azo polymerization initiator, and N, N ′ as a copolymerizable crosslinking agent -8.3 mg (0.000054 mol) of methylenebisacrylamide was added to prepare a monomer aqueous solution for the first stage polymerization.

この1段目重合用の単量体水溶液を、前記の五つ口円筒型丸底フラスコに、撹拌下で全量加えて分散させ、系内を窒素で十分に置換した後に昇温し、浴温を70℃に保持して、重合反応を1時間行った後、重合スラリー液を室温まで冷却した。   The monomer aqueous solution for the first stage polymerization is added to and dispersed in the five-necked cylindrical round bottom flask with stirring, and the system is sufficiently replaced with nitrogen. Was kept at 70 ° C. and the polymerization reaction was carried out for 1 hour, and then the polymerization slurry was cooled to room temperature.

別の500mL容の三角フラスコに、80質量%アクリル酸水溶液119.1g(1.32モル)を仕込み、これを冷却しつつ30質量%水酸化ナトリウム水溶液132.2g(0.99モル)を滴下して、アクリル酸の75モル%を中和し、さらに水5.8g、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩0.14g(0.00052モル)およびN,N'−メチレンビスアクリルアミド10.7mg(0.000069モル)を添加し、2段目重合用の単量体水溶液を調製し、氷水浴を用いて冷却した。   Into another 500 mL Erlenmeyer flask, 119.1 g (1.32 mol) of 80 mass% acrylic acid aqueous solution was charged, and 132.2 g (0.99 mol) of 30 mass% sodium hydroxide aqueous solution was dropped while cooling this. Then, 75 mol% of acrylic acid was neutralized, and further 5.8 g of water, 0.14 g (0.00052 mol) of 2,2′-azobis (2-amidinopropane) dihydrochloride and N, N′— 10.7 mg (0.000069 mol) of methylenebisacrylamide was added to prepare a monomer aqueous solution for the second stage polymerization, and the mixture was cooled using an ice water bath.

この2段目重合用の単量体水溶液を、前記重合スラリー液に全量添加した後、再び系内を窒素で十分に置換した後に昇温し、浴温を70℃に保持して、2段目の重合反応を2時間行った。重合終了後、120℃の油浴で加熱し、共沸蒸留により水のみを系外に除去し、ゲル状物を得た。次いで、後架橋剤として2質量%N,N'−メチレンビスアクリルアミド水溶液7.81g(0.00101モル)を添加、混合して後架橋反応を行い、さらに水分およびn−ヘプタンを蒸留により除去して乾燥し、質量平均粒子径が350μmの吸水性樹脂粒子214.5gを得た。   After adding the entire amount of the monomer aqueous solution for the second stage polymerization to the polymerization slurry liquid, the system was again sufficiently replaced with nitrogen, and then the temperature was raised and the bath temperature was maintained at 70 ° C. The eye polymerization reaction was carried out for 2 hours. After completion of the polymerization, the mixture was heated in an oil bath at 120 ° C., and only water was removed from the system by azeotropic distillation to obtain a gel-like product. Next, 7.81 g (0.00101 mol) of a 2% by weight N, N′-methylenebisacrylamide aqueous solution as a post-crosslinking agent was added and mixed to carry out a post-crosslinking reaction, and water and n-heptane were removed by distillation. And dried to obtain 214.5 g of water absorbent resin particles having a mass average particle diameter of 350 μm.

次に、実施例1〜7および比較例1〜4で得られた吸水性樹脂粒子を、下記に示す各種の試験に供した。その結果を表1に示す。   Next, the water-absorbent resin particles obtained in Examples 1 to 7 and Comparative Examples 1 to 4 were subjected to various tests shown below. The results are shown in Table 1.

(1)質量平均粒子径
吸水性樹脂粒子100gを秤量し、これをJIS−Z8801−1982対応の8つの標準篩(目開き850μm、500μm、355μm、300μm、250μm、180μm、106μm、底容器の順番に積み重ねた)の一番上の篩に入れ、ロータップ式篩振動機を用いて10分間振動させて篩い分けした後に篩毎に秤量し、その結果に基づいて積算質量が50質量%になる粒子径を次式により算出した。
(1) Mass average particle diameter 100 g of water-absorbent resin particles were weighed, and this was replaced with eight standard sieves corresponding to JIS-Z8801-1982 (openings 850 μm, 500 μm, 355 μm, 300 μm, 250 μm, 180 μm, 106 μm, and the order of the bottom container) Particles that are accumulated in the uppermost sieve), vibrated for 10 minutes using a low-tap type sieve vibrator, sieved, and weighed for each sieve. Based on the result, the total mass was 50% by mass. The diameter was calculated by the following formula.

質量平均粒子径=[(50−A)/(D−A)]×(C−B)+B   Mass average particle diameter = [(50−A) / (D−A)] × (C−B) + B

式中、Aは、粒度分布の粗い方から順次質量を積算し、積算質量が50質量%未満であり、かつ50質量%に最も近い点の積算値を求めた場合の当該積算値(g)であり、また、Bは、当該積算値を求めたときの篩目開き(μm)である。また、Dは、粒度分布の粗い方から順次質量を積算し、積算質量が50質量%以上であり、かつ50質量%に最も近い点の積算値を求めた場合の当該積算値(g)であり、また、Cは、当該積算値を求めたときの篩目開き(μm)である。   In the formula, A is the cumulative value (g) in the case where the mass is sequentially accumulated from the coarser particle size distribution, and the cumulative mass is less than 50 mass% and the integral value at the point closest to 50 mass% is obtained. In addition, B is a sieve opening (μm) when the integrated value is obtained. D is the integrated value (g) in the case where the integrated mass is sequentially calculated from the coarser particle size distribution and the integrated mass is 50% by mass or more and the integrated value at the point closest to 50% by mass is obtained. Yes, and C is the sieve opening (μm) when the integrated value is obtained.

(2)生理食塩水の吸水速度
100mL容のビーカーに、25±0.2℃の生理食塩水50±0.01gを量りとり、マグネチックスターラーバー(8mmφ×30mmのリング無し)を投入し、マグネチックスターラー(iuchi社製、品番:HS−30D)の上に配置した。引き続きマグネチックスターラーバーを600ppmで回転するように調整し、さらに、マグネチックスターラーバーの回転により生ずる渦の底部は、マグネチックスラーラーバーの上部近くになるように調整した。
(2) Saline water absorption rate In a 100 mL beaker, weigh 50 ± 0.01 g of 25 ± 0.2 ° C. physiological saline, and put a magnetic stirrer bar (no ring of 8 mmφ × 30 mm). It placed on a magnetic stirrer (manufactured by uchi, product number: HS-30D). Subsequently, the magnetic stirrer bar was adjusted to rotate at 600 ppm, and the bottom of the vortex generated by the rotation of the magnetic stirrer bar was adjusted to be close to the top of the magnetic stirrer bar.

次に、JIS標準篩を用いて300〜500μmに分級した吸水性樹脂粒子2.0±0.002gを、ビーカー中の渦中央とビーカー側面の間に素早く流し込み、流し込んだ時点から渦が収束した時点までの時間(秒)を、ストップウォッチを用いて測定し、吸水速度とした。   Next, 2.0 ± 0.002 g of water-absorbing resin particles classified to 300 to 500 μm using a JIS standard sieve was quickly poured between the center of the vortex in the beaker and the side surface of the beaker, and the vortex converged from the time of pouring. The time (seconds) until the time point was measured using a stopwatch and was defined as the water absorption rate.

(3)生理食塩水の保水能
吸水性樹脂粒子2.0gを、綿袋(メンブロード60番、横100mm×縦200mm)中に量り取り、500mL容のビーカー中に入れた。綿袋に生理食塩水500gを一度に注ぎ込み、吸水性樹脂粒子のママコが発生しないように食塩水を分散させた後、綿袋の上部を輪ゴムで縛り、1時間放置して、吸水性樹脂粒子を十分に膨潤させた。遠心力167Gになるように設定した脱水機(国産遠心機株式会社製、品番:H−122)を用いて綿袋を1分間脱水して、脱水後の膨潤ゲルを含んだ綿袋の質量Wa(g)を測定した。吸水性樹脂粒子を添加せずに同様の操作を行い、綿袋の湿潤時空質量Wb(g)を測定し、以下の式から保水能を算出した。
(3) Water retention ability of physiological saline 2.0 g of water-absorbing resin particles were weighed into a cotton bag (Membroroad No. 60, width 100 mm × length 200 mm) and placed in a 500 mL beaker. Pour 500 g of physiological saline into a cotton bag at a time and disperse the saline so that no water-absorbent resin particles are generated. Then, bind the upper part of the cotton bag with a rubber band and let it stand for 1 hour. Was sufficiently swollen. The weight Wa of the cotton bag containing the swollen gel after dehydration by dehydrating the cotton bag for 1 minute using a dehydrator (manufactured by Kokusan Centrifuge Co., Ltd., product number: H-122) set to have a centrifugal force of 167G (G) was measured. The same operation was performed without adding water-absorbent resin particles, the wet hourly space mass Wb (g) of the cotton bag was measured, and the water retention capacity was calculated from the following equation.

生理食塩水の保水能(g/g)=[Wa−Wb](g)/吸水性樹脂粒子の質量(g)   Water retention capacity of physiological saline (g / g) = [Wa-Wb] (g) / mass of water-absorbent resin particles (g)

(4)4.14kPa荷重下の生理食塩水吸水能
吸水性樹脂粒子の4.14kPaの荷重下における吸水開始から60分後の生理食塩水吸水能は、図1に概略構成を示した測定装置Xを用いて行った。
(4) Saline water absorption capacity under 4.14 kPa load The physiological water absorption capacity 60 minutes after the start of water absorption of the water-absorbent resin particles under a load of 4.14 kPa is shown in FIG. X was used.

図1に示した測定装置Xは、ビュレット部1と導管2、測定台3、測定台3上に置かれた測定部4からなっている。ビュレット部1は、ビュレット10の上部にゴム栓14、下部に吸気導入管11とコック12が連結されており、さらに、吸気導入管11の上部はコック13がある。ビュレット部1から測定台3までは、導管2が取り付けられており、導管2の直径は6ミリである。測定台3の中央部には、直径2ミリの穴があいており、導管2が連結されている。測定部4は、円筒40と、この円筒40の底部に貼着されたナイロンメッシュ41と、重り42とを有している。円筒40の内径は、2.0cmである。ナイロンメッシュ41は、200メッシュ(目開き75μm)に形成されている。そして、ナイロンメッシュ41上に所定量の吸水性樹脂粒子5が均一に撒布されるようになっている。重り42は、直径1.9cm、質量119.6gである。このおもりは、吸水性樹脂粒子5上に置かれ、吸水性樹脂粒子5に対して4.14kPaの荷重を加えることができるようになっている。   The measuring apparatus X shown in FIG. 1 includes a burette unit 1, a conduit 2, a measuring table 3, and a measuring unit 4 placed on the measuring table 3. The burette unit 1 has a rubber stopper 14 connected to the upper part of the burette 10, an intake introduction pipe 11 and a cock 12 connected to the lower part, and an upper part of the intake introduction pipe 11 has a cock 13. A conduit 2 is attached from the burette part 1 to the measuring table 3, and the diameter of the conduit 2 is 6 mm. A hole with a diameter of 2 mm is formed at the center of the measuring table 3 and the conduit 2 is connected thereto. The measuring unit 4 includes a cylinder 40, a nylon mesh 41 attached to the bottom of the cylinder 40, and a weight 42. The inner diameter of the cylinder 40 is 2.0 cm. The nylon mesh 41 is formed to 200 mesh (aperture 75 μm). A predetermined amount of the water-absorbing resin particles 5 is uniformly distributed on the nylon mesh 41. The weight 42 has a diameter of 1.9 cm and a mass of 119.6 g. The weight is placed on the water absorbent resin particles 5 so that a load of 4.14 kPa can be applied to the water absorbent resin particles 5.

このような構成の測定装置Xでは、まずビュレット10のコック12と空気導入管11のコック13を閉め、25℃に調節された所定量の生理食塩水をビュレット10上部から入れ、ゴム栓14でビュレット上部の栓をした後、ビュレット10のコック12および空気導入管11のコック13を開ける。次に、測定台3の上面と、測定台3中心部の導管口から出てくる生理食塩水の水面とが同じ高さになるように測定台3の高さの調整を行う。   In the measuring apparatus X having such a configuration, the cock 12 of the burette 10 and the cock 13 of the air introduction pipe 11 are first closed, and a predetermined amount of physiological saline adjusted to 25 ° C. is introduced from the upper part of the burette 10, and the rubber plug 14 is used. After plugging the top of the burette, the cock 12 of the burette 10 and the cock 13 of the air introduction pipe 11 are opened. Next, the height of the measurement table 3 is adjusted so that the upper surface of the measurement table 3 and the surface of the physiological saline solution coming out from the conduit port at the center of the measurement table 3 have the same height.

一方、円筒40のナイロンメッシュ41上に0.1gの吸水性樹脂5粒子を均一に撒布して、この吸水性樹脂粒子5上に重り42を置く。測定部4は、その中心部が測定台3中心部の導管口に一致するようにして置く。   On the other hand, 0.1 g of water absorbent resin 5 particles are uniformly spread on the nylon mesh 41 of the cylinder 40, and a weight 42 is placed on the water absorbent resin particle 5. The measuring part 4 is placed so that the center part thereof coincides with the conduit port of the central part of the measuring table 3.

吸水性樹脂粒子5が吸水し始めた時点から継続的に、ビュレット10内の生理食塩水の減少量(吸水性樹脂5が吸水した生理食塩水量)Wc(ml)を読み取る。吸水開始から60分経過後における吸水性樹脂粒子5の荷重下での吸水能は、以下の式により求めた。   From the time when the water-absorbing resin particles 5 start to absorb water, the decrease amount of physiological saline in the burette 10 (the amount of physiological saline absorbed by the water-absorbing resin 5) Wc (ml) is read. The water absorption capacity under the load of the water absorbent resin particles 5 after 60 minutes from the start of water absorption was determined by the following equation.

4.14kPa荷重下の生理食塩水吸水能(ml/g)=Wc÷0.10   4. Saline water absorption capacity under load of 14 kPa (ml / g) = Wc ÷ 0.10

(5)水可溶分
500mL容のビーカーに、生理食塩水500±0.01gを量り取り、マグネチックスターラーバー(8mmφ×30mmのリング無し)を投入し、マグネチックスターラー(iuchi社製:HS−30D)の上に配置した。引き続きマグネチックスターラーバーを600rpmで回転するように調整し、さらに、マグネチックスターラーバーの回転により生ずる渦の底部は、マグネチックスターラーバーの上部近くになるように調整した。
(5) Water-soluble matter In a 500 mL beaker, 500 ± 0.01 g of physiological saline is weighed, and a magnetic stirrer bar (without 8 mmφ × 30 mm ring) is put in. A magnetic stirrer (manufactured by Iuchi: HS) -30D). Subsequently, the magnetic stirrer bar was adjusted to rotate at 600 rpm, and the bottom of the vortex generated by the rotation of the magnetic stirrer bar was adjusted to be close to the top of the magnetic stirrer bar.

次に、JIS標準篩を用いて300〜500μmに分級した吸水性樹脂粒子2.0±0.002gを、ビーカー中の渦中央とビーカー側面の間に素早く流し込み分散させ、3時間撹拌した。3時間撹拌後の吸水性樹脂粒子分散水を、JIS標準篩(目開き75μm)でろ過し、得られたろ液をさらに桐山式ロート(濾紙No.6)を用いて吸引ろ過した。   Next, 2.0 ± 0.002 g of water-absorbing resin particles classified to 300 to 500 μm using a JIS standard sieve was quickly poured and dispersed between the center of the vortex in the beaker and the side of the beaker, and stirred for 3 hours. The water-absorbent resin particle-dispersed water after stirring for 3 hours was filtered with a JIS standard sieve (aperture 75 μm), and the obtained filtrate was further filtered with suction using a Kiriyama funnel (filter paper No. 6).

あらかじめ140℃で乾燥して恒量し、室温まで冷却した100mL容のビーカーに得られたろ液を80±0.01g量りとり、内温を140℃に設定した熱風乾燥機(ADVANTEC社製)で恒量になるまで乾燥させ、ろ液固形分の質量Wd(g)を測定した。   80 ± 0.01 g of the filtrate obtained in a 100 mL beaker previously dried at 140 ° C. and cooled to room temperature was weighed and constant in a hot air dryer (ADVANTEC) with the internal temperature set at 140 ° C. And the mass Wd (g) of the solid content of the filtrate was measured.

一方、吸水性樹脂粒子を用いずに上記操作と同様に行ない、ブランク質量We(g)を測定して、次式より水可溶分を算出した。   On the other hand, it carried out similarly to the said operation, without using a water-absorbent resin particle | grain, measured blank mass We (g), and computed the water-soluble content from following Formula.

水可溶分(質量%)=[(Wd−We)×(500/80)]/2×100   Water-soluble content (mass%) = [(Wd−We) × (500/80)] / 2 × 100

Figure 0004969778
Figure 0004969778

実施例8
実施例1で得られた吸水性樹脂粒子10gと粉砕パルプ10gをミキサーを用いて乾式混合したものを、大きさが40cm×12cmで重さが0.6gのティッシュに吹き付けた後に、同じ大きさ及び重さのティッシュを重ねてシート状にし、これの全体に196kPaの荷重を30秒間加えてプレスすることにより衛生材料を得た。得られた衛生材料を大きさ40cm×12cm、坪量22g/cmのポリエチレン製エアスルー型多孔質液体透過性シートと、同じ大きさ、重さ1gのポリエチレン製不透過性シートとで挟むことにより吸水性樹脂濃度が50質量%の衛生材料を得た。
Example 8
A mixture obtained by dry-mixing 10 g of the water-absorbent resin particles obtained in Example 1 and 10 g of pulverized pulp using a mixer onto a tissue having a size of 40 cm × 12 cm and a weight of 0.6 g, is the same size. And hygiene material was obtained by putting the tissue of the weight into a sheet shape, applying a load of 196 kPa to the whole for 30 seconds and pressing it. By sandwiching the obtained sanitary material between a polyethylene air-through porous liquid permeable sheet having a size of 40 cm × 12 cm and a basis weight of 22 g / cm 2 and a polyethylene impermeable sheet having the same size and a weight of 1 g. A sanitary material having a water absorbent resin concentration of 50% by mass was obtained.

実施例9〜14および比較例5〜8
実施例8において、実施例1で得られた吸水性樹脂に代えて実施例2〜7および比較例1〜4で得られた吸水性樹脂粒子をそれぞれ用いた以外は、実施例8と同様の操作を行い、衛生材料を得た。得られた衛生材料をそれぞれ順に、実施例9〜14および比較例5〜8の衛生材料とした。
Examples 9-14 and Comparative Examples 5-8
In Example 8, it replaced with the water absorbing resin obtained in Example 1, and replaced with the water absorbing resin particle obtained in Examples 2-7 and Comparative Examples 1-4, respectively, and was the same as that of Example 8. Operation was performed to obtain a sanitary material. The obtained sanitary materials were used as sanitary materials in Examples 9 to 14 and Comparative Examples 5 to 8, respectively.

次に実施例8〜14および比較例5〜8で得られた衛生材料を以下の方法にしたがって評価した。その結果を表2に示す。   Next, the sanitary materials obtained in Examples 8 to 14 and Comparative Examples 5 to 8 were evaluated according to the following methods. The results are shown in Table 2.

(a)人工尿の調製
10L容の容器に、塩化ナトリウム60g、塩化カルシウム二水和物1.8g、塩化マグネシウム六水和物3.6g及び適量の蒸留水を入れ、完全に溶解した。次いで、ポリオキシエチレンノニルフェニルエーテル0.02gを添加し、更に蒸留水を追加して、水溶液全体の質量を6000gに調製した。更に、少量の青色1号で着色して、人工尿とした。
(A) Preparation of artificial urine In a 10 L container, 60 g of sodium chloride, 1.8 g of calcium chloride dihydrate, 3.6 g of magnesium chloride hexahydrate and an appropriate amount of distilled water were added and completely dissolved. Next, 0.02 g of polyoxyethylene nonylphenyl ether was added, and distilled water was further added to adjust the total mass of the aqueous solution to 6000 g. Furthermore, it was colored with a small amount of blue No. 1 to obtain artificial urine.

(b)浸透速度
浸透速度の測定は、衛生材料の中心付近に、直径3cmのシリンダーを用いて、50mlの人工尿を注ぎ込むと同時にストップウォッチをスタートさせ、人工尿が完全に衛生材料に浸透するまでの時間を測定することによって行った(1回目)。次に、前記シリンダーをはずし衛生材料をそのままの状態で保存し、1回目の人工尿注入開始から30分後に、再び同じ位置に前記シリンダーを置き、人工尿50mlを注ぎ込むと同時に、ストップウォッチをスタートさせ、人工尿が完全に衛生材料に浸透するまでの時間(秒)を測定した(2回目)。更に、同様の方法にて3回目まで浸透速度を測定した。
(B) Penetration rate Penetration rate is measured by using a cylinder with a diameter of 3 cm in the vicinity of the center of the sanitary material and pouring 50 ml of artificial urine and simultaneously starting a stopwatch so that the artificial urine completely penetrates the sanitary material. This was done by measuring the time until (first time). Next, remove the cylinder and store the sanitary material as it is, and after 30 minutes from the start of the first artificial urine injection, place the cylinder in the same position again, pour 50 ml of artificial urine and start the stopwatch. The time (second) until the artificial urine completely penetrates the sanitary material was measured (second time). Furthermore, the penetration rate was measured up to the third time in the same manner.

(c)逆戻り量
前記浸透速度の測定終了から60分後、10cm×10cmに裁断した濾紙(東洋濾紙No.2)を重ねて約80g分とし、乾燥質量(g)を測定した。濾紙を衛生材料の中央部に置き、その上から5kgのおもり(底面積=10cm×10cm)を載せて5分間荷重を加えた後、おもりをはずして逆戻り液を吸収した濾紙の質量(g)を測定した。逆戻り液を吸収した濾紙の質量(g)から濾紙の乾燥質量(g)を差し引くことにより、逆戻り量(g)を算出した。
(C) Reversal amount 60 minutes after the completion of the measurement of the permeation rate, filter paper (Toyo filter paper No. 2) cut to 10 cm × 10 cm was overlapped to obtain about 80 g, and the dry mass (g) was measured. Place the filter paper in the center of the sanitary material, place a 5 kg weight (bottom area = 10 cm x 10 cm) on top of the filter paper, apply a load for 5 minutes, remove the weight, and absorb the return liquid mass (g) Was measured. The return amount (g) was calculated by subtracting the dry weight (g) of the filter paper from the weight (g) of the filter paper that absorbed the return solution.

(d)拡散長
前記逆戻り量の測定後5分以内に人工尿が浸透した衛生材料の長手方向の拡がり寸法(cm)を測定した。なお、小数点以下の数値は四捨五入した。
(D) Diffusion length The longitudinal dimension (cm) of the sanitary material into which the artificial urine penetrated was measured within 5 minutes after the measurement of the amount of reversion. The numbers after the decimal point are rounded off.

Figure 0004969778
Figure 0004969778

表1より、各実施例で得られた吸水性樹脂粒子は、高い保水能を有し、かつ荷重下での吸水能が高く、優れた吸水速度、更に水可溶分が少ないことがわかる。更に、表2に示したように、このような吸水性樹脂粒子を用いると、液体の拡散性に優れ、逆戻り量が少ない衛生材料を提供することが可能であることがわかる。   From Table 1, it can be seen that the water-absorbent resin particles obtained in each Example have a high water-retaining ability, a high water-absorbing ability under load, an excellent water-absorbing speed, and a small amount of water-soluble matter. Furthermore, as shown in Table 2, it can be seen that the use of such water-absorbing resin particles makes it possible to provide a sanitary material that has excellent liquid diffusibility and a small amount of reversion.

荷重下での吸水能を測定するための装置の概略構成を示す概略構成図である。It is a schematic block diagram which shows schematic structure of the apparatus for measuring the water absorption ability under load.

符号の説明Explanation of symbols

X 測定装置
1.ビュレット部
10.ビュレット(ビュレット部の)
11.空気導入管(ビュレット部の)
12.コック(ビュレット10の)
13.コック(空気導入管11の)
14.ゴム栓(ビュレット10の)
2.導管
3.測定台
4.測定部
40.円筒(測定部の)
41.ナイロンメッシュ(測定部の)
42.おもり(測定部の)
5.吸水性樹脂粒子



X measuring device Bullet section 10. Bullet (of the bullet part)
11. Air inlet pipe (for burette)
12 Cook (burette 10)
13. Cock (for air inlet tube 11)
14 Rubber stopper (for burette 10)
2. 2. Conduit Measuring table 4. Measurement unit 40. Cylindrical (measurement part)
41. Nylon mesh (for measuring part)
42. Weight (measurement part)
5. Water absorbent resin particles



Claims (9)

水溶性エチレン性不飽和単量体を重合させて吸水性樹脂を製造する方法であって、内部架橋剤としての多価グリシジル化合物の存在下、水溶性アゾ系ラジカル重合開始剤を用いて2〜3段の逆相懸濁重合を行なった後、得られた吸水性樹脂を後架橋剤で後架橋することを特徴とする吸水性樹脂粒子の製造方法(ただし、アルコキシチタンの存在下で重合する場合を除く。)A method for producing a water-absorbent resin by polymerizing a water-soluble ethylenically unsaturated monomer, wherein a water-soluble azo radical polymerization initiator is used in the presence of a polyvalent glycidyl compound as an internal cross-linking agent. A method for producing water-absorbent resin particles, wherein the obtained water-absorbent resin is post-crosslinked with a post-crosslinking agent after three-stage reversed-phase suspension polymerization (polymerization in the presence of alkoxy titanium) Except in cases) . 多価グリシジル化合物が(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテルおよび(ポリ)グリセリンジグリシジルエーテルから選ばれた少なくとも1種である請求項1記載の製造方法。   The production method according to claim 1, wherein the polyvalent glycidyl compound is at least one selected from (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether and (poly) glycerin diglycidyl ether. 多価グリシジル化合物の使用量が、水溶性エチレン性不飽和単量体1モルあたり0.000001〜0.001モルである請求項1または2記載の製造方法。   The production method according to claim 1 or 2, wherein the amount of the polyvalent glycidyl compound used is 0.000001 to 0.001 mol per mol of the water-soluble ethylenically unsaturated monomer. 水溶性アゾ系ラジカル重合開始剤が、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2’−アゾビス(N−(2−カルボキシエチル)−2−メチルプロピオンアミジン)四水和物および2,2’−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}二塩酸塩から選ばれた少なくとも1種である、請求項1〜3のいずれか1項に記載の製造方法。   Water-soluble azo radical polymerization initiator is 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis (N- (2-carboxyethyl) -2-methylpropionamidine) tetrahydrate The compound is at least one selected from a hydrate and 2,2′-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride. The manufacturing method of any one of these. 水溶性アゾ系ラジカル重合開始剤の使用量が、水溶性エチレン性不飽和単量体1モルあたり0.00005〜0.001モルである、請求項1〜4のいずれか1項に記載の製造方法。   The production according to any one of claims 1 to 4, wherein the amount of the water-soluble azo radical polymerization initiator used is 0.00005 to 0.001 mol per mol of the water-soluble ethylenically unsaturated monomer. Method. 後架橋剤が多価グリシジル化合物である、請求項1〜5のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 1-5 whose post-crosslinking agent is a polyvalent glycidyl compound. 後架橋剤の使用量が、重合に付された水溶性エチレン性不飽和単量体の総量1モルあたり0.00001〜0.01モルである、請求項1〜6のいずれか1項に記載の製造方法。   The usage-amount of a post-crosslinking agent is 0.00001-0.01 mol per 1 mol total amount of the water-soluble ethylenically unsaturated monomer attached | subjected to superposition | polymerization, It is any one of Claims 1-6. Manufacturing method. 請求項1〜7記載の製造方法で得られる、以下の性能を満たす吸水性樹脂粒子。
生理食塩水の吸水速度:60秒以内
生理食塩水の保水能:40〜60g/g
4.14kPa荷重下の生理食塩水吸水能:15ml/g以上
水可溶分:20質量%以下
質量平均粒子径:200〜600μm
Water-absorbent resin particles satisfying the following performance obtained by the production method according to claim 1.
Saline water absorption rate: within 60 seconds Saline retention capacity: 40-60 g / g
4. Saline water absorption capacity under 14 kPa load: 15 ml / g or more Water soluble content: 20 mass% or less Mass average particle size: 200-600 μm
請求項8記載の吸水性樹脂粒子と親水性繊維とからなる衛生材料。   A sanitary material comprising the water-absorbent resin particles according to claim 8 and hydrophilic fibers.
JP2004368996A 2004-12-21 2004-12-21 Method for producing water-absorbent resin particles and sanitary material using the same Active JP4969778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004368996A JP4969778B2 (en) 2004-12-21 2004-12-21 Method for producing water-absorbent resin particles and sanitary material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004368996A JP4969778B2 (en) 2004-12-21 2004-12-21 Method for producing water-absorbent resin particles and sanitary material using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011207580A Division JP2012001735A (en) 2011-09-22 2011-09-22 Method of manufacturing water-absorbing resin particle, and sanitation material using the particle

Publications (2)

Publication Number Publication Date
JP2006176570A JP2006176570A (en) 2006-07-06
JP4969778B2 true JP4969778B2 (en) 2012-07-04

Family

ID=36730975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368996A Active JP4969778B2 (en) 2004-12-21 2004-12-21 Method for producing water-absorbent resin particles and sanitary material using the same

Country Status (1)

Country Link
JP (1) JP4969778B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001735A (en) * 2011-09-22 2012-01-05 Sumitomo Seika Chem Co Ltd Method of manufacturing water-absorbing resin particle, and sanitation material using the particle
WO2016103872A1 (en) * 2014-12-25 2016-06-30 ユニ・チャーム株式会社 Absorbent material, and sanitary product equipped with absorbent material
WO2022163849A1 (en) 2021-01-29 2022-08-04 株式会社日本触媒 Method for producing water-absorbent resin

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101391093B1 (en) * 2006-07-24 2014-04-30 스미또모 세이까 가부시키가이샤 Process for production of water-absorbable resin
DE102006060156A1 (en) * 2006-12-18 2008-06-19 Evonik Stockhausen Gmbh Water-absorbing polymer structures produced using polymer dispersions
US9221030B2 (en) 2011-03-28 2015-12-29 Sumitomo Seika Chemicals Co., Ltd. Method for producing water-absorbent resin
TWI513713B (en) 2011-04-21 2015-12-21 Sumitomo Seika Chemicals Method for producing water-absorbent resin
JP5917829B2 (en) * 2011-05-11 2016-05-18 住友精化株式会社 Water-absorbing resin and method for producing the same
JP2016028116A (en) 2014-07-11 2016-02-25 住友精化株式会社 Water-absorbing resin and water-absorbing article
JP5766344B1 (en) 2014-07-11 2015-08-19 住友精化株式会社 Water absorbent resin and absorbent article
JP5719078B1 (en) 2014-07-11 2015-05-13 住友精化株式会社 Method for producing water absorbent resin
JP5893117B2 (en) 2014-07-11 2016-03-23 住友精化株式会社 Water absorbent resin and absorbent article
JP5893116B2 (en) 2014-07-11 2016-03-23 住友精化株式会社 Water absorbent resin and method for producing water absorbent resin
JP2016121297A (en) * 2014-12-25 2016-07-07 住友精化株式会社 Water absorptive resin composition
KR20180067940A (en) 2016-12-13 2018-06-21 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
CN110325559A (en) * 2017-03-02 2019-10-11 住友精化株式会社 Water-absorbing resins and absorbent commodity
WO2018180864A1 (en) * 2017-03-29 2018-10-04 住友精化株式会社 Water-absorbing resin
KR20200062233A (en) * 2017-10-12 2020-06-03 스미토모 세이카 가부시키가이샤 Absorbent resin and absorbent article
KR20200104312A (en) 2018-01-18 2020-09-03 스미토모 세이카 가부시키가이샤 Water absorbent resin
JP7129490B2 (en) * 2018-12-12 2022-09-01 住友精化株式会社 Water Absorbent Resin Particles, Absorbent, Absorbent Article, and Method for Measuring Liquid Suction Force
JP7443330B2 (en) 2019-03-08 2024-03-05 住友精化株式会社 Water-absorbing resin particles and their manufacturing method, absorbers, absorbent articles, and methods for adjusting penetration rate
US20220143574A1 (en) * 2019-03-08 2022-05-12 Sumitomo Seika Chemicals Co., Ltd. Water absorbing resin particles and method for producing same, absorbent body, and absorbent article
KR20210137066A (en) * 2019-03-08 2021-11-17 스미토모 세이카 가부시키가이샤 Absorbent resin particles, absorbent body and absorbent article

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153906A (en) * 1988-07-04 1990-06-13 Idemitsu Petrochem Co Ltd Production of polyacrylic acid metallic salt
JP2938920B2 (en) * 1990-01-31 1999-08-25 住友精化株式会社 Method for producing water absorbent resin
JPH05247124A (en) * 1991-03-15 1993-09-24 Mitsubishi Petrochem Co Ltd Production of highly water absorbing polymer
JP3827354B2 (en) * 1996-01-16 2006-09-27 花王株式会社 Method for producing superabsorbent polymer
JP3939988B2 (en) * 2002-01-16 2007-07-04 住友精化株式会社 Method for producing water absorbent resin
EP1609810B1 (en) * 2003-03-17 2013-01-16 Sumitomo Seika Chemicals Co., Ltd. Process for production of water-absorbing resin particles
JPWO2004101628A1 (en) * 2003-05-13 2006-07-13 住友精化株式会社 Method for producing water absorbent resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001735A (en) * 2011-09-22 2012-01-05 Sumitomo Seika Chem Co Ltd Method of manufacturing water-absorbing resin particle, and sanitation material using the particle
WO2016103872A1 (en) * 2014-12-25 2016-06-30 ユニ・チャーム株式会社 Absorbent material, and sanitary product equipped with absorbent material
JP2016120083A (en) * 2014-12-25 2016-07-07 ユニ・チャーム株式会社 Absorber and sanitary product comprising absorber
CN107106366A (en) * 2014-12-25 2017-08-29 尤妮佳股份有限公司 Absorber and the amenities for possessing absorber
WO2022163849A1 (en) 2021-01-29 2022-08-04 株式会社日本触媒 Method for producing water-absorbent resin

Also Published As

Publication number Publication date
JP2006176570A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
JP4969778B2 (en) Method for producing water-absorbent resin particles and sanitary material using the same
KR102567287B1 (en) absorbent resin particles
TWI535737B (en) Method for producing water-absorbent resin
JP5893117B2 (en) Water absorbent resin and absorbent article
TWI681976B (en) Water-absorbing resin and absorbent articles
JP2003088552A (en) Absorber and absorptive article using it
WO2016104374A1 (en) Water-absorbent resin composition
WO2018181548A1 (en) Water-absorbent resin particles
KR102592021B1 (en) absorbent article
EP3896097A1 (en) Water-absorptive resin particle, absorption body, and absorptive article
JP6828222B1 (en) A method for producing water-absorbent resin particles, an absorbent article, a method for producing water-absorbent resin particles, and a method for increasing the amount of absorption of the absorber under pressure.
JP2016027846A (en) Water-absorbing resin, and absorbent article
EP3896095A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
JP2012001735A (en) Method of manufacturing water-absorbing resin particle, and sanitation material using the particle
EP3960792A1 (en) Water-absorbent resin particles
JP7194197B2 (en) Absorbent bodies and absorbent articles
JP7386809B2 (en) Water-absorbing resin particles
JP6991389B2 (en) Water-absorbent resin particles and their manufacturing method
JP6780047B2 (en) Water-absorbent resin particles, absorbers and absorbent articles
JP2017155194A (en) Manufacturing method of water-absorbing resin and water-absorbing resin
JP6889811B2 (en) A method for producing water-absorbent resin particles, an absorbent article, a water-absorbent resin particle, and a method for suppressing liquid leakage of the absorbent article.
JP6752320B2 (en) Absorbent article and its manufacturing method
JP6780048B2 (en) Water-absorbent resin particles, absorbers and absorbent articles
WO2020122217A1 (en) Water-absorptive resin particle, absorption body, and absorptive article
WO2020122203A1 (en) Water-absorbing resin particles, method for evaluating water-absorbing resin particles for liquid leakage, method for producing water-absorbing resin particles, and absorbent article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100816

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100921

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4969778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250