JP6923181B2 - Fine particle separation device and fine particle separation method - Google Patents

Fine particle separation device and fine particle separation method Download PDF

Info

Publication number
JP6923181B2
JP6923181B2 JP2016233582A JP2016233582A JP6923181B2 JP 6923181 B2 JP6923181 B2 JP 6923181B2 JP 2016233582 A JP2016233582 A JP 2016233582A JP 2016233582 A JP2016233582 A JP 2016233582A JP 6923181 B2 JP6923181 B2 JP 6923181B2
Authority
JP
Japan
Prior art keywords
fine particles
microchannel
fine
particles
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016233582A
Other languages
Japanese (ja)
Other versions
JP2018089557A (en
Inventor
西迫 貴志
貴志 西迫
直友 鳥取
直友 鳥取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2016233582A priority Critical patent/JP6923181B2/en
Publication of JP2018089557A publication Critical patent/JP2018089557A/en
Application granted granted Critical
Publication of JP6923181B2 publication Critical patent/JP6923181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、微粒子分離デバイスおよび微粒子の分離方法に関する。 The present invention relates to a fine particle separation device and a fine particle separation method.

微粒子分離は、医療・生化学分野、生産分野などで幅広く必要とされている。例えば、生物学研究や診断医療、再生医療では、ある細胞集団から特定の細胞(癌細胞、血球、生細胞など)のみを分離、回収することが求められる。現在、こうした生体粒子の分離には遠心分離法、濾過法、蛍光活性化細胞分離法(FACS)、磁気細胞分離法(MACS)などが用いられている。しかしながら、遠心分離法は精度が低く、濾過法では目詰りが生じる難点がある。また、FACS、MACSでは蛍光や磁気ビーズによる標識が必要であり、複雑な前処理が求められ、装置も大型かつ高価である。 Fine particle separation is widely required in medical / biochemical fields, production fields, and the like. For example, in biological research, diagnostic medicine, and regenerative medicine, it is required to separate and collect only specific cells (cancer cells, blood cells, living cells, etc.) from a certain cell population. At present, a centrifugal separation method, a filtration method, a fluorescence activated cell separation method (FACS), a magnetic cell separation method (MACS), and the like are used for separating such biological particles. However, the centrifugal separation method has low accuracy, and the filtration method has a problem that clogging occurs. Further, FACS and MACS require labeling with fluorescence or magnetic beads, require complicated pretreatment, and the apparatus is large and expensive.

これらの課題の解決手段の一つとして近年、マイクロ流路デバイスによる微粒子分離手法(非特許文献1)が報告されており、分離手法は以下の2種類に大別される。
(1)能動的粒子分離手法:分離の際に、電場・音場・磁場などの外部エネルギーを必要とする手法
(2)受動的粒子分離手法:分離の際に、水力学的作用のみを用いる手法
能動的粒子分離手法の場合、外部エネルギーを用いることでシステムが複雑化するため、受動的分離手法にて高い分離性能を実現することが望まれる。近年,受動的分離手法の一つとして、deterministic lateral displacement (DLD)法による微粒子分離事例が報告されている(非特許文献2〜4)。DLDは流路に配列する支柱によって流体に生じる流れを利用した粒子分離法であり、DLD流路内において粒子の大きさ、形状、硬さなどの粒子特性に従って異なる軌道を取るため(図9)、こうした微粒子の特性に基づき簡便に粒子を分離できる。本手法を用いて、10 nmの高分離分解能や,10 mL/min高処理量の粒子分離を実現した事例(非特許文献3)も報告されている。
In recent years, a fine particle separation method using a microchannel device (Non-Patent Document 1) has been reported as one of the means for solving these problems, and the separation method is roughly classified into the following two types.
(1) Active particle separation method: A method that requires external energy such as electric field, sound field, and magnetic field for separation.
(2) Passive particle separation method: A method that uses only hydraulic action during separation In the case of the active particle separation method, the system is complicated by using external energy, so the passive separation method is expensive. It is desired to realize separation performance. In recent years, as one of the passive separation methods, a case of fine particle separation by the deterministic lateral displacement (DLD) method has been reported (Non-Patent Documents 2 to 4). DLD is a particle separation method that utilizes the flow generated in the fluid by the columns arranged in the flow path, and takes different orbits in the DLD flow path according to the particle characteristics such as particle size, shape, and hardness (Fig. 9). , Particles can be easily separated based on the characteristics of these fine particles. An example (Non-Patent Document 3) has also been reported in which a high separation resolution of 10 nm and a high processing amount of 10 mL / min are used to achieve particle separation.

一方、DLDによる微粒子分離には、微粒子懸濁溶液をDLD流路に導入する際、特定の位置から微粒子を流入させるために,微粒子が懸濁されていない溶液(バッファ)を用い,両脇から微粒子懸濁溶液を挟み込むシースフロー型の流路構造(図10)、あるいはバッファの流れと流路壁面の間に微粒子懸濁溶液を挟み込む流路構造(非特許文献4)が必要とされてきた。従来、こうした流路構造がない場合、微粒子がDLD流路全域に幅広く分散してしまうので(図11)、DLDによる微粒子分離はできなかった。しかしながら、こうした流路構造を用いる場合、バッファによる分析試料の希釈、送液口の増加に伴う操作性の低下、デバイス構造の複雑化等の課題がある。 On the other hand, for the separation of fine particles by DLD, when the fine particle suspension solution is introduced into the DLD flow path, a solution (buffer) in which the fine particles are not suspended is used in order to allow the fine particles to flow in from a specific position, and from both sides. A sheath flow type flow path structure (FIG. 10) that sandwiches the fine particle suspension solution or a flow path structure that sandwiches the fine particle suspension solution between the flow of the buffer and the flow path wall surface (Non-Patent Document 4) has been required. .. Conventionally, if there is no such flow path structure, the fine particles are widely dispersed in the entire DLD flow path (FIG. 11), so that the fine particles cannot be separated by the DLD. However, when such a flow path structure is used, there are problems such as dilution of the analysis sample by a buffer, deterioration of operability due to an increase in the number of liquid feed ports, and complication of the device structure.

D. R. Gossett et al., Anal. Bioanal. Chem., 397, 3249-3267, 2010D. R. Gossett et al., Anal. Bioanal. Chem., 397, 3249-3267, 2010 L. R. Hung et al., Science, 304, 987-990, 2004.L. R. Hung et al., Science, 304, 987-990, 2004. J. McGrath et al., Lab Chip, 14, 4139-4158, 2014.J. McGrath et al., Lab Chip, 14, 4139-4158, 2014. N. Tottori et al., Biomicrofluidics, 10, 0414125, 2016N. Tottori et al., Biomicrofluidics, 10, 0414125, 2016

本発明は、このような課題を解決し、バッファを用いた微粒子懸濁溶液の挟み込みのための流路構造を用いない、微粒子懸濁試料流入用の送液流路のみを導入路として有する微粒子分離デバイスおよびそれを用いる微粒子の分離方法を提供するものである。 The present invention solves such a problem, and does not use a flow path structure for sandwiching a fine particle suspension solution using a buffer, and has only a liquid feed flow path for inflowing a fine particle suspension sample as an introduction path. It provides a separation device and a method for separating fine particles using the separation device.

本発明は上記の問題を解決するために、以下の発明を提供するものである。
(1)微粒子の分散された液体を流入させて,該微粒子をその特性にしたがって分離するための微粒子分離デバイスであり、
微粒子の流入口および流出口、微粒子フォーカス用マイクロ流路ならびに微粒子分離用マイクロ流路からなり;
該微粒子分離用マイクロ流路は、配列された支柱間の隙間で形成され、該微粒子分離用マイクロ流路を流れる微粒子の軌道を制御して微粒子の特性にしたがって微粒子を分離するように構成されてなり;ならびに
該微粒子フォーカス用マイクロ流路は,該微粒子分離用マイクロ流路の前段に導入路として設けられ、
流入口から導入された液体中の微粒子を,慣性力により,単一流路中の流れに沿った単一または複数本の線状に局所的に配列させるように構成されてなり、
該微粒子分離用マイクロ流路の単一または複数の特定部位に微粒子が集中して配列された状態で流入するように構成されてなる;ことを特徴とする微粒子分離デバイス。
The present invention provides the following invention in order to solve the above problems.
(1) A fine particle separation device for inflowing a liquid in which fine particles are dispersed and separating the fine particles according to their characteristics.
It consists of an inlet and outlet for fine particles, a microchannel for focusing on fine particles, and a microchannel for separating fine particles;
The fine particle separation microchannel is formed in a gap between the arranged columns, and is configured to control the trajectory of the fine particles flowing through the fine particle separation microchannel to separate the fine particles according to the characteristics of the fine particles. The microchannel for focusing on fine particles is provided as an introduction path in front of the microchannel for separating fine particles.
The fine particles in the liquid introduced from the inflow port are configured to be locally arranged in a single or multiple linear lines along the flow in a single flow path by inertial force.
A fine particle separation device, characterized in that the fine particles are configured to flow into a single or a plurality of specific sites of the fine particle separation microchannel in a concentrated and arranged state;

(2)微粒子をその大きさ、形状または硬さに基づき分離する上記(1)に記載の微粒子分離デバイス。
(3)微粒子フォーカス用マイクロ流路において、流れに沿った単一本、2本または3本の線状に微粒子が慣性力によりフォーカスされる上記(1)または(2)に記載の微粒子分離デバイス。
(4)微粒子が、ポリマー微粒子、生物系微粒子、液滴、金属微粒子、および非金属粒子から選ばれる上記(1)〜(3)のいずれかに記載の微粒子分離デバイス。
(2) The fine particle separation device according to (1) above, which separates fine particles based on their size, shape or hardness.
(3) The fine particle separation device according to (1) or (2) above, wherein the fine particles are focused by inertial force in a single, two or three linear lines along the flow in the fine particle focusing microchannel. ..
(4) The fine particle separation device according to any one of (1) to (3) above, wherein the fine particles are selected from polymer fine particles, biological fine particles, droplets, metal fine particles, and non-metal particles.

(5)微粒子の分散された液体が水性懸濁液である上記(1)〜(4)のいずれかに記載の微粒子分離デバイス。
(6)該微粒子分離用マイクロ流路が、配列された、単一の分離直径を有する支柱間の隙間で形成される上記(1)〜(5)のいずれかに記載の微粒子分離デバイス。
(7)該微粒子分離用マイクロ流路が、配列された、複数の分離直径を有する支柱間の隙間で形成される上記(1)〜(5)のいずれかに記載の微粒子分離デバイス。
(5) The fine particle separation device according to any one of (1) to (4) above, wherein the liquid in which the fine particles are dispersed is an aqueous suspension.
(6) The fine particle separation device according to any one of (1) to (5) above, wherein the fine particle separation microchannels are formed in a gap between columns having a single separation diameter in which they are arranged.
(7) The fine particle separation device according to any one of (1) to (5) above, wherein the fine particle separation microchannels are formed in gaps between columns having a plurality of separation diameters arranged.

(8)微粒子の分散された液体を微粒子フォーカス用マイクロ流路に導入し、導入された液体中の微粒子を,慣性力により,単一流路中の流れに沿った単一または複数本の線状に局所的に配列させ;
配列された支柱間の隙間で形成された微粒子分離用マイクロ流路の単一または複数の特定部位に微粒子が集中して配列された状態で、微粒子の分散された液体を流入させ;
該微粒子分離用マイクロ流路を流れる微粒子の軌道を制御して微粒子の特性にしたがって微粒子を分離し、該微粒子分離用マイクロ流路から流出させることを特徴とする微粒子の分離方法。
(8) A liquid in which fine particles are dispersed is introduced into a microchannel for focusing on fine particles, and the fine particles in the introduced liquid are linearly arranged along a flow in a single channel by inertial force. Locally arranged in
In a state where the fine particles are concentrated and arranged in a single or a plurality of specific parts of the microchannel for separating fine particles formed in the gap between the arranged columns, the liquid in which the fine particles are dispersed is allowed to flow in.
A method for separating fine particles, which comprises controlling the trajectory of the fine particles flowing through the microchannel for separating fine particles, separating the fine particles according to the characteristics of the fine particles, and causing the fine particles to flow out from the microchannel for separating fine particles.

(9)微粒子をその大きさ、形状または硬さに基づき分離する上記(8)に記載の微粒子の分離方法。
(10)微粒子フォーカス用マイクロ流路において、流れに沿った単一本、2本または3本の線状に微粒子が慣性力によりフォーカスされる上記(8)または(9)に記載の微粒子の分離方法。
(11)微粒子が、ポリマー微粒子、生物系微粒子、液滴、金属微粒子、および非金属粒子から選ばれる上記(8)〜(10)のいずれかに記載の微粒子の分離方法。
(9) The method for separating fine particles according to (8) above, which separates fine particles based on their size, shape or hardness.
(10) Separation of the fine particles according to (8) or (9) above, wherein the fine particles are focused by inertial force in a single line, two or three linear lines along the flow in the fine particle focusing microchannel. Method.
(11) The method for separating fine particles according to any one of (8) to (10) above, wherein the fine particles are selected from polymer fine particles, biological fine particles, droplets, metal fine particles, and non-metal particles.

(12)微粒子の分散された液体が水性懸濁液である上記(8)〜(11)のいずれかに記載の微粒子の分離方法。
(13)該微粒子分離用マイクロ流路が、配列された、単一の分離直径を有する支柱間の隙間で形成される上記(8)〜(12)のいずれかに記載の微粒子の分離方法。
(14)該微粒子分離用マイクロ流路が、配列された、複数の分離直径を有する支柱間の隙間で形成される上記(8)〜(12)のいずれかに記載の微粒子の分離方法。
(12) The method for separating fine particles according to any one of (8) to (11) above, wherein the liquid in which the fine particles are dispersed is an aqueous suspension.
(13) The method for separating fine particles according to any one of (8) to (12) above, wherein the microchannels for separating fine particles are formed in a gap between columns having a single separation diameter in which the microchannels are arranged.
(14) The method for separating fine particles according to any one of (8) to (12) above, wherein the microchannels for separating fine particles are formed in gaps between columns having a plurality of separation diameters arranged.

本発明によれば、バッファを用いた微粒子懸濁溶液の挟み込みのための流路構造を用いない、微粒子懸濁試料流入用の送液流路のみを導入路として有する微粒子分離デバイスおよびそれを用いる微粒子の分離方法を提供するものである。さらに、刺激応答性高分子で支柱を作製する場合、刺激制御によって流路幾何形状を変化させることにより、粒子軌道の変化の境界となる粒子直径である分離直径を調節し得る微粒子分離デバイスおよびそれを用いる微粒子の分離方法を提供し得る。 According to the present invention, a fine particle separation device having only a liquid feeding flow path for inflowing a fine particle suspension sample as an introduction path without using a flow path structure for sandwiching the fine particle suspension solution using a buffer, and a fine particle separation device thereof are used. It provides a method for separating fine particles. Furthermore, when the strut is made of a stimulus-responsive polymer, a particle separation device capable of adjusting the separation diameter, which is the particle diameter that is the boundary of the change in the particle trajectory, by changing the flow path geometry by stimulus control and the like. Can provide a method for separating fine particles using.

本発明の慣性力による微粒子フォーカス用マイクロ流路の断面形状,微粒子のフォーカス位置,および観察方向の関係を示す図。The figure which shows the relationship between the cross-sectional shape of the microchannel for fine particle focusing by the inertial force of this invention, the focus position of fine particles, and the observation direction. 微粒子フォーカス用マイクロ流路において微粒子が例えば図1(a),(e)に示すように単一線状にフォーカスされる場合における微粒子分離マイクロ流路での微粒子分離例の概念図。A conceptual diagram of an example of fine particle separation in a fine particle separation microchannel when fine particles are focused in a single line as shown in FIGS. 1 (a) and 1 (e), for example, in the fine particle focusing microchannel. 微粒子フォーカス用マイクロ流路において微粒子が例えば図1(b)に示すように2本線状にフォーカスされる場合における微粒子分離マイクロ流路での微粒子分離例の概念図。A conceptual diagram of an example of fine particle separation in a fine particle separation microchannel when fine particles are focused in a two-line shape as shown in FIG. 1 (b), for example, in the fine particle focusing microchannel. 微粒子フォーカス用マイクロ流路において微粒子が例えば図1(c),(d)に示すように3本線状にフォーカスされる場合における微粒子分離マイクロ流路での微粒子分離例の概念図。A conceptual diagram of an example of fine particle separation in a fine particle separation microchannel when fine particles are focused in a three-line shape as shown in FIGS. 1 (c) and 1 (d), for example, in the fine particle focusing microchannel. 本発明の微粒子分離デバイスの1実施態様を示す概要図。The schematic which shows one Embodiment of the fine particle separation device of this invention. 微粒子懸濁溶液を本発明の微粒子分離デバイスに導入した際の微粒子フォーカス用マイクロ流路における慣性力による微粒子フォーカシングの様子を示す図。It is a figure which shows the state of the fine particle focusing by the inertial force in the microchannel for fine particle focusing when the fine particle suspension solution is introduced into the fine particle separation device of this invention. 異なる流量条件下における微粒子フォーカス用マイクロ流路での微粒子フォーカシングの様子を示す図。The figure which shows the state of the particle focusing in the particle focusing microchannel under different flow rate conditions. 流量を1mL/hとした場合の微粒子分離用マイクロ流路での微粒子分離の様子を示す図。The figure which shows the state of the fine particle separation in the microchannel for fine particle separation when the flow rate is 1 mL / h. DLD流路の概要図と原理を示す図。The schematic diagram of the DLD flow path and the figure which shows the principle. シースフロー型流路を用いたDLD微粒子分離デバイスを示す図。The figure which shows the DLD fine particle separation device using the sheath flow type flow path. シースフロー型流路構造がない場合のDLD流路入口での微粒子軌道を示す図。The figure which shows the fine particle trajectory at the DLD flow path inlet when there is no sheath flow type flow path structure.

本発明の微粒子分離デバイスは、流入された微粒子をその特性にしたがって分離するための微粒子分離デバイスである。微粒子分離デバイスは、微粒子懸濁液の流入口および流出口、微粒子フォーカス用マイクロ流路ならびに微粒子分離用マイクロ流路からなり、微粒子分離用マイクロ流路は、配列された支柱間の隙間で形成される。本発明においては、微粒子分離用マイクロ流路を流れる微粒子の軌道を制御して微粒子の特性にしたがって微粒子を分離するように構成されてなる。 The fine particle separation device of the present invention is a fine particle separation device for separating inflowing fine particles according to their characteristics. The fine particle separation device comprises an inlet and outlet of a fine particle suspension, a microchannel for focusing on fine particles, and a microchannel for separating fine particles, and the microchannel for separating fine particles is formed in a gap between arranged columns. NS. In the present invention, the trajectory of the fine particles flowing through the microchannel for separating fine particles is controlled so that the fine particles are separated according to the characteristics of the fine particles.

本発明の微粒子分離デバイスにおいては、微粒子フォーカス用マイクロ流路が、微粒子分離用マイクロ流路の前段に導入路として設けられ、流入口から導入された液体中の微粒子を,慣性力により,単一流路中の流れに沿った単一または複数本(たとえば、2本または3本)の線状に局所的に配列させるように構成されてなり、微粒子分離用マイクロ流路の単一または複数の特定部位に微粒子が集中して配列された状態で流入するように構成されてなる。 In the fine particle separation device of the present invention, the fine particle focusing microchannel is provided as an introduction path in front of the fine particle separation microchannel, and the fine particles in the liquid introduced from the inflow port are sent into a single flow by inertial force. It is configured to be locally arranged in a single or multiple (eg, 2 or 3) linear lines along the flow along the path to identify single or multiple microchannels for particle separation. It is configured so that the fine particles flow into the site in a concentrated and arranged state.

支柱は、好適には、従来のDLDにおいて一般的に用いられている材料、たとえばポリジメチルシロキサン(PDMS)等のポリマー樹脂,またはSi,ガラス等から構成され得る。さらに、刺激応答性高分子材料が用いられ得、刺激に対する収縮または膨潤による支柱形状の変化の度合いにより、マイクロ流路を流れる微粒子の軌道を制御して微粒子の特性により微粒子を分離するように構成されてなる。微粒子の特性としては、好適には大きさ,形状,または硬さが挙げられる。 The struts can preferably be made of materials commonly used in conventional DLDs, such as polymer resins such as polydimethylsiloxane (PDMS), Si, glass and the like. Further, a stimulus-responsive polymer material can be used, and the trajectory of the fine particles flowing through the microchannel is controlled according to the degree of change in the shape of the column due to contraction or swelling in response to the stimulus, and the fine particles are separated according to the characteristics of the fine particles. Being done. The characteristics of the fine particles preferably include size, shape, or hardness.

支柱を形成する刺激応答性高分子材料は、温度、光、電場もしくは磁場等の物理的刺激、またはpH、溶液組成、イオン強度等の化学的刺激に応答するハイドロゲルである。たとえば、温度応答性高分子材料は、ハイドロゲルであり、水分を大量に含むことにより膨潤する性質を有するポリマーであり、温度変化による可逆的な水和・脱水和に伴う膨潤・収縮を生じる機能を有する。温度応答性高分子材料としては、ポリ-N-イソプロピルアクリルアミド(PNIPAM)、ポリ−N-ビニルアルキルアミド、ポリビニルアルキルエーテル、等が挙げられるが、相転移温度が30℃付近であり生物系微粒子への適用が可能である点や,緩やかな温度応答性を示すため支柱形状を細く制御可能である点からポリ-N-イソプロピルアクリルアミドが好適である。光応答性高分子材料としては、アゾベンゼン含有架橋構造を有するポリアクリルアミドハイドロゲル、等が挙げられる。pH応答性高分子材料としては、側鎖に嵩高い疎水性基を有するカルボキシ基含有ポリマー、等が挙げられる。電場応答性高分子材料としては、ポリアクリルアミド−2−メチルプロパンスルホン酸(PAMPS)、等が挙げられる。 The stimulus-responsive polymer material that forms the struts is a hydrogel that responds to physical stimuli such as temperature, light, electric or magnetic fields, or chemical stimuli such as pH, solution composition, and ionic strength. For example, a temperature-responsive polymer material is a hydrogel, which is a polymer having a property of swelling when it contains a large amount of water, and has a function of causing swelling / contraction due to reversible hydration / dehydration due to temperature change. Has. Examples of the temperature-responsive polymer material include poly-N-isopropylacrylamide (PNIPAM), poly-N-vinylalkylamide, polyvinylalkyl ether, etc., but the phase transition temperature is around 30 ° C. Poly-N-isopropylacrylamide is suitable because it can be applied and the shape of the strut can be finely controlled because it exhibits a gentle temperature response. Examples of the photoresponsive polymer material include polyacrylamide hydrogel having an azobenzene-containing crosslinked structure. Examples of the pH-responsive polymer material include a carboxy group-containing polymer having a bulky hydrophobic group in the side chain. Examples of the electroactive polymer materials include polyacrylamide-2-methylpropanesulfonic acid (PAMPS) and the like.

分離される微粒子は、ラテックス等のポリマー微粒子、赤血球、生細胞等の生物系微粒子、液滴、金属微粒子、および金属酸化物等の非金属粒子、から選ばれる。 The fine particles to be separated are selected from polymer fine particles such as latex, biological fine particles such as erythrocytes and living cells, droplets, metal fine particles, and non-metal particles such as metal oxide.

微粒子の粒径は、通常、1nm〜1mm、好適には10nm〜100μmである。 The particle size of the fine particles is usually 1 nm to 1 mm, preferably 10 nm to 100 μm.

微粒子は例えば水性または油性懸濁液の形態で微粒子分離デバイスの流入口から導入される。水性懸濁液は、たとえば界面活性剤を添加した水溶液に微粒子を粒子濃度10〜1010/mL程度で懸濁した溶液とするのが好適である。水性懸濁液は、水を主成分とし、水と相溶性のあるアルコール類等の有機溶媒を含んでいてもよい。 The microparticles are introduced from the inlet of the microparticle separation device, for example in the form of an aqueous or oily suspension. The aqueous suspension is preferably a solution in which fine particles are suspended in an aqueous solution to which a surfactant is added at a particle concentration of about 10 2 to 10 10 / mL. The aqueous suspension contains water as a main component and may contain an organic solvent such as alcohols that is compatible with water.

本発明の微粒子分離デバイスは、流入口から導入された微粒子の配列を慣性力により整えるための微粒子フォーカス用マイクロ流路を微粒子分離用マイクロ流路の前段に設け、微粒子分離用マイクロ流路の特定位置に微粒子を集中させて導入するように構成されてなる。 In the fine particle separation device of the present invention, a fine particle focusing microchannel for arranging the arrangement of fine particles introduced from the inflow port by inertial force is provided in front of the fine particle separation microchannel, and the fine particle separation microchannel is specified. It is configured to concentrate and introduce fine particles at the position.

この微粒子フォーカス用マイクロ流路の形状は、
断面形状:長方形,正方形,半円形,三角形;
流路断面の縦横比(アスペクト比,AR):断面形状が横長長方形の場合、0 < AR < 1 ;断面形状が縦長長方形の場合、1 < AR;断面形状が,正方形の場合、AR =1
流路形状:直線または蛇行流路;
流路長さ:1 μm〜1 m、好適には1mm〜10cm;
流路幅:50nm 〜10 mm;
流路高さ:50nm 〜10 mm程度
から選ばれる。
(慣性力による粒子のフォーカシングに関する参考文献としては、H. Amini et al.,
Lab Chip, 2014,2739-2761およびJ. Kim et al., Lab Chip, 2016,16,992-1001が挙げら
れる。)
The shape of this microchannel for fine particle focus is
Cross-sectional shape: rectangular, square, semi-circular, triangular;
Aspect ratio (aspect ratio, AR) of the cross-section of the flow path: 0 <AR <1 when the cross-section is a horizontally long rectangle; 1 <AR when the cross-section is a vertically long rectangle; AR = 1 when the cross-section is square.
Channel shape: straight or meandering channel;
Channel length: 1 μm to 1 m, preferably 1 mm to 10 cm;
Channel width: 50 nm to 10 mm;
Channel height: Selected from about 50 nm to 10 mm.
(For references on particle focusing by inertial force, see H. Amini et al.,
Lab Chip, 2014, 2739-2761 and J. Kim et al., Lab Chip, 2016, 16, 992-1001. )

本発明の慣性力による微粒子フォーカス用マイクロ流路の断面形状,微粒子のフォーカス位置,および観察方向の関係を図1に示す。図1において、 (a) 横長長方形 0 < AR < 1; (b) 縦長長方形1 < AR,; (c) 正方形1 = AR,;(d) 三角形,;(e) 半円、 (上段) 流路断面上の微粒子フォーカス位置、 (下段)マイクロ流路を流路断面上の上辺と流れに垂直な方向から観察(上面視)した場合の粒子フォーカス位置を示す。 Fig. 1 shows the relationship between the cross-sectional shape of the microchannel for focusing on fine particles by the inertial force of the present invention, the focus position of fine particles, and the observation direction. In FIG. 1, (a) horizontal rectangle 0 <AR <1; (b) vertical rectangle 1 <AR ,; (c) square 1 = AR ,; (d) triangle ,; (e) semicircle, (upper) flow The particle focus position on the cross section of the road, and the (lower) particle focus position when the microchannel is observed from the upper side on the cross section of the channel and the direction perpendicular to the flow (top view).

微粒子フォーカス用マイクロ流路の断面形状が横長長方形の場合、粒子は流路断面上の長辺に沿って流路中央2箇所にフォーカスされる(図1 a)。なお,図に示すように,上面視した場合には,流路中央に単一の線状に粒子がフォーカスされた状態で観察される(図1 a)。この場合,微粒子分離部であるDLD流路には,粒子は単一の線状にフォーカスされた状態で導入された後,DLD流路内において分離される(図2)。図2は、微粒子フォーカス用マイクロ流路の断面形状が横長長方形(0 < AR <1)または半円断面形状の場合におけるDLD流路での微粒子分離の概念図を示し、(a)分離直径より大きい粒子が出口1に移動し回収され,分離直径より小さい粒子は出口2から回収される 、(b) 分離直径より大きい粒子が出口3に移動し回収され,分離直径より小さい粒子は出口2から回収される。この場合の長方形断面のアスペクト比(AR)は0 < AR < 1,好適には,0.3 < AR < 0.7である。アスペクト比ARは図1においてb/aで示される。 When the cross-sectional shape of the microchannel for focusing on fine particles is a horizontally long rectangle, the particles are focused on two points in the center of the flow path along the long side on the cross-section of the flow path (Fig. 1a). As shown in the figure, when viewed from above, the particles are observed in a single linearly focused state in the center of the flow path (Fig. 1a). In this case, the particles are introduced into the DLD flow path, which is the fine particle separation part, in a single linearly focused state, and then separated in the DLD flow path (Fig. 2). FIG. 2 shows a conceptual diagram of particle separation in the DLD flow path when the cross-sectional shape of the microchannel for fine particle focus is a horizontally long rectangular (0 <AR <1) or a semicircular cross-sectional shape, and (a) from the separation diameter. Larger particles move to outlet 1 and are collected, particles smaller than the separation diameter are collected from outlet 2, (b) particles larger than the separation diameter move to outlet 3 and are collected, and particles smaller than the separation diameter are collected from outlet 2. Will be recovered. In this case, the aspect ratio (AR) of the rectangular cross section is 0 <AR <1, preferably 0.3 <AR <0.7. The aspect ratio AR is shown by b / a in FIG.

一方,微粒子フォーカス用マイクロ流路の断面形状が縦長長方形の場合,粒子は流路断面上の長辺に沿って2箇所にフォーカスされる.なお,流路を上面視した場合には左右の流路壁面付近に1箇所ずつ計2箇所に粒子がフォーカスされた状態で観察される(図1b).この場合,微粒子分離用マイクロ流路であるDLD流路には,粒子は2箇所にフォーカスされた状態で導入された後,DLD流路の幾何形状を調節することによりDLD流路内で分離される(図3)。図3は、微粒子フォーカス用マイクロ流路の断面形状が縦長長方形(1 < AR)の場合におけるDLD流路での微粒子分離の概念図を示す。分離直径より大きい粒子は出口2に移動し,分離直径より小さい粒子は出口1, 3から回収される。この場合の長方形断面のアスペクト比(AR)は1 < AR,好適には,1.4 < AR < 3.3である。 On the other hand, when the cross-sectional shape of the microchannel for fine particle focus is a vertically long rectangle, the particles are focused at two points along the long side on the cross-sectional surface of the channel. When the flow path is viewed from above, the particles are observed in a state where the particles are focused on two places, one near the left and right flow path walls (Fig. 1b). In this case, the particles are introduced into the DLD flow path, which is a micro-channel for separating fine particles, in a state of being focused at two points, and then separated in the DLD flow path by adjusting the geometric shape of the DLD flow path. (Fig. 3). FIG. 3 shows a conceptual diagram of particle separation in the DLD flow path when the cross-sectional shape of the fine particle focusing microchannel is a vertically long rectangle (1 <AR). Particles larger than the separation diameter move to outlet 2, and particles smaller than the separation diameter are collected from outlets 1 and 3. In this case, the aspect ratio (AR) of the rectangular cross section is 1 <AR, preferably 1.4 <AR <3.3.

また,微粒子フォーカス用マイクロ流路の断面形状が正方形の場合,粒子は流路断面上の各辺に沿って4箇所にフォーカスされる(図1 c).なお,流路を上面視した場合には左右の流路壁面付近に1箇所ずつ,流路中央に1箇所の計3箇所に粒子がフォーカスされた状態で観察される(図1c)。この場合,粒子分離部であるDLD流路には,粒子は3箇所にフォーカスされた状態で導入された後,DLD流路内において分離される(図4)。図4は、微粒子フォーカス用マイクロ流路の断面形状が正方形 (AR = 1)または三角形の場合におけるDLD流路での微粒子分離の概念図である。(a, b) 分離直径より大きい粒子は出口2,4に移動し回収され,分離直径より小さい粒子は出口1, 3, 5から回収される。この場合の断面のアスペクト比(AR)はAR = 1である。 In addition, when the cross-sectional shape of the microchannel for fine particle focus is square, the particles are focused at four points along each side on the cross-section of the flow path (Fig. 1c). When the flow path is viewed from above, the particles are observed in a state where the particles are focused on three places, one near the wall surfaces of the left and right flow paths and one in the center of the flow path (Fig. 1c). In this case, the particles are introduced into the DLD flow path, which is the particle separation part, in a focused state at three points, and then separated in the DLD flow path (Fig. 4). FIG. 4 is a conceptual diagram of fine particle separation in the DLD flow path when the cross-sectional shape of the fine particle focusing microchannel is square (AR = 1) or triangular. (a, b) Particles larger than the separation diameter move to outlets 2 and 4 and are collected, and particles smaller than the separation diameter are collected from outlets 1, 3 and 5. The aspect ratio (AR) of the cross section in this case is AR = 1.

また,微粒子フォーカス用マイクロ流路の断面形状が上述の形状以外の場合であっても,粒子は流路断面上の特定の位置にフォーカスされ得る。例えば,図1(d)に示すように断面が三角形である場合,断面上では3箇所に粒子をフォーカスさせることができ,図中の観察方向からは3本の線状に粒子がフォーカスされた状態が観察される。また,図1(e)に示すように断面が半円状である場合,断面上では2箇所に粒子をフォーカスさせることができ,図中の観察方向からは1本の線状に粒子がフォーカスされた状態が観察される。 Further, even if the cross-sectional shape of the microchannel for fine particle focusing is other than the above-mentioned shape, the particles can be focused at a specific position on the cross-sectional shape of the flow path. For example, when the cross section is triangular as shown in FIG. 1 (d), the particles can be focused on three points on the cross section, and the particles are focused on three linear lines from the observation direction in the figure. The condition is observed. Further, when the cross section is semicircular as shown in FIG. 1 (e), the particles can be focused on two places on the cross section, and the particles are focused on one line from the observation direction in the figure. The state is observed.

また,微粒子フォーカス用マイクロ流路の断面形状が同じであってもその向きを変えることで,上面視した場合のフォーカスの本数は変わり得る。例えば、図1(c)の正方形断面の流路を45度回転させる,あるいは図1(d)の三角形断面の流路を30度回転させる,あるいは図1(e)に示した半円断面の流路を90度回転させることで,上面視した場合のフォーカス位置を2本にすることができる。 Further, even if the cross-sectional shape of the microparticle focusing microchannel is the same, the number of focuses when viewed from above can be changed by changing the direction thereof. For example, the flow path of the square cross section of FIG. 1 (c) is rotated by 45 degrees, or the flow path of the triangular cross section of FIG. 1 (d) is rotated by 30 degrees, or the flow path of the semicircular cross section shown in FIG. 1 (e). By rotating the flow path by 90 degrees, it is possible to have two focus positions when viewed from above.

微粒子フォーカス用マイクロ流路の流れは、レイノルズ数Reが0.01〜2400あるいは層流状態が好適である。 The flow of the microchannel for fine particle focusing is preferably a Reynolds number Re of 0.01 to 2400 or a laminar flow state.

微粒子が慣性力による微粒子フォーカス用マイクロ流路から支柱配列構造を有する微粒子分離用マイクロ流路に導入される際の収束幅は、微粒子分離用マイクロ流路に配列された支柱間の隙間(d)と同等の収束幅であるのが好適である。たとえば、マイクロ流路デバイスは、温度応答性高分子であるポリ-N-イソプロピルアクリルアミド(PNIPAM)で作製した支柱配列間で形成されるDLD流路およびその流路を密封するためのポリジメチルシロキサン (polydimethylsiloxane:PDMS)流路から構成される。PNIPAMによるDLD支柱は、たとえば支柱直径(Dp) 20μm,支柱間隙間(d) 30μm、支柱配列の傾き(θ) 0.05 radのフィルムマスクを用いて、フォトリソグラフィによりガラス基板上に作製される。ここで、支柱配列の傾き(θ)は、平面図における支柱の配列方向の傾きである。DLD流路を密封するためのPDMS流路は、Si基板にエポキシ樹脂「EPON SU-8」をベースにしたネガ型フォトレジスト「SU-8」を用いて作製した鋳型からPDMSにパターンを転写することにより作製される。ガラス基板上に作製したDLD支柱とPDMS流路の位置合わせを行った後、貼り合わせてデバイスを形成する。 The convergence width when the fine particles are introduced from the fine particle focusing microchannel due to inertial force to the fine particle separation microchannel having a column arrangement structure is the gap between the columns arranged in the fine particle separation microchannel (d). It is preferable that the convergence width is equivalent to that of. For example, a microchannel device is a polydimethylsiloxane (polydimethylsiloxane) for sealing a DLD channel formed between strut sequences made of the temperature-responsive polymer poly-N-isopropylacrylamide (PNIPAM) and the channel. It consists of a polydimethylsulfonic: PDMS) flow path. A DLD strut by PNIPAM is produced on a glass substrate by photolithography using, for example, a film mask having a strut diameter (D p ) of 20 μm, a strut gap (d) of 30 μm, and a strut arrangement inclination (θ) of 0.05 rad. Here, the inclination (θ) of the column arrangement is the inclination in the arrangement direction of the columns in the plan view. The PDMS flow path for sealing the DLD flow path transfers a pattern from a mold prepared using a negative photoresist "SU-8" based on the epoxy resin "EPON SU-8" to PDMS on a Si substrate. It is produced by. After aligning the DLD strut made on the glass substrate with the PDMS flow path, they are bonded together to form a device.

本発明の1つの実施態様において、支柱としてPDMSを用いた流路の場合,エポキシ樹脂「EPON SU-8」やSiで流路の鋳型を作製した後,PDMSに流路形状パターンを転写し、Siを用いた流路の場合,Siをエッチングして用いるのが好適である。 In one embodiment of the present invention, in the case of a flow path using PDMS as a support, a flow path mold is made of epoxy resin “EPON SU-8” or Si, and then the flow path shape pattern is transferred to PDMS. In the case of a channel using Si, it is preferable to etch Si before use.

支柱の形状は、円柱に限るものではなく、いかなる柱状体であってもよい。支柱の配列は、分離する微粒子の大きさ、形状,硬さ等の粒子の特性に応じて、支柱形状,支柱直径、支柱間隙間(d)、支柱配列の傾き(θ)を好適に設定することによりなされ得る。 The shape of the support column is not limited to a cylinder, and may be any columnar body. For the arrangement of the columns, the shape of the columns, the diameter of the columns, the gap between the columns (d), and the inclination (θ) of the arrangement of the columns are preferably set according to the characteristics of the particles such as the size, shape, and hardness of the fine particles to be separated. Can be done by.

たとえば、微粒子の大きさによる分離の場合、支柱直径10nm〜10mm、支柱間隙間1nm〜10mmでかつ分離する微粒子直径より大、支柱配列の傾き0.01〜0.5rad.程度から設定される。支柱の配列は、単一の分離直径(すなわち流路の幾何形状によって粒子軌道の変化の境界となる粒子直径)を有するように構成されていても、または複数の分離直径を有するように構成されていてもよい。 For example, in the case of separation according to the size of the fine particles, the strut diameter is set from 10 nm to 10 mm, the gap between the strut is 1 nm to 10 mm, larger than the diameter of the separated fine particles, and the inclination of the strut arrangement is about 0.01 to 0.5 rad. The array of struts is configured to have a single separation diameter (ie, the particle diameter that borders the changes in the particle trajectory due to the geometry of the flow path), or to have multiple separation diameters. You may be.

本発明の微粒子の分離方法においては、微粒子の分散された液体を微粒子フォーカス用マイクロ流路に導入し、導入された液体中の微粒子を、慣性力により,単一流路中の流れに沿った単一または複数本の線状に局所的に配列させ;配列された支柱間の隙間で形成された微粒子分離用マイクロ流路の単一または複数の特定部位に微粒子が集中して配列された状態で、微粒子の分散された液体を流入させ;微粒子分離用マイクロ流路を流れる微粒子の軌道を制御して微粒子の特性にしたがって微粒子を分離し、該微粒子分離用マイクロ流路から流出させる。 In the method for separating fine particles of the present invention, a liquid in which fine particles are dispersed is introduced into a microchannel for focusing on fine particles, and the fine particles in the introduced liquid are simply introduced along a flow in a single flow path by an inertial force. Locally arranged in one or more linear lines; in a state where fine particles are concentrated and arranged in a single or multiple specific sites of a microchannel for separating fine particles formed in a gap between arranged columns. , The liquid in which the fine particles are dispersed is flowed in; the orbit of the fine particles flowing through the fine particle separation microchannel is controlled to separate the fine particles according to the characteristics of the fine particles, and the fine particles are discharged from the fine particle separation microchannel.

ここで、支柱は、好適には、従来のDLDにおいて一般的に用いられている材料、たとえばポリジメチルシロキサン(PDMS)等のポリマー樹脂,またはSi,ガラス等から構成され得る。さらに、刺激応答性高分子材料を用いて、刺激に対する収縮または膨潤による支柱形状の変化の度合いにより、マイクロ流路を流れる微粒子の軌道を制御して微粒子の特性にしたがって微粒子を分離するように構成してもよい。 Here, the stanchion may preferably be made of a material commonly used in conventional DLDs, such as a polymer resin such as polydimethylsiloxane (PDMS), Si, glass or the like. Furthermore, using a stimulus-responsive polymer material, the trajectory of the fine particles flowing through the microchannel is controlled according to the degree of change in the shape of the strut due to contraction or swelling in response to the stimulus, and the fine particles are separated according to the characteristics of the fine particles. You may.

微粒子の特性としては、その大きさ、形状または硬さが挙げられ、微粒子は、その大きさに基づき、その形状に基づき、またはその硬さに基づき分離されることになる。 The characteristics of the fine particles include their size, shape or hardness, and the fine particles will be separated based on their size, their shape, or their hardness.

支柱を形成する刺激応答性高分子材料は、温度、光、電場もしくは磁場等の物理的刺激、またはpH、溶液組成、イオン強度等の化学的刺激に応答するハイドロゲルである。たとえば、温度応答性高分子材料は、ハイドロゲルであり、水分を大量に含むことにより膨潤する性質を有するポリマーであり、温度変化による可逆的な水和・脱水和に伴う膨潤・収縮を生じる機能を有する。 The stimulus-responsive polymer material that forms the struts is a hydrogel that responds to physical stimuli such as temperature, light, electric or magnetic fields, or chemical stimuli such as pH, solution composition, and ionic strength. For example, a temperature-responsive polymer material is a hydrogel, which is a polymer having a property of swelling when it contains a large amount of water, and has a function of causing swelling / contraction due to reversible hydration / dehydration due to temperature change. Has.

分離される微粒子は、ラテックス等のポリマー微粒子、赤血球、生細胞等の生物系微粒子、金属微粒子、および金属酸化物等の非金属粒子、から選ばれる。 The fine particles to be separated are selected from polymer fine particles such as latex, biological fine particles such as erythrocytes and living cells, metal fine particles, and non-metal particles such as metal oxide.

微粒子の粒径は、通常、1nm〜1mm、好適には10nm〜100μmである。 The particle size of the fine particles is usually 1 nm to 1 mm, preferably 10 nm to 100 μm.

微粒子は例えば水性または油性懸濁液の形態で微粒子分離デバイスの流入口から導入される。水性懸濁液は、たとえば界面活性剤を添加した水溶液に微粒子を粒子濃度10〜1010/mL程度で懸濁した溶液とするのが好適である。水性懸濁液は、水を主成分とし、水と相溶性のあるアルコール類等の有機溶媒を含んでいてもよい。 The microparticles are introduced from the inlet of the microparticle separation device, for example in the form of an aqueous or oily suspension. The aqueous suspension is preferably a solution in which fine particles are suspended in an aqueous solution to which a surfactant is added at a particle concentration of about 10 2 to 10 10 / mL. The aqueous suspension contains water as a main component and may contain an organic solvent such as alcohols that is compatible with water.

本発明の微粒子分離方法においては、流入口から導入された微粒子の配列を慣性力により整えるための微粒子フォーカス用マイクロ流路を微粒子分離用マイクロ流路の前段に設け、微粒子分離用マイクロ流路の特定位置に微粒子を集中させるように構成されてなる。 In the fine particle separation method of the present invention, a fine particle focus microchannel for arranging the arrangement of fine particles introduced from the inflow port by inertial force is provided in front of the fine particle separation microchannel, and the fine particle separation microchannel is provided. It is configured to concentrate fine particles at a specific position.

この微粒子フォーカス用マイクロ流路の形状は、
断面形状:長方形,正方形,半円形,三角形;
流路断面の縦横比(アスペクト比,AR):断面形状が横長長方形の場合、0 < AR < 1 ;断面形状が縦長長方形の場合、1 < AR;断面形状が,正方形の場合、AR =1
流路形状:直線または蛇行流路;
流路長さ:1 μm〜1 m、好適には1mm〜10cm;
流路幅:50nm 〜10 mm;
流路高さ:50nm 〜10 mm程度
から選ばれる。
The shape of this microchannel for fine particle focus is
Cross-sectional shape: rectangular, square, semi-circular, triangular;
Aspect ratio (aspect ratio, AR) of the cross-section of the flow path: 0 <AR <1 when the cross-section is a horizontally long rectangle; 1 <AR when the cross-section is a vertically long rectangle; AR = 1 when the cross-section is square.
Channel shape: straight or meandering channel;
Channel length: 1 μm to 1 m, preferably 1 mm to 10 cm;
Channel width: 50 nm to 10 mm;
Channel height: Selected from about 50 nm to 10 mm.

本発明の慣性力による微粒子フォーカス用マイクロ流路の断面形状,微粒子のフォーカス位置,および観察方向の関係を図1に示す。図1において、 (a) 横長長方形 0 < AR < 1; (b) 縦長長方形1 < AR,; (c) 正方形1 = AR,;(d) 三角形,;(e) 半円、 (上段) 流路断面上の粒子フォーカス位置、 (下段)マイクロ流路を流路断面の上辺と流れに垂直な方向から観察(上面視)した場合の粒子フォーカス位置を示す。 Fig. 1 shows the relationship between the cross-sectional shape of the microchannel for focusing on fine particles by the inertial force of the present invention, the focus position of fine particles, and the observation direction. In FIG. 1, (a) horizontal rectangle 0 <AR <1; (b) vertical rectangle 1 <AR ,; (c) square 1 = AR ,; (d) triangle ,; (e) semicircle, (upper) flow The particle focus position on the road cross section, and the particle focus position when the (lower) microchannel is observed from the upper side of the flow path cross section and the direction perpendicular to the flow (top view).

マイクロ流路の断面形状が横長長方形の場合、粒子は流路断面上の長辺に沿って流路中央2箇所にフォーカスされる(図1 a)。なお,図に示すように,上面視した場合には,流路中央に単一の線状に粒子がフォーカスされた状態で観察される(図1 a)。この場合,微粒子分離部であるDLD流路には,粒子は単一の線状にフォーカスされた状態で導入された後,DLD流路内において分離される(図2)。図2は、微粒子フォーカス用マイクロ流路の断面形状が横長長方形(0 < AR <1)または半円断面形状の場合におけるDLD流路での微粒子分離の概念図を示し、(a)分離直径より大きい粒子が出口1に移動し回収され,分離直径より小さい粒子は出口2から回収される 、(b) 分離直径より大きい粒子が出口3に移動し回収され,分離直径より小さい粒子は出口2から回収される。この場合の長方形断面のアスペクト比(AR)は0 < AR < 1,好適には,0.3 < AR < 0.7である。アスペクト比ARは図1においてb/aで示される。 When the cross-sectional shape of the microchannel is a horizontally long rectangle, the particles are focused at two points in the center of the channel along the long side on the cross section of the channel (Fig. 1a). As shown in the figure, when viewed from above, the particles are observed in a single linearly focused state in the center of the flow path (Fig. 1a). In this case, the particles are introduced into the DLD flow path, which is the fine particle separation part, in a single linearly focused state, and then separated in the DLD flow path (Fig. 2). FIG. 2 shows a conceptual diagram of particle separation in the DLD flow path when the cross-sectional shape of the microchannel for fine particle focus is a horizontally long rectangular (0 <AR <1) or a semicircular cross-sectional shape, and (a) from the separation diameter. Larger particles move to outlet 1 and are collected, particles smaller than the separation diameter are collected from outlet 2, (b) particles larger than the separation diameter move to outlet 3 and are collected, and particles smaller than the separation diameter are collected from outlet 2. Will be recovered. In this case, the aspect ratio (AR) of the rectangular cross section is 0 <AR <1, preferably 0.3 <AR <0.7. The aspect ratio AR is shown by b / a in FIG.

一方,微粒子フォーカス用マイクロ流路の断面形状が縦長長方形の場合,粒子は流路断面上の長辺に沿って2箇所にフォーカスされる.なお,流路を上面視した場合には左右の流路壁面付近に1箇所ずつ計2箇所に粒子がフォーカスされた状態で観察される(図1b).この場合,微粒子分離用マイクロ流路であるDLD流路には,粒子は2箇所にフォーカスされた状態で導入された後,DLD流路の幾何形状を調節することによりDLD流路内で分離される(図3)。図3は、微粒子フォーカス用マイクロ流路の断面形状が縦長長方形(1 < AR)の場合におけるDLD流路での微粒子分離の概念図を示す。分離直径より大きい粒子は出口2に移動し,分離直径より小さい粒子は出口1, 3から回収される。この場合の長方形断面のアスペクト比(AR)は1 < AR,好適には,1.4 < AR < 3.3である。 On the other hand, when the cross-sectional shape of the microchannel for fine particle focus is a vertically long rectangle, the particles are focused at two points along the long side on the cross-sectional surface of the channel. When the flow path is viewed from above, the particles are observed in a state where the particles are focused on two places, one near the left and right flow path walls (Fig. 1b). In this case, the particles are introduced into the DLD flow path, which is a micro-channel for separating fine particles, in a state of being focused at two points, and then separated in the DLD flow path by adjusting the geometric shape of the DLD flow path. (Fig. 3). FIG. 3 shows a conceptual diagram of particle separation in the DLD flow path when the cross-sectional shape of the fine particle focusing microchannel is a vertically long rectangle (1 <AR). Particles larger than the separation diameter move to outlet 2, and particles smaller than the separation diameter are collected from outlets 1 and 3. In this case, the aspect ratio (AR) of the rectangular cross section is 1 <AR, preferably 1.4 <AR <3.3.

また,微粒子フォーカス用マイクロ流路の断面形状が正方形の場合,粒子は流路断面上の各辺に沿って4箇所にフォーカスされる(図1 c).なお,流路を上面視した場合には左右の流路壁面付近に1箇所ずつ,流路中央に1箇所の計3箇所に粒子がフォーカスされた状態で観察される(図1c)。この場合,粒子分離部であるDLD流路には,粒子は3箇所にフォーカスされた状態で導入された後,DLD流路内において分離される(図4)。図4は、微粒子フォーカス用マイクロ流路の断面形状が正方形 (AR = 1)または三角形の場合におけるDLD流路での微粒子分離の概念図である。(a, b) 分離直径より大きい粒子は出口2,4に移動し回収され,分離直径より小さい粒子は出口1, 3, 5から回収される。この場合の断面のアスペクト比(AR)はAR = 1である。 In addition, when the cross-sectional shape of the microchannel for fine particle focus is square, the particles are focused at four points along each side on the cross-section of the flow path (Fig. 1c). When the flow path is viewed from above, the particles are observed in a state where the particles are focused on three places, one near the wall surfaces of the left and right flow paths and one in the center of the flow path (Fig. 1c). In this case, the particles are introduced into the DLD flow path, which is the particle separation part, in a focused state at three points, and then separated in the DLD flow path (Fig. 4). FIG. 4 is a conceptual diagram of fine particle separation in the DLD flow path when the cross-sectional shape of the fine particle focusing microchannel is square (AR = 1) or triangular. (a, b) Particles larger than the separation diameter move to outlets 2 and 4 and are collected, and particles smaller than the separation diameter are collected from outlets 1, 3 and 5. The aspect ratio (AR) of the cross section in this case is AR = 1.

また,微粒子フォーカス用マイクロ流路の断面形状が上述の形状以外の場合であっても,粒子は流路断面上の特定の位置にフォーカスされ得る。例えば,図1(d)に示すように断面が三角形である場合,断面上では3箇所に粒子をフォーカスさせることができ,図中の観察方向からは3本の線状に粒子がフォーカスされた状態が観察される。また,図1(e)に示すように断面が半円状である場合,断面上では2箇所に粒子をフォーカスさせることができ,図中の観察方向からは1本の線状に粒子がフォーカスされた状態が観察される。 Further, even if the cross-sectional shape of the microchannel for fine particle focusing is other than the above-mentioned shape, the particles can be focused at a specific position on the cross-sectional shape of the flow path. For example, when the cross section is triangular as shown in FIG. 1 (d), the particles can be focused on three points on the cross section, and the particles are focused on three linear lines from the observation direction in the figure. The condition is observed. Further, when the cross section is semicircular as shown in FIG. 1 (e), the particles can be focused on two places on the cross section, and the particles are focused on one line from the observation direction in the figure. The state is observed.

また,微粒子フォーカス用マイクロ流路の断面形状が同じであってもその向きを変えることで,上面視した場合のフォーカスの本数は変わり得る。例えば、図1(c)の正方形断面の流路を45度回転させる,あるいは図1(d)の三角形断面の流路を30度回転させる,あるいは図1(e)に示した半円断面の流路を90度回転させることで,上面視した場合のフォーカス位置を2本にすることができる。 Further, even if the cross-sectional shape of the microparticle focusing microchannel is the same, the number of focuses when viewed from above can be changed by changing the direction thereof. For example, the flow path of the square cross section of FIG. 1 (c) is rotated by 45 degrees, or the flow path of the triangular cross section of FIG. 1 (d) is rotated by 30 degrees, or the flow path of the semicircular cross section shown in FIG. 1 (e). By rotating the flow path by 90 degrees, it is possible to have two focus positions when viewed from above.

微粒子フォーカス用マイクロ流路の流れは、レイノルズ数Reが0.01〜2400あるいは層流状態が好適である。 The flow of the microchannel for fine particle focusing is preferably a Reynolds number Re of 0.01 to 2400 or a laminar flow state.

微粒子が慣性力による微粒子フォーカス用マイクロ流路から支柱配列構造を有する微粒子分離用マイクロ流路に導入される際の収束幅は、微粒子分離用マイクロ流路に配列された支柱間の隙間(d)と同等の収束幅であるのが好適である。たとえば、マイクロ流路デバイスは、温度応答性高分子であるポリ-N-イソプロピルアクリルアミド(PNIPAM)で作製した支柱配列間で形成されるDLD流路およびその流路を密封するためのポリジメチルシロキサン (polydimethylsiloxane:PDMS)流路から構成される。PNIPAMによるDLD支柱は、たとえば支柱直径(Dp) 20μm,支柱間隙間(d) 30μm、支柱配列の傾き(θ) 0.05 radのフィルムマスクを用いて、フォトリソグラフィによりガラス基板上に作製される。ここで、支柱配列の傾き(θ)は、平面図における支柱の配列方向の傾きである。DLD流路を密封するためのPDMS流路は、Si基板にエポキシ樹脂「EPON SU-8」をベースにしたネガ型フォトレジスト「SU-8」を用いて作製した鋳型からPDMSにパターンを転写することにより作製される。ガラス基板上に作製したDLD支柱とPDMS流路の位置合わせを行った後、貼り合わせてデバイスを形成する。 The convergence width when the fine particles are introduced from the fine particle focusing microchannel due to inertial force to the fine particle separation microchannel having a column arrangement structure is the gap between the columns arranged in the fine particle separation microchannel (d). It is preferable that the convergence width is equivalent to that of. For example, a microchannel device is a polydimethylsiloxane (polydimethylsiloxane) for sealing a DLD channel formed between strut sequences made of the temperature-responsive polymer poly-N-isopropylacrylamide (PNIPAM) and the channel. It consists of a polydimethylsulfonic: PDMS) flow path. A DLD strut by PNIPAM is produced on a glass substrate by photolithography using, for example, a film mask having a strut diameter (D p ) of 20 μm, a strut gap (d) of 30 μm, and a strut arrangement inclination (θ) of 0.05 rad. Here, the inclination (θ) of the column arrangement is the inclination in the arrangement direction of the columns in the plan view. The PDMS flow path for sealing the DLD flow path transfers a pattern from a mold prepared using a negative photoresist "SU-8" based on the epoxy resin "EPON SU-8" to PDMS on a Si substrate. It is produced by. After aligning the DLD strut made on the glass substrate with the PDMS flow path, they are bonded together to form a device.

本発明の1つの実施態様において、支柱としてPDMSを用いた流路の場合,エポキシ樹脂「EPON SU-8」やSiで流路の鋳型を作製した後,PDMSに流路形状パターンを転写し、Siを用いた流路の場合,Siをエッチングして用いるのが好適である。 In one embodiment of the present invention, in the case of a flow path using PDMS as a support, a flow path mold is made of epoxy resin “EPON SU-8” or Si, and then the flow path shape pattern is transferred to PDMS. In the case of a channel using Si, it is preferable to etch Si before use.

支柱の形状は、円柱に限るものではなく、いかなる柱状体であってもよい。支柱の配列は、分離する微粒子の大きさ、形状,硬さ等の粒子の特性に応じて、支柱形状,支柱直径、支柱間隙間(d)、支柱配列の傾き(θ)を好適に設定することによりなされ得る。 The shape of the support column is not limited to a cylinder, and may be any columnar body. For the arrangement of the columns, the shape of the columns, the diameter of the columns, the gap between the columns (d), and the inclination (θ) of the arrangement of the columns are preferably set according to the characteristics of the particles such as the size, shape, and hardness of the fine particles to be separated. Can be done by.

たとえば、微粒子の大きさによる分離の場合、支柱直径10nm〜10mm、支柱間隙間1nm〜10mmでかつ分離する微粒子直径より大、支柱配列の傾き0.01〜0.5rad.程度から設定される。支柱の配列は、単一の分離直径(すなわち流路の幾何形状によって粒子軌道の変化の境界となる粒子直径)を有するように構成されていても、または複数の分離直径を有するように構成されていてもよい。 For example, in the case of separation according to the size of the fine particles, the strut diameter is set from 10 nm to 10 mm, the gap between the strut is 1 nm to 10 mm, larger than the diameter of the separated fine particles, and the inclination of the strut arrangement is about 0.01 to 0.5 rad. The array of struts is configured to have a single separation diameter (ie, the particle diameter that borders the changes in the particle trajectory due to the geometry of the flow path), or to have multiple separation diameters. You may be.

本発明の微粒子の分離方法においては、微粒子の分散された液体を微粒子フォーカス用マイクロ流路に導入し、導入された液体中の微粒子を、慣性力により,単一流路中の流れに沿った単一または複数本の線状に局所的に配列させ;配列された支柱間の隙間で形成された微粒子分離用マイクロ流路の単一または複数の特定部位に微粒子が集中して配列された状態で、微粒子の分散された液体を流入させ;微粒子分離用マイクロ流路を流れる微粒子の軌道を制御して微粒子の特性にしたがって微粒子を分離し、該微粒子分離用マイクロ流路から流出させる。 In the method for separating fine particles of the present invention, a liquid in which fine particles are dispersed is introduced into a microchannel for focusing on fine particles, and the fine particles in the introduced liquid are simply introduced along a flow in a single flow path by an inertial force. Locally arranged in one or more linear lines; in a state where fine particles are concentrated and arranged in a single or multiple specific sites of a microchannel for separating fine particles formed in a gap between arranged columns. , The liquid in which the fine particles are dispersed is flowed in; the orbit of the fine particles flowing through the fine particle separation microchannel is controlled to separate the fine particles according to the characteristics of the fine particles, and the fine particles are discharged from the fine particle separation microchannel.

ここで、支柱は、好適には、従来のDLDにおいて一般的に用いられている材料、たとえばポリジメチルシロキサン(PDMS)等のポリマー樹脂,またはSi,ガラス等から構成され得る。さらに、刺激応答性高分子材料を用いて、刺激に対する収縮または膨潤による支柱形状の変化の度合いにより、マイクロ流路を流れる微粒子の軌道を制御して微粒子の特性にしたがって微粒子を分離するように構成してもよい。 Here, the stanchion may preferably be made of a material commonly used in conventional DLDs, such as a polymer resin such as polydimethylsiloxane (PDMS), Si, glass or the like. Furthermore, using a stimulus-responsive polymer material, the trajectory of the fine particles flowing through the microchannel is controlled according to the degree of change in the shape of the strut due to contraction or swelling in response to the stimulus, and the fine particles are separated according to the characteristics of the fine particles. You may.

微粒子の特性としては、その大きさ、形状または硬さが挙げられ、微粒子は、その大きさに基づき、その形状に基づき、またはその硬さに基づき分離されることになる。 The characteristics of the fine particles include their size, shape or hardness, and the fine particles will be separated based on their size, their shape, or their hardness.

支柱を形成する刺激応答性高分子材料は、温度、光、電場もしくは磁場等の物理的刺激、またはpH、溶液組成、イオン強度等の化学的刺激に応答するハイドロゲルである。たとえば、温度応答性高分子材料は、ハイドロゲルであり、水分を大量に含むことにより膨潤する性質を有するポリマーであり、温度変化による可逆的な水和・脱水和に伴う膨潤・収縮を生じる機能を有する。 The stimulus-responsive polymer material that forms the struts is a hydrogel that responds to physical stimuli such as temperature, light, electric or magnetic fields, or chemical stimuli such as pH, solution composition, and ionic strength. For example, a temperature-responsive polymer material is a hydrogel, which is a polymer having a property of swelling when it contains a large amount of water, and has a function of causing swelling / contraction due to reversible hydration / dehydration due to temperature change. Has.

分離される微粒子は、ラテックス等のポリマー微粒子、赤血球、生細胞等の生物系微粒子、金属微粒子、および金属酸化物等の非金属粒子、から選ばれる。 The fine particles to be separated are selected from polymer fine particles such as latex, biological fine particles such as erythrocytes and living cells, metal fine particles, and non-metal particles such as metal oxide.

微粒子の粒径は、通常、1nm〜1mm、好適には10nm〜100μmである。 The particle size of the fine particles is usually 1 nm to 1 mm, preferably 10 nm to 100 μm.

微粒子は例えば水性または油性懸濁液の形態で微粒子分離デバイスの流入口から導入される。水性懸濁液は、たとえば界面活性剤を添加した水溶液に微粒子を粒子濃度10〜1010/mL程度で懸濁した溶液とするのが好適である。水性懸濁液は、水を主成分とし、水と相溶性のあるアルコール類等の有機溶媒を含んでいてもよい。 The microparticles are introduced from the inlet of the microparticle separation device, for example in the form of an aqueous or oily suspension. The aqueous suspension is preferably a solution in which fine particles are suspended in an aqueous solution to which a surfactant is added at a particle concentration of about 10 2 to 10 10 / mL. The aqueous suspension contains water as a main component and may contain an organic solvent such as alcohols that is compatible with water.

つぎに、本発明において、粒子形状による分離を行う場合について説明する。たとえば、赤血球(厚み2μm、 直径6μm)などの円盤形状の粒子の場合、粒子の流れる姿勢によって、DLD流路内での粒子の見掛けの直径が変化し、分離挙動(Displacement mode, Zigzag mode)に影響を与えることが知られている。そのため,DLDの支柱に対して赤血球の姿勢(円盤の直径方向,厚み方向)を制御した分離手法(J. P. Beech et al., Lab Chip, 12, 1048-1051, 2012)や赤血球の回転を用いた分離手法(K. K. Zeming et al., Nat. Commun., 4, 1625, 2013)がこれまでに報告されているので、本発明の分離方法をこれらに適用することにより粒子形状による分離を行うことができる。 Next, in the present invention, a case where separation by particle shape is performed will be described. For example, in the case of disk-shaped particles such as red blood cells (thickness 2 μm, diameter 6 μm), the apparent diameter of the particles in the DLD flow path changes depending on the flow posture of the particles, resulting in separation behavior (Displacement mode, Zigzag mode). It is known to have an impact. Therefore, we used a separation method (JP Beech et al., Lab Chip, 12, 1048-1051, 2012) in which the posture of erythrocytes (diameter direction and thickness direction of the disk) was controlled with respect to the support of the DLD, and the rotation of erythrocytes. Since separation methods (KK Zeming et al., Nat. Commun., 4, 1625, 2013) have been reported so far, it is possible to perform separation by particle shape by applying the separation method of the present invention to these. can.

さらに、本発明において、粒子の硬さによる分離を行う場合について説明する。DLD流路内では,粒子にせん断応力が働くため、粒子の硬さの違いに従って、粒子が変形する度合いが異なる。たとえば、静止状態では同じ直径の粒子の場合であっても,より変形しやすい粒子は,変形しない粒子と比較して,DLD流路内での見かけの直径が小さくなる。すなわち,サイズが同じ粒子であっても,粒子の変形度合いの違いを利用した粒子分離が可能になる。たとえば,赤血球の場合において、通常の赤血球とマラリアに感染した赤血球とでは硬さが異なるため、硬さを指標とした赤血球の分離によって病気の検出などが期待される(T. Krueger et al., Biomicrofluidics, 8, 054114, 2014)。本発明の分離方法をこれらに適用することにより粒子の硬さによる分離を行うことができる。 Further, in the present invention, a case where separation is performed based on the hardness of the particles will be described. Since shear stress acts on the particles in the DLD flow path, the degree of deformation of the particles differs according to the difference in hardness of the particles. For example, even if the particles have the same diameter in the stationary state, the particles that are more easily deformed have a smaller apparent diameter in the DLD flow path than the particles that do not deform. That is, even if the particles have the same size, it is possible to separate the particles by utilizing the difference in the degree of deformation of the particles. For example, in the case of erythrocytes, since the hardness of normal erythrocytes and that of malaria-infected erythrocytes are different, it is expected that disease can be detected by separating erythrocytes using the hardness as an index (T. Krueger et al., Biomicrofluidics, 8, 054114, 2014). By applying the separation method of the present invention to these, separation can be performed according to the hardness of the particles.

実施例1
図5は、本発明の微粒子分離デバイスの1実施態様を示す概要図である。慣性力による微粒子フォーカス用マイクロ流路(導入路)とdeterministic lateral displacement (DLD)支柱配列を有する微粒子分離用マイクロ流路から構成される。導入路である微粒子フォーカス用マイクロ流路は、矩形断面(アスペクト比0.5)を有する直線流路(幅50μm、高さ25μm、長さ2.5cm)であり、下流のDLD流路(微粒子分離用マイクロ流路)のパラメータは、流路長23mm,流路幅3mm,支柱直径(D) 30μm、支柱間距離(d) 20μm、支柱配列の傾き0.05radとした。デバイスはSi基板にエポキシ樹脂「EPON SU-8」をベースにしたネガ型フォトレジスト「SU-8」を用いて作製した鋳型からポリジメチルシロキサン (PDMS)にパターンを転写することにより作製した。作製したPDMS流路とガラス基板を酸素プラズマ処理後に接着することにより形成した。
Example 1
FIG. 5 is a schematic view showing one embodiment of the fine particle separation device of the present invention. It is composed of a microchannel (introduction path) for focusing fine particles by inertial force and a microchannel for separating fine particles having a deterministic lateral displacement (DLD) strut arrangement. The microchannel for focusing on fine particles, which is the introduction path, is a linear channel (width 50 μm, height 25 μm, length 2.5 cm) having a rectangular cross section (aspect ratio 0.5), and is a downstream DLD channel (microparticle separation micro). The parameters of the flow path) were a flow path length of 23 mm, a flow path width of 3 mm, a column diameter (D p ) of 30 μm, a distance between columns (d) of 20 μm, and an inclination of the column arrangement of 0.05 rad. The device was made by transferring a pattern from a template made using a negative photoresist "SU-8" based on the epoxy resin "EPON SU-8" to polydimethylsiloxane (PDMS) on a Si substrate. It was formed by adhering the prepared PDMS flow path and a glass substrate after oxygen plasma treatment.

導入試料には、直径13μmと7μmのポリスチレンビーズ(Thermo Fisher社製,Bangs Laboratories社製)を0.1v/v%の界面活性剤Tween(登録商標)20(Sigma)水溶液に粒子濃度1.0×10/mLで懸濁した溶液を用意した。粒子懸濁溶液は、シリンジポンプ(KD Scientific社製, KDS200)にて送液した。 The introduction specimen diameter 13μm and 7μm polystyrene beads (Thermo Fisher Co., Bangs Laboratories Inc.) 0.1 v / v% of the surfactant Tween (R) 20 (Sigma) particle concentration 1.0 × 10 5 in an aqueous solution A solution suspended at / mL was prepared. The particle suspension solution was sent by a syringe pump (KD Scientific, KDS200).

粒子懸濁溶液を流量(Q)1mL/hでデバイスに導入した際の慣性力による微粒子のフォーカシングの様子を図6に示す。導入された微粒子は、微粒子フォーカス用マイクロ流路上流部では、ビーズが流路全体に分散した状態で流れる様子が確認された(図6a)。微粒子フォーカス用流路中流部では直径13μmのビーズが流路中央へと移動し(図6b)、微粒子フォーカス用流路下流部では直径13μmと7μmのビーズがいずれも流路中央へと移動した(図6c)様子が確認された。これは、微粒子が流路中央へと移動するために必要な流路長さは粒子直径の3乗に反比例するためである。一方、低流量(Q=0.5mL/h、0.1mL/h)に設定した際には、微粒子が流路中央へと十分には移動せず、Q=1mL/hで直径13μmと7μmのビーズが十分に流路中央に移動することが確認された(図7a〜c;図7は、異なる流量条件下における微粒子フォーカス用マイクロ流路での微粒子フォーカシングの様子を示す図である。)。これは、粒子が流路中央へと移動するために必要な流路長さは流速に反比例するためと考えられる。 FIG. 6 shows the focusing of the fine particles due to the inertial force when the particle suspension solution is introduced into the device at a flow rate (Q) of 1 mL / h. It was confirmed that the introduced fine particles flowed in a state where the beads were dispersed in the entire flow path in the upstream portion of the microchannel for focusing on the fine particles (FIG. 6a). Beads with a diameter of 13 μm moved to the center of the flow path in the middle part of the flow path for fine particle focus (Fig. 6b), and beads with diameters of 13 μm and 7 μm both moved to the center of the flow path in the downstream part of the flow path for fine particle focus (Fig. 6b). FIG. 6c) The situation was confirmed. This is because the flow path length required for the fine particles to move to the center of the flow path is inversely proportional to the cube of the particle diameter. On the other hand, when the flow rate was set to low (Q = 0.5 mL / h, 0.1 mL / h), the fine particles did not move sufficiently to the center of the flow path, and at Q = 1 mL / h, the diameters were 13 μm and 7 μm. It was confirmed that the beads sufficiently moved to the center of the flow path (FIGS. 7a to 7c; FIG. 7 is a diagram showing a state of particle focusing in the particle focusing microchannel under different flow rate conditions). It is considered that this is because the flow path length required for the particles to move to the center of the flow path is inversely proportional to the flow velocity.

流量を1mL/hに設定した際の、微粒子分離用マイクロ流路(DLD流路)での微粒子分離の様子を図8に示す。DLD流路の特定位置にフォーカスされた状態で微粒子が導入された後(図8a)、直径13μmのビーズはDLDの支柱配列の傾きに沿って進む置換モード(displacement mode)の軌道を取り、直径7μmのビーズは流れと同一方向に進むジグザグモード(zigzag mode)の軌道を取る様子が確認された(図8b)。DLD流路下流部では直径13μmと7μmのビーズが分離された後、出口1と出口2からそれぞれ回収される様子が確認された(図8c)。すなわち、シースフロー型のような,バッファにより微粒子懸濁溶液を挟み込むマイクロ流路構造を用いることなく、微粒子分離デバイスにより微粒子分離を実現した。 FIG. 8 shows a state of fine particle separation in the fine particle separation microchannel (DLD flow path) when the flow rate is set to 1 mL / h. After the fine particles are introduced in a focused state at a specific position in the DLD flow path (Fig. 8a), the beads with a diameter of 13 μm take a displacement mode trajectory that follows the inclination of the DLD strut arrangement and have a diameter. It was confirmed that the 7 μm beads take a zigzag mode orbit in the same direction as the flow (Fig. 8b). In the downstream part of the DLD flow path, it was confirmed that beads having diameters of 13 μm and 7 μm were separated and then collected from outlet 1 and outlet 2, respectively (FIG. 8c). That is, fine particle separation was realized by a fine particle separation device without using a microchannel structure in which a fine particle suspension solution is sandwiched by a buffer, such as a sheath flow type.

本発明によれば、バッファを用いた微粒子懸濁溶液の挟み込みのための流路構造を用いない、微粒子懸濁試料流入用の送液流路のみを導入路として有する微粒子分離デバイスおよびそれを用いる微粒子の分離方法を提供し得る。 According to the present invention, a fine particle separation device having only a liquid feeding flow path for inflowing a fine particle suspension sample as an introduction path without using a flow path structure for sandwiching the fine particle suspension solution using a buffer, and a fine particle separation device thereof are used. A method for separating fine particles can be provided.

Claims (14)

微粒子の分散された液体を流入させて,該微粒子をその特性にしたがって分離するための微粒子分離デバイスであり、
微粒子の流入口および流出口、微粒子フォーカス用マイクロ流路ならびに微粒子分離用マイクロ流路からなり;
該微粒子分離用マイクロ流路は、配列された支柱間の隙間で形成され、該微粒子分離用マイクロ流路を流れる微粒子の軌道を制御して微粒子の特性にしたがって微粒子を分離するように構成されてなり;ならびに
該微粒子フォーカス用マイクロ流路は,該微粒子分離用マイクロ流路の前段に導入路として設けられ、
流入口から導入された液体中の微粒子を,慣性力により,単一流路中の流れに沿った単一または複数本の線状に局所的に配列させるように構成されてなり、
該微粒子分離用マイクロ流路の単一または複数の特定部位に微粒子が集中して配列された状態で流入するように構成されてなる;ことを特徴とする微粒子分離デバイス。
It is a fine particle separation device for inflowing a liquid in which fine particles are dispersed and separating the fine particles according to their characteristics.
It consists of an inlet and outlet for fine particles, a microchannel for focusing on fine particles, and a microchannel for separating fine particles;
The fine particle separation microchannel is formed in a gap between the arranged columns, and is configured to control the trajectory of the fine particles flowing through the fine particle separation microchannel to separate the fine particles according to the characteristics of the fine particles. The microchannel for focusing on fine particles is provided as an introduction path in front of the microchannel for separating fine particles.
The fine particles in the liquid introduced from the inflow port are configured to be locally arranged in a single or multiple linear lines along the flow in a single flow path by inertial force.
A fine particle separation device, characterized in that the fine particles are configured to flow into a single or a plurality of specific sites of the fine particle separation microchannel in a concentrated and arranged state;
微粒子をその大きさ、形状または硬さに基づき分離する請求項1に記載の微粒子分離デバイス。 The fine particle separation device according to claim 1, wherein the fine particles are separated based on their size, shape or hardness. 微粒子フォーカス用マイクロ流路において、流れに沿った単一本、2本または3本の線状に微粒子が慣性力によりフォーカスされる請求項1または2に記載の微粒子分離デバイス。 The fine particle separation device according to claim 1 or 2, wherein in the microchannel for focusing fine particles, fine particles are focused by inertial force in a single line, two or three linear lines along a flow. 微粒子が、ポリマー微粒子、生物系微粒子、液滴、金属微粒子、および非金属粒子から選ばれる請求項1〜3のいずれか1項に記載の微粒子分離デバイス。 The fine particle separation device according to any one of claims 1 to 3, wherein the fine particles are selected from polymer fine particles, biological fine particles, droplets, metal fine particles, and non-metal particles. 微粒子の分散された液体が水性懸濁液である請求項1〜4のいずれか1項に記載の微粒子分離デバイス。 The fine particle separation device according to any one of claims 1 to 4, wherein the liquid in which the fine particles are dispersed is an aqueous suspension. 該微粒子分離用マイクロ流路が、単一の分離直径を有する支柱間の隙間で形成される請求項1〜5のいずれか1項に記載の微粒子分離デバイス。 The fine particle separation device according to any one of claims 1 to 5, wherein the fine particle separation microchannel is formed in a gap between columns having a single separation diameter. 該微粒子分離用マイクロ流路が、複数の分離直径を有する支柱間の隙間で形成される請求項1〜5のいずれか1項に記載の微粒子分離デバイス。 The fine particle separation device according to any one of claims 1 to 5, wherein the fine particle separation microchannel is formed in a gap between columns having a plurality of separation diameters. 微粒子の分散された液体を微粒子フォーカス用マイクロ流路に導入し、導入された液体中の微粒子を,慣性力により,単一流路中の流れに沿った単一または複数本の線状に局所的に配列させ;
配列された支柱間の隙間で形成された微粒子分離用マイクロ流路の単一または複数の特定部位に微粒子が集中して配列された状態で、微粒子の分散された液体を流入させ;
該微粒子分離用マイクロ流路を流れる微粒子の軌道を制御して微粒子の特性にしたがって微粒子を分離し、該微粒子分離用マイクロ流路から流出させることを特徴とする微粒子の分離方法。
The liquid in which the fine particles are dispersed is introduced into the microchannel for focusing on the fine particles, and the fine particles in the introduced liquid are locally localized in a single line or a plurality of lines along the flow in the single channel by inertial force. Arranged in;
In a state where the fine particles are concentrated and arranged in a single or a plurality of specific parts of the microchannel for separating fine particles formed in the gap between the arranged columns, the liquid in which the fine particles are dispersed is allowed to flow in.
A method for separating fine particles, which comprises controlling the trajectory of the fine particles flowing through the microchannel for separating fine particles, separating the fine particles according to the characteristics of the fine particles, and causing the fine particles to flow out from the microchannel for separating fine particles.
微粒子をその大きさ、形状または硬さに基づき分離する請求項8に記載の微粒子の分離方法。 The method for separating fine particles according to claim 8, wherein the fine particles are separated based on their size, shape or hardness. 微粒子フォーカス用マイクロ流路において、流れに沿った単一本、2本または3本の線状に微粒子が慣性力によりフォーカスされる請求項8または9に記載の微粒子の分離方法。 The method for separating fine particles according to claim 8 or 9, wherein the fine particles are focused by inertial force in a single line, two or three linear lines along the flow in the fine particle focusing microchannel. 微粒子が、ポリマー微粒子、生物系微粒子、液滴、金属微粒子、および非金属粒子から選ばれる請求項8〜10のいずれか1項に記載の微粒子の分離方法。 The method for separating fine particles according to any one of claims 8 to 10, wherein the fine particles are selected from polymer fine particles, biological fine particles, droplets, metal fine particles, and non-metal particles. 微粒子の分散された液体が水性懸濁液である請求項8〜11のいずれか1項に記載の微粒子の分離方法。 The method for separating fine particles according to any one of claims 8 to 11, wherein the liquid in which the fine particles are dispersed is an aqueous suspension. 該微粒子分離用マイクロ流路が、配列された、単一の分離直径を有する支柱間の隙間で形成される請求項8〜12のいずれか1項に記載の微粒子の分離方法。 The method for separating fine particles according to any one of claims 8 to 12, wherein the microchannels for separating fine particles are formed in a gap between columns having a single separation diameter in which they are arranged. 該微粒子分離用マイクロ流路が、配列された、複数の分離直径を有する支柱間の隙間で形成される請求項8〜12のいずれか1項に記載の微粒子の分離方法。 The method for separating fine particles according to any one of claims 8 to 12, wherein the microchannels for separating fine particles are formed in gaps between columns having a plurality of separation diameters in which the microchannels are arranged.
JP2016233582A 2016-11-30 2016-11-30 Fine particle separation device and fine particle separation method Active JP6923181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016233582A JP6923181B2 (en) 2016-11-30 2016-11-30 Fine particle separation device and fine particle separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016233582A JP6923181B2 (en) 2016-11-30 2016-11-30 Fine particle separation device and fine particle separation method

Publications (2)

Publication Number Publication Date
JP2018089557A JP2018089557A (en) 2018-06-14
JP6923181B2 true JP6923181B2 (en) 2021-08-18

Family

ID=62564784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016233582A Active JP6923181B2 (en) 2016-11-30 2016-11-30 Fine particle separation device and fine particle separation method

Country Status (1)

Country Link
JP (1) JP6923181B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138525A1 (en) 2020-12-21 2022-06-30 株式会社Ihi Solid-liquid separation device and solid-liquid separation system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8186913B2 (en) * 2007-04-16 2012-05-29 The General Hospital Corporation Systems and methods for particle focusing in microchannels
SG183468A1 (en) * 2010-03-04 2012-09-27 Univ Singapore Microfluidics sorter for cell detection and isolation
AU2013318647B2 (en) * 2012-09-21 2017-10-26 Massachusetts Institute Of Technology Micro-fluidic device and uses thereof
SG10201705895TA (en) * 2013-01-24 2017-08-30 Nat Univ Singapore Microdevices for separation of non-spherical particles and applications thereof
JPWO2015053393A1 (en) * 2013-10-10 2017-03-09 公益財団法人神奈川科学技術アカデミー Imaging cell sorter

Also Published As

Publication number Publication date
JP2018089557A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
Zhang et al. Tunable particle separation in a hybrid dielectrophoresis (DEP)-inertial microfluidic device
Maenaka et al. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels
Ma et al. Mechanical properties based particle separation via traveling surface acoustic wave
Zhang et al. Fundamentals of differential particle inertial focusing in symmetric sinusoidal microchannels
Lee et al. Separation and sorting of cells in microsystems using physical principles
Skowronek et al. Particle deflection in a poly (dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence
US10710072B2 (en) Particle separation apparatus and particle separation method
Gou et al. Sheathless inertial focusing chip combining a spiral channel with periodic expansion structures for efficient and stable particle sorting
Kwak et al. Continuous-flow biomolecule and cell concentrator by ion concentration polarization
Takagi et al. Continuous particle separation in a microchannel having asymmetrically arranged multiple branches
Barrett et al. Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels
Sun et al. Continuous particle trapping, switching, and sorting utilizing a combination of dielectrophoresis and alternating current electrothermal flow
Sim et al. Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels
Choi et al. Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles
Fallahi et al. Stretchable inertial microfluidic device for tunable particle separation
Sun et al. Recent advances in microfluidic technologies for separation of biological cells
Zhang et al. Janus droplet formation via thermally induced phase separation: a numerical model with diffusion and convection
Zhang et al. Comprehensive two-dimensional manipulations of picoliter microfluidic droplets sampled from nanoliter samples
Fan et al. Single particle train ordering in microchannel based on inertial and vortex effects
JP6843420B2 (en) Fine particle separation device and fine particle separation method
Zhang et al. Flexible particle focusing and switching in continuous flow via controllable thermal buoyancy convection
Bilican Cascaded contraction-expansion channels for bacteria separation from RBCs using viscoelastic microfluidics
JP6923181B2 (en) Fine particle separation device and fine particle separation method
Li et al. Janus droplets and droplets with multiple heterogeneous surface strips generated with nanoparticles under applied electric field
Rodríguez et al. Low-cost inertial microfluidic device for microparticle separation: A laser-Ablated PMMA lab-on-a-chip approach without a cleanroom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210720

R150 Certificate of patent or registration of utility model

Ref document number: 6923181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150