JP6922734B2 - Iridium complex compound, organic electroluminescent device containing the compound, display device and lighting device - Google Patents
Iridium complex compound, organic electroluminescent device containing the compound, display device and lighting device Download PDFInfo
- Publication number
- JP6922734B2 JP6922734B2 JP2017521888A JP2017521888A JP6922734B2 JP 6922734 B2 JP6922734 B2 JP 6922734B2 JP 2017521888 A JP2017521888 A JP 2017521888A JP 2017521888 A JP2017521888 A JP 2017521888A JP 6922734 B2 JP6922734 B2 JP 6922734B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- carbon atoms
- atom
- compound
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000001875 compounds Chemical class 0.000 title claims description 213
- 229910052741 iridium Inorganic materials 0.000 title claims description 104
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 title claims description 104
- 125000004432 carbon atom Chemical group C* 0.000 claims description 163
- 239000000203 mixture Substances 0.000 claims description 123
- -1 1,1-dimethyl-1-phenylmethyl group Chemical group 0.000 claims description 109
- 229910052757 nitrogen Inorganic materials 0.000 claims description 57
- 125000000217 alkyl group Chemical group 0.000 claims description 52
- 229910052731 fluorine Inorganic materials 0.000 claims description 50
- 125000001153 fluoro group Chemical group F* 0.000 claims description 49
- 125000003118 aryl group Chemical group 0.000 claims description 37
- 229910052801 chlorine Inorganic materials 0.000 claims description 21
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 20
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 20
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 19
- 125000001072 heteroaryl group Chemical group 0.000 claims description 19
- 125000003545 alkoxy group Chemical group 0.000 claims description 18
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 18
- 125000001769 aryl amino group Chemical group 0.000 claims description 18
- 239000003960 organic solvent Substances 0.000 claims description 14
- 125000004104 aryloxy group Chemical group 0.000 claims description 13
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 125000001624 naphthyl group Chemical group 0.000 claims description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 11
- 125000003277 amino group Chemical group 0.000 claims description 10
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 9
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 8
- 125000003282 alkyl amino group Chemical group 0.000 claims description 7
- 125000002947 alkylene group Chemical group 0.000 claims description 7
- 125000000732 arylene group Chemical group 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 150000001721 carbon Chemical group 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 6
- 125000003342 alkenyl group Chemical group 0.000 claims description 5
- 125000002252 acyl group Chemical group 0.000 claims description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 3
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 claims description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 2
- 125000004429 atom Chemical group 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- 125000001246 bromo group Chemical group Br* 0.000 claims 1
- 239000010410 layer Substances 0.000 description 295
- 239000000463 material Substances 0.000 description 107
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 95
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 94
- 239000002904 solvent Substances 0.000 description 94
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 90
- 239000010408 film Substances 0.000 description 90
- 238000000034 method Methods 0.000 description 81
- 238000002347 injection Methods 0.000 description 77
- 239000007924 injection Substances 0.000 description 77
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 63
- 238000000576 coating method Methods 0.000 description 60
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 57
- 239000007788 liquid Substances 0.000 description 54
- 239000011248 coating agent Substances 0.000 description 49
- 238000006243 chemical reaction Methods 0.000 description 46
- 230000015572 biosynthetic process Effects 0.000 description 43
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 34
- 230000005525 hole transport Effects 0.000 description 33
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 28
- 239000003921 oil Substances 0.000 description 27
- 238000010898 silica gel chromatography Methods 0.000 description 27
- 238000007740 vapor deposition Methods 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 25
- 239000003446 ligand Substances 0.000 description 25
- 239000000243 solution Substances 0.000 description 25
- 239000007787 solid Substances 0.000 description 24
- 230000000694 effects Effects 0.000 description 22
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 18
- 230000000903 blocking effect Effects 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 239000000758 substrate Substances 0.000 description 17
- 230000001771 impaired effect Effects 0.000 description 16
- 239000012044 organic layer Substances 0.000 description 15
- 125000001424 substituent group Chemical group 0.000 description 15
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 14
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 14
- 235000019341 magnesium sulphate Nutrition 0.000 description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 12
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 12
- 238000004528 spin coating Methods 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 238000003860 storage Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 11
- 238000001816 cooling Methods 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 11
- 235000019798 tripotassium phosphate Nutrition 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 10
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 8
- IGARGHRYKHJQSM-UHFFFAOYSA-N cyclohexylbenzene Chemical compound C1CCCCC1C1=CC=CC=C1 IGARGHRYKHJQSM-UHFFFAOYSA-N 0.000 description 8
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 7
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 7
- 239000007983 Tris buffer Substances 0.000 description 7
- 238000009835 boiling Methods 0.000 description 7
- 239000012153 distilled water Substances 0.000 description 7
- 239000011254 layer-forming composition Substances 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- DPZNOMCNRMUKPS-UHFFFAOYSA-N 1,3-Dimethoxybenzene Chemical compound COC1=CC=CC(OC)=C1 DPZNOMCNRMUKPS-UHFFFAOYSA-N 0.000 description 6
- CHLICZRVGGXEOD-UHFFFAOYSA-N 1-Methoxy-4-methylbenzene Chemical compound COC1=CC=C(C)C=C1 CHLICZRVGGXEOD-UHFFFAOYSA-N 0.000 description 6
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 6
- 101100030361 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) pph-3 gene Proteins 0.000 description 6
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 6
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 6
- XSIFPSYPOVKYCO-UHFFFAOYSA-N butyl benzoate Chemical compound CCCCOC(=O)C1=CC=CC=C1 XSIFPSYPOVKYCO-UHFFFAOYSA-N 0.000 description 6
- CZKMPDNXOGQMFW-UHFFFAOYSA-N chloro(triethyl)germane Chemical compound CC[Ge](Cl)(CC)CC CZKMPDNXOGQMFW-UHFFFAOYSA-N 0.000 description 6
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 6
- 239000000706 filtrate Substances 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 6
- 150000002894 organic compounds Chemical class 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 6
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 6
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 6
- 238000001771 vacuum deposition Methods 0.000 description 6
- ABDKAPXRBAPSQN-UHFFFAOYSA-N veratrole Chemical compound COC1=CC=CC=C1OC ABDKAPXRBAPSQN-UHFFFAOYSA-N 0.000 description 6
- 0 *c1cc(CCCCCCc2ccccc2)ccc1 Chemical compound *c1cc(CCCCCCc2ccccc2)ccc1 0.000 description 5
- 229940093475 2-ethoxyethanol Drugs 0.000 description 5
- 241000209094 Oryza Species 0.000 description 5
- 235000007164 Oryza sativa Nutrition 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 150000004982 aromatic amines Chemical class 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 150000004696 coordination complex Chemical class 0.000 description 5
- 239000004210 ether based solvent Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 150000002503 iridium Chemical class 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical group C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 235000009566 rice Nutrition 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 5
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 description 5
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 4
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 239000007818 Grignard reagent Substances 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000005456 alcohol based solvent Substances 0.000 description 4
- 125000002723 alicyclic group Chemical group 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 4
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical group C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 4
- 229920001940 conductive polymer Polymers 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 4
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000003759 ester based solvent Substances 0.000 description 4
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 4
- 150000004795 grignard reagents Chemical class 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- 239000005453 ketone based solvent Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 125000000714 pyrimidinyl group Chemical group 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 150000003512 tertiary amines Chemical class 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- OSIGJGFTADMDOB-UHFFFAOYSA-N 1-Methoxy-3-methylbenzene Chemical compound COC1=CC=CC(C)=C1 OSIGJGFTADMDOB-UHFFFAOYSA-N 0.000 description 3
- BLMBNEVGYRXFNA-UHFFFAOYSA-N 1-methoxy-2,3-dimethylbenzene Chemical compound COC1=CC=CC(C)=C1C BLMBNEVGYRXFNA-UHFFFAOYSA-N 0.000 description 3
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 3
- UJCFZCTTZWHRNL-UHFFFAOYSA-N 2,4-Dimethylanisole Chemical compound COC1=CC=C(C)C=C1C UJCFZCTTZWHRNL-UHFFFAOYSA-N 0.000 description 3
- WLPFTJXVEBANAM-UHFFFAOYSA-N 2-(3-bromophenyl)pyridine Chemical compound BrC1=CC=CC(C=2N=CC=CC=2)=C1 WLPFTJXVEBANAM-UHFFFAOYSA-N 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- 101150003085 Pdcl gene Proteins 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- IPBVNPXQWQGGJP-UHFFFAOYSA-N acetic acid phenyl ester Natural products CC(=O)OC1=CC=CC=C1 IPBVNPXQWQGGJP-UHFFFAOYSA-N 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 150000008378 aryl ethers Chemical class 0.000 description 3
- UDEWPOVQBGFNGE-UHFFFAOYSA-N benzoic acid n-propyl ester Natural products CCCOC(=O)C1=CC=CC=C1 UDEWPOVQBGFNGE-UHFFFAOYSA-N 0.000 description 3
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 3
- 239000013626 chemical specie Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 125000005647 linker group Chemical group 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910001507 metal halide Inorganic materials 0.000 description 3
- 150000005309 metal halides Chemical class 0.000 description 3
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 3
- 229940095102 methyl benzoate Drugs 0.000 description 3
- OLXYLDUSSBULGU-UHFFFAOYSA-N methyl pyridine-4-carboxylate Chemical compound COC(=O)C1=CC=NC=C1 OLXYLDUSSBULGU-UHFFFAOYSA-N 0.000 description 3
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 3
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 3
- DYUMLJSJISTVPV-UHFFFAOYSA-N phenyl propanoate Chemical compound CCC(=O)OC1=CC=CC=C1 DYUMLJSJISTVPV-UHFFFAOYSA-N 0.000 description 3
- 229940049953 phenylacetate Drugs 0.000 description 3
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 3
- 235000011056 potassium acetate Nutrition 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 125000003373 pyrazinyl group Chemical group 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 3
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 3
- 239000002516 radical scavenger Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- LWNGJAHMBMVCJR-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenoxy)boronic acid Chemical compound OB(O)OC1=C(F)C(F)=C(F)C(F)=C1F LWNGJAHMBMVCJR-UHFFFAOYSA-N 0.000 description 2
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 2
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 2
- IJAAWBHHXIWAHM-UHFFFAOYSA-N 1,4-bis(2-phenylethenyl)benzene Chemical compound C=1C=CC=CC=1C=CC(C=C1)=CC=C1C=CC1=CC=CC=C1 IJAAWBHHXIWAHM-UHFFFAOYSA-N 0.000 description 2
- SPPWGCYEYAMHDT-UHFFFAOYSA-N 1,4-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=C(C(C)C)C=C1 SPPWGCYEYAMHDT-UHFFFAOYSA-N 0.000 description 2
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 2
- IBODDUNKEPPBKW-UHFFFAOYSA-N 1,5-dibromopentane Chemical compound BrCCCCCBr IBODDUNKEPPBKW-UHFFFAOYSA-N 0.000 description 2
- ZMLPKJYZRQZLDA-UHFFFAOYSA-N 1-(2-phenylethenyl)-4-[4-(2-phenylethenyl)phenyl]benzene Chemical group C=1C=CC=CC=1C=CC(C=C1)=CC=C1C(C=C1)=CC=C1C=CC1=CC=CC=C1 ZMLPKJYZRQZLDA-UHFFFAOYSA-N 0.000 description 2
- CTPUUDQIXKUAMO-UHFFFAOYSA-N 1-bromo-3-iodobenzene Chemical compound BrC1=CC=CC(I)=C1 CTPUUDQIXKUAMO-UHFFFAOYSA-N 0.000 description 2
- YEBQUUKDSJCPIX-UHFFFAOYSA-N 12h-benzo[a]thioxanthene Chemical class C1=CC=CC2=C3CC4=CC=CC=C4SC3=CC=C21 YEBQUUKDSJCPIX-UHFFFAOYSA-N 0.000 description 2
- DTFKRVXLBCAIOZ-UHFFFAOYSA-N 2-methylanisole Chemical compound COC1=CC=CC=C1C DTFKRVXLBCAIOZ-UHFFFAOYSA-N 0.000 description 2
- POSWICCRDBKBMH-UHFFFAOYSA-N 3,3,5-trimethylcyclohexan-1-one Chemical compound CC1CC(=O)CC(C)(C)C1 POSWICCRDBKBMH-UHFFFAOYSA-N 0.000 description 2
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 2
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 239000002841 Lewis acid Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 125000005577 anthracene group Chemical group 0.000 description 2
- 150000008365 aromatic ketones Chemical class 0.000 description 2
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 150000001562 benzopyrans Chemical class 0.000 description 2
- 125000006267 biphenyl group Chemical group 0.000 description 2
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 2
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 2
- WVIIMZNLDWSIRH-UHFFFAOYSA-N cyclohexylcyclohexane Chemical compound C1CCCCC1C1CCCCC1 WVIIMZNLDWSIRH-UHFFFAOYSA-N 0.000 description 2
- FHADSMKORVFYOS-UHFFFAOYSA-N cyclooctanol Chemical compound OC1CCCCCCC1 FHADSMKORVFYOS-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 2
- 229940117389 dichlorobenzene Drugs 0.000 description 2
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 2
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- DGCTVLNZTFDPDJ-UHFFFAOYSA-N heptane-3,5-dione Chemical compound CCC(=O)CC(=O)CC DGCTVLNZTFDPDJ-UHFFFAOYSA-N 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine hydrate Chemical compound O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 2
- 150000007857 hydrazones Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 150000007517 lewis acids Chemical class 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- WSGCRAOTEDLMFQ-UHFFFAOYSA-N nonan-5-one Chemical compound CCCCC(=O)CCCC WSGCRAOTEDLMFQ-UHFFFAOYSA-N 0.000 description 2
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 2
- 229960003540 oxyquinoline Drugs 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- 150000005041 phenanthrolines Chemical class 0.000 description 2
- DLRJIFUOBPOJNS-UHFFFAOYSA-N phenetole Chemical compound CCOC1=CC=CC=C1 DLRJIFUOBPOJNS-UHFFFAOYSA-N 0.000 description 2
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 229920000123 polythiophene Chemical class 0.000 description 2
- UOHMMEJUHBCKEE-UHFFFAOYSA-N prehnitene Chemical compound CC1=CC=C(C)C(C)=C1C UOHMMEJUHBCKEE-UHFFFAOYSA-N 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011403 purification operation Methods 0.000 description 2
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical group C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical class [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 230000003381 solubilizing effect Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 125000005504 styryl group Chemical group 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 2
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 2
- 125000005580 triphenylene group Chemical group 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- HYCYKHYFIWHGEX-UHFFFAOYSA-N (2-phenylphenyl)boronic acid Chemical compound OB(O)C1=CC=CC=C1C1=CC=CC=C1 HYCYKHYFIWHGEX-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- IWZZBBJTIUYDPZ-DVACKJPTSA-N (z)-4-hydroxypent-3-en-2-one;iridium;2-phenylpyridine Chemical compound [Ir].C\C(O)=C\C(C)=O.[C-]1=CC=CC=C1C1=CC=CC=N1.[C-]1=CC=CC=C1C1=CC=CC=N1 IWZZBBJTIUYDPZ-DVACKJPTSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- CSNIZNHTOVFARY-UHFFFAOYSA-N 1,2-benzothiazole Chemical group C1=CC=C2C=NSC2=C1 CSNIZNHTOVFARY-UHFFFAOYSA-N 0.000 description 1
- KTZQTRPPVKQPFO-UHFFFAOYSA-N 1,2-benzoxazole Chemical group C1=CC=C2C=NOC2=C1 KTZQTRPPVKQPFO-UHFFFAOYSA-N 0.000 description 1
- NKEWBOPVULFSFJ-UHFFFAOYSA-N 1,3-dihydroperimidin-2-one Chemical class C1=CC(NC(O)=N2)=C3C2=CC=CC3=C1 NKEWBOPVULFSFJ-UHFFFAOYSA-N 0.000 description 1
- 125000001989 1,3-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([H])C([*:2])=C1[H] 0.000 description 1
- MXVLMYZRJAHEIS-UHFFFAOYSA-N 1-(2-phenylphenyl)naphthalene Chemical group C1=CC=CC=C1C1=CC=CC=C1C1=CC=CC2=CC=CC=C12 MXVLMYZRJAHEIS-UHFFFAOYSA-N 0.000 description 1
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical group C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 1
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical group C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 1
- LPLLWKZDMKTEMV-UHFFFAOYSA-N 1-bromo-3-(3-bromophenyl)benzene Chemical group BrC1=CC=CC(C=2C=C(Br)C=CC=2)=C1 LPLLWKZDMKTEMV-UHFFFAOYSA-N 0.000 description 1
- RAXGUPNDDNULQO-UHFFFAOYSA-N 1-bromo-3-(3-iodophenyl)benzene Chemical group BrC1=CC=CC(C=2C=C(I)C=CC=2)=C1 RAXGUPNDDNULQO-UHFFFAOYSA-N 0.000 description 1
- RMSGQZDGSZOJMU-UHFFFAOYSA-N 1-butyl-2-phenylbenzene Chemical group CCCCC1=CC=CC=C1C1=CC=CC=C1 RMSGQZDGSZOJMU-UHFFFAOYSA-N 0.000 description 1
- LIWRTHVZRZXVFX-UHFFFAOYSA-N 1-phenyl-3-propan-2-ylbenzene Chemical group CC(C)C1=CC=CC(C=2C=CC=CC=2)=C1 LIWRTHVZRZXVFX-UHFFFAOYSA-N 0.000 description 1
- ZVFJWYZMQAEBMO-UHFFFAOYSA-N 1h-benzo[h]quinolin-10-one Chemical compound C1=CNC2=C3C(=O)C=CC=C3C=CC2=C1 ZVFJWYZMQAEBMO-UHFFFAOYSA-N 0.000 description 1
- AVRPFRMDMNDIDH-UHFFFAOYSA-N 1h-quinazolin-2-one Chemical group C1=CC=CC2=NC(O)=NC=C21 AVRPFRMDMNDIDH-UHFFFAOYSA-N 0.000 description 1
- MUNFOTHAFHGRIM-UHFFFAOYSA-N 2,5-dinaphthalen-1-yl-1,3,4-oxadiazole Chemical compound C1=CC=C2C(C3=NN=C(O3)C=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 MUNFOTHAFHGRIM-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- IMRWILPUOVGIMU-UHFFFAOYSA-N 2-bromopyridine Chemical compound BrC1=CC=CC=N1 IMRWILPUOVGIMU-UHFFFAOYSA-N 0.000 description 1
- XQQBUAPQHNYYRS-UHFFFAOYSA-N 2-methylthiophene Chemical compound CC1=CC=CS1 XQQBUAPQHNYYRS-UHFFFAOYSA-N 0.000 description 1
- MTUBTKOZCCGPSU-UHFFFAOYSA-N 2-n-naphthalen-1-yl-1-n,1-n,2-n-triphenylbenzene-1,2-diamine Chemical compound C1=CC=CC=C1N(C=1C(=CC=CC=1)N(C=1C=CC=CC=1)C=1C2=CC=CC=C2C=CC=1)C1=CC=CC=C1 MTUBTKOZCCGPSU-UHFFFAOYSA-N 0.000 description 1
- NSMJMUQZRGZMQC-UHFFFAOYSA-N 2-naphthalen-1-yl-1H-imidazo[4,5-f][1,10]phenanthroline Chemical compound C12=CC=CN=C2C2=NC=CC=C2C2=C1NC(C=1C3=CC=CC=C3C=CC=1)=N2 NSMJMUQZRGZMQC-UHFFFAOYSA-N 0.000 description 1
- DRLVMOAWNVOSPE-UHFFFAOYSA-N 2-phenylcyclohexan-1-one Chemical compound O=C1CCCCC1C1=CC=CC=C1 DRLVMOAWNVOSPE-UHFFFAOYSA-N 0.000 description 1
- FWPFFKQILIFMAD-UHFFFAOYSA-N 2-phenylpyridine;platinum Chemical compound [Pt].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 FWPFFKQILIFMAD-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- QUJGDNCWTBTBQD-UHFFFAOYSA-N 3,5-dibromobenzonitrile Chemical compound BrC1=CC(Br)=CC(C#N)=C1 QUJGDNCWTBTBQD-UHFFFAOYSA-N 0.000 description 1
- ZVFQEOPUXVPSLB-UHFFFAOYSA-N 3-(4-tert-butylphenyl)-4-phenyl-5-(4-phenylphenyl)-1,2,4-triazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C(N1C=2C=CC=CC=2)=NN=C1C1=CC=C(C=2C=CC=CC=2)C=C1 ZVFQEOPUXVPSLB-UHFFFAOYSA-N 0.000 description 1
- STXAVEHFKAXGOX-UHFFFAOYSA-N 3-bromobenzonitrile Chemical compound BrC1=CC=CC(C#N)=C1 STXAVEHFKAXGOX-UHFFFAOYSA-N 0.000 description 1
- ZNSXNNUEMWLJEV-UHFFFAOYSA-N 4-butan-2-yl-n,n-diphenylaniline Chemical compound C1=CC(C(C)CC)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ZNSXNNUEMWLJEV-UHFFFAOYSA-N 0.000 description 1
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 1
- OEDUIFSDODUDRK-UHFFFAOYSA-N 5-phenyl-1h-pyrazole Chemical compound N1N=CC=C1C1=CC=CC=C1 OEDUIFSDODUDRK-UHFFFAOYSA-N 0.000 description 1
- BZHCVCNZIJZMRN-UHFFFAOYSA-N 9h-pyridazino[3,4-b]indole Chemical group N1=CC=C2C3=CC=CC=C3NC2=N1 BZHCVCNZIJZMRN-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- FSXMHWSDQRUSNT-OCPDBYLZSA-N CCCC[C@H]1[C@@H](C2)C(C)[C@@H]2C1 Chemical compound CCCC[C@H]1[C@@H](C2)C(C)[C@@H]2C1 FSXMHWSDQRUSNT-OCPDBYLZSA-N 0.000 description 1
- LOZXMOZLFDQMGL-UHFFFAOYSA-N C[BrH]c1cccc(-c2cc(-c3cc(-c4ccccn4)ccc3)ccc2)c1 Chemical compound C[BrH]c1cccc(-c2cc(-c3cc(-c4ccccn4)ccc3)ccc2)c1 LOZXMOZLFDQMGL-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910021589 Copper(I) bromide Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- QENGPZGAWFQWCZ-UHFFFAOYSA-N Methylthiophene Natural products CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 description 1
- RHQFXCIAFPGBDE-UHFFFAOYSA-N Nc1cccc(-c2cccc(-c3cccc(CCCCCCc4ccccc4)c3)c2)c1 Chemical compound Nc1cccc(-c2cccc(-c3cccc(CCCCCCc4ccccc4)c3)c2)c1 RHQFXCIAFPGBDE-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- 238000006161 Suzuki-Miyaura coupling reaction Methods 0.000 description 1
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- XIZLXGRTCCYWCE-UHFFFAOYSA-N [2-(3-phenylphenyl)phenyl]boronic acid Chemical compound OB(O)C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 XIZLXGRTCCYWCE-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 1
- NQMXWGWZHPEURF-UHFFFAOYSA-N [Os].C1(=CC=CC=C1)C1=NC=CC=C1 Chemical compound [Os].C1(=CC=CC=C1)C1=NC=CC=C1 NQMXWGWZHPEURF-UHFFFAOYSA-N 0.000 description 1
- NPRDEIDCAUHOJU-UHFFFAOYSA-N [Pt].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 Chemical compound [Pt].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 NPRDEIDCAUHOJU-UHFFFAOYSA-N 0.000 description 1
- BWZNMFIGGHVLSV-UHFFFAOYSA-N [Ru].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 Chemical compound [Ru].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 BWZNMFIGGHVLSV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- 239000012935 ammoniumperoxodisulfate Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- TXVHTIQJNYSSKO-UHFFFAOYSA-N benzo[e]pyrene Chemical group C1=CC=C2C3=CC=CC=C3C3=CC=CC4=CC=C1C2=C34 TXVHTIQJNYSSKO-UHFFFAOYSA-N 0.000 description 1
- HCAUQPZEWLULFJ-UHFFFAOYSA-N benzo[f]quinoline Chemical group C1=CC=C2C3=CC=CC=C3C=CC2=N1 HCAUQPZEWLULFJ-UHFFFAOYSA-N 0.000 description 1
- WZJYKHNJTSNBHV-UHFFFAOYSA-N benzo[h]quinoline Chemical group C1=CN=C2C3=CC=CC=C3C=CC2=C1 WZJYKHNJTSNBHV-UHFFFAOYSA-N 0.000 description 1
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical group C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- IPWKHHSGDUIRAH-UHFFFAOYSA-N bis(pinacolato)diboron Chemical compound O1C(C)(C)C(C)(C)OB1B1OC(C)(C)C(C)(C)O1 IPWKHHSGDUIRAH-UHFFFAOYSA-N 0.000 description 1
- UORVGPXVDQYIDP-BJUDXGSMSA-N borane Chemical compound [10BH3] UORVGPXVDQYIDP-BJUDXGSMSA-N 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 125000005578 chrysene group Chemical group 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- NKNDPYCGAZPOFS-UHFFFAOYSA-M copper(i) bromide Chemical compound Br[Cu] NKNDPYCGAZPOFS-UHFFFAOYSA-M 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N cyclobenzothiazole Natural products C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- IIRFCWANHMSDCG-UHFFFAOYSA-N cyclooctanone Chemical compound O=C1CCCCCCC1 IIRFCWANHMSDCG-UHFFFAOYSA-N 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical group C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 1
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical group C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 description 1
- 125000004915 dibutylamino group Chemical group C(CCC)N(CCCC)* 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 229920000775 emeraldine polymer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- 150000008377 fluorones Chemical class 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- JVZRCNQLWOELDU-UHFFFAOYSA-N gamma-Phenylpyridine Natural products C1=CC=CC=C1C1=CC=NC=C1 JVZRCNQLWOELDU-UHFFFAOYSA-N 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- VPUGDVKSAQVFFS-UHFFFAOYSA-N hexabenzobenzene Natural products C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 238000004770 highest occupied molecular orbital Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 150000002504 iridium compounds Chemical class 0.000 description 1
- HLYTZTFNIRBLNA-LNTINUHCSA-K iridium(3+);(z)-4-oxopent-2-en-2-olate Chemical compound [Ir+3].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O HLYTZTFNIRBLNA-LNTINUHCSA-K 0.000 description 1
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical compound [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- DCZNSJVFOQPSRV-UHFFFAOYSA-N n,n-diphenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical compound C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DCZNSJVFOQPSRV-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005447 octyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000004816 paper chromatography Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 125000005327 perimidinyl group Chemical group N1C(=NC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 125000005385 peroxodisulfate group Chemical group 0.000 description 1
- 150000005359 phenylpyridines Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000005581 pyrene group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- RQGPLDBZHMVWCH-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole Chemical group C1=NC2=CC=NC2=C1 RQGPLDBZHMVWCH-UHFFFAOYSA-N 0.000 description 1
- GZTPJDLYPMPRDF-UHFFFAOYSA-N pyrrolo[3,2-c]pyrazole Chemical group N1=NC2=CC=NC2=C1 GZTPJDLYPMPRDF-UHFFFAOYSA-N 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical group N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 150000003413 spiro compounds Chemical class 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 125000005579 tetracene group Chemical group 0.000 description 1
- NLDYACGHTUPAQU-UHFFFAOYSA-N tetracyanoethylene Chemical group N#CC(C#N)=C(C#N)C#N NLDYACGHTUPAQU-UHFFFAOYSA-N 0.000 description 1
- VJYJJHQEVLEOFL-UHFFFAOYSA-N thieno[3,2-b]thiophene Chemical group S1C=CC2=C1C=CS2 VJYJJHQEVLEOFL-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- UORVGPXVDQYIDP-UHFFFAOYSA-N trihydridoboron Substances B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 1
- SLGBZMMZGDRARJ-UHFFFAOYSA-N triphenylene Chemical compound C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0033—Iridium compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/06—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
- C07D213/16—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Description
本発明はイリジウム錯体化合物に関し、特に、有機電界発光素子の発光層の材料として有用なイリジウム錯体化合物、該化合物及び溶剤を含有する組成物、該化合物を含有する有機電界発光素子、該有機電界発光素子を含む表示装置及び照明に関する。 The present invention relates to an iridium complex compound, in particular, an iridium complex compound useful as a material for a light emitting layer of an organic electroluminescent element, a composition containing the compound and a solvent, an organic electroluminescent element containing the compound, and the organic electroluminescent element. The present invention relates to a display device including an element and lighting.
近年、有機EL照明や有機ELディスプレイなど、有機電界発光素子(以下、「有機EL素子」と称す。)を利用する各種電子デバイスが実用化されつつある。有機EL素子は、印加電圧が低く消費電力が小さく、三原色発光も可能であるため、照明やディスプレイへの適用が検討されている。これらを実現するために、発光材料に対しては発光波長の調整のみならず、発光素子の発光効率や駆動寿命の改善が盛んに研究されている。 In recent years, various electronic devices using an organic electroluminescent element (hereinafter referred to as "organic EL element") such as an organic EL lighting and an organic EL display are being put into practical use. Since the organic EL element has a low applied voltage, low power consumption, and is capable of emitting three primary colors, its application to lighting and displays is being studied. In order to realize these, not only the adjustment of the emission wavelength but also the improvement of the luminous efficiency and the drive life of the light emitting element are being actively studied for the light emitting material.
発光効率の向上を目的として、有機EL素子の発光層に燐光発光材料を利用することが提案されている。燐光発光材料としては、例えば、ビス(2−フェニルピリジナト−N,C2’)イリジウムアセチルアセトナート(Ir(ppy)2(acac))や、トリス(2−フェニルピリジナト−N,C2’)(Ir(ppy)3)イリジウムをはじめとしたオルトメタル化イリジウム錯体が広く知られている。For the purpose of improving the luminous efficiency, it has been proposed to use a phosphorescent material for the light emitting layer of the organic EL element. Examples of the phosphorescent material include bis (2-phenylpyridinato-N, C2') iridium acetylacetonate (Ir (ppy) 2 (acac)) and tris (2-phenylpyridinato-N, C2). ') (Ir (ppy) 3 ) Orthometallated iridium complexes such as iridium are widely known.
燐光発光材料を使用して有機EL素子を形成する方法として、主に真空蒸着法が利用されている。しかし通常、素子は発光層や電荷注入層、電荷輸送層など複数の層を積層することにより製造される。そのため真空蒸着法では、蒸着プロセスが煩雑となり、生産性に劣り、これら素子からなる照明やディスプレイのパネルの大型化が極めて難しいという問題があった。 As a method of forming an organic EL element using a phosphorescent material, a vacuum vapor deposition method is mainly used. However, usually, an element is manufactured by laminating a plurality of layers such as a light emitting layer, a charge injection layer, and a charge transport layer. Therefore, the vacuum vapor deposition method has a problem that the vapor deposition process becomes complicated, the productivity is inferior, and it is extremely difficult to increase the size of the lighting or display panel composed of these elements.
一方、有機EL素子は、塗布法により成膜され、層を形成していくことも可能である。塗布法では、真空蒸着法に比べて安定した層を容易に形成できるため、ディスプレイや照明装置の量産化や大型デバイスへの適用が期待されている。
塗布法による成膜のためには、層に含まれる有機材料が有機溶媒に溶解しやすいことが必要である。通常トルエンのような低沸点で低粘度の溶媒が使用される。このような溶媒で作成したインクは、スピンコート法などにより容易に成膜することができる。On the other hand, the organic EL element can be formed into a film by a coating method to form a layer. Since the coating method can easily form a stable layer as compared with the vacuum vapor deposition method, it is expected to be mass-produced for displays and lighting devices and to be applied to large devices.
For film formation by the coating method, it is necessary that the organic material contained in the layer is easily dissolved in the organic solvent. Usually, a solvent having a low boiling point and a low viscosity such as toluene is used. An ink prepared with such a solvent can be easily formed into a film by a spin coating method or the like.
塗布法による有機EL素子の製造については、主にオルトメタル化イリジウム錯体の溶解性を向上させることが必要である。一般的には、アルキル基やアラルキル基など特定の官能基を可溶化基として分子構造へ導入することが挙げられる(特許文献1、2)。また、可溶化基を導入せずとも配位子の構造を工夫することにより溶解性を向上させた例もある(特許文献3)。
Regarding the production of organic EL devices by the coating method, it is mainly necessary to improve the solubility of the orthometalated iridium complex. Generally, a specific functional group such as an alkyl group or an aralkyl group is introduced into the molecular structure as a solubilizing group (
しかしながら、これらの特許文献においては、燐光発光材料の有機溶媒への溶解のしやすさについては、燐光発光材料単独での溶解度に着目しているのみであった。実際に有機EL素子の発光層として燐光発光材料を用いる場合、併せて電荷輸送材料を混合させた組成物として用いることが一般的であるが、このような組成物としての有機溶媒への溶解性については着目されていなかった。すなわち、燐光発光材料単独では有機溶媒に溶解し、長期保存しても結晶として析出せず、保存安定性も良好な燐光発光材料であっても、電荷輸送材料と混合した組成物の状態では、上記保存安定性に問題を生じる可能性があることが判ってきた。
また、燐光発光材料であるイリジウム錯体は還元に弱いため、電子を受け取ってアニオン状態になると、イリジウム錯体自身が劣化したり、発光層内においてイリジウム錯体の周囲に存在する電荷輸送材料を劣化させることによって、素子の発光効率や駆動寿命を低下させるという問題があった。
さらに、発光効率や駆動寿命の向上のさらなる方法の一つとして、発光層内のイリジウム錯体の濃度を高くする、いわゆるヘビードープが行われることがある。しかし、上記特許に具体的に記載されているイリジウム錯体を用いて通常のドープ濃度の素子に加え、ヘビードープした素子を検討したところ、もともとの発光効率が低いためヘビードープによっても効率が高くならなかったり、あるいは駆動寿命が逆に低下してしまうという問題点が見つかった。However, in these patent documents, regarding the ease of dissolving the phosphorescent material in an organic solvent, only the solubility of the phosphorescent material alone has been focused on. When a phosphorescent material is actually used as the light emitting layer of the organic EL element, it is generally used as a composition in which a charge transporting material is mixed, but the solubility of such a composition in an organic solvent Was not paid attention to. That is, even if the phosphorescent material alone dissolves in an organic solvent, does not precipitate as crystals even when stored for a long period of time, and has good storage stability, the phosphorescent material is in a state of a composition mixed with a charge transport material. It has been found that the above-mentioned storage stability may be a problem.
In addition, since the iridium complex, which is a phosphorescent material, is vulnerable to reduction, when it receives an electron and becomes an anionic state, the iridium complex itself deteriorates, or the charge transport material existing around the iridium complex in the light emitting layer deteriorates. Therefore, there is a problem that the light emission efficiency and the drive life of the element are lowered.
Further, as one of further methods for improving the luminous efficiency and the driving life, so-called heavy doping, in which the concentration of the iridium complex in the light emitting layer is increased, may be performed. However, when a heavy-doped device was examined in addition to a device having a normal doping concentration using the iridium complex specifically described in the above patent, the efficiency was not increased even by heavy doping because the original luminous efficiency was low. Or, the problem that the drive life is shortened on the contrary was found.
本発明は、上記課題を鑑みてなされたものであり、電荷輸送材料と混合した組成物の状態でも良好な保存安定性を有し、かつ、該組成物を用いて形成された発光層を有する有機電界発光素子の素子特性が改善されたイリジウム錯体化合物を提供することを課題とする。
また、本発明は、素子寿命が改善された有機電界発光素子、並びに該有機電界素子を用いた表示装置及び照明装置を提供することを課題とする。The present invention has been made in view of the above problems, has good storage stability even in the state of a composition mixed with a charge transport material, and has a light emitting layer formed by using the composition. An object of the present invention is to provide an iridium complex compound having improved element characteristics of an organic electroluminescent device.
Another object of the present invention is to provide an organic electroluminescent device having an improved device life, and a display device and a lighting device using the organic electroluminescent device.
本発明者らが上記課題を解決すべく鋭意検討を行った結果、ある特定の化学構造を有するイリジウム錯体化合物が、電荷輸送材料と混合した組成物の状態でも保存安定性が良好であり、かつ、該組成物を用いて形成された発光層を有する有機電界発光素子の発光効率を高め、かつ、駆動寿命を長くできることを見出し、本発明の完成に至った。
即ち、本発明の要旨は、下記[1]〜[9]に存する。
[1]下記式(1)で表されるイリジウム錯体化合物。As a result of diligent studies by the present inventors to solve the above problems, the iridium complex compound having a specific chemical structure has good storage stability even in the state of a composition mixed with a charge transport material, and The present invention has been completed by finding that the light emitting efficiency of an organic electroluminescent element having a light emitting layer formed by using the composition can be improved and the driving life can be extended.
That is, the gist of the present invention lies in the following [1] to [9].
[1] An iridium complex compound represented by the following formula (1).
式(1)において、Irはイリジウム原子を表す。
環Cy1は炭素原子C1およびC2を含む芳香環またはヘテロ芳香環を表し、
環Cy2は炭素原子C3および窒素原子N1を含む6員環ヘテロ芳香環を表し、
環Cy3は炭素原子C4およびC5を含む芳香環またはヘテロ芳香環を表し、
環Cy4は炭素原子C6および窒素原子N2を含む6員環ヘテロ芳香環を表す。
m=1または2であり、
m+n=3である。
a及びcはそれぞれ独立に1〜2の整数を表し、b及びdはそれぞれ独立して0〜2の整数を表す。
a個のR 1 及びb個のR 2 のうちひとつは下記式(2)で表され、c個のR 3 及びd個のR 4 のうちひとつは下記式(3)で表され、他のR1 及びR 3 はそれぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、アミノ基、ヒドロキシ基、メルカプト基、炭素数1〜30のアルキル基、炭素数1〜30のアルコキシ基、炭素数2〜30のアルケニル基、炭素数1〜30のアルキルアミノ基、炭素数3〜30のアリールオキシ基、炭素数3〜30のアリール基、炭素数3〜30のヘテロアリール基、炭素数3〜30のアリールアミノ基、または炭素数7〜40のアラルキル基から選ばれ、他のR 2 及びR 4 はそれぞれ独立に、フッ素原子、塩素原子、臭素原子、アミノ基、ヒドロキシ基、メルカプト基、炭素数1〜30のアルキル基、炭素数1〜30のアルコキシ基、炭素数2〜30のアルケニル基、炭素数1〜30のアルキルアミノ基、炭素数3〜30のアリールオキシ基、炭素数3〜30のアリール基、炭素数3〜30のヘテロアリール基、炭素数3〜30のアリールアミノ基、または炭素数7〜40のアラルキル基から選ばれる。
In formula (1), Ir represents an iridium atom.
Ring Cy 1 represents an aromatic ring or a heteroaromatic ring containing carbon atoms C 1 and C 2.
Ring Cy 2 represents a 6-membered heteroaromatic ring containing a carbon atom C 3 and a nitrogen atom N 1.
Ring Cy 3 represents an aromatic or heteroaromatic ring containing carbon atoms C 4 and C 5.
Ring Cy 4 represents a 6-membered heteroaromatic ring containing a carbon atom C 6 and a nitrogen atom N 2.
m = 1 or 2
m + n = 3.
a and c independently represent an integer of 1 to 2, and b and d independently represent an integer of 0 to 2.
One of a R 1 and b R 2 is represented by the following formula (2), one of c R 3 and d R 4 is represented by the following formula (3), and the other R 1 and R 3 are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, amino group, hydroxy group, mercapto group, alkyl group having 1 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, and carbon. An alkenyl group having 2 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, an aryloxy group having 3 to 30 carbon atoms, an aryl group having 3 to 30 carbon atoms, a heteroaryl group having 3 to 30 carbon atoms, and 3 carbon atoms. 30 arylamino group, or a selected aralkyl group or these having 7 to 40 carbon atoms, each other R 2 and R 4 are independently a fluorine atom, a chlorine atom, a bromine atom, an amino group, hydroxy group, a mercapto group , An alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, an aryloxy group having 3 to 30 carbon atoms, and an aryloxy group having 3 to 30 carbon atoms. 3-30 aryl group, a heteroaryl group having 3 to 30 carbon atoms, Ru chosen arylamino group having 3 to 30 carbon atoms or an aralkyl group having 7 to 40 carbon atoms.
式(2)において、xは0〜10の整数を表す。
hは1〜3の整数を表す。
*は結合手を表す。
Rはその出現ごとにそれぞれ同一であっても異なっていてもよく、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、シアノ基、フッ素原子でさらに置換されていてもよい炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基、炭素数5〜30のアリール基でさらに置換されていてもよいアミノ基または炭素数1〜20のアシル基から選ばれる。
R’はその出現ごとにそれぞれ同一であっても異なっていてもよく、それぞれ独立に、フッ素原子でさらに置換されていてもよい炭素数1〜20のアルキル基またはフッ素原子でさらに置換されていてもよい炭素数1〜40のアラルキル基から選ばれる。In equation (2), x represents an integer from 0 to 10.
h represents an integer of 1 to 3.
* Represents a bond.
R may be the same or different for each appearance, and may be independently further substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a cyano group, or a fluorine atom. It is selected from an alkyl group of ~ 20, an alkoxy group having 1 to 20 carbon atoms, an amino group which may be further substituted with an aryl group having 5 to 30 carbon atoms, or an acyl group having 1 to 20 carbon atoms.
R'may be the same or different for each appearance, and each is independently further substituted with an alkyl group having 1 to 20 carbon atoms or a fluorine atom which may be further substituted with a fluorine atom. It is selected from good aralkyl groups having 1 to 40 carbon atoms.
式(3)において、kは0〜5の整数を表す。
yは1〜10の整数を表す。
*は結合手を表す。
Rは式(2)と同義であり、
R’’はその出現ごとにそれぞれ同一であっても異なっていてもよく、それぞれ独立に、フッ素原子、フッ素原子でさらに置換されていてもよい炭素数1〜20のアルキル基、炭素数1〜20のアルキル基またはアリール基で置換されていてもよいナフチル基、または炭素数1〜20のヘテロアリール基から選ばれる。
前記水素原子、前記フッ素原子、前記塩素原子、前記臭素原子、並びに、前記式(2)および前記式(3)で表される基、を除く前記R1〜R4の基は、さらに、フッ素原子、塩素原子、臭素原子、フッ素原子でさらに置換されていてもよい炭素数1〜30のアルキル基、炭素数1〜30のアルキル基でさらに置換されていてもよい炭素数3〜30のアリール基または炭素数3〜30のアリールアミノ基で置換されていてもよい。
R1〜R4がそれぞれ複数個ある場合は、それぞれ同一であっても異なっていてもよい。
複数のR1〜R4が、同一の環上で互いに隣り合う場合、隣り合っているR1〜R4同士が、直接結合あるいは炭素数3〜12のアルキレン基、炭素数3〜12のアルケニレン基もしくは炭素数6〜12のアリーレン基を介して結合して、環を形成してもよく、これらの環はさらに、フッ素原子、塩素原子、臭素原子、フッ素原子でさらに置換されていてもよい炭素数1〜30のアルキル基、炭素数1〜30のアルコキシ基、炭素数3〜30のアリールオキシ基、炭素数1〜30のアルキル基でさらに置換されていてもよい炭素数3〜30のアリール基または炭素数3〜30のアリールアミノ基で置換されていてもよい。
また、R1とR2、あるいはR3とR4が、直接結合あるいは炭素数3〜12のアルキレン基、炭素数3〜12のアルケニレン基もしくは炭素数6〜12のアリーレン基を介して結合して、環を形成してもよく、これらの環はさらに、フッ素原子、塩素原子、臭素原子、フッ素原子でさらに置換されていてもよい炭素数1〜30のアルキル基、炭素数1〜30のアルコキシ基、炭素数3〜30のアリールオキシ基、炭素数1〜30のアルキル基でさらに置換されていてもよい炭素数3〜30のアリール基または炭素数3〜30のアリールアミノ基で置換されていてもよい。
[2]前記式(2)が下記式(4)で表され、かつ、前記式(3)が下記式(5)で表される[1]に記載のイリジウム錯体化合物。
In equation (3), k represents an integer from 0 to 5.
y represents an integer of 1-10.
* Represents a bond.
R is synonymous with equation (2) and
R'' may be the same or different for each appearance, and may be independently further substituted with a fluorine atom or a fluorine atom. Alkyl group having 1 to 20 carbon atoms,
The hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, and a group of the R 1 to R 4 excluding group, represented by the formula (2) and the formula (3) further, fluorine An alkyl group having 1 to 30 carbon atoms which may be further substituted with an atom, a chlorine atom, a bromine atom or a fluorine atom, and an aryl having 3 to 30 carbon atoms which may be further substituted with an alkyl group having 1 to 30 carbon atoms. It may be substituted with a group or an arylamino group having 3 to 30 carbon atoms.
When there are a plurality of R 1 to R 4 , they may be the same or different.
When a plurality of R 1 to R 4 are adjacent to each other on the same ring , the adjacent R 1 to R 4 are directly bonded or have an alkylene group having 3 to 12 carbon atoms and an alkaneylene having 3 to 12 carbon atoms. Rings may be formed by bonding via a group or an arylene group having 6 to 12 carbon atoms, and these rings may be further substituted with a fluorine atom, a chlorine atom, a bromine atom, or a fluorine atom. Alkyl groups having 1 to 30 carbon atoms, alkoxy groups having 1 to 30 carbon atoms, aryloxy groups having 3 to 30 carbon atoms, and alkyl groups having 1 to 30 carbon atoms may be further substituted with 3 to 30 carbon atoms. It may be substituted with an aryl group or an arylamino group having 3 to 30 carbon atoms.
Further, R 1 and R 2 or R 3 and R 4 are directly bonded or bonded via an alkylene group having 3 to 12 carbon atoms, an alkaneylene group having 3 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms. These rings may be further substituted with a fluorine atom, a chlorine atom, a bromine atom, or a fluorine atom, and have an alkyl group having 1 to 30 carbon atoms and 1 to 30 carbon atoms. It is further substituted with an alkoxy group, an aryloxy group having 3 to 30 carbon atoms, an alkyl group having 1 to 30 carbon atoms, an aryl group having 3 to 30 carbon atoms or an arylamino group having 3 to 30 carbon atoms. May be.
[2] The iridium complex compound according to [1], wherein the formula (2) is represented by the following formula (4), and the formula (3) is represented by the following formula (5).
qは0から10の整数を表し、
rは0から2の整数を表し、
p+q+rは0から10の整数である。
*は結合手を表す。
R、R’およびhは式(2)と同義である。
q represents an integer from 0 to 10
r represents an integer from 0 to 2
p + q + r is an integer from 0 to 10.
* Represents a bond.
R, R'and h are synonymous with equation (2).
sは0から2の整数を表し、
tは1から10の整数を表し、
uは0から2の整数を表し、
wは0から4の整数を表し、
s+t+u+wは1から10の整数である。
*は結合手を表す。
R、R’’およびkは式(3)と同義である。
[3]R1のうち少なくとも1つは式(2)または式(4)で表され、かつ、R3のうち少なくとも1つは式(3)または式(5)で表される[1]または[2]に記載のイリジウム錯体化合物。
[4]R’はフッ素原子でさらに置換されていてもよい炭素数4〜40のアラルキル基から選ばれる[1]〜[3]のいずれか一に記載のイリジウム錯体化合物。
[5]Cy1およびCy3がベンゼン環である[1]〜[4]のいずれか一に記載のイリジウム錯体化合物。
[6][1]〜[5]のいずれか一に記載のイリジウム錯体化合物及び有機溶剤を含有する組成物。
[7][1]〜[5]のいずれか一に記載のイリジウム錯体化合物を含む、有機電界発光素子。
[8][7]に記載の有機電界発光素子を有する表示装置。
[9][7]に記載の有機電界発光素子を有する照明装置。s represents an integer from 0 to 2
t represents an integer from 1 to 10
u represents an integer from 0 to 2
w represents an integer from 0 to 4
s + t + u + w is an integer from 1 to 10.
* Represents a bond.
R, R'' and k are synonymous with equation (3).
[3] At least one of R 1 is represented by the formula (2) or the formula (4), and at least one of R 3 is represented by the formula (3) or the formula (5) [1]. Alternatively, the iridium complex compound according to [2].
[4] The iridium complex compound according to any one of [1] to [3], wherein R'is selected from an aralkyl group having 4 to 40 carbon atoms which may be further substituted with a fluorine atom.
[5] The iridium complex compound according to any one of [1] to [4], wherein Cy 1 and Cy 3 are benzene rings.
[6] A composition containing the iridium complex compound according to any one of [1] to [5] and an organic solvent.
[7] An organic electroluminescent device containing the iridium complex compound according to any one of [1] to [5].
[8] A display device having the organic electroluminescent element according to [7].
[9] A lighting device having the organic electroluminescent element according to [7].
本発明のイリジウム錯体化合物は、有機溶剤に可溶であり、塗布法によって有機電界発光素子の作成が可能である。該イリジウム錯体化合物を含む有機電界発光素子の発光効率が高くかつ駆動寿命が長いことから、該イリジウム錯体化合物は有機電界発光素子用材料として有用である。さらに、該イリジウム錯体化合物を用いて得られた有機電界発光素子は、表示装置及び照明装置用として有用である。 The iridium complex compound of the present invention is soluble in an organic solvent, and an organic electroluminescent device can be produced by a coating method. The iridium complex compound is useful as a material for an organic electroluminescent element because the luminous efficiency of the organic electroluminescent element containing the iridium complex compound is high and the drive life is long. Further, the organic electroluminescent device obtained by using the iridium complex compound is useful for a display device and a lighting device.
以下に、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。
ここで、本明細書において“質量%”と“重量%”及び“質量部”と“重量部”とは、それぞれ同義である。Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.
Here, in the present specification, "% by mass" and "% by weight" and "parts by mass" and "parts by weight" are synonymous with each other.
<イリジウム錯体化合物>
本発明のイリジウム錯体化合物は、下記式(1)で表される化合物である。<Iridium complex compound>
The iridium complex compound of the present invention is a compound represented by the following formula (1).
以下、式(1)の各構成について詳述する。 Hereinafter, each configuration of the formula (1) will be described in detail.
<環Cy1および環Cy3>
環Cy1はイリジウム原子に配位する炭素原子C1およびC2を含む芳香環またはヘテロ芳香環を表し、環Cy3はイリジウム原子に配位する炭素原子C4およびC5を含む芳香環またはヘテロ芳香環を表す。具体的には、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環が好ましい。これらの中でも、発光波長や溶解性向上あるいは素子の波長制御並びに耐久性向上のためには、これらの環上に適切な置換基が導入されることが多く、そのような置換基の導入方法が多く知られている環であることが好ましい。環Cy1および環Cy3は炭化水素芳香環であることが更に好ましく、ベンゼン環またはナフタレン環であることがより好ましく、ベンゼン環であることが特に好ましい。<Ring Cy 1 and Ring Cy 3 >
Ring Cy 1 represents an aromatic ring or a heteroaromatic ring containing carbon atoms C 1 and C 2 coordinated to an iridium atom, and ring Cy 3 represents an aromatic ring or an aromatic ring containing carbon atoms C 4 and C 5 coordinated to an iridium atom. Represents a heteroaromatic ring. Specifically, benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysen ring, triphenylene ring, fluorantene ring, furan ring, benzofuran ring, dibenzofuran ring, thiophene ring, Benzothiophene ring, dibenzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroylmidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, flopyrol ring, Flofuran ring, thienoflan ring, benzoisoxazole ring, benzoisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, synolin ring, quinoxalin ring, benzimidazole ring , Perimidine ring, quinazoline ring, quinazolinone ring are preferable. Among these, in order to improve the emission wavelength and solubility, or to control the wavelength of the device and improve the durability, an appropriate substituent is often introduced on these rings, and a method for introducing such a substituent is used. It is preferably a well-known ring. Rings Cy 1 and Cy 3 are more preferably hydrocarbon aromatic rings, more preferably benzene rings or naphthalene rings, and particularly preferably benzene rings.
<環Cy2および環Cy4>
環Cy2は炭素原子C3およびイリジウム原子に配位する窒素原子N1を含む6員環ヘテロ芳香環を表し、環Cy4は炭素原子C6およびイリジウム原子に配位する窒素原子N2を含む6員環ヘテロ芳香環を表す。具体的には、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、シノリン環が好ましい。これらの中でも、置換基を導入しやすく発光波長や溶解性の調整がしやすいこと、及び、イリジウムと錯体化する際に収率良く合成できる手法が多く知られていることから、好ましくは、ピリジン環、ピラジン環、ピリミジン環、トリアジン環であり、より好ましくは、ピリジン環、ピリミジン環である。
<Ring Cy 2 and Ring Cy 4 >
Ring Cy 2 represents a 6-membered ring heteroaromatic ring containing a carbon atom C 3 and a nitrogen atom N 1 coordinated with an iridium atom, and ring Cy 4 represents a carbon atom C 6 and a nitrogen atom N 2 coordinated with an iridium atom. Represents a 6-membered heteroaromatic ring containing. Specifically, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, a triazine ring, shea Norin ring. Among these, pyridine is preferable because it is easy to introduce a substituent and it is easy to adjust the emission wavelength and solubility, and many methods that can be synthesized in good yield when complexing with iridium are known. ring, pyrazine ring, pin Rimijin ring, a triazine ring, more preferably a pyridine ring, a pyrimidine ring.
<R1、R2、R3、R4>
R1、R2、R3、R4は、それぞれ、環Cy1、環Cy2、環Cy3、環Cy4に結合する基を表す。R1、R2、R3、R4は、それらが複数個ある場合、それぞれ同一であっても異なっていてもよい。R1 及びR 3 はそれぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、アミノ基、ヒドロキシ基、メルカプト基、炭素数1〜30のアルキル基、炭素数1〜30のアルコキシ基、炭素数2〜30のアルケニル基、炭素数1〜30のアルキルアミノ基、炭素数3〜30のアリールオキシ基、炭素数3〜30のアリール基、炭素数3〜30のヘテロアリール基、炭素数3〜30のアリールアミノ基、炭素数7〜40のアラルキル基、式(2)または式(3)から選ばれる。R 2 及びR 4 はそれぞれ独立に、フッ素原子、塩素原子、臭素原子、アミノ基、ヒドロキシ基、メルカプト基、炭素数1〜30のアルキル基、炭素数1〜30のアルコキシ基、炭素数2〜30のアルケニル基、炭素数1〜30のアルキルアミノ基、炭素数3〜30のアリールオキシ基、炭素数3〜30のアリール基、炭素数3〜30のヘテロアリール基、炭素数3〜30のアリールアミノ基、炭素数7〜40のアラルキル基、式(2)または式(3)から選ばれる。
a及びcはそれぞれ独立に1〜2の整数を表し、b及びdはそれぞれ独立して0〜2の整数を表す。
aは、錯体の溶解性を十分保持しかつ正孔の輸送性が良好であるという観点から、好ましくは1〜2であり、最も好ましくは1である。
bは、錯体の溶解性を十分保持しかつ耐久性と発光色を調節するという観点から、好ましくは0〜2であり、より好ましくは0〜1であり、最も好ましくは0である。
cは、錯体の溶解性を十分保持しかつ正孔の輸送性が良好であるという観点から、好ましくは1〜2であり、最も好ましくは1である。
dは、錯体の溶解性を十分保持しかつ耐久性と発光色を調節するという観点から、好ましくは0〜2であり、より好ましくは0〜1であり、最も好ましくは0である。
但し、R1またはR2のうち少なくとも一つは下記式(2)で表される基である。素子内部において発光材料は電荷を輸送し得るが、特にヘビードープ素子においては正孔を輸送する役割を担うと考えられる。正孔が輸送されにくいと発光層中での電荷再結合に位置が限定されるため発光効率ひいては駆動寿命が低下する。正孔の輸送は環Cy1とその置換基に多く依存するため、正孔を輸送しやすくするという観点から少なくとも一つのR1が式(2)で表される基であることが好ましい。
<R 1 , R 2 , R 3 , R 4 >
R 1 , R 2 , R 3 , and R 4 represent groups attached to ring Cy 1 , ring Cy 2 , ring Cy 3 , and ring Cy 4, respectively. When there are a plurality of them, R 1 , R 2 , R 3 , and R 4 may be the same or different from each other. R 1 and R 3 are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, amino group, hydroxy group, mercapto group, alkyl group having 1 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, and carbon. Alkoxy group having 2 to 30 carbon atoms, alkylamino group having 1 to 30 carbon atoms, aryloxy group having 3 to 30 carbon atoms, aryl group having 3 to 30 carbon atoms, heteroaryl group having 3 to 30 carbon atoms, 3 carbon atoms. It is selected from an arylamino group of ~ 30 and an alkoxy group having 7 to 40 carbon atoms, formula (2) or formula (3). R 2 and R 4 independently have a fluorine atom, a chlorine atom, a bromine atom, an amino group, a hydroxy group, a mercapto group, an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, and 2 to 2 carbon atoms. 30 alkoxy groups, 1 to 30 carbon atoms alkylamino groups, 3 to 30 carbon atoms aryloxy groups, 3 to 30 carbon atoms aryl groups, 3 to 30 carbon atoms heteroaryl groups, 3 to 30 carbon atoms It is selected from an arylamino group, an alkoxy group having 7 to 40 carbon atoms, the formula (2) or the formula (3).
a and c independently represent an integer of 1 to 2, and b and d independently represent an integer of 0 to 2.
From the viewpoint of sufficiently retaining the solubility of the complex and having good hole transportability, a is preferably 1 to 2, and most preferably 1.
b is preferably 0 to 2, more preferably 0 to 1, and most preferably 0, from the viewpoint of sufficiently maintaining the solubility of the complex and adjusting the durability and emission color.
c is preferably 1 to 2 and most preferably 1 from the viewpoint of sufficiently retaining the solubility of the complex and having good hole transportability.
From the viewpoint of sufficiently maintaining the solubility of the complex and adjusting the durability and emission color, d is preferably 0 to 2, more preferably 0 to 1, and most preferably 0.
However, at least one of R 1 and R 2 is a group represented by the following formula (2). Light emitting materials can transport charges inside the device, but are thought to play a role in transporting holes, especially in heavy-doped devices. If holes are difficult to transport, the position is limited to charge recombination in the light emitting layer, which reduces the luminous efficiency and thus the drive life. Since the transport of holes largely depends on the ring Cy 1 and its substituents, it is preferable that at least one R 1 is a group represented by the formula (2) from the viewpoint of facilitating the transport of holes.
xは0〜10の整数を表し、錯体の溶解性を十分保持しかつ正孔の輸送性が良好であるという観点から、好ましくは0以上であり、さらに好ましくは1以上であり、更に好ましくは2以上である。また、好ましくは10以下、より好ましくは8以下、更に好ましくは6以下である。
hは1〜3の整数を表し、錯体の溶解性を十分保持するという観点から、好ましくは1である。
*は結合手を表す。
Rはその出現ごとにそれぞれ同一であっても異なっていてもよく、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、シアノ基、フッ素原子でさらに置換されていてもよい炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基、炭素数5〜30のアリール基でさらに置換されていてもよいアミノ基または炭素数1〜20のアシル基から選ばれ、好ましくは水素原子、フッ素原子、シアノ基、フッ素原子でさらに置換されていてもよい炭素数1〜20のアルキル基である。正孔輸送性を高める観点から、Rは水素原子であることがより好ましく、全てのRが水素原子であることが特に好ましい。また、発光波長を短波長化する観点からは、少なくとも一つのRがフッ素原子、シアノ基、またはフッ素原子でさらに置換されていてもよい炭素数1〜20のアルキル基であることが好ましく、一つの配位子が有するRの内、一つまたは二つのRのみがフッ素原子、シアノ基、またはフッ素原子でさらに置換されていてもよい炭素数1〜20のアルキル基であることがより好ましく、一つの配位子が有するRの内、一つのRのみがシアノ基、またはフッ素原子でさらに置換されていてもよい炭素数1〜20のアルキル基であることが最も好ましい。
R’はその出現ごとにそれぞれ同一であっても異なっていてもよく、それぞれ独立に、フッ素原子でさらに置換されていてもよい炭素数4〜20のアルキル基またはフッ素原子でさらに置換されていてもよい炭素数4〜40のアラルキル基から選ばれ、好ましくは炭素数5〜12の直鎖アルキル基または炭素数4〜40のアラルキル基であり、さらに好ましくは炭素数4〜40のアラルキル基である。x represents an integer of 0 to 10, and is preferably 0 or more, more preferably 1 or more, still more preferably 1 or more, from the viewpoint of sufficiently maintaining the solubility of the complex and having good hole transportability. 2 or more. Further, it is preferably 10 or less, more preferably 8 or less, and further preferably 6 or less.
h represents an integer of 1 to 3, and is preferably 1 from the viewpoint of sufficiently maintaining the solubility of the complex.
* Represents a bond.
R may be the same or different for each appearance, and may be independently further substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a cyano group, or a fluorine atom. It is selected from an amino group which may be further substituted with an alkyl group of ~ 20, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 5 to 30 carbon atoms, or an acyl group having 1 to 20 carbon atoms, preferably a hydrogen atom. , A fluorine atom, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be further substituted with a fluorine atom. From the viewpoint of enhancing hole transportability, it is more preferable that R is a hydrogen atom, and it is particularly preferable that all R are hydrogen atoms. From the viewpoint of shortening the emission wavelength, it is preferable that at least one R is an alkyl group having 1 to 20 carbon atoms which may be further substituted with a fluorine atom, a cyano group, or a fluorine atom. Of the Rs contained in one ligand, only one or two Rs are more preferably alkyl groups having 1 to 20 carbon atoms which may be further substituted with a fluorine atom, a cyano group, or a fluorine atom. Of the Rs contained in one ligand, it is most preferable that only one R is an alkyl group having 1 to 20 carbon atoms which may be further substituted with a cyano group or a fluorine atom.
Each occurrence of R'may be the same or different, and each independently is further substituted with an alkyl group having 4 to 20 carbon atoms or a fluorine atom, which may be further substituted with a fluorine atom. It is preferably selected from a good aralkyl group having 4 to 40 carbon atoms, preferably a linear alkyl group having 5 to 12 carbon atoms or an aralkyl group having 4 to 40 carbon atoms, and more preferably an aralkyl group having 4 to 40 carbon atoms. be.
炭素数4〜20のアルキル基の例としては、直鎖のアルキル基および分岐のアルキル基、環状のアルキル基などであり、より具体的には、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基、イソプロピル基、イソブチル基、シクロヘキシル基などが挙げられる。溶解性と耐久性の観点から、直鎖のアルキル基が好ましく、炭素数5〜12の直鎖アルキル基がより好ましい。
炭素数4〜40のアラルキル基の例としては、フェニルメチル基、フェニルエチル基、1,1−ジメチル−1−フェニルメチル基、3−フェニル−1−プロピル基、4−フェニル−1−n−ブチル基、1−メチル−1−フェニルエチル基、5−フェニル−1−n−プロピル基、6−フェニル−1−n−ヘキシル基、7−フェニル−1−n−ヘプチル基、8−フェニル−1−n−オクチル基、4−フェニルシクロヘキシル基などが挙げられる。Examples of alkyl groups having 4 to 20 carbon atoms include linear alkyl groups, branched alkyl groups, cyclic alkyl groups, and more specifically, n-butyl groups, n-pentyl groups, and n-. Examples thereof include a hexyl group, an n-octyl group, an isopropyl group, an isobutyl group and a cyclohexyl group. From the viewpoint of solubility and durability, a linear alkyl group is preferable, and a linear alkyl group having 5 to 12 carbon atoms is more preferable.
Examples of aralkyl groups having 4 to 40 carbon atoms are phenylmethyl group, phenylethyl group, 1,1-dimethyl-1-phenylmethyl group, 3-phenyl-1-propyl group, 4-phenyl-1-n-. Butyl group, 1-methyl-1-phenylethyl group, 5-phenyl-1-n-propyl group, 6-phenyl-1-n-hexyl group, 7-phenyl-1-n-heptyl group, 8-phenyl- Examples thereof include 1-n-octyl group and 4-phenylcyclohexyl group.
イリジウム錯体の溶解性を保ち、かつ、発光層内における電荷輸送材料との親和性を高め分散性を向上させ凝集を抑止することができれば、素子の発光効率や駆動寿命が損なわれることが少なくなる。その観点から、R’として好ましい基は、溶解性を担保するアルキレン部位と電荷輸送材料との親和性を有する芳香族基を同時に有する炭素数4〜40のアラルキル基であり、さらに好ましい基は炭素数4〜30のアラルキル基であり、特に好ましくは、溶媒への溶解性と合成の容易さの観点から、1,1−ジメチル−1−フェニルメチル基、5−フェニル−1−n−プロピル基、6−フェニル−1−n−ヘキシル基、7−フェニル−1−n−ヘプチル基及び8−フェニル−1−n−オクチル基である。 If the solubility of the iridium complex can be maintained, the affinity with the charge transport material in the light emitting layer can be enhanced, the dispersibility can be improved, and aggregation can be suppressed, the luminous efficiency and drive life of the device will not be impaired. .. From this point of view, a preferable group as R'is an aralkyl group having 4 to 40 carbon atoms which simultaneously has an alkylene moiety for ensuring solubility and an aromatic group having an affinity for a charge transport material, and a more preferable group is carbon. It is an aralkyl group having a number of 4 to 30, and is particularly preferably a 1,1-dimethyl-1-phenylmethyl group or a 5-phenyl-1-n-propyl group from the viewpoint of solubility in a solvent and ease of synthesis. , 6-Phenyl-1-n-hexyl group, 7-phenyl-1-n-heptyl group and 8-phenyl-1-n-octyl group.
また、R3またはR4のうち少なくとも一つは下記式(3)で表される基である。素子内部において発光材料は電荷を輸送し得るが、特にヘビードープ素子においては正孔を輸送する役割を担うと考えられる。正孔が輸送されにくいと発光層中での電荷再結合に位置が限定されるため発光効率ひいては駆動寿命が低下する。正孔の輸送は環Cy3とその置換基に多く依存するため、正孔を輸送しやすくするという観点から少なくとも一つのR3が式(3)で表される基であることが好ましい。Further, at least one of R 3 or R 4 is a group represented by the following formula (3). Light emitting materials can transport charges inside the device, but are thought to play a role in transporting holes, especially in heavy-doped devices. If holes are difficult to transport, the position is limited to charge recombination in the light emitting layer, which reduces the luminous efficiency and thus the drive life. Since the transport of holes largely depends on the ring Cy 3 and its substituents, it is preferable that at least one R 3 is a group represented by the formula (3) from the viewpoint of facilitating the transport of holes.
yは1〜10の整数を表し、錯体の溶解性を十分保持しかつ正孔の輸送性が良好であるという観点から、好ましくは2以上である。また、好ましくは8以下、更に好ましくは6以下である
kは0〜5の整数を表し、錯体の溶解性を十分保持しかつ正孔の輸送性が良好であるという観点から0または1が好ましく、より正孔の輸送性が良好であるという観点から0がより好ましい。
*は結合手を表す。
式(3)中のRは、式(2)と同義である。
R’’はその出現ごとにそれぞれ同一であっても異なっていてもよく、それぞれ独立に、フッ素原子、フッ素原子でさらに置換されていてもよい炭素数1〜20のアルキル基、炭素数1〜20のアルキル基またはアリール基で置換されていてもよいナフチル基、または炭素数1〜20のアリール基で置換されていてもよいヘテロアリール基から選ばれる。正孔の輸送性を促進するという観点から、炭素数1〜20のアルキル基またはナフチル基が好ましく、炭素数1〜3のアルキル基またはナフチル基がさらに好ましい。y represents an integer of 1 to 10, and is preferably 2 or more from the viewpoint of sufficiently maintaining the solubility of the complex and having good hole transportability. Further, k is preferably 8 or less, more preferably 6 or less, and represents an integer of 0 to 5, and 0 or 1 is preferable from the viewpoint of sufficiently maintaining the solubility of the complex and having good hole transportability. , 0 is more preferable from the viewpoint of better hole transportability.
* Represents a bond.
R in equation (3) is synonymous with equation (2).
R'' may be the same or different for each appearance, and may be independently further substituted with a fluorine atom or a fluorine atom. Alkyl group having 1 to 20 carbon atoms and 1 to 20 carbon atoms. It is selected from a naphthyl group optionally substituted with 20 alkyl or aryl groups, or a heteroaryl group optionally substituted with an aryl group having 1 to 20 carbon atoms. From the viewpoint of promoting hole transportability, an alkyl group or a naphthyl group having 1 to 20 carbon atoms is preferable, and an alkyl group or a naphthyl group having 1 to 3 carbon atoms is more preferable.
R1のうち少なくとも1つは式(2)で表され、かつ、R3のうち少なくとも1つは式(3)で表されることが最も好ましい。このとき本願発明におけるイリジウム錯体は、R1として少なくとも一つのアルキル基またはアラルキル基、好ましくはアラルキル基を有し、かつ、R3として少なくとも一つの、フェニレン基を2個以上連結した基を有することで、後述するように本願発明の効果を得やすくなる。
式(2)および式(3)で表される基を除くR1〜R4の前記基は、さらに、フッ素原子、塩素原子、臭素原子、フッ素原子でさらに置換されていてもよい炭素数1〜30のアルキル基、炭素数1〜30のアルキル基でさらに置換されていてもよい炭素数3〜30のアリール基または炭素数3〜30のアリールアミノ基で置換されていてもよい。
さらに、複数のR1〜R4が互いに隣り合う場合、隣り合っているR1〜R4同士が、直接結合あるいは炭素数3〜12のアルキレン基、炭素数3〜12のアルケニレン基もしくは炭素数6〜12のアリーレン基を介して結合して、環を形成してもよく、これらの環はさらに、フッ素原子、塩素原子、臭素原子、フッ素原子でさらに置換されていてもよい炭素数1〜30のアルキル基、炭素数1〜30のアルキル基でさらに置換されていてもよい炭素数3〜30のアリール基または炭素数3〜30のアリールアミノ基で置換されていてもよい。
また、R1とR2、あるいはR3とR4が、直接結合あるいは炭素数3〜12のアルキレン基、炭素数3〜12のアルケニレン基もしくは炭素数6〜12のアリーレン基を介して結合して、環を形成してもよく、これらの環はさらに、フッ素原子、塩素原子、臭素原子、フッ素原子でさらに置換されていてもよい炭素数1〜30のアルキル基、炭素数1〜30のアルキル基でさらに置換されていてもよい炭素数3〜30のアリール基または炭素数3〜30のアリールアミノ基で置換されていてもよい。Most preferably, at least one of R 1 is represented by the formula (2) and at least one of R 3 is represented by the formula (3). Iridium complexes of the present invention this time, at least one alkyl group or an aralkyl group as R 1, preferably having an aralkyl group, and has at least one, two or more linked group a phenylene group as R 3 Then, as will be described later, the effect of the present invention can be easily obtained.
The groups of R 1 to R 4 excluding the groups represented by the formulas (2) and (3) may be further substituted with a fluorine atom, a chlorine atom, a bromine atom, or a fluorine atom. It may be further substituted with an alkyl group having ~ 30 and an alkyl group having 1 to 30 carbon atoms. It may be further substituted with an aryl group having 3 to 30 carbon atoms or an arylamino group having 3 to 30 carbon atoms.
Further, when a plurality of R 1 to R 4 are adjacent to each other, the adjacent R 1 to R 4 are directly bonded or have an alkylene group having 3 to 12 carbon atoms, an alkaneylene group having 3 to 12 carbon atoms, or an alkaneylene group having 3 to 12 carbon atoms. Rings may be formed by bonding via an arylene group of 6 to 12, and these rings may be further substituted with a fluorine atom, a chlorine atom, a bromine atom, or a fluorine atom. It may be further substituted with an alkyl group of 30 and an alkyl group having 1 to 30 carbon atoms, and may be further substituted with an aryl group having 3 to 30 carbon atoms or an arylamino group having 3 to 30 carbon atoms.
Further, R 1 and R 2 or R 3 and R 4 are directly bonded or bonded via an alkylene group having 3 to 12 carbon atoms, an alkaneylene group having 3 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms. These rings may be further substituted with a fluorine atom, a chlorine atom, a bromine atom, or a fluorine atom, and have an alkyl group having 1 to 30 carbon atoms and 1 to 30 carbon atoms. It may be further substituted with an alkyl group or an aryl group having 3 to 30 carbon atoms or an arylamino group having 3 to 30 carbon atoms.
上記環の具体例としては、フルオレン環、カルバゾール環、カルボリン環、ジアザカルバゾール環、ナフタレン環、フェナントレン環、アントラセン環、クリセン環、トリフェニレン環、キノリン環、イソキノリン環、キナゾリン環、ベンゾキノリン環、アザフェナントレン環、アザアントラセン環、アザトリフェニレン環等が挙げられる。π電子が共役する縮環構造はあまり大きいと発光波長が赤外領域まで長波長化したり、溶解性を減ずることになるため、好ましくは、フルオレン環、カルバゾール環、キノリン環、イソキノリン環、キナゾリン環、アザトリフェニレン環から選ばれる。
炭素数1〜30のアルキル基は、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、イソブチル基等が挙げられ、中でもメチル基が好ましい。Specific examples of the above rings include a fluorene ring, a carbazole ring, a carboline ring, a diazacarbazole ring, a naphthalene ring, a phenanthrene ring, an anthracene ring, a chrysene ring, a triphenylene ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, and a benzoquinoline ring. Examples thereof include an azaphenanthrene ring, an azaanthracene ring, and an azatriphenylene ring. If the condensed ring structure to which the π electron is conjugated is too large, the emission wavelength will be extended to the infrared region and the solubility will be reduced. Therefore, a fluorene ring, a carbazole ring, a quinoline ring, an isoquinoline ring, and a quinazoline ring are preferable. , Selected from the azatriphenylene ring.
Examples of the alkyl group having 1 to 30 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a hexyl group, an octyl group, an isobutyl group and the like, and a methyl group is preferable.
炭素数1〜30のアルコキシ基は、例えばメトキシ基、エトキシ基、プロピルオキシ基、オクチルオキシ基等が挙げられ、中でも、メトキシ基が好ましい。
炭素数2〜30のアルケニル基は、例えばビニル基、アリル基、3−ブテノ基、2−ブテノ基、1,3−ブタジエニル基などが挙げられ、中でもビニル基が好ましい。
炭素数1〜30のアルキルアミノ基は、例えばメチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、オクチルアミノ基、ジオクチルアミノ基等が挙げられ、中でもメチルアミノ基またはジメチルアミノ基が好ましい。Examples of the alkoxy group having 1 to 30 carbon atoms include a methoxy group, an ethoxy group, a propyloxy group, an octyloxy group and the like, and among them, the methoxy group is preferable.
Examples of the alkenyl group having 2 to 30 carbon atoms include a vinyl group, an allyl group, a 3-buteno group, a 2-buteno group, a 1,3-butadienyl group and the like, and a vinyl group is preferable.
Examples of the alkylamino group having 1 to 30 carbon atoms include a methylamino group, a dimethylamino group, a diethylamino group, a dibutylamino group, an octylamino group, a dioctylamino group and the like, and a methylamino group or a dimethylamino group is preferable.
炭素数3〜30のアリールオキシ基は、例えばアリルオキシ基、フェノキシ基、メチルフェニルオキシ基等が挙げられ、中でもフェノキシ基が好ましい。
炭素数3〜30のアリール基は、例えばフェニル基、ビフェニル基、ターフェニル基、ナフチル基、ナフチルフェニル基、ナフチルビフェニル基などが挙げられ、中でもフェニル基、ビフェニル基、ターフェニル基が好ましい。Examples of the aryloxy group having 3 to 30 carbon atoms include an aryloxy group, a phenoxy group, a methylphenyloxy group and the like, and a phenoxy group is preferable.
Examples of the aryl group having 3 to 30 carbon atoms include a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a naphthylphenyl group and a naphthylbiphenyl group, and among them, a phenyl group, a biphenyl group and a terphenyl group are preferable.
炭素数3〜30のヘテロアリール基は、例えばピリジル基、ピリミジル基、トリアジン基、フェニルピリジル基、フェニルピリミジル基、ジフェニルピリミジル基等が挙げられる。
炭素数3〜30のアリールアミノ基は、例えばフェニルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジ(2,6−ジメチルフェニル)アミノ基等が挙げられる。Examples of the heteroaryl group having 3 to 30 carbon atoms include a pyridyl group, a pyrimidyl group, a triazine group, a phenylpyridyl group, a phenylpyrimidyl group, a diphenylpyrimidyl group and the like.
Examples of the arylamino group having 3 to 30 carbon atoms include a phenylamino group, a diphenylamino group, a ditrilamino group, and a di (2,6-dimethylphenyl) amino group.
炭素数7〜40のアラルキル基は、1,1−ジメチル−1−フェニルメチル基、1,1−ジ(n−ブチル)−1−フェニルメチル基、1,1−ジ(n−ヘキシル)−1−フェニルメチル基、1,1−ジ(n−オクチル)−1−フェニルメチル基に例示される1,1−ジアルキル−1−フェニルメチル基、フェニルメチル基、フェニルエチル基、3−フェニル−1−プロピル基、4−フェニル−1−n−ブチル基、1−メチル−1−フェニルエチル基、5−フェニル−1−n−プロピル基、6−フェニル−1−n−ヘキシル基、7−フェニル−1−n−ヘプチル基、8−フェニル−1−n−オクチル基、4−フェニルシクロヘキシル基などが挙げられる。 The aralkyl groups having 7 to 40 carbon atoms are 1,1-dimethyl-1-phenylmethyl group, 1,1-di (n-butyl) -1-phenylmethyl group, and 1,1-di (n-hexyl)-. 1,1-dialkyl-1-phenylmethyl group, phenylmethyl group, phenylethyl group, 3-phenyl-, which are exemplified by 1-phenylmethyl group and 1,1-di (n-octyl) -1-phenylmethyl group. 1-propyl group, 4-phenyl-1-n-butyl group, 1-methyl-1-phenylethyl group, 5-phenyl-1-n-propyl group, 6-phenyl-1-n-hexyl group, 7- Examples thereof include a phenyl-1-n-heptyl group, an 8-phenyl-1-n-octyl group, and a 4-phenylcyclohexyl group.
<m、n>
mは1または2であるが、錯体の溶解性を十分保持しかつ正孔輸送性が向上するという観点からm=1であることがより好ましい。また、m+n=3である。<M, n>
Although m is 1 or 2, it is more preferable that m = 1 from the viewpoint of sufficiently maintaining the solubility of the complex and improving the hole transportability. Further, m + n = 3.
<前記式(2)及び前記式(3)の好ましい態様について>
前記式(2)は、好ましくは下記式(4)で表される。<Preferable embodiments of the formula (2) and the formula (3)>
The formula (2) is preferably represented by the following formula (4).
式(4)中、pは0から2の整数を表し、qは0から10の整数を表し、rは0から2の整数を表し、p+q+rは0から10の整数である。*は結合手を表す。なお、R、R’およびhは式(2)と同義である。
溶解性を高く保つという観点から、pは0または1がより好ましく、rは0または1がより好ましい。
正孔輸送性を高く保つという観点から、p+q+rは0から5の整数であることがより好ましい。In equation (4), p represents an integer from 0 to 2, q represents an integer from 0 to 10, r represents an integer from 0 to 2, and p + q + r is an integer from 0 to 10. * Represents a bond. Note that R, R'and h are synonymous with equation (2).
From the viewpoint of maintaining high solubility, p is more preferably 0 or 1, and r is more preferably 0 or 1.
From the viewpoint of maintaining high hole transportability, p + q + r is more preferably an integer of 0 to 5.
また、前記式(3)は、好ましくは下記式(5)で表される。 Further, the above formula (3) is preferably represented by the following formula (5).
式(5)中、sは0から2の整数を表し、tは1から10の整数を表し、uは0から2の整数を表し、wは0から4の整数を表し、s+t+u+wは1から10の整数である。*は結合手を表す。なお、R、R’’およびkは式(3)と同義である。
溶解性を高く保つという観点から、sは0または1がより好ましく、uは0または1がより好ましい。
正孔輸送性を高く保つという観点から、s+t+u+wは0から5の整数であることがより好ましい。In equation (5), s represents an integer from 0 to 2, t represents an integer from 1 to 10, u represents an integer from 0 to 2, w represents an integer from 0 to 4, and s + t + u + w represents from 1. It is an integer of 10. * Represents a bond. Note that R, R'' and k are synonymous with equation (3).
From the viewpoint of maintaining high solubility, s is more preferably 0 or 1, and u is more preferably 0 or 1.
From the viewpoint of maintaining high hole transportability, s + t + u + w is more preferably an integer from 0 to 5.
前記式(4)及び前記式(5)がより好ましい理由について述べる。前記式(2)及び前記式(3)はフェニレン環による結合を介している。この結合様式には、オルト、メタ、パラ位がある。このうち、オルト位で結合する場合、隣り合うフェニレン環がお互いに立体障害となり、大きなねじれを生ずる。このねじれにより錯体の溶解性は向上するものの、フェニレン環のπ電子の共役が小さくなるため正孔輸送性に必ずしも良くない影響を及ぼす。そのため、好ましい結合様式はメタまたはパラ位である。特に、Cy1またはCy3に直接結合するフェニレン環がパラ位の結合様式を有する場合、イリジウム原子からその隣のフェニレン環まで大きなπ電子の共役が広がり、正孔輸送性に好ましい効果を示す。
また、本願発明におけるイリジウム錯体は、式(2)が式(4)であり、かつ、式(3)が式(5)であることがさらに好ましい。
また、R1のうち少なくとも1つは式(2)または式(4)で表され、かつ、R3のうち少なくとも1つは式(3)または式(5)で表されることがより好ましい。
また、R1のうち少なくとも1つは式(4)で表され、かつ、R3のうち少なくとも1つは式(5)で表されることが更に好ましい。The reason why the formula (4) and the formula (5) are more preferable will be described. The formula (2) and the formula (3) are linked by a phenylene ring. This combination mode includes ortho, meta, and para positions. Of these, when they are bonded at the ortho position, adjacent phenylene rings become steric hindrance to each other, causing a large twist. Although the solubility of the complex is improved by this twist, the conjugate of the π electron of the phenylene ring becomes small, which does not necessarily have a good effect on the hole transport property. Therefore, the preferred binding mode is the meta or para position. In particular, when the phenylene ring directly bonded to Cy 1 or Cy 3 has a para-position bonding mode, the conjugation of a large π electron extends from the iridium atom to the adjacent phenylene ring, which has a favorable effect on hole transportability.
Further, in the iridium complex in the present invention, it is more preferable that the formula (2) is the formula (4) and the formula (3) is the formula (5).
Further, at least one of R 1 is represented by the formula (2) or formula (4), and at least one of R 3 is preferably represented by the formula (3) or formula (5) ..
Further, it is more preferable that at least one of R 1 is represented by the formula (4) and at least one of R 3 is represented by the formula (5).
<具体例>
以下に、本発明のイリジウム錯体化合物の好ましい具体例を示すが、本発明はこれらに限定されるものではない。<Specific example>
Hereinafter, preferred specific examples of the iridium complex compound of the present invention will be shown, but the present invention is not limited thereto.
<構造上の特徴>
本発明のイリジウム錯体化合物を用いる発光層形成用塗布液、すなわち、電荷輸送材料と共存する溶液の状態で析出することなく均一状態を維持するという保存安定性が向上すること、および、素子の発光効率や駆動寿命が向上するなどの素子特性が改善する理由を以下の通り推測する。
有機溶剤への溶解性を高めるには、通常イリジウム錯体化合物の配位子にアルキル基またはアラルキル基などの脂肪族炭化水素基を含む柔軟構造を有する基を導入することが行われている。これらの基は多くのコンホメーションをとりうるため、結晶化に際しては再配列のためのエネルギーが上昇する。よって、イリジウム錯体化合物は結晶化しにくくなり溶解性が向上するという効果が期待される。<Structural features>
The coating liquid for forming a light emitting layer using the iridium complex compound of the present invention, that is, the storage stability of maintaining a uniform state without precipitation in the state of a solution coexisting with a charge transport material is improved, and light emission of the device. The reason why the element characteristics such as efficiency and drive life are improved is estimated as follows.
In order to improve the solubility in an organic solvent, a group having a flexible structure containing an aliphatic hydrocarbon group such as an alkyl group or an aralkyl group is usually introduced into the ligand of the iridium complex compound. Since these groups can take many conformations, the energy for rearrangement increases during crystallization. Therefore, the iridium complex compound is expected to have the effect of making it difficult to crystallize and improving the solubility.
ところが、イリジウム錯体化合物に対するこれらの柔軟構造を対称性良く導入した場合、すなわちホモレプチック型錯体とした場合には、結晶化のための再配列エネルギーが低められ、結晶化しやすくなるため、十分な溶解性向上効果が得られなくなってしまう。
さらに、発光層形成用塗布液に共存させる電荷輸送材料は通常これらの柔軟構造を有する基は有さず、ベンゼン環が連なる剛直な構造を有する。化学構造が似ているもの同士はお互いによく溶かしあうことが一般的傾向として知られているが、上述の方法により溶解性を高めたはずのイリジウム錯体化合物と電荷輸送材料との構造類似性は必ずしも高くないため、これらの化合物を共存させることにより、いずれかの化合物、特に電荷輸送材料の有機溶剤に対する溶解性が著しく低められ、固体として析出しやすくなってしまう。
加えて、これらの柔軟構造を有する基は本質的に絶縁体であるため、イリジウム錯体への電荷の注入およびイリジウム錯体間あるいはイリジウム錯体とホスト間の電荷の輸送を阻害する。また、基の運動性が高いため、励起状態からの無輻射失活の経路を提供してしまい、結果発光効率を悪化させてしまうという欠点が存在する。However, when these flexible structures with respect to the iridium complex compound are introduced with good symmetry, that is, when a homoreptic complex is formed, the rearrangement energy for crystallization is lowered and crystallization is facilitated, so that the solubility is sufficient. The improvement effect cannot be obtained.
Further, the charge transport material coexisting with the coating liquid for forming a light emitting layer usually does not have a group having these flexible structures, but has a rigid structure in which benzene rings are connected. It is generally known that substances with similar chemical structures dissolve well in each other, but the structural similarity between the iridium complex compound and the charge transport material, which should have been improved in solubility by the above method, is Since it is not necessarily high, the coexistence of these compounds significantly reduces the solubility of any compound, particularly the charge transport material, in an organic solvent, and makes it easy to precipitate as a solid.
In addition, these flexible structural groups are essentially insulators, thus inhibiting charge injection into the iridium complex and charge transport between the iridium complexes or between the iridium complex and the host. In addition, since the motility of the group is high, there is a drawback that it provides a path for non-radiative deactivation from the excited state, and as a result, the luminous efficiency is deteriorated.
一方、m−フェニレン基に代表される、アリーレン基を連結した置換基を配位子に導入する場合は、アルキル基ほどではないものの多くのコンホメーションを取りうるため、塗布法に適した充分な溶解性を有するようにすることができる。さらに、素子内部において発光材料は電荷を輸送し得るが、フェニレン基を長く連結することによりπ電子の軌道あるいは空軌道が空間的に拡張され、電荷の輸送が起こりやすくなる。特に、フェニレン基を長く連結した基を有するイリジウム錯体は正孔を受け取りやすくなる。このようなイリジウム錯体を発光層に発光材料として用いることにより、発光層内の正孔輸送性を向上させることができる。さらに、この様なイリジウム錯体のドープ濃度を調整することで発光層内の発光位置を調整できると考えられる。電荷が輸送されやすいということは素子における発光層中での電荷再結合の位置が広がるため発光効率や駆動寿命が改善することが期待される。しかし同時に、電気伝導性に優れることは発光層内においてイリジウム錯体同士の相互作用が妨げられないことにほかならず、特にヘビードープ時には励起子同士あるいは励起子と電荷との相互作用による励起子消滅すなわち濃度消光を併発するため発光効率の向上の幅が小さいかまたはかえって低下することになる。 On the other hand, when a substituent in which an arylene group is linked, such as an m-phenylene group, is introduced into the ligand, many conformations can be obtained, though not as much as the alkyl group, which is sufficient for the coating method. It can be made to have a good solubility. Further, although the light emitting material can transport electric charges inside the device, the orbitals or empty orbitals of π electrons are spatially expanded by connecting the phenylene groups for a long time, and the electric charges are easily transported. In particular, an iridium complex having a group in which a phenylene group is long-linked is likely to receive holes. By using such an iridium complex as a light emitting material in the light emitting layer, the hole transport property in the light emitting layer can be improved. Further, it is considered that the light emitting position in the light emitting layer can be adjusted by adjusting the doping concentration of such an iridium complex. The fact that charges are easily transported is expected to improve the luminous efficiency and drive life because the position of charge recombination in the light emitting layer in the device is widened. However, at the same time, excellent electrical conductivity means that the interaction between iridium complexes is not hindered in the light emitting layer, and exciton quenching, that is, concentration due to the interaction between excitons or excitons and charges, especially during heavy doping. Since quenching occurs at the same time, the range of improvement in luminous efficiency is small or rather reduced.
これらの欠点を補うには、本願発明のごとく上記の2種類の配位子を一つのイリジウム錯体上に適切な状態で同時に存在させることが効果的である。ヘテロレプチック型錯体とすることによりイリジウム錯体化合物の対称性を低め、かつ、柔軟構造を有さないフェニレン基を連結した基を有する配位子を存在させることで電荷輸送材料との類似性を高めることにより、発光層形成用塗布液の保存安定性を向上させることができる。 To make up for these drawbacks, it is effective to have the above two types of ligands simultaneously present on one iridium complex in an appropriate state as in the present invention. The symmetry of the iridium complex compound is lowered by making it a heteroreptic type complex, and the similarity with the charge transport material is made by the presence of a ligand having a group in which a phenylene group having no flexible structure is linked. By increasing the concentration, the storage stability of the coating liquid for forming a light emitting layer can be improved.
また、本願発明におけるイリジウム錯体を発光材料として発光層に用いた有機EL素子においては、駆動寿命の向上の効果が期待される。その作用機構は次のように考えられる。フェニレン基を長く連結した基を有するイリジウム錯体は正孔を受け取りやすいため、通電駆動中の素子の発光層内のイリジウム錯体は、ほとんどが正孔を受け取った状態になると考えられる。さらに、本願発明におけるイリジウム錯体は、絶縁性であるアラルキル基も有する。アラルキル基は絶縁性のスペーサーとして、本願発明のイリジウム錯体の正孔輸送性を適度に抑制する。そのため、正孔を受け取った状態であるカチオン状態で存在する確率が高くなる。カチオン状態であるイリジウム錯体が電子を受け取ると直ちに発光するため、発光効率が高くなると考えられる。また、カチオン状態のイリジウム錯体は安定なので、駆動寿命も向上すると考えられる。 Further, in the organic EL device in which the iridium complex in the present invention is used as a light emitting material in the light emitting layer, the effect of improving the drive life is expected. The mechanism of action is considered as follows. Since the iridium complex having a group in which a phenylene group is long-linked is likely to receive holes, it is considered that most of the iridium complexes in the light emitting layer of the device being driven by energization are in a state of receiving holes. Further, the iridium complex in the present invention also has an insulating aralkyl group. The aralkyl group appropriately suppresses the hole transport property of the iridium complex of the present invention as an insulating spacer. Therefore, there is a high probability that the holes will exist in the cation state, which is the state in which the holes have been received. Since the iridium complex in the cationic state emits light immediately after receiving an electron, it is considered that the luminous efficiency is high. Moreover, since the iridium complex in the cationic state is stable, it is considered that the drive life is also improved.
本発明では配位子内にフェニレン連結を主とする適切な置換基部分と可溶化部分を配置することにより、上述の欠点を解消し、素子の発光効率を高めることと、駆動寿命の向上を両立させることができる。 In the present invention, by arranging an appropriate substituent portion and a solubilized portion mainly composed of a phenylene bond in the ligand, the above-mentioned drawbacks are eliminated, the luminous efficiency of the device is improved, and the drive life is improved. It can be compatible.
<有機溶剤>
湿式成膜法は、発光層の有機材料を一旦有機溶剤へ溶解したのち、スピンコート法やインクジェット法などにより塗布し、その後有機溶剤を加熱や減圧あるいは不活性ガスを吹き付けるなどによって蒸発気化させることにより成膜する方法である。必要であれば、成膜した有機材料を溶剤不溶性とするために、たとえば有機材料の分子中にC=C基、C≡C基あるいはベンゾシクロブテン基のような架橋基を存在させることにより、加熱あるいは光照射など既知の方法により架橋させ不溶化することもできる。<Organic solvent>
In the wet film formation method, the organic material of the light emitting layer is once dissolved in an organic solvent, then applied by a spin coating method or an inkjet method, and then the organic solvent is evaporated and vaporized by heating, reducing the pressure, or spraying an inert gas. It is a method of forming a film by means of. If necessary, in order to make the formed organic material solvent-insoluble, for example, by allowing a cross-linking group such as C = C group, C≡C group or benzocyclobutene group to be present in the molecule of the organic material. It can also be crosslinked and insolubilized by a known method such as heating or light irradiation.
このような湿式成膜法において好ましく用いられる有機溶剤の種類は、ヘキサン、ヘプタン、メチルエチルケトン、酢酸エチル、酢酸ブチルのような置換していてもよい脂肪族炭化水素、トルエン、キシレン、フェニルシクロヘキサン、安息香酸エチルのような置換していてもよい芳香族系炭化水素、シクロヘキサン、シクロヘキサノン、メチルシクロヘキサノン、3,3,5−トリメチルシクロヘキサノンのような置換していてもよい脂環式炭化水素などがあげられる。これらは単独で用いられていてもよいし、塗布のプロセスに好適な塗布液とするために複数種類の溶剤を混合して組成物として用いてもよい。主として用いる有機溶剤の種類として好ましくは、芳香族系炭化水素または脂環式炭化水素であり、より好ましくは芳香族系炭化水素である。特に、フェニルシクロヘキサンは湿式成膜プロセスにおいて好ましい粘度と沸点を有しているとされる。そのため、湿式成膜法に好適に用いられるイリジウム錯体化合物の溶解性は、大気圧下25℃において、フェニルシクロヘキサンに対して通常0.5質量%以上、好ましくは1.0質量%以上、より好ましくは1.5質量%以上である。 The types of organic solvents preferably used in such a wet film forming method are optionally substituted aliphatic hydrocarbons such as hexane, heptane, methyl ethyl ketone, ethyl acetate and butyl acetate, toluene, xylene, phenylcyclohexanone and benzo. Examples thereof include aromatic hydrocarbons which may be substituted such as ethyl acid, cyclohexane, cyclohexanone, methylcyclohexanone, and alicyclic hydrocarbons which may be substituted such as 3,3,5-trimethylcyclohexanone. .. These may be used alone or may be used as a composition by mixing a plurality of kinds of solvents in order to prepare a coating liquid suitable for the coating process. The type of organic solvent mainly used is preferably an aromatic hydrocarbon or an alicyclic hydrocarbon, and more preferably an aromatic hydrocarbon. In particular, phenylcyclohexane is said to have a favorable viscosity and boiling point in the wet film formation process. Therefore, the solubility of the iridium complex compound preferably used in the wet film forming method is usually 0.5% by mass or more, preferably 1.0% by mass or more, more preferably 1.0% by mass or more, based on phenylcyclohexane at 25 ° C. under atmospheric pressure. Is 1.5% by mass or more.
<イリジウム錯体化合物の合成方法>
本発明のイリジウム錯体化合物は、既知の方法の組み合わせなどにより合成され得る。いわゆる鈴木−宮浦カップリング反応など公知の有機合成反応を組み合わせることにより配位子を合成することができる。イリジウム錯体化合物はこの配位子とイリジウム化合物により合成することができる。<Method for synthesizing iridium complex compound>
The iridium complex compound of the present invention can be synthesized by a combination of known methods and the like. Ligsands can be synthesized by combining known organic synthesis reactions such as the so-called Suzuki-Miyaura coupling reaction. The iridium complex compound can be synthesized by this ligand and the iridium compound.
イリジウム錯体化合物の合成方法については、例えば、下記式(A)に示すような塩素架橋イリジウム二核錯体を経由する方法(M.G.Colombo,T.C.Brunold,T.Riedener,H.U.Gudel,Inorg.Chem.,1994,33,545−550)、下記式(B)二核錯体からさらに塩素架橋をアセチルアセトナートと交換させ単核錯体へ変換したのち目的物を得る方法(S.Lamansky,P.Djurovich,D.Murphy,F.Abdel−Razzaq,R.Kwong,I.Tsyba,M.Borz,B.Mui,R.Bau,M.Thompson,Inorg.Chem.,2001,40,1704−1711)等が例示できるが、これらに限定されるものではない。なお、式(A)及び(B)において、Rは水素または任意の置換基を表し、複数存在するRは同一でも異なっていてもよい。 Regarding the method for synthesizing the iridium complex compound, for example, a method via a chlorine-bridged iridium binuclear complex as shown in the following formula (A) (MG Colombo, TC Brund, T. Riedener, HU). Gudel, Inorgan. Chem., 1994, 33, 545-550), a method of further exchanging a chlorine bridge with an acetylacetonate from a dinuclear complex of the following formula (B) to convert it into a mononuclear complex (S). Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, ITSyba, M. Borz, B. Mui, R. Bau, M. Acetylacetone, Inorgan. Chem., 2001, 40. 1704-1711) and the like can be exemplified, but the present invention is not limited thereto. In addition, in formulas (A) and (B), R represents hydrogen or an arbitrary substituent, and a plurality of Rs existing may be the same or different.
例えば、下記式(A)で表される典型的な反応の条件は以下のとおりである。第一段階として、第一の配位子2当量と塩化イリジウムn水和物1当量の反応により塩素架橋イリジウム二核錯体を合成する。溶媒は通常2−エトキシエタノールと水の混合溶媒が用いられるが、無溶媒あるいは他の溶媒を用いてもよい。配位子を過剰量用いたり、塩基等の添加剤を用いて反応を促進することもできる。塩素に代えて臭素など他の架橋性陰イオン配位子を使用することもできる。反応温度に特に制限はないが、通常は0℃〜250℃、好ましくは50℃〜150℃の範囲である。 For example, the typical reaction conditions represented by the following formula (A) are as follows. As a first step, a chlorine-crosslinked iridium binuclear complex is synthesized by a reaction of 2 equivalents of the first ligand and 1 equivalent of iridium chloride n hydrate. As the solvent, a mixed solvent of 2-ethoxyethanol and water is usually used, but a solvent-free solvent or another solvent may be used. The reaction can be promoted by using an excessive amount of the ligand or by using an additive such as a base. Other crosslinkable anionic ligands such as bromine can be used instead of chlorine. The reaction temperature is not particularly limited, but is usually in the range of 0 ° C. to 250 ° C., preferably 50 ° C. to 150 ° C.
二段階目は、トリフルオロメタンスルホン酸銀のようなハロゲンイオン捕捉剤を添加し第二の配位子と接触させることにより目的とする錯体を得る。溶媒は通常エトキシエタノールまたはジクリムが用いられるが、配位子の種類により無溶媒あるいは他の溶媒を使用することができ、複数の溶媒を混合して使用することもできる。ハロゲンイオン捕捉剤を添加しなくても反応が進行する場合があるので必ずしも必要ではないが、反応収率を高め、より量子収率が高いフェイシャル異性体を選択的に合成するには該捕捉剤の添加が有利である。反応温度に特に制限はないが、通常0℃〜250℃の範囲で行われる。 In the second step, a halogen ion scavenger such as silver trifluoromethanesulfonate is added and brought into contact with the second ligand to obtain the desired complex. As the solvent, ethoxyethanol or diclim is usually used, but no solvent or other solvent can be used depending on the type of ligand, and a plurality of solvents can be mixed and used. It is not always necessary because the reaction may proceed without the addition of a halogen ion scavenger, but the scavenger is used to increase the reaction yield and selectively synthesize facial isomers having a higher quantum yield. Is advantageous. The reaction temperature is not particularly limited, but is usually carried out in the range of 0 ° C. to 250 ° C.
また、式(B)で表される典型的な反応条件を説明する。第一段階の二核錯体は式(A)と同様に合成できる。第二段階は、該二核錯体にアセチルアセトンのような1,3−ジオン化合物を1当量以上、及び、炭酸ナトリウムのような該1,3−ジオン化合物の活性水素を引き抜き得る塩基性化合物を1当量以上反応させることにより、1,3−ジオナト配位子が配位する単核錯体へと変換する。通常原料の二核錯体を溶解しうるエトキシエタノールやジクロロメタンなどの溶媒が使用されるが、配位子が液状である場合無溶媒で実施することも可能である。反応温度に特に制限はないが、通常は0℃〜200℃の範囲内で行われる。 Moreover, the typical reaction conditions represented by the formula (B) will be described. The first-stage dikaryon complex can be synthesized in the same manner as in the formula (A). In the second step, one equivalent or more of a 1,3-dione compound such as acetylacetone and a basic compound capable of extracting active hydrogen of the 1,3-dione compound such as sodium carbonate are added to the dinuclear complex. By reacting in an equivalent amount or more, it is converted into a mononuclear complex in which the 1,3-dionat ligand is coordinated. Usually, a solvent such as ethoxyethanol or dichloromethane that can dissolve the dinuclear complex of the raw material is used, but if the ligand is liquid, it can be carried out without a solvent. The reaction temperature is not particularly limited, but is usually carried out in the range of 0 ° C. to 200 ° C.
第三段階は、第二の配位子を1当量以上反応させる。溶媒の種類と量は特に制限はなく、第二の配位子が反応温度で液状である場合には無溶媒でも良い。反応温度も特に制限はないが、反応性が若干乏しいため100℃〜300℃の比較的高温下で反応させることが多い。そのため、グリセリンなど高沸点の溶媒が好ましく用いられる。
最終反応後は未反応原料や反応副生物及び溶媒を除くために精製を行う。通常の有機合成化学における精製操作を適用することができるが、上記の非特許文献記載のように主として順相のシリカゲルカラムクロマトグラフィーによる精製が行われる。展開液にはヘキサン、ヘプタン、ジクロロメタン、クロロホルム、酢酸エチル、トルエン、メチルエチルケトン、メタノールの単一または混合液を使用できる。精製は条件を変え複数回行ってもよい。その他のクロマトグラフィー技術(逆相シリカゲルクロマトグラフィー、サイズ排除クロマトグラフィー、ペーパークロマトグラフィー)や、分液洗浄、再沈殿、再結晶、粉体の懸濁洗浄、減圧乾燥などの精製操作を必要に応じて施すことができる。The third step is to react one or more equivalents of the second ligand. The type and amount of the solvent are not particularly limited, and may be solvent-free as long as the second ligand is liquid at the reaction temperature. The reaction temperature is also not particularly limited, but since the reactivity is slightly poor, the reaction is often carried out at a relatively high temperature of 100 ° C. to 300 ° C. Therefore, a solvent having a high boiling point such as glycerin is preferably used.
After the final reaction, purification is performed to remove unreacted raw materials, reaction by-products and solvents. Purification operations in ordinary synthetic organic chemistry can be applied, but purification is mainly performed by normal phase silica gel column chromatography as described in the above non-patent documents. A single or mixed solution of hexane, heptane, dichloromethane, chloroform, ethyl acetate, toluene, methyl ethyl ketone, and methanol can be used as the developing solution. Purification may be performed multiple times under different conditions. Other chromatography techniques (reverse phase silica gel chromatography, size exclusion chromatography, paper chromatography) and purification operations such as liquid separation washing, reprecipitation, recrystallization, powder suspension washing, and vacuum drying are required as required. Can be applied.
<イリジウム錯体化合物の用途>
本発明のイリジウム錯体化合物は、有機電界発光素子に用いられる材料、すなわち有機電界発光素子材料として好適に使用可能であり、有機電界発光素子やその他の発光素子等の発光材料としても好適に使用可能である。<Use of iridium complex compound>
The iridium complex compound of the present invention can be suitably used as a material used for an organic electroluminescent device, that is, an organic electroluminescent device material, and can also be suitably used as a light emitting material for an organic electroluminescent device or other light emitting device. Is.
<イリジウム錯体化合物含有組成物>
本発明のイリジウム錯体化合物は、溶解性に優れることから、溶剤とともに使用されることが好ましい。以下、本発明のイリジウム錯体化合物と溶剤とを含有する組成物(イリジウム錯体化合物含有組成物)について説明する。<Iridium complex compound-containing composition>
Since the iridium complex compound of the present invention has excellent solubility, it is preferably used together with a solvent. Hereinafter, a composition containing the iridium complex compound of the present invention and a solvent (iridium complex compound-containing composition) will be described.
本発明のイリジウム錯体化合物含有組成物は、上述の本発明のイリジウム錯体化合物および溶剤を含有する。本発明のイリジウム錯体化合物含有組成物は通常湿式成膜法で層や膜を形成するために用いられ、特に有機電界発光素子の有機層を形成するために用いられることが好ましい。該有機層は、特に発光層であることが好ましい
つまり、イリジウム錯体化合物含有組成物は、有機電界発光素子用組成物であることが好ましく、更に発光層形成用組成物として用いられることが特に好ましい。The iridium complex compound-containing composition of the present invention contains the above-mentioned iridium complex compound and solvent of the present invention. The iridium complex compound-containing composition of the present invention is usually used for forming a layer or a film by a wet film forming method, and is particularly preferably used for forming an organic layer of an organic electroluminescent device. The organic layer is particularly preferably a light emitting layer. That is, the iridium complex compound-containing composition is preferably a composition for an organic electroluminescent device, and is particularly preferably used as a composition for forming a light emitting layer. ..
該イリジウム錯体化合物含有組成物における本発明のイリジウム錯体化合物の含有量は、通常0.001質量%以上、好ましくは0.01質量%以上、通常99.9質量%以下、好ましくは99質量%以下である。組成物のイリジウム錯体化合物の含有量をこの範囲とすることにより、隣接する層(例えば、正孔輸送層や正孔阻止層)から発光層へ効率よく、正孔や電子の注入が行われ、駆動電圧を低減することができる。なお、本発明のイリジウム錯体化合物はイリジウム錯体化合物含有組成物中に、1種のみ含まれていてもよく、2種以上が組み合わされて含まれていてもよい。 The content of the iridium complex compound of the present invention in the iridium complex compound-containing composition is usually 0.001% by mass or more, preferably 0.01% by mass or more, usually 99.9% by mass or less, preferably 99% by mass or less. Is. By setting the content of the iridium complex compound in the composition within this range, holes and electrons are efficiently injected from adjacent layers (for example, hole transport layer and hole blocking layer) into the light emitting layer. The drive voltage can be reduced. The iridium complex compound of the present invention may be contained in the iridium complex compound-containing composition in combination of only one type or a combination of two or more types.
本発明のイリジウム錯体化合物含有組成物を例えば有機電界発光素子用に用いる場合には、上述のイリジウム錯体化合物や溶剤の他、有機電界発光素子、特に発光層に用いられる電荷輸送性化合物を含有することができる。
本発明のイリジウム錯体化合物含有組成物を用いて、有機電界発光素子の発光層を形成する場合には、本発明のイリジウム錯体化合物を発光材料とし、他の電荷輸送性化合物を電荷輸送材料として含むことが好ましい。When the iridium complex compound-containing composition of the present invention is used, for example, for an organic electroluminescent element, it contains the above-mentioned iridium complex compound and solvent, as well as an organic electroluminescent element, particularly a charge-transporting compound used for a light emitting layer. be able to.
When the light emitting layer of the organic electroluminescent element is formed by using the iridium complex compound-containing composition of the present invention, the iridium complex compound of the present invention is used as a light emitting material, and another charge transporting compound is contained as a charge transporting material. Is preferable.
本発明のイリジウム錯体化合物含有組成物に含有される溶剤は、湿式成膜によりイリジウム錯体化合物を含む層を形成するために用いる、揮発性を有する液体成分である。
該溶剤は、溶質である本発明のイリジウム錯体化合物が高い溶解性を有するために、むしろ後述の電荷輸送性化合物が良好に溶解する溶剤であれば特に限定されない。好ましい溶剤としては、例えば、n−デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン類;トルエン、キシレン、メチシレン、フェニルシクロヘキサン、テトラリン等の芳香族炭化水素類;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素類;1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル類;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n−ブチル等の芳香族エステル類、シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン類;シクロヘキサノール、シクロオクタノール等の脂環族アルコール類;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン類;ブタノール、ヘキサノール等の脂肪族アルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル類;等が挙げられる。The solvent contained in the iridium complex compound-containing composition of the present invention is a volatile liquid component used for forming a layer containing the iridium complex compound by wet film formation.
Since the iridium complex compound of the present invention, which is a solute, has high solubility, the solvent is not particularly limited as long as it is a solvent in which the charge transporting compound described later dissolves well. Preferred solvents include, for example, alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin, bicyclohexane; aromatic hydrocarbons such as toluene, xylene, methicylene, phenylcyclohexane, tetralin; chlorobenzene, dichlorobenzene, trichlorobenzene and the like. Halogenized aromatic hydrocarbons such as 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetol, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, etc. Aromatic ethers such as 2,4-dimethylanisole and diphenyl ether; aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, n-butyl benzoate, cyclohexanone, cycloocta Aromatic ketones such as non- and fencon; Aromatic alcohols such as cyclohexanol and cyclooctanol; Aromatic ketones such as methyl ethyl ketone and dibutyl ketone; Aromatic alcohols such as butanol and hexanol; Ethylene glycol dimethyl ether and ethylene Examples thereof include aliphatic ethers such as glycol diethyl ether and propylene glycol-1-monomethyl ether acetate (PGMEA).
中でも好ましくは、アルカン類や芳香族炭化水素類であり、特に、フェニルシクロヘキサンは湿式成膜プロセスにおいて好ましい粘度と沸点を有している。
これらの溶剤は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
溶剤の沸点は通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上、また、通常270℃以下、好ましくは250℃以下、より好ましくは230℃以下である。この範囲を下回ると、湿式成膜時において、組成物からの溶剤蒸発により、成膜安定性が低下する可能性がある。Of these, alkanes and aromatic hydrocarbons are preferable, and phenylcyclohexane in particular has a preferable viscosity and boiling point in the wet film forming process.
One of these solvents may be used alone, or two or more of these solvents may be used in any combination and ratio.
The boiling point of the solvent is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and usually 270 ° C. or lower, preferably 250 ° C. or lower, more preferably 230 ° C. or lower. If it falls below this range, the film formation stability may decrease due to solvent evaporation from the composition during wet film formation.
溶剤の含有量は、イリジウム錯体化合物含有組成物において好ましくは1質量%以上、より好ましくは10質量%以上、特に好ましくは50質量%以上、また、好ましくは99.99質量%以下、より好ましくは99.9質量%以下、特に好ましくは99質量%以下である。通常発光層の厚みは3〜200nm程度であるが、溶剤の含有量がこの下限を下回ると、組成物の粘性が高くなりすぎ、成膜作業性が低下する可能性がある。一方、この上限を上回ると、成膜後、溶剤を除去して得られる膜の厚みが稼げなくなるため、成膜が困難となる傾向がある。 The content of the solvent in the iridium complex compound-containing composition is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, and preferably 99.99% by mass or less, more preferably 99.99% by mass or less. It is 99.9% by mass or less, particularly preferably 99% by mass or less. Normally, the thickness of the light emitting layer is about 3 to 200 nm, but if the solvent content is less than this lower limit, the viscosity of the composition becomes too high, and the film forming workability may decrease. On the other hand, if this upper limit is exceeded, the thickness of the film obtained by removing the solvent after the film formation cannot be increased, so that the film formation tends to be difficult.
本発明のイリジウム錯体化合物含有組成物が含有し得る他の電荷輸送性化合物としては、従来有機電界発光素子用材料として用いられているものを使用することができる。例えば、ピリジン、カルバゾール、ナフタレン、ペリレン、ピレン、アントラセン、クリセン、ナフタセン、フェナントレン、コロネン、フルオランテン、ベンゾフェナントレン、フルオレン、アセトナフトフルオランテン、クマリン、p−ビス(2−フェニルエテニル)ベンゼンおよびそれらの誘導体、キナクリドン誘導体、DCM(4−(dicyanomethylene)−2−methyl−6−(p−dimethylaminostyryl)−4H−pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン、アリールアミノ基が置換された縮合芳香族環化合物、アリールアミノ基が置換されたスチリル誘導体等が挙げられる。 As the other charge-transporting compound that can be contained in the iridium complex compound-containing composition of the present invention, those conventionally used as materials for an organic electroluminescent device can be used. For example, pyridine, carbazole, naphthalene, perylene, pyrene, anthracene, chrysen, naphthalene, phenanthrene, coronen, fluorantene, benzophenanthrene, fluorene, acetnaphthofluoranthene, coumarin, p-bis (2-phenylethenyl) benzene and theirs. Derivatives, quinacridone derivatives, DCM (4- (dicyanomethyrene) -2-methyl-6- (p-dimethylaminostyly) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, benzothioxanthene derivatives, azabenzothioxanthene, aryl Examples thereof include a fused aromatic ring compound in which an amino group is substituted, a styryl derivative in which an arylamino group is substituted, and the like.
これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
また、イリジウム錯体化合物含有組成物中の他の電荷輸送性化合物の含有量は、イリジウム錯体化合物含有組成物中の本発明のイリジウム錯体化合物1質量部に対して、通常1000質量部以下、好ましくは100質量部以下、さらに好ましくは50質量部以下であり、通常0.01質量部以上、好ましくは0.1質量部以上、さらに好ましくは1質量部以上である。One of these may be used alone, or two or more of them may be used in any combination and ratio.
The content of the other charge-transporting compound in the iridium complex compound-containing composition is usually 1000 parts by mass or less, preferably 1000 parts by mass or less, based on 1 part by mass of the iridium complex compound of the present invention in the iridium complex compound-containing composition. It is 100 parts by mass or less, more preferably 50 parts by mass or less, usually 0.01 parts by mass or more, preferably 0.1 parts by mass or more, still more preferably 1 part by mass or more.
本発明のイリジウム錯体化合物含有組成物には、必要に応じて、上記の化合物等の他に、更に他の化合物を含有していてもよい。例えば、上記の溶剤の他に、別の溶剤を含有していてもよい。そのような溶剤としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類、ジメチルスルホキシド等が挙げられる。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。 The iridium complex compound-containing composition of the present invention may contain other compounds in addition to the above compounds, if necessary. For example, in addition to the above solvent, another solvent may be contained. Examples of such a solvent include amides such as N, N-dimethylformamide and N, N-dimethylacetamide, dimethyl sulfoxide and the like. One of these may be used alone, or two or more of them may be used in any combination and ratio.
<有機電界発光素子>
以下に、本発明の有機電界発光素子、有機電界発光照明装置及び有機電界発光表示装置の実施態様を詳細に説明するが、本発明はその要旨を超えない限り、これらの内容により限定されるものではない。<Organic electroluminescent device>
Hereinafter, embodiments of the organic electroluminescent device, the organic electroluminescent illuminator, and the organic electroluminescent display device of the present invention will be described in detail, but the present invention is limited by these contents as long as the gist of the present invention is not exceeded. is not it.
(基板)
基板は、有機電界発光素子の支持体となるものであり、通常、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。これらのうち、ガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。基板は、外気による有機電界発光素子の劣化が起こり難いことからガスバリア性の高い材質とするのが好ましい。このため、特に合成樹脂製の基板等のようにガスバリア性の低い材質を用いる場合は、基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を上げるのが好ましい。(substrate)
The substrate serves as a support for the organic electroluminescent element, and usually a quartz or glass plate, a metal plate, a metal foil, a plastic film, a sheet, or the like is used. Of these, a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable. The substrate is preferably made of a material having a high gas barrier property because the organic electroluminescent element is unlikely to be deteriorated by the outside air. Therefore, particularly when a material having a low gas barrier property such as a synthetic resin substrate is used, it is preferable to provide a dense silicon oxide film or the like on at least one surface of the substrate to improve the gas barrier property.
(陽極)
陽極は、発光層側の層に正孔を注入する機能を担う。陽極は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属;インジウム及び/又はスズの酸化物等の金属酸化物;ヨウ化銅等のハロゲン化金属;カーボンブラック及びポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。陽極の形成は、通常、スパッタリング法、真空蒸着法等の乾式法により行われることが多い。また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板上に塗布することにより形成することもできる。また、導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。(anode)
The anode has the function of injecting holes into the layer on the light emitting layer side. The anode is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum; a metal oxide such as an oxide of indium and / or tin; a metal halide such as copper iodide; carbon black and poly (3-). It is composed of conductive polymers such as methylthiophene), polypyrrole, and polyaniline. The anode is usually formed by a dry method such as a sputtering method or a vacuum vapor deposition method. When forming an anode using metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc., use an appropriate binder resin solution. It can also be formed by dispersing and applying it on a substrate. Further, in the case of a conductive polymer, a thin film can be formed directly on the substrate by electrolytic polymerization, or an anode can be formed by applying the conductive polymer on the substrate (Appl. Phys. Lett., 60). Vol. 2711, 1992).
陽極は、通常、単層構造であるが、適宜、積層構造としてもよい。陽極が積層構造である場合、1層目の陽極上に異なる導電材料を積層してもよい。 陽極の厚みは、必要とされる透明性と材質等に応じて、決めればよい。特に高い透明性が必要とされる場合は、可視光の透過率が60%以上となる厚みが好ましく、80%以上となる厚みが更に好ましい。陽極の厚みは、通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下とするのが好ましい。一方、透明性が不要な場合は、陽極の厚みは必要な強度等に応じて任意に厚みとすればよく、この場合、陽極は基板と同一の厚みでもよい。
陽極の表面に成膜を行う場合は、成膜前に、紫外線+オゾン、酸素プラズマ、アルゴンプラズマ等の処理を施すことにより、陽極上の不純物を除去すると共に、そのイオン化ポテンシャルを調整して正孔注入性を向上させておくのが好ましい。The anode usually has a single-layer structure, but may have a laminated structure as appropriate. When the anode has a laminated structure, different conductive materials may be laminated on the first-layer anode. The thickness of the anode may be determined according to the required transparency, material, and the like. When particularly high transparency is required, a thickness having a visible light transmittance of 60% or more is preferable, and a thickness having a visible light transmittance of 80% or more is more preferable. The thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less. On the other hand, when transparency is not required, the thickness of the anode may be arbitrarily set according to the required strength and the like. In this case, the anode may have the same thickness as the substrate.
When forming a film on the surface of the anode, the impurities on the anode are removed by treating the surface of the anode with ultraviolet rays + ozone, oxygen plasma, argon plasma, etc., and the ionization potential is adjusted to be positive. It is preferable to improve the pore injection property.
(正孔注入層)
陽極側から発光層側に正孔を輸送する機能を担う層は、通常、正孔注入輸送層又は正孔輸送層と呼ばれる。そして、陽極側から発光層側に正孔を輸送する機能を担う層が2層以上ある場合に、より陽極側に近い方の層を正孔注入層と呼ぶことがある。正孔注入層は、陽極から発光層側に正孔を輸送する機能を強化する点で、用いることが好ましい。正孔注入層を用いる場合、通常、正孔注入層は、陽極上に形成される。(Hole injection layer)
The layer having a function of transporting holes from the anode side to the light emitting layer side is usually called a hole injection transport layer or a hole transport layer. When there are two or more layers having a function of transporting holes from the anode side to the light emitting layer side, the layer closer to the anode side may be called a hole injection layer. The hole injection layer is preferably used because it enhances the function of transporting holes from the anode to the light emitting layer side. When a hole injection layer is used, the hole injection layer is usually formed on the anode.
正孔注入層の膜厚は、通常1nm以上、好ましくは5nm以上、また、通常1000nm以下、好ましくは500nm以下である。
正孔注入層の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。
正孔注入層は、正孔輸送性化合物を含むことが好ましく、正孔輸送性化合物と電子受容性化合物とを含むことがより好ましい。更には、正孔注入層中にカチオンラジカル化合物を含むことが好ましく、カチオンラジカル化合物と正孔輸送性化合物とを含むことが特に好ましい。The film thickness of the hole injection layer is usually 1 nm or more, preferably 5 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
The hole injection layer may be formed by either a vacuum vapor deposition method or a wet film deposition method. In terms of excellent film forming property, it is preferably formed by a wet film forming method.
The hole injection layer preferably contains a hole transporting compound, and more preferably contains a hole transporting compound and an electron accepting compound. Further, it is preferable to contain a cationic radical compound in the hole injection layer, and it is particularly preferable to contain a cationic radical compound and a hole transporting compound.
(正孔輸送性化合物)
正孔注入層形成用組成物は、通常、正孔注入層となる正孔輸送性化合物を含有する。また、湿式成膜法の場合は、通常、更に溶剤も含有する。正孔注入層形成用組成物は、正孔輸送性が高く、注入された正孔を効率よく輸送できるのが好ましい。このため、正孔移動度が大きく、トラップとなる不純物が製造時や使用時等に発生し難いのが好ましい。また、安定性に優れ、イオン化ポテンシャルが小さく、可視光に対する透明性が高いことが好ましい。特に、正孔注入層が発光層と接する場合は、発光層からの発光を消光しないものや発光層とエキサイプレックスを形成して、発光効率を低下させないものが好ましい。(Hole transporting compound)
The composition for forming a hole injection layer usually contains a hole transporting compound that serves as a hole injection layer. Further, in the case of the wet film forming method, a solvent is usually further contained. It is preferable that the composition for forming a hole injection layer has high hole transportability and can efficiently transport the injected holes. Therefore, it is preferable that the hole mobility is high and impurities that serve as traps are unlikely to be generated during production or use. Further, it is preferable that the stability is excellent, the ionization potential is small, and the transparency to visible light is high. In particular, when the hole injection layer is in contact with the light emitting layer, those that do not quench the light emitted from the light emitting layer or those that form an exciplex with the light emitting layer and do not reduce the luminous efficiency are preferable.
正孔輸送性化合物としては、陽極から正孔注入層への電荷注入障壁の観点から、4.5eV〜6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、キナクリドン系化合物等が挙げられる。 As the hole transporting compound, a compound having an ionization potential of 4.5 eV to 6.0 eV is preferable from the viewpoint of a charge injection barrier from the anode to the hole injection layer. Examples of hole-transporting compounds include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, compounds in which a tertiary amine is linked with a fluorene group, and hydrazone. Examples thereof include system compounds, silazane compounds, and quinacridone compounds.
上述の例示化合物のうち、非晶質性及び可視光透過性の点から、芳香族アミン化合物が好ましく、芳香族三級アミン化合物が特に好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
芳香族三級アミン化合物の種類は、特に制限されないが、表面平滑化効果により均一な発光を得やすい点から、重量平均分子量が1000以上1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)を用いるのが好ましい。芳香族三級アミン高分子化合物の好ましい例としては、下記式(I)で表される繰り返し単位を有する高分子化合物等が挙げられる。Among the above-mentioned exemplified compounds, aromatic amine compounds are preferable, and aromatic tertiary amine compounds are particularly preferable, from the viewpoint of amorphousness and visible light transmission. Here, the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and also includes a compound having a group derived from the aromatic tertiary amine.
The type of the aromatic tertiary amine compound is not particularly limited, but is a polymer compound having a weight average molecular weight of 1,000 or more and 1,000,000 or less (polymerized compound in which repeating units are continuous) from the viewpoint that uniform light emission can be easily obtained due to the surface smoothing effect. Is preferably used. Preferred examples of the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following formula (I).
(式(I)中、Ar1及びAr2は、それぞれ独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。Ar3〜Ar5は、それぞれ独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。Yは、下記の連結基群の中から選ばれる連結基を表す。また、Ar1〜Ar5のうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。
下記に連結基を示す。(In formula (I), Ar 1 and Ar 2 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent. . Ar 3 to Ar 5 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent. Y represents the following. It represents a linking group selected from the linking group group. Further, two groups of Ar 1 to Ar 5 that are bonded to the same N atom may be bonded to each other to form a ring.
The linking groups are shown below.
(上記各式中、Ar6〜Ar16は、それぞれ独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。R1及びR2は、それぞれ独立して、水素原子又は任意の置換基を表す。)Ar1〜Ar16の芳香族炭化水素基及び芳香族複素環基としては、高分子化合物の溶解性、耐熱性、正孔注入輸送性の点から、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環由来の基が好ましく、ベンゼン環、ナフタレン環由来の基がさらに好ましい。
式(I)で表される繰り返し単位を有する芳香族三級アミン高分子化合物の具体例としては、国際公開第2005/089024号に記載のもの等が挙げられる。(In each of the above formulas, Ar 6 to Ar 16 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent. R 1 and R 2 independently represent a hydrogen atom or an arbitrary substituent.) As the aromatic hydrocarbon group and aromatic heterocyclic group of Ar 1 to Ar 16, the solubility of a high molecular compound, From the viewpoint of heat resistance and hole injection transportability, groups derived from benzene ring, naphthalene ring, phenanthrene ring, thiophene ring and pyridine ring are preferable, and groups derived from benzene ring and naphthalene ring are more preferable.
Specific examples of the aromatic tertiary amine polymer compound having a repeating unit represented by the formula (I) include those described in International Publication No. 2005/089024.
(電子受容性化合物)
正孔注入層には、正孔輸送性化合物の酸化により、正孔注入層の導電率を向上させることができるため、電子受容性化合物を含有していることが好ましい。
電子受容性化合物としては、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましく、具体的には、電子親和力が4eV以上である化合物が好ましく、電子親和力が5eV以上である化合物が更に好ましい。(Electron accepting compound)
Since the hole injecting layer can improve the conductivity of the hole injecting layer by oxidizing the hole transporting compound, it is preferable that the hole injecting layer contains an electron accepting compound.
As the electron-accepting compound, a compound having an oxidizing power and having an ability to accept one electron from the above-mentioned hole-transporting compound is preferable, and specifically, a compound having an electron affinity of 4 eV or more is preferable, and an electron affinity is preferable. A compound having a value of 5 eV or more is more preferable.
このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。具体的には、4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンダフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開第2005/089024号);塩化鉄(III)(日本国特開平11−251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物;トリス(ペンダフルオロフェニル)ボラン(日本国特開2003−31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体及びヨウ素等が挙げられる。 Such an electron-accepting compound includes, for example, a triarylboron compound, a metal halide, a Lewis acid, an organic acid, an onium salt, a salt of an arylamine and a metal halide, and a salt of an arylamine and a Lewis acid. One or more compounds selected from the group may be mentioned. Specifically, an onium salt substituted with an organic group such as 4-isopropyl-4'-methyldiphenyliodonium tetrakis (pendafluorophenyl) borate, triphenylsulfonium tetrafluoroborate (International Publication No. 2005/089024); chloride. High valence inorganic compounds such as iron (III) (Japanese Patent Laid-Open No. 11-251067), ammonium peroxodisulfate; cyano compounds such as tetracyanoethylene; tris (pendafluorophenyl) borane (Japanese Patent Laid-Open No. 2003-) Aromatic boron compounds such as 31365); fullerene derivatives, iodine and the like can be mentioned.
(カチオンラジカル化合物)
カチオンラジカル化合物としては、正孔輸送性化合物から一電子取り除いた化学種であるカチオンラジカルと、対アニオンとからなるイオン化合物が好ましい。但し、カチオンラジカルが正孔輸送性の高分子化合物由来である場合、カチオンラジカルは高分子化合物の繰り返し単位から一電子取り除いた構造となる。(Cation radical compound)
As the cation radical compound, an ionic compound composed of a cation radical, which is a chemical species obtained by removing one electron from a hole transporting compound, and a counter anion is preferable. However, when the cation radical is derived from a hole-transporting polymer compound, the cation radical has a structure in which one electron is removed from the repeating unit of the polymer compound.
カチオンラジカルとしては、正孔輸送性化合物として前述した化合物から一電子取り除いた化学種であることが好ましい。正孔輸送性化合物として好ましい化合物から一電子取り除いた化学種であることが、非晶質性、可視光の透過率、耐熱性、及び溶解性などの点から好適である。
ここで、カチオンラジカル化合物は、前述の正孔輸送性化合物と電子受容性化合物を混合することにより生成させることができる。即ち、前述の正孔輸送性化合物と電子受容性化合物とを混合することにより、正孔輸送性化合物から電子受容性化合物へと電子移動が起こり、正孔輸送性化合物のカチオンラジカルと対アニオンとからなるカチオンイオン化合物が生成する。 The cation radical is preferably a chemical species obtained by removing one electron from the above-mentioned compound as a hole transporting compound. A chemical species obtained by removing one electron from a preferable compound as a hole transporting compound is preferable from the viewpoints of amorphousness, visible light transmittance, heat resistance, solubility and the like.
Here, the cationic radical compound can be produced by mixing the hole transporting compound and the electron accepting compound described above. That is, by mixing the above-mentioned hole transporting compound and the electron accepting compound, electron transfer occurs from the hole transporting compound to the electron accepting compound, and the cation radical and the counter anion of the hole transporting compound become A cationic ion compound consisting of is produced.
PEDOT/PSS(Adv.Mater.,2000年,12巻,481頁)やエメラルジン塩酸塩(J.Phys.Chem.,1990年,94巻,7716頁)等の高分子化合物由来のカチオンラジカル化合物は、酸化重合(脱水素重合)することによっても生成する。
ここでいう酸化重合は、モノマーを酸性溶液中で、ペルオキソ二硫酸塩等を用いて化学的に、又は、電気化学的に酸化するものである。この酸化重合(脱水素重合)の場合、モノマーが酸化されることにより高分子化されるとともに、酸性溶液由来のアニオンを対アニオンとする、高分子の繰り返し単位から一電子取り除かれたカチオンラジカルが生成する。Cationic radical compounds derived from polymer compounds such as PEDOT / PSS (Adv. Mater., 2000, Vol. 12, p. 481) and emeraldine hydrochloride (J. Phys. Chem., 1990, Vol. 94, p. 7716) It is also produced by oxidative polymerization (dehydrogenation polymerization).
The oxidative polymerization referred to here is to chemically or electrochemically oxidize a monomer in an acidic solution using peroxodisulfate or the like. In the case of this oxidative polymerization (dehydropolymerization), a cation radical obtained by removing one electron from a repeating unit of a polymer, which is polymerized by oxidizing a monomer and has an anion derived from an acidic solution as a counter anion, is generated. Generate.
<湿式成膜法による正孔注入層の形成>
湿式成膜法により正孔注入層を形成する場合、通常、正孔注入層となる材料を可溶な溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を正孔注入層の下層に該当する層(通常は、陽極)上に塗布して成膜し、乾燥させることにより形成させる。<Formation of hole injection layer by wet film formation method>
When the hole injection layer is formed by the wet film formation method, the material to be the hole injection layer is usually mixed with a soluble solvent (solvent for the hole injection layer) to form a composition for film formation (hole injection). A composition for forming a layer) is prepared, and the composition for forming a hole injection layer is applied onto a layer (usually an anode) corresponding to the lower layer of the hole injection layer to form a film, which is formed by drying. Let me.
正孔注入層形成用組成物中における正孔輸送性化合物の濃度は、本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点では、低い方が好ましく、また、一方、正孔注入層に欠陥が生じ難い点では、高い方が好ましい。具体的には、0.01質量%以上であるのが好ましく、0.1質量%以上であるのが更に好ましく、0.5質量%以上であるのが特に好ましく、また、一方、70質量%以下であるのが好ましく、60質量%以下であるのが更に好ましく、50質量%以下であるのが特に好ましい。 The concentration of the hole transporting compound in the composition for forming a hole injection layer is arbitrary as long as the effect of the present invention is not significantly impaired, but it is preferable that the concentration is low in terms of film thickness uniformity. , A higher value is preferable in that defects are less likely to occur in the hole injection layer. Specifically, it is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and on the other hand, 70% by mass. It is preferably less than or equal to, more preferably 60% by mass or less, and particularly preferably 50% by mass or less.
溶剤としては、例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。
エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル及び1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール等の芳香族エーテル等が挙げられる。Examples of the solvent include ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents and the like.
Examples of the ether-based solvent include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole. , Fenetol, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole and other aromatic ethers.
エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n−ブチル等の芳香族エステル等が挙げられる。
芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3−イソプロピルビフェニル、1,2,3,4−テトラメチルベンゼン、1,4−ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレン等が挙げられる。アミド系溶剤としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等が挙げられる。Examples of the ester-based solvent include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
Examples of the aromatic hydrocarbon solvent include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, methylnaphthalene and the like. Be done. Examples of the amide-based solvent include N, N-dimethylformamide, N, N-dimethylacetamide and the like.
これらの他、ジメチルスルホキシド等も用いることができる。
正孔注入層3の湿式成膜法による形成は、通常、正孔注入層形成用組成物を調製後に、これを、正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布成膜し、乾燥することにより行われる。正孔注入層3は、通常、成膜後に、加熱や減圧乾燥等により塗布膜を乾燥させる。In addition to these, dimethyl sulfoxide and the like can also be used.
The formation of the hole injection layer 3 by the wet film formation method is usually performed on the layer corresponding to the lower layer of the hole injection layer 3 (usually, the anode 2) after preparing the composition for forming the hole injection layer. It is carried out by applying a film to the film and drying it. In the hole injection layer 3, the coating film is usually dried by heating, vacuum drying, or the like after the film formation.
<真空蒸着法による正孔注入層の形成>
真空蒸着法により正孔注入層3を形成する場合には、通常、正孔注入層3の構成材料(前述の正孔輸送性化合物、電子受容性化合物等)の1種類又は2種類以上を真空容器内に設置された坩堝に入れ(2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れ)、真空容器内を真空ポンプで10−4Pa程度まで排気した後、坩堝を加熱して(2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して)、坩堝内の材料の蒸発量を制御しながら蒸発させ(2種類以上の材料を用いる場合は、通常各々独立に蒸発量を制御しながら蒸発させ)、坩堝に向き合って置かれた基板上の陽極上に正孔注入層を形成させる。なお、2種類以上の材料を用いる場合は、それらの混合物を坩堝に入れ、加熱、蒸発させて正孔注入層を形成することもできる。<Formation of hole injection layer by vacuum deposition method>
When the hole injection layer 3 is formed by the vacuum deposition method, usually one or more of the constituent materials of the hole injection layer 3 (the above-mentioned hole transporting compound, electron accepting compound, etc.) are vacuumed. Place in a crucible installed inside the container (when using two or more materials, usually put each in a separate crucible), exhaust the inside of the vacuum container to about 10-4 Pa with a vacuum pump, and then heat the crucible. (When two or more types of materials are used, each crucible is usually heated), and the material in the crucible is evaporated while controlling the amount of evaporation (when two or more types of materials are used, each is usually independent). Evaporate while controlling the amount of evaporation) to form a hole injection layer on the anode on the substrate placed facing the crucible. When two or more kinds of materials are used, a mixture thereof can be put in a crucible and heated and evaporated to form a hole injection layer.
蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10−6Torr(0.13×10−4Pa)以上、9.0×10−6Torr(12.0×10−4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上、50℃以下で行われる。The degree of vacuum during vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 × 10 -6 Torr (0.13 × 10 -4 Pa) or more, 9.0 × 10 -6 Torr ( It is 12.0 × 10 -4 Pa) or less. The vapor deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 Å / sec or more and 5.0 Å / sec or less. The film formation temperature at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is preferably 10 ° C. or higher and 50 ° C. or lower.
(正孔輸送層)
正孔輸送層は、陽極側から発光層側に正孔を輸送する機能を担う層である。正孔輸送層は、本発明の有機電界発光素子では、必須の層では無いが、陽極から発光層に正孔を輸送する機能を強化する点では、この層を用いるのが好ましい。正孔輸送層を用いる場合、通常、正孔輸送層は、陽極と発光層の間に形成される。また、上述の正孔注入層がある場合は、正孔注入層と発光層の間に形成される。(Hole transport layer)
The hole transport layer is a layer that has a function of transporting holes from the anode side to the light emitting layer side. The hole transport layer is not an essential layer in the organic electroluminescent device of the present invention, but it is preferable to use this layer from the viewpoint of enhancing the function of transporting holes from the anode to the light emitting layer. When a hole transport layer is used, the hole transport layer is usually formed between the anode and the light emitting layer. Further, when the hole injection layer described above is present, it is formed between the hole injection layer and the light emitting layer.
正孔輸送層の膜厚は、通常5nm以上、好ましくは10nm以上であり、また、一方、通常300nm以下、好ましくは100nm以下である。
正孔輸送層の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。
正孔輸送層は、通常、正孔輸送層となる正孔輸送性化合物を含有する。正孔輸送層に含まれる正孔輸送性化合物としては、特に、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルで代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(日本国特開平5−234681号公報)、4,4’,4’’−トリス(1−ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(J.Lumin.,72−74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’−テトラキス−(ジフェニルアミノ)−9,9’−スピロビフルオレン等のスピロ化合物(Synth.Metals,91巻、209頁、1997年)、4,4’−N,N’−ジカルバゾールビフェニルなどのカルバゾール誘導体などが挙げられる。また、例えばポリビニルカルバゾール、ポリビニルトリフェニルアミン(日本国特開平7−53953号公報)、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン(Polym.Adv.Tech.,7巻、33頁、1996年)等も好ましく使用できる。The film thickness of the hole transport layer is usually 5 nm or more, preferably 10 nm or more, and on the other hand, usually 300 nm or less, preferably 100 nm or less.
The hole transport layer may be formed by either a vacuum vapor deposition method or a wet film deposition method. In terms of excellent film forming property, it is preferably formed by a wet film forming method.
The hole transport layer usually contains a hole transporting compound that serves as a hole transport layer. Examples of the hole-transporting compound contained in the hole-transporting layer include two or more tertiary amines represented by 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl. Aromatic amine in which two or more fused aromatic rings are substituted with nitrogen atoms (Japanese Patent Laid-Open No. 5-234681), 4,4', 4''-tris (1-naphthylphenylamino) triphenyl Aromatic amine compounds having a starburst structure such as amines (J. Lumin., 72-74, pp. 985, 1997), aromatic amine compounds consisting of triphenylamine tetramers (Chem. Commun., 2175). P. 1996), Spiro compounds such as 2,2', 7,7'-tetrax- (diphenylamino) -9,9'-spirobifluorene (Synth. Metals, Vol. 91, p. 209, 1997), Examples thereof include carbazole derivatives such as 4,4'-N and N'-dicarbazolebiphenyl. In addition, for example, polyvinylcarbazole, polyvinyltriphenylamine (Japanese Patent Laid-Open No. 7-53953), and polyarylene ether sulfone containing tetraphenylbenzidine (Polym. Adv. Tech., Vol. 7, p. 33, 1996). Etc. can also be preferably used.
<湿式成膜法による正孔輸送層の形成>
湿式成膜法で正孔輸送層を形成する場合は、通常、上述の正孔注入層を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに正孔輸送層形成用組成物を用いて形成させる。
湿式成膜法で正孔輸送層を形成する場合は、通常、正孔輸送層形成用組成物は、更に溶剤を含有する。正孔輸送層形成用組成物に用いる溶剤は、上述の正孔注入層形成用組成物で用いる溶剤と同様の溶剤を使用することができる。<Formation of hole transport layer by wet film formation method>
When the hole transport layer is formed by the wet film forming method, holes are usually formed instead of the hole injection layer forming composition in the same manner as when the hole injection layer is formed by the wet film forming method. It is formed using a composition for forming a transport layer.
When the hole transport layer is formed by the wet film formation method, the hole transport layer forming composition usually further contains a solvent. As the solvent used in the hole transport layer forming composition, the same solvent as the solvent used in the hole injection layer forming composition described above can be used.
正孔輸送層形成用組成物中における正孔輸送性化合物の濃度は、正孔注入層形成用組成物中における正孔輸送性化合物の濃度と同様の範囲とすることができる。
正孔輸送層の湿式成膜法による形成は、前述の正孔注入層成膜法と同様に行うことができる。The concentration of the hole-transporting compound in the composition for forming the hole-transporting layer can be in the same range as the concentration of the hole-transporting compound in the composition for forming the hole-injecting layer.
The hole transport layer can be formed by the wet film formation method in the same manner as the hole injection layer film formation method described above.
<真空蒸着法による正孔輸送層の形成>
真空蒸着法で正孔輸送層を形成する場合についても、通常、上述の正孔注入層を真空蒸着法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに正孔輸送層形成用組成物を用いて形成させることができる。蒸着時の真空度、蒸着速度及び温度などの成膜条件などは、前記正孔注入層の真空蒸着時と同様の条件で成膜することができる。<Formation of hole transport layer by vacuum deposition method>
When the hole transport layer is formed by the vacuum vapor deposition method, the hole transport is usually performed instead of the hole injection layer forming composition in the same manner as in the case where the hole injection layer is formed by the vacuum vapor deposition method. It can be formed using a layer-forming composition. The film formation conditions such as the degree of vacuum, the vapor deposition rate, and the temperature at the time of vapor deposition can be the same as those at the time of vacuum deposition of the hole injection layer.
(発光層)
発光層は、一対の電極間に電界が与えられた時に、陽極から注入される正孔と陰極から注入される電子が再結合することにより励起され、発光する機能を担う層である。発光層は、陽極と陰極の間に形成される層であり、発光層は、陽極の上に正孔注入層がある場合は、正孔注入層と陰極の間に形成され、陽極の上に正孔輸送層がある場合は、正孔輸送層と陰極の間に形成される。(Light emitting layer)
The light emitting layer is a layer that is excited by recombination of holes injected from the anode and electrons injected from the cathode when an electric field is applied between the pair of electrodes, and has a function of emitting light. The light emitting layer is a layer formed between the anode and the cathode, and the light emitting layer is formed between the hole injection layer and the cathode when there is a hole injection layer on the anode, and is on the anode. If there is a hole transport layer, it is formed between the hole transport layer and the cathode.
発光層の膜厚は、本発明の効果を著しく損なわない限り任意であるが、膜に欠陥が生じ難い点では厚い方が好ましく、また、一方、薄い方が低駆動電圧としやすい点で好ましい。このため、3nm以上であるのが好ましく、5nm以上であるのが更に好ましく、また、一方、通常200nm以下であるのが好ましく、100nm以下であるのが更に好ましい。
発光層は、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、電荷輸送性を有する材料(電荷輸送性材料)とを含有する。The film thickness of the light emitting layer is arbitrary as long as the effect of the present invention is not significantly impaired, but a thicker one is preferable in that defects are less likely to occur in the film, and on the other hand, a thinner film is preferable in that a low drive voltage is likely to be obtained. Therefore, it is preferably 3 nm or more, more preferably 5 nm or more, and on the other hand, usually 200 nm or less, further preferably 100 nm or less.
The light emitting layer contains at least a material having a light emitting property (light emitting material) and preferably a material having a charge transporting property (charge transporting material).
(発光材料)
発光材料は、所望の発光波長で発光し、本発明の効果を損なわない限り特に制限はなく、公知の発光材料を適用可能である。発光材料は、蛍光発光材料でも、燐光発光材料でもよいが、発光効率が良好である材料が好ましく、内部量子効率の観点から燐光発光材料が好ましい。燐光発光材料としては、本願発明のイリジウム錯体化合物を用いることが好ましい。(Luminescent material)
The light emitting material is not particularly limited as long as it emits light at a desired light emitting wavelength and the effect of the present invention is not impaired, and a known light emitting material can be applied. The light emitting material may be either a fluorescent light emitting material or a phosphorescent light emitting material, but a material having good luminous efficiency is preferable, and a phosphorescent light emitting material is preferable from the viewpoint of internal quantum efficiency. As the phosphorescent material, it is preferable to use the iridium complex compound of the present invention.
蛍光発光材料としては、例えば、以下の材料が挙げられる。
青色発光を与える蛍光発光材料(青色蛍光発光材料)としては、例えば、ナフタレン、ペリレン、ピレン、アントラセン、クマリン、クリセン、p−ビス(2−フェニルエテニル)ベンゼン及びそれらの誘導体等が挙げられる。
緑色発光を与える蛍光発光材料(緑色蛍光発光材料)としては、例えば、キナクリドン誘導体、クマリン誘導体、Al(C9H6NO)3などのアルミニウム錯体等が挙げられる。黄色発光を与える蛍光発光材料(黄色蛍光発光材料)としては、例えば、ルブレン、ペリミドン誘導体等が挙げられる。Examples of the fluorescent light emitting material include the following materials.
Examples of the fluorescent light emitting material (blue fluorescent light emitting material) that gives blue light emission include naphthalene, perylene, pyrene, anthracene, coumarin, chrysene, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
The fluorescent light-emitting material giving green luminescence (green fluorescent material), for example, quinacridone derivatives, coumarin derivatives, aluminum complexes such as Al (C 9 H 6 NO) 3 and the like. Examples of the fluorescent light emitting material (yellow fluorescent light emitting material) that gives yellow light emission include rubrene, a perimidone derivative, and the like.
赤色発光を与える蛍光発光材料(赤色蛍光発光材料)としては、例えば、DCM(4−(dicyanomethylene)−2−methyl−6−(p−dimethylaminostyryl)−4H−pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。 Examples of the fluorescent light emitting material (red fluorescent light emitting material) that gives red light emission include DCM (4- (dicyanomethyrene) -2-methyl-6- (p-dimethylaminostylyl) -4H-pyran) compounds, benzopyran derivatives, and rhodamine derivatives. , Benzothioxanthene derivatives, azabenzothioxanthene and the like.
また、燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)の第7〜11族から選ばれる金属を含む有機金属錯体等が挙げられる。周期表の第7〜11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられる。 Further, as the phosphorescent material, for example, the 7th to 11th of the long periodic table (hereinafter, unless otherwise specified, the term "periodic table" refers to the long periodic table). Examples thereof include an organic metal complex containing a metal selected from the group. Preferred metals selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, renium, osmium, iridium, platinum, gold and the like.
有機金属錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基またはヘテロアリール基を表す。 As the ligand of the organic metal complex, a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand is linked to a pyridine, pyrazole, phenanthroline or the like is preferable. In particular, a phenylpyridine ligand and a phenylpyrazole ligand are preferable. Here, the (hetero) aryl represents an aryl group or a heteroaryl group.
好ましい燐光発光材料として、具体的には、例えば、トリス(2−フェニルピリジン)イリジウム、トリス(2−フェニルピリジン)ルテニウム、トリス(2−フェニルピリジン)パラジウム、ビス(2−フェニルピリジン)白金、トリス(2−フェニルピリジン)オスミウム、トリス(2−フェニルピリジン)レニウム等のフェニルピリジン錯体及びオクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等のポルフィリン錯体等が挙げられる。 Specific preferred phosphorescent materials include, for example, tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, and tris. Examples thereof include phenylpyridine complexes such as (2-phenylpyridine) osmium and tris (2-phenylpyridine) renium, and porphyrin complexes such as octaethyl platinum porphyrin, octaphenyl platinum porphyrin, octaethyl palladium porphyrin, and octaphenyl palladium porphyrin.
高分子系の発光材料としては、ポリ(9,9−ジオクチルフルオレン−2,7−ジイル)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(4,4’−(N−(4−sec−ブチルフェニル))ジフェニルアミン)]、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(1,4−ベンゾ−2{2,1’−3}−トリアゾール)]などのポリフルオレン系材料、ポリ[2−メトキシ−5−(2−ヘチルヘキシルオキシ)−1,4−フェニレンビニレン]などのポリフェニレンビニレン系材料が挙げられる。 Polymer-based luminescent materials include poly (9,9-dioctylfluorene-2,7-diyl) and poly [(9,9-dioctylfluorene-2,7-diyl) -co- (4,4'-). (N- (4-sec-Butylphenyl)) diphenylamine)], poly [(9,9-dioctylfluorene-2,7-diyl) -co- (1,4-benzo-2 {2,1'-3) } -Triazole)] and other polyfluorene-based materials, and poly-phenylene vinylene-based materials such as poly [2-methoxy-5- (2-hepylhexyloxy) -1,4-phenylene vinylene] can be mentioned.
(電荷輸送性材料)
電荷輸送性材料は、正電荷(正孔)又は負電荷(電子)輸送性を有する材料であり、本発明の効果を損なわない限り、特に制限はなく、公知の発光材料を適用可能である。
電荷輸送性材料は、従来、有機電界発光素子の発光層に用いられている化合物等を用いることができ、特に、発光層のホスト材料として使用されている化合物が好ましい。(Charge transport material)
The charge transporting material is a material having a positive charge (hole) or negative charge (electron) transporting property, and is not particularly limited as long as the effect of the present invention is not impaired, and a known light emitting material can be applied.
As the charge transporting material, a compound or the like conventionally used for the light emitting layer of the organic electroluminescent device can be used, and in particular, a compound used as a host material for the light emitting layer is preferable.
電荷輸送性材料としては、具体的には、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、シラナミン系化合物、ホスファミン系化合物、キナクリドン系化合物等の正孔注入層の正孔輸送性化合物として例示した化合物等が挙げられる他、アントラセン系化合物、ピレン系化合物、カルバゾール系化合物、ピリジン系化合物、フェナントロリン系化合物、オキサジアゾール系化合物、シロール系化合物等の電子輸送性化合物等が挙げられる。 Specific examples of the charge transporting material include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, and compounds in which a tertiary amine is linked with a fluorene group. , Hydrazone-based compounds, silazane-based compounds, silanamin-based compounds, phosphamine-based compounds, quinacridone-based compounds, and other compounds exemplified as hole-transporting compounds in the hole injection layer, as well as anthracene-based compounds and pyrene-based compounds. Examples thereof include electron-transporting compounds such as carbazole-based compounds, pyridine-based compounds, phenanthroline-based compounds, oxadiazole-based compounds, and silol-based compounds.
また、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルで代表される2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(日本国特開平5−234681号公報)、4,4’,4”−トリス(1−ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン系化合物(J.Lumin.,72−74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン系化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’−テトラキス−(ジフェニルアミノ)−9,9’−スピロビフルオレン等のフルオレン系化合物(Synth.Metals,91巻、209頁、1997年)、4,4’−N,N’−ジカルバゾールビフェニルなどのカルバゾール系化合物等の正孔輸送層の正孔輸送性化合物として例示した化合物等も好ましく用いることができる。また、この他、2−(4−ビフェニリル)−5−(p−ターシャルブチルフェニル)−1,3,4−オキサジアゾール(tBu−PBD)、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール(BND)などのオキサジアゾール系化合物、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロール(PyPySPyPy)等のシロール系化合物、バソフェナントロリン(BPhen)、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP、バソクプロイン)などのフェナントロリン系化合物等も挙げられる。 Further, for example, two or more fused aromatic rings containing two or more tertiary amines represented by 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl are converted into nitrogen atoms. Aromatic amine compounds (J) having a starburst structure such as substituted aromatic diamine (Japanese Patent Laid-Open No. 5-234681), 4,4', 4 "-tris (1-naphthylphenylamino) triphenylamine and the like. Lumin., 72-74, 985, 1997), aromatic amine compounds consisting of triphenylamine tetramers (Chem. Commun., 2175, 1996), 2, 2', 7, Fluorone compounds such as 7'-tetrakis- (diphenylamino) -9,9'-spirobifluorene (Synth. Metals, Vol. 91, p. 209, 1997), 4,4'-N, N'-dicarbazole. Compounds exemplified as hole-transporting compounds in the hole-transporting layer such as carbazole-based compounds such as biphenyl can also be preferably used. In addition, 2- (4-biphenylyl) -5- (p-talsal) can be used. Oxaziazole compounds such as butylphenyl) -1,3,4-oxadiazole (tBu-PBD), 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND), Cyrol compounds such as 2,5-bis (6'-(2', 2 "-bipyridyl))-1,1-dimethyl-3,4-diphenylsilol (PyPySPyPy), vasophenantroline (BPhen), 2,9 Examples thereof include phenanthroline compounds such as −dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP, bassokproin).
<湿式成膜法による発光層の形成>
発光層の形成方法は、真空蒸着法でも、湿式成膜法でもよいが、成膜性に優れることから、湿式成膜法が好ましい。本発明において湿式成膜法とは、成膜方法、即ち、塗布方法として、例えば、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、ノズルプリンティング法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等、湿式で成膜される方法を採用し、この塗布膜を乾燥して膜形成を行う方法をいう。湿式成膜法により発光層を形成する場合は、通常、上述の正孔注入層を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに、発光層となる材料を可溶な溶剤(発光層用溶剤)と混合して調製した発光層形成用組成物を用いて形成させる。
溶剤としては、例えば、正孔注入層の形成について挙げたエーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤の他、アルカン系溶剤、ハロゲン化芳香族炭化水系溶剤、脂肪族アルコール系溶剤、脂環族アルコール系溶剤、脂肪族ケトン系溶剤及び脂環族ケトン系溶剤などが挙げられる。以下に溶媒の具体例を挙げるが、本発明の効果を損なわない限り、これらに限定されるものではない。<Formation of light emitting layer by wet film formation method>
The light emitting layer may be formed by either a vacuum vapor deposition method or a wet film forming method, but the wet film forming method is preferable because of its excellent film forming property. In the present invention, the wet film forming method is a film forming method, that is, as a coating method, for example, a spin coating method, a dip coating method, a die coating method, a bar coating method, a blade coating method, a roll coating method, a spray coating method, and a capillary. A method of forming a film by adopting a wet film forming method such as a coating method, an inkjet method, a nozzle printing method, a screen printing method, a gravure printing method, and a flexographic printing method, and drying the coating film. When the light emitting layer is formed by the wet film forming method, usually, in the same manner as when the hole injection layer is formed by the wet film forming method, a light emitting layer is used instead of the composition for forming the hole injection layer. The material is formed by using a composition for forming a light emitting layer prepared by mixing a soluble solvent (solvent for a light emitting layer).
Examples of the solvent include ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, and amide-based solvents mentioned for the formation of the hole injection layer, as well as alcan-based solvents, halogenated aromatic hydrocarbon-based solvents, and aliphatic solvents. Examples thereof include alcohol solvents, alicyclic alcohol solvents, aliphatic ketone solvents and alicyclic ketone solvents. Specific examples of the solvent are given below, but the present invention is not limited thereto as long as the effect of the present invention is not impaired.
例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル系溶剤;1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル系溶剤;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸エチル、安息香酸プロピル、安息香酸n−ブチル等の芳香族エステル系溶剤;トルエン、キシレン、メチシレン、シクロヘキシルベンゼン、テトラリン、3−イロプロピルビフェニル、1,2,3,4−テトラメチルベンゼン、1,4−ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレン等の芳香族炭化水素系溶媒;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド系溶剤;n−デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン系溶剤;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素系溶剤;ブタノール、ヘキサノール等の脂肪族アルコール系溶剤;シクロヘキサノール、シクロオクタノール等の脂環族アルコール系溶剤;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン系溶剤;シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン系溶剤等が挙げられる。これらのうち、アルカン系溶剤及び芳香族炭化水素系溶剤が特に好ましい。 For example, aliphatic ether solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetol, 2 Aromatic ether solvents such as −methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, diphenyl ether; phenyl acetate, phenyl propionate, methyl benzoate, benzoic acid Aromatic ester solvents such as ethyl, ethyl benzoate, propyl benzoate, n-butyl benzoate; toluene, xylene, methicylene, cyclohexylbenzene, tetraline, 3-iropropylbiphenyl, 1,2,3,4-tetramethyl Aromatic hydrocarbon solvents such as benzene, 1,4-diisopropylbenzene, cyclohexylbenzene, methylnaphthalene; amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide; n-decane, cyclohexane, ethylcyclohexane Alcan solvents such as decalin and bicyclohexane; halogenated aromatic hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene; aliphatic alcohol solvents such as butanol and hexanol; alicyclic solvents such as cyclohexanol and cyclooctanol. Alcohol-based solvents; aliphatic ketone-based solvents such as methyl ethyl ketone and dibutyl ketone; alicyclic ketone-based solvents such as cyclohexanone, cyclooctanone, and fencon can be mentioned. Of these, alkane-based solvents and aromatic hydrocarbon-based solvents are particularly preferable.
また、より均一な膜を得るためには、成膜直後の液膜から溶剤が適当な速度で蒸発することが好ましい。このため、溶剤の沸点は通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上、また、通常270℃以下、好ましくは250℃以下、より好ましくは230℃以下である。
溶媒の使用量は、本発明の効果を著しく損なわない限り任意であるが、発光層形成用組成物中の合計含有量は、低粘性なために成膜作業が行いやすい点で多い方が好ましく、また、一方、厚膜で成膜しやすい点で低い方が好ましい。溶剤の含有量は、イリジウム錯体化合物含有組成物において好ましくは1質量%以上、より好ましくは10質量%以上、特に好ましくは50質量%以上、また、好ましくは99.99質量%以下、より好ましくは99.9質量%以下、特に好ましくは99質量%以下である。Further, in order to obtain a more uniform film, it is preferable that the solvent evaporates at an appropriate rate from the liquid film immediately after the film formation. Therefore, the boiling point of the solvent is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and usually 270 ° C. or lower, preferably 250 ° C. or lower, more preferably 230 ° C. or lower.
The amount of the solvent used is arbitrary as long as the effect of the present invention is not significantly impaired, but it is preferable that the total content in the light emitting layer forming composition is large in that the film formation work is easy because of its low viscosity. On the other hand, a thick film is preferable because it is easy to form a film. The content of the solvent in the iridium complex compound-containing composition is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, and preferably 99.99% by mass or less, more preferably 99.99% by mass or less. It is 99.9% by mass or less, particularly preferably 99% by mass or less.
溶媒除去方法としては、加熱または減圧を用いることができる。加熱方法において使用する加熱手段としては、膜全体に均等に熱を与えることから、クリーンオーブン、ホットプレートが好ましい。
加熱工程における加熱温度は、本発明の効果を著しく損なわない限り任意であるが、乾燥時間を短くする点では温度が高いほうが好ましく、材料へのダメージが少ない点では低い方が好ましい。上限は通常250℃以下であり、好ましくは200℃以下、さらに好ましくは150℃以下である。下限は通常30℃以上であり、好ましくは50℃以上であり、さらに好ましくは80℃以上である。上限以上の温度は、通常用いられる電荷輸送材料または燐光発光材料の耐熱性より高く、分解や結晶化する可能性があり好ましくない。下限以下では溶媒の除去に長時間を要するため、好ましくない。加熱工程における加熱時間は、発光層形成用組成物中の溶媒の沸点や蒸気圧、材料の耐熱性、および加熱条件によって適切に決定される。As the solvent removing method, heating or depressurization can be used. As the heating means used in the heating method, a clean oven and a hot plate are preferable because heat is evenly applied to the entire film.
The heating temperature in the heating step is arbitrary as long as the effect of the present invention is not significantly impaired, but a high temperature is preferable in terms of shortening the drying time, and a low temperature is preferable in terms of less damage to the material. The upper limit is usually 250 ° C. or lower, preferably 200 ° C. or lower, and more preferably 150 ° C. or lower. The lower limit is usually 30 ° C. or higher, preferably 50 ° C. or higher, and more preferably 80 ° C. or higher. A temperature above the upper limit is higher than the heat resistance of a commonly used charge transport material or phosphorescent material, and may decompose or crystallize, which is not preferable. Below the lower limit, it takes a long time to remove the solvent, which is not preferable. The heating time in the heating step is appropriately determined by the boiling point and vapor pressure of the solvent in the composition for forming the light emitting layer, the heat resistance of the material, and the heating conditions.
<真空蒸着法による発光層の形成>
真空蒸着法により発光層を形成する場合には、通常、発光層の構成材料(前述の発光材料、電荷輸送性化合物等)の1種類又は2種類以上を真空容器内に設置された坩堝に入れ(2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れ)、真空容器内を真空ポンプで10−4Pa程度まで排気した後、坩堝を加熱して(2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して)、坩堝内の材料の蒸発量を制御しながら蒸発させ(2種類以上の材料を用いる場合は、通常各々独立に蒸発量を制御しながら蒸発させ)、坩堝に向き合って置かれた正孔注入輸送層の上に発光層を形成させる。なお、2種類以上の材料を用いる場合は、それらの混合物を坩堝に入れ、加熱、蒸発させて発光層を形成することもできる。<Formation of light emitting layer by vacuum deposition method>
When forming a light emitting layer by a vacuum vapor deposition method, usually one or more of the constituent materials of the light emitting layer (the above-mentioned light emitting material, charge transporting compound, etc.) are placed in a crucible installed in a vacuum vessel. (When using two or more types of materials, usually put each in a separate crucible), evacuate the inside of the vacuum vessel to about 10-4 Pa with a vacuum pump, and then heat the crucible (two or more types of materials). When used, each crucible is usually heated) and the material in the crucible is evaporated while controlling the amount of evaporation (when two or more kinds of materials are used, each is usually evaporated while controlling the amount of evaporation independently). ), A light emitting layer is formed on the hole injection transport layer placed facing the crucible. When two or more kinds of materials are used, a mixture thereof can be put in a crucible and heated and evaporated to form a light emitting layer.
蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10−6Torr(0.13×10−4Pa)以上、9.0×10−6Torr(12.0×10−4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上、50℃以下で行われる。The degree of vacuum during vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 × 10 -6 Torr (0.13 × 10 -4 Pa) or more, 9.0 × 10 -6 Torr ( It is 12.0 × 10 -4 Pa) or less. The vapor deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 Å / sec or more and 5.0 Å / sec or less. The film formation temperature at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is preferably 10 ° C. or higher and 50 ° C. or lower.
(ヘビードープ)
燐光発光する有機電界発光素子の発光層中のイリジウム錯体化合物の通常のドープ濃度は、発光層の単位重量当たりのイリジウム錯体化合物が0.1mmol/g以下の濃度である。本発明においては、この濃度を越えたドープ濃度を、ヘビードープ濃度という。一般にはヘビードープによる有機電界発光素子への影響はさまざまであり、素子の駆動寿命の伸長が期待される一方で、発光材料同士による励起子の対消滅による発光効率の低下も起きることが良く知られている。(Heavy dope)
The usual doping concentration of the iridium complex compound in the light emitting layer of the phosphorescent organic electroluminescent element is a concentration of 0.1 mmol / g or less of the iridium complex compound per unit weight of the light emitting layer. In the present invention, the doping concentration exceeding this concentration is referred to as a heavy doping concentration. In general, heavy dope has various effects on organic electroluminescent devices, and while it is expected that the drive life of the device will be extended, it is well known that the luminous efficiency will also decrease due to the pair annihilation of excitons between the light emitting materials. ing.
(正孔阻止層)
発光層と後述の電子注入層との間に、正孔阻止層を設けてもよい。正孔阻止層は、発光層の上に、発光層の陰極側の界面に接するように積層される層である。
この正孔阻止層は、陽極から移動してくる正孔を陰極に到達するのを阻止する役割と、陰極から注入された電子を効率よく発光層の方向に輸送する役割とを有する。正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。(Hole blocking layer)
A hole blocking layer may be provided between the light emitting layer and the electron injection layer described later. The hole blocking layer is a layer that is laminated on the light emitting layer so as to be in contact with the interface on the cathode side of the light emitting layer.
The hole blocking layer has a role of blocking holes moving from the anode from reaching the cathode and a role of efficiently transporting electrons injected from the cathode toward the light emitting layer. The physical properties required for the material constituting the
このような条件を満たす正孔阻止層の材料としては、例えば、ビス(2−メチル−8−キノリノラト)(フェノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2−メチル−8−キノラト)アルミニウム−μ−オキソ−ビス−(2−メチル−8−キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(日本国特開平11−242996号公報)、3−(4−ビフェニルイル)−4−フェニル−5(4−tert−ブチルフェニル)−1,2,4−トリアゾール等のトリアゾール誘導体(日本国特開平7−41759号公報)、バソクプロイン等のフェナントロリン誘導体(日本国特開平10−79297号公報)などが挙げられる。更に、国際公開第2005/022962号に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層の材料として好ましい。 Examples of the material of the hole blocking layer satisfying such conditions include bis (2-methyl-8-quinolinolato) (phenolato) aluminum, bis (2-methyl-8-quinolinolato) (triphenylsilanorat) aluminum and the like. Mixed ligand complexes, bis (2-methyl-8-quinolato) aluminum-μ-oxo-bis- (2-methyl-8-quinolilato) aluminum dinuclear metal complexes and other metal complexes, distyrylbiphenyl derivatives and the like Triazole derivatives such as styryl compounds (Japanese Patent Laid-Open No. 11-2429996), 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4-triazole (Japan) Japanese Patent Application Laid-Open No. 7-41759), phenanthroline derivatives such as bathocuproine (Japanese Patent Application Laid-Open No. 10-79297), and the like can be mentioned. Further, a compound having at least one pyridine ring in which the 2, 4 and 6 positions are substituted as described in WO 2005/022962 is also preferable as a material for the hole blocking layer.
正孔阻止層6の形成方法に制限はなく、前述の発光層の形成方法と同様にして形成することができる。
正孔阻止層の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常0.3nm以上、好ましくは0.5nm以上であり、また、通常100nm以下、好ましくは50nm以下である。The method for forming the
The film thickness of the hole blocking layer is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less. ..
(電子輸送層)
電子輸送層は素子の電流効率をさらに向上させることを目的として、発光層と電子注入層との間に設けられる。
電子輸送層は、電界を与えられた電極間において陰極から注入された電子を効率よく発光層の方向に輸送することができる化合物より形成される。電子輸送層に用いられる電子輸送性化合物としては、陰極又は電子注入層からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物であることが必要である。(Electronic transport layer)
The electron transport layer is provided between the light emitting layer and the electron injection layer for the purpose of further improving the current efficiency of the device.
The electron transport layer is formed of a compound capable of efficiently transporting electrons injected from the cathode between electrodes to which an electric field is applied in the direction of the light emitting layer. The electron-transporting compound used in the electron-transporting layer is a compound having high electron-injection efficiency from the cathode or the electron-injecting layer and having high electron mobility and capable of efficiently transporting the injected electrons. It is necessary.
電子輸送層に用いる電子輸送性化合物は、通常、陰極又は電子注入層からの電子注入効率が高く、注入された電子を効率よく輸送できる化合物が好ましい。電子輸送性化合物としては、具体的には、例えば、8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体(日本国特開昭59−194393号公報)、10−ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3−ヒドロキシフラボン金属錯体、5−ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(日本国特開平6−207169号公報)、フェナントロリン誘導体(日本国特開平5−331459号公報)、2−t−ブチル−9,10−N,N’−ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。 The electron-transporting compound used in the electron-transporting layer is usually preferably a compound having high electron-injecting efficiency from the cathode or the electron-injecting layer and capable of efficiently transporting the injected electrons. Specific examples of the electron-transporting compound include a metal complex such as an aluminum complex of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), a metal complex of 10-hydroxybenzo [h] quinoline. Oxaziazole derivative, distyrylbiphenyl derivative, silol derivative, 3-hydroxyflavon metal complex, 5-hydroxyflavon metal complex, benzoxazole metal complex, benzothiazole metal complex, trisbenzimidazolylbenzene (US Pat. No. 5,645,948) , Kinoxalin compound (Japanese Patent Laid-Open No. 6-207169), phenanthroline derivative (Japanese Patent Application Laid-Open No. 5-331459), 2-t-butyl-9,10-N, N'-dicyanoanthraquinonediimine, n Examples thereof include type hydride amorphous silicon carbide, type n-type zinc sulfide, and type n-type zinc selenium.
電子輸送層の膜厚は、通常1nm以上、好ましくは5nm以上であり、また、一方、通常300nm以下、好ましくは100nm以下である。
電子輸送層は、前記と同様にして湿式成膜法、或いは真空蒸着法により正孔阻止層上に積層することにより形成される。通常は、真空蒸着法が用いられる。The film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and on the other hand, it is usually 300 nm or less, preferably 100 nm or less.
The electron transport layer is formed by laminating on the hole blocking layer by a wet film deposition method or a vacuum vapor deposition method in the same manner as described above. Usually, the vacuum deposition method is used.
(電子注入層)
電子注入層は、陰極から注入された電子を効率よく、電子輸送層又は発光層へ注入する役割を果たす。
電子注入を効率よく行うには、電子注入層を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられる。その膜厚は通常0.1nm以上、5nm以下が好ましい。(Electron injection layer)
The electron injection layer plays a role of efficiently injecting electrons injected from the cathode into the electron transport layer or the light emitting layer.
In order to efficiently perform electron injection, the material forming the electron injection layer is preferably a metal having a low work function. As an example, alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and the like are used. The film thickness is usually preferably 0.1 nm or more and 5 nm or less.
更に、バソフェナントロリン等の含窒素複素環化合物や8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(日本国特開平10−270171号公報、日本国特開2002−100478号公報、日本国特開2002−100482号公報などに記載)ことも、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。 Further, an organic electron transport material represented by a nitrogen-containing heterocyclic compound such as basophenanthroline or a metal complex such as an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium, or rubidium (). (Described in Japanese Patent Application Laid-Open No. 10-270171, Japanese Patent Application Laid-Open No. 2002-100478, Japanese Patent Application Laid-Open No. 2002-1000482, etc.) also improves electron injection and transportability and achieves both excellent film quality. It is preferable because it enables this.
膜厚は通常、5nm以上、好ましくは10nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。
電子注入層は、湿式成膜法或いは真空蒸着法により、発光層又はその上の正孔阻止層上に積層することにより形成される。
湿式成膜法の場合の詳細は、前述の発光層の場合と同様である。The film thickness is usually in the range of 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.
The electron injection layer is formed by laminating on the light emitting layer or the hole blocking layer above it by a wet film forming method or a vacuum vapor deposition method.
The details in the case of the wet film forming method are the same as in the case of the light emitting layer described above.
(陰極)
陰極は、発光層側の層(電子注入層又は発光層など)に電子を注入する役割を果たす。陰極の材料としては、前記の陽極に使用される材料を用いることが可能であるが、効率良く電子注入を行なう上では、仕事関数の低い金属を用いることが好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の金属又はそれらの合金などが用いられる。具体例としては、例えば、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム−リチウム合金等の低仕事関数の合金電極などが挙げられる。(cathode)
The cathode plays a role of injecting electrons into a layer on the light emitting layer side (electron injection layer, light emitting layer, etc.). As the material of the cathode, the material used for the anode can be used, but in order to efficiently inject electrons, it is preferable to use a metal having a low work function, for example, tin, magnesium, and indium. , Calcium, aluminum, metals such as silver or alloys thereof are used. Specific examples include alloy electrodes having a low work function such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
素子の安定性の点では、陰極の上に、仕事関数が高く、大気に対して安定な金属層を積層して、低仕事関数の金属からなる陰極を保護するのが好ましい。積層する金属としては、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が挙げられる。
陰極の膜厚は通常、陽極と同様である。From the viewpoint of device stability, it is preferable to laminate a metal layer having a high work function and stable to the atmosphere on the cathode to protect the cathode made of a metal having a low work function. Examples of the metal to be laminated include metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum.
The film thickness of the cathode is usually the same as that of the anode.
(その他の層)
本発明の有機電界発光素子は、本発明の効果を著しく損なわなければ、更に他の層を有していてもよい。すなわち、陽極と陰極との間に、上述の他の任意の層を有していてもよい。(Other layers)
The organic electroluminescent device of the present invention may further have another layer as long as the effect of the present invention is not significantly impaired. That is, any of the above-mentioned other layers may be provided between the anode and the cathode.
<その他の素子構成>
なお、上述の説明とは逆の構造、即ち、基板上に陰極、電子注入層、発光層、正孔注入層、陽極の順に積層することも可能である。<Other element configurations>
It should be noted that the structure opposite to the above description, that is, the cathode, the electron injection layer, the light emitting layer, the hole injection layer, and the anode can be laminated in this order on the substrate.
<その他>
本発明の有機電界発光素子を有機電界発光装置に適用する場合は、単一の有機電界発光素子として用いても、複数の有機電界発光素子がアレイ状に配置された構成にして用いても、陽極と陰極がX−Yマトリックス状に配置された構成にして用いてもよい。<Others>
When the organic electroluminescent device of the present invention is applied to an organic electroluminescent device, it may be used as a single organic electroluminescent device or may be used in a configuration in which a plurality of organic electroluminescent devices are arranged in an array. The anode and cathode may be arranged in an XY matrix.
<表示装置及び照明装置>
本発明の表示装置及び照明装置は、上述のような本発明の有機電界発光素子を用いたものである。本発明の表示装置及び照明装置の形式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発刊、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の表示装置および照明装置を形成することができる。<Display device and lighting device>
The display device and the lighting device of the present invention use the organic electroluminescent element of the present invention as described above. The type and structure of the display device and the lighting device of the present invention are not particularly limited, and can be assembled according to a conventional method using the organic electroluminescent element of the present invention.
For example, the display device and the lighting device of the present invention by the method described in "Organic EL Display" (Ohmsha, published on August 20, 2004, by Shizushi Tokito, Chihaya Adachi, Hideyuki Murata). Can be formed.
以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明はその要旨を逸脱しない限り任意に変更して実施できる。
<化合物(D−1)の合成例> Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following examples, and the present invention can be arbitrarily modified and implemented without departing from the gist thereof.
<Synthesis example of compound (D-1)>
反応容器に窒素気流下、2−(3−ピナコラートボリルフェニル)ピリジン(17.4g)、中間体1(19.2g)、2Mリン酸三カリウム水溶液(77mL)、トルエン(120mL)およびエタノール(60mL)を加え、窒素を30分バブリングした。その後撹拌しながらさらに[Pd(PPh3)]4(1.21g)を加え、105℃で1.5時間撹拌還流した。その後室温まで冷却し、水を加え分液洗浄後、有機層を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/へキサン=1/1〜ジクロロメタン/ヘキサン/酢酸エチル=50/45/5)にて精製することにより、中間体2(23.6g)を黄色油状物質として得た。2- (3-Pinacolat borylphenyl) pyridine (17.4 g), intermediate 1 (19.2 g), 2M tripotassium phosphate aqueous solution (77 mL), toluene (120 mL) and ethanol ( 60 mL) was added and nitrogen was bubbled for 30 minutes. Then, while stirring, [Pd (PPh 3 )] 4 (1.21 g) was further added, and the mixture was stirred at 105 ° C. for 1.5 hours and refluxed. Then, the mixture was cooled to room temperature, water was added, and the mixture was separated and washed, and then the organic layer was dried over magnesium sulfate. Then, the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (dichloromethane / hexane = 1/1 to dichloromethane / hexane / ethyl acetate = 50/45/5) to make Intermediate 2 (23.6 g) a yellow oil. Obtained as a substance.
反応容器に窒素気流下、中間体2(18.0g)、塩化イリジウムn水和物(8.0g)と2−エトキシエタノール(200mL)および蒸留水(28mL)を加え、オイルバスの温度を135℃から150℃まで段階的に上げて計10時間撹拌した。その間還流される液は側管から除いた。反応終了時に除いた液量は46mLであった。その後室温に冷却し、メタノール(100mL)を加えろ過し、メタノール(400mL)で洗浄後乾燥した。中間体3(21.0g)を黄色固体として得た。 Intermediate 2 (18.0 g), iridium chloride n hydrate (8.0 g), 2-ethoxyethanol (200 mL) and distilled water (28 mL) were added to the reaction vessel under a nitrogen stream, and the temperature of the oil bath was 135. The temperature was gradually increased from ° C. to 150 ° C., and the mixture was stirred for a total of 10 hours. During that time, the refluxed liquid was removed from the side tube. The amount of liquid removed at the end of the reaction was 46 mL. Then, the mixture was cooled to room temperature, methanol (100 mL) was added, the mixture was filtered, washed with methanol (400 mL), and dried. Intermediate 3 (21.0 g) was obtained as a yellow solid.
反応容器に、窒素気流下、中間体3(17.6g)、1,2−ジメトキシエタン(300mL)、エタノール(50mL)を加え、油浴を120℃に加熱した後、3,5−ヘプタンジオン(14g)と炭酸ナトリウム(11.3g)を添加し引き続き約2時間加熱還流した。冷却し溶媒を減圧除去した後ジクロロメタン(200mL)を加え、シリカゲルでろ過したのち、ろ液を減圧濃縮した。残さにエタノール(150mL)を加え粉体を析出させた後ろ過した。 Intermediate 3 (17.6 g), 1,2-dimethoxyethane (300 mL) and ethanol (50 mL) are added to the reaction vessel under a nitrogen stream, the oil bath is heated to 120 ° C., and then 3,5-heptane dione. (14 g) and sodium carbonate (11.3 g) were added, and the mixture was continuously heated under reflux for about 2 hours. After cooling and removing the solvent under reduced pressure, dichloromethane (200 mL) was added, the mixture was filtered through silica gel, and the filtrate was concentrated under reduced pressure. Ethanol (150 mL) was added to the residue to precipitate a powder, which was then filtered.
中間体4(17.9g)を黄色固体として得た。 Intermediate 4 (17.9 g) was obtained as a yellow solid.
反応容器に、窒素気流下、中間体4(11.6g)、中間体5(特許文献2記載の方法で合成)(4.5g)およびグリセリン(87g)を入れ、内温を218℃から227℃へ加温しながら5.5時間撹拌した。副生する3,5−ヘプタンジオンは反応しながら蒸留にて留去した。冷却後水を加えデカンテーションにより溶媒を除去し、残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/へキサン=1/1)で精製することにより化合物D−1(0.70g)を黄色固体として得た。 Intermediate 4 (11.6 g), Intermediate 5 (synthesized by the method described in Patent Document 2) (4.5 g) and glycerin (87 g) were placed in a reaction vessel under a nitrogen stream, and the internal temperature was adjusted from 218 ° C to 227. The mixture was stirred for 5.5 hours while warming to ° C. The by-product 3,5-heptane dione was distilled off while reacting. After cooling, water was added, the solvent was removed by decantation, and the residue was purified by silica gel column chromatography (dichloromethane / hexane = 1/1) to obtain Compound D-1 (0.70 g) as a yellow solid.
<化合物(D−2)の合成例> <Synthesis example of compound (D-2)>
2Lナスフラスコに室温にて、臭化銅(I)(54.5g)及び無水臭化リチウム(65.9g)を入れ、60℃で2時間乾燥後アルゴン置換し室温まで冷却し、乾燥THF(0.9L)を加え2時間撹拌し触媒溶液を調製した。
10L反応器に、窒素下削り状マグネシウム(190g)、乾燥THF(0.3L)、微量のヨウ素片で活性化し、ブロモベンゼン(1192g)の乾燥THF(3.5L)溶液に2時間かけて滴下し、更に1.5時間還流撹拌しグリニャール試薬溶液を調製した。20L反応器に、窒素下、1,5−ジブロモペンタン(4365g)乾燥THF(5.2L)を入れ、先に調製した触媒溶液を加え、内温10℃に冷却後、先に調製したグリニャール試薬溶液を、内温10〜45℃になるように、1時間かけて滴下した後、室温で一夜撹拌した。3M塩酸(3.5L)を加え、油層を分離し、さらに水層を酢酸エチル(3.5×2回)で抽出した。油層を無水硫酸マグネシウムで乾燥し、ろ過、ろ液を濃縮し、褐色油状の粗体(4.9kg)を得た。この粗体を減圧蒸留して、微黄色透明油状物として中間体6(0.94kg)を得た。Copper (I) bromide (54.5 g) and anhydrous lithium bromide (65.9 g) were placed in a 2 L eggplant flask at room temperature, dried at 60 ° C. for 2 hours, replaced with argon, cooled to room temperature, and dried THF ( 0.9 L) was added and stirred for 2 hours to prepare a catalytic solution.
Activated in a 10 L reactor with nitrogen undercut magnesium (190 g), dry THF (0.3 L), and trace amounts of iodine fragments, and added dropwise to a solution of bromobenzene (1192 g) in dry THF (3.5 L) over 2 hours. Then, the mixture was further refluxed and stirred for 1.5 hours to prepare a Grignard reagent solution.
10L反応器に、窒素下削り状マグネシウム(107g)、乾燥THF(0.5L)を入れ、ヨウ素片(数十mg)で活性化し、中間体6(0.91kg)の乾燥THF(2.5L)溶液を2時間かけて滴下し、更に1時間内温55℃にて加熱撹拌しグリニャール試薬溶液を調製した。3−ブロモベンゾニトリル及び乾燥THF(4.5L)を10℃に冷却後、先に調製したグリニャール試薬溶液を、内温10〜35℃で45分間かけて滴下し、内温45〜58℃にて3時間加熱撹拌した。3M塩酸(4.3L)に先の反応液を滴下した後、室温へ冷却し油層を分離し、さらに水層を酢酸エチル(6L)で抽出した。油層を合わせ、無水硫酸マグネシウムで乾燥し、ろ過、ろ液を濃縮し、褐色油状の粗体(2.0kg)を得た。この粗体をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/9−1/4)で精製し、淡黄色透明油状物(0.74kg)を得た。続いて20L反応器に移し、ジグリム(5.1L)を仕込み、水酸化ナトリウム(0.19kg)を加えた。次いで、ヒドラジン一水和物(0.24kg)を30分間かけて滴下し、1時間かけて内温80℃まで昇温し、内温123℃にて4時間撹拌した。冷却後、2M塩酸(3.6L)を加えた後、ヘキサン(3.5L)を加え、油層を分離した。水層をヘキサン(2.5L×2回)で抽出し、油層を合わせて飽和食塩水(2.5L)で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過、ろ液を濃縮し、褐色油状の粗体(0.92kg)を得た。この粗体をシリカゲルカラムクロマトグラフィー(ヘキサン)で精製し、黄色透明油状物として中間体7(0.45kg)を得た。 Put nitrogen undercut magnesium (107 g) and dry THF (0.5 L) in a 10 L reactor, activate with iodine pieces (several tens of mg), and dry THF (2.5 L) of intermediate 6 (0.91 kg). ) The solution was added dropwise over 2 hours, and the mixture was further heated and stirred at an internal temperature of 55 ° C. for 1 hour to prepare a Grignard reagent solution. After cooling 3-bromobenzonitrile and dry THF (4.5 L) to 10 ° C., the Grignard reagent solution prepared above is added dropwise at an internal temperature of 10 to 35 ° C. over 45 minutes to an internal temperature of 45 to 58 ° C. The mixture was heated and stirred for 3 hours. The above reaction solution was added dropwise to 3M hydrochloric acid (4.3L), cooled to room temperature to separate the oil layer, and the aqueous layer was further extracted with ethyl acetate (6L). The oil layers were combined, dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated to obtain a brown oily crude (2.0 kg). This crude product was purified by silica gel column chromatography (ethyl acetate / hexane = 1 / 9-1 / 4) to obtain a pale yellow transparent oil (0.74 kg). Subsequently, the mixture was transferred to a 20 L reactor, charged with diglyme (5.1 L), and sodium hydroxide (0.19 kg) was added. Next, hydrazine monohydrate (0.24 kg) was added dropwise over 30 minutes, the temperature was raised to an internal temperature of 80 ° C. over 1 hour, and the mixture was stirred at an internal temperature of 123 ° C. for 4 hours. After cooling, 2M hydrochloric acid (3.6L) was added, and then hexane (3.5L) was added to separate the oil layer. The aqueous layer is extracted with hexane (2.5 L x 2 times), the oil layers are combined, washed with saturated brine (2.5 L), dried over anhydrous magnesium sulfate, filtered, the filtrate is concentrated, and brown oily. A crude body (0.92 kg) was obtained. This crude product was purified by silica gel column chromatography (hexane) to obtain Intermediate 7 (0.45 kg) as a yellow transparent oil.
20L反応器に、窒素下中間体7(0.45kg)、乾燥THF(4.5L)を加え、内温−77℃に冷却し、1.65Mのn−ブチルリチウム/n−ヘキサン溶液(1.0L)を内温−68℃以下で1時間かけて滴下し、−68℃にて1時間撹拌した。次いで、ホウ酸トリメチル(0.47kg)を内温−67℃以下で滴下し、温度を保ち1.5時間撹拌した。その後3M塩酸(1.5L)を滴下し、室温に戻しながら一夜撹拌した。酢酸エチル(3L)を注ぎ、油層を分離し、さらに水層を酢酸エチル(3L)で抽出した。油層を合わせ、飽和食塩水(2.5L)で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過、ろ液を濃縮し、褐色油状の粗体(0.58kg)を得た。この粗体をシリカゲルカラムクロマトグラフィー(酢酸エチル/ジクロロメタン/ヘキサン=0/1/3〜2/2/3)で精製したところ中間体8を0.31kg得た。 To a 20 L reactor, intermediate nitrogen 7 (0.45 kg) and dry THF (4.5 L) were added, cooled to an internal temperature of −77 ° C., and a 1.65 M n-butyllithium / n-hexane solution (1). .0 L) was added dropwise at an internal temperature of −68 ° C. or lower over 1 hour, and the mixture was stirred at −68 ° C. for 1 hour. Then, trimethyl borate (0.47 kg) was added dropwise at an internal temperature of −67 ° C. or lower, and the mixture was stirred for 1.5 hours while maintaining the temperature. Then, 3M hydrochloric acid (1.5L) was added dropwise, and the mixture was stirred overnight while returning to room temperature. Ethyl acetate (3L) was poured, the oil layer was separated, and the aqueous layer was further extracted with ethyl acetate (3L). The oil layers were combined, washed with saturated brine (2.5 L), dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated to obtain a brown oily crude (0.58 kg). When this crude product was purified by silica gel column chromatography (ethyl acetate / dichloromethane / hexane = 0/1/3 to 2/2/3), 0.31 kg of intermediate 8 was obtained.
反応容器に窒素気流下、中間体8(20.4g)、3−ブロモ−3’−ヨードビフェニル(28.6g)、2Mリン酸三カリウム水溶液(90mL)、トルエン(140mL)およびエタノール(70mL)を加え、撹拌しながらさらに[Pd(PPh3)4]1.68gを加え、100℃で3時間撹拌還流した。その後室温まで冷却し、水を加え分液洗浄後、有機層を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/へキサン=1/9)にて精製することにより、ブロモ体27.8gを得た。これを別の反応容器に入れ、窒素気流下、ビスピナコラートジボロン(17.7g)、[PdCl2(dppf)]CH2Cl2(1.71g)、酢酸カリウム(20.5g)、脱水ジメチルスルホキシド(150mL)を入れ、100℃油浴中で2時間撹拌した。その後室温まで冷却し、水とトルエンを加え分液洗浄後、油相を硫酸ナトリウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開液:ジクロロメタン/ヘキサン=3/7〜ジクロロメタン/ヘキサン/酢酸エチル=3/7/0.1)にて精製することにより、中間体9(23.4g)の白色固体を得た。Intermediate 8 (20.4 g), 3-bromo-3'-iodobiphenyl (28.6 g), 2M tripotassium phosphate aqueous solution (90 mL), toluene (140 mL) and ethanol (70 mL) in a reaction vessel under a nitrogen stream. Was added, and 1.68 g of [Pd (PPh 3 ) 4 ] was further added while stirring, and the mixture was stirred and refluxed at 100 ° C. for 3 hours. Then, the mixture was cooled to room temperature, water was added, and the mixture was separated and washed, and then the organic layer was dried over magnesium sulfate. Then, the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (dichloromethane / hexane = 1/9) to obtain 27.8 g of a bromo compound. This was placed in another reaction vessel, and under a nitrogen stream, bispinacolat diboron (17.7 g), [PdCl 2 (dppf)] CH 2 Cl 2 (1.71 g), potassium acetate (20.5 g), dehydration. Dimethyl sulfoxide (150 mL) was added and stirred in a 100 ° C. oil bath for 2 hours. Then, the mixture was cooled to room temperature, water and toluene were added, and the mixture was separated and washed, and then the oil phase was dried over sodium sulfate. Then, the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution: dichloromethane / hexane = 3/7 to dichloromethane / hexane / ethyl acetate = 3/7 / 0.1) to obtain Intermediate 9 (23.4 g). ) Was obtained.
反応容器に窒素気流下2−ブロモピリジン(3.3g)、中間体9(9.8g)、[Pd(PPh3)4]0.44g、リン酸三カリウム(9.0g)、蒸留水(20g)、トルエン(50mL)およびエタノール(20mL)を加え、100℃の油浴で3時間撹拌した。冷却後、水を加え分液洗浄し、硫酸マグネシウムで乾燥し、シリカゲルカラムクロマトグラフィー(ジクロロメタンのみ)で精製したところ、中間体10(10.0g)を無色油状物質として得た。 2-Bromopyridine (3.3 g), intermediate 9 (9.8 g), [Pd (PPh 3 ) 4 ] 0.44 g, tripotassium phosphate (9.0 g), distilled water (3.0 g) in a reaction vessel under a nitrogen stream. 20 g), toluene (50 mL) and ethanol (20 mL) were added, and the mixture was stirred in an oil bath at 100 ° C. for 3 hours. After cooling, water was added, the mixture was separated and washed, dried over magnesium sulfate, and purified by silica gel column chromatography (dichloromethane only) to obtain Intermediate 10 (10.0 g) as a colorless oily substance.
反応容器に窒素気流下、中間体4(5.5g)、中間体10(2.8g)、ジグリム(42mL)を入れ内温を約100℃とした。トリフルオロメタンスルホン酸銀(1.6g)を投入し、直ちに内温を125℃まで上げて2時間撹拌した。室温に冷却後、溶媒を減圧除去して残さをシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=1/1)にて精製した。化合物D−2を1.6g、黄色固体として得た。 Intermediate 4 (5.5 g), intermediate 10 (2.8 g), and diglyme (42 mL) were placed in a reaction vessel under a nitrogen stream to bring the internal temperature to about 100 ° C. Silver trifluoromethanesulfonate (1.6 g) was added, and the internal temperature was immediately raised to 125 ° C. and the mixture was stirred for 2 hours. After cooling to room temperature, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (dichloromethane / hexane = 1/1). Compound D-2 was obtained in 1.6 g as a yellow solid.
<化合物(D−3)の合成例> <Synthesis example of compound (D-3)>
反応容器に窒素気流下、2−(3−ブロモフェニル)ピリジン(5.6g)、中間体11(国際公開第2012/137958号記載の方法で合成)9.3g、[Pd(PPh3)4]0.50g、2Mリン酸三カリウム水溶液27mL、トルエン50mLおよびエタノール25mLを加え、100℃の油浴で3時間撹拌した。冷却後、水とトルエンを加え分液洗浄し、硫酸マグネシウムで乾燥し、シリカゲルカラムクロマトグラフィー(ジクロロメタンのみ)で精製したところ、中間体12(9.16g)を白色固体として得た。 2- (3-Bromophenyl) pyridine (5.6 g), Intermediate 11 (synthesized by the method described in International Publication No. 2012/137985), 9.3 g, [Pd (PPh 3 ) 4 ) in a reaction vessel under a nitrogen stream. ] 0.50 g, 27 mL of a 2M tripotassium phosphate aqueous solution, 50 mL of toluene and 25 mL of ethanol were added, and the mixture was stirred in an oil bath at 100 ° C. for 3 hours. After cooling, water and toluene were added, the mixture was separated and washed, dried over magnesium sulfate, and purified by silica gel column chromatography (dichloromethane only) to obtain Intermediate 12 (9.16 g) as a white solid.
反応容器に窒素気流下、中間体12(8.9g)、塩化イリジウムn水和物(3.4g)と2−エトキシエタノール(50mL)、ジグリム(50mL)および蒸留水(13mL)を加え、オイルバスの温度を135℃から150℃まで段階的に上げて計10時間撹拌した。その間還流される液は側管から除いた。反応途中にジグリムをさらに60mL添加した。その後室温に冷却し、蒸留水500mLに反応液を投入後、析出固体をろ過し、メタノール500mLで洗浄後乾燥した。中間体13(10.5g)を黄色固体として得た。 Add intermediate 12 (8.9 g), iridium chloride n hydrate (3.4 g) and 2-ethoxyethanol (50 mL), diglyme (50 mL) and distilled water (13 mL) to the reaction vessel under a nitrogen stream, and add oil. The temperature of the bath was gradually increased from 135 ° C. to 150 ° C., and the mixture was stirred for a total of 10 hours. During that time, the refluxed liquid was removed from the side tube. An additional 60 mL of diglyme was added during the reaction. Then, the mixture was cooled to room temperature, the reaction solution was added to 500 mL of distilled water, the precipitated solid was filtered, washed with 500 mL of methanol, and dried. Intermediate 13 (10.5 g) was obtained as a yellow solid.
反応容器に窒素気流下、中間体13(3.0g)、中間体10(1.3g)、ジグリム(24mL)を入れ内温を約100℃とした。トリフルオロメタンスルホン酸銀(0.85g)を投入し、直ちに油浴を130℃まで上げて2時間撹拌した。室温に冷却後、溶媒を減圧除去して残さをシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=1/1)にて精製した。化合物D−3を0.7g、黄色固体として得た。 Intermediate 13 (3.0 g), intermediate 10 (1.3 g) and diglyme (24 mL) were placed in a reaction vessel under a nitrogen stream to bring the internal temperature to about 100 ° C. Silver trifluoromethanesulfonate (0.85 g) was added, and the oil bath was immediately raised to 130 ° C. and stirred for 2 hours. After cooling to room temperature, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (dichloromethane / hexane = 1/1). 0.7 g of compound D-3 was obtained as a yellow solid.
<化合物(D−4)の合成例> <Synthesis example of compound (D-4)>
反応容器に窒素気流下、2−(3−ピナコラートボリルフェニル)ピリジン(19.2g)、3,3’−ジブロモビフェニル(64.4g)、2Mリン酸三カリウム水溶液(260mL)、トルエン(280mL)およびエタノール(140mL)を加え、窒素を30分バブリングした。その後撹拌しながらさらに[Pd(PPh3)4]6.0gを加え、100℃で3時間撹拌還流した。その後室温まで冷却し、水を加え分液洗浄後、有機層を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/へキサン=4/6〜ジクロロメタン/ヘキサン/酢酸エチル=3/7/0.5)にて精製することにより、中間体14(22.0g)を黄色油状物質として得た。2- (3-Pinacolatoborylphenyl) pyridine (19.2 g), 3,3'-dibromobiphenyl (64.4 g), 2M tripotassium phosphate aqueous solution (260 mL), toluene (280 mL) in a reaction vessel under a nitrogen stream. ) And ethanol (140 mL) were added and nitrogen was bubbled for 30 minutes. Then, while stirring, 6.0 g of [Pd (PPh 3 ) 4 ] was further added, and the mixture was stirred at 100 ° C. for 3 hours and refluxed. Then, the mixture was cooled to room temperature, water was added, and the mixture was separated and washed, and then the organic layer was dried over magnesium sulfate. Then, the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (dichloromethane / hexane = 4/6 to dichloromethane / hexane / ethyl acetate = 3/7 / 0.5) to obtain intermediate 14 (22.0 g). Obtained as a yellow oily substance.
反応容器に窒素気流下、中間体14(10.2g)、中間体8(7.80g)、2Mリン酸三カリウム水溶液(33mL)、トルエン(60mL)およびエタノール(30mL)を加え、窒素を30分バブリングした。その後撹拌しながらさらに[Pd(PPh3)4]0.76gを加え、100℃で1.5時間撹拌還流した。その後室温まで冷却し、水を加え分液洗浄後、有機層を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/へキサン=2/8)にて精製することにより、中間体15(12.9g)を無色油状物質として得た。Add intermediate 14 (10.2 g), intermediate 8 (7.80 g), 2M tripotassium phosphate aqueous solution (33 mL), toluene (60 mL) and ethanol (30 mL) to the reaction vessel under a nitrogen stream, and add 30 nitrogen. Bubbling for minutes. Then, while stirring, 0.76 g of [Pd (PPh 3 ) 4 ] was further added, and the mixture was stirred at 100 ° C. for 1.5 hours and refluxed. Then, the mixture was cooled to room temperature, water was added, and the mixture was separated and washed, and then the organic layer was dried over magnesium sulfate. Then, the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (ethyl acetate / hexane = 2/8) to obtain Intermediate 15 (12.9 g) as a colorless oily substance.
反応容器に窒素気流下、中間体15(4.0g)、中間体4(6.62g)、ジグリム(53mL)を入れ内温を約100℃とした。トリフルオロメタンスルホン酸銀(1.89g)を投入し、直ちに油浴を130℃まで上げて2時間撹拌した。室温に冷却後、溶媒を減圧除去して残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=1/1)にて精製した。化合物D−4を2.49g、黄色固体として得た。 Intermediate 15 (4.0 g), intermediate 4 (6.62 g) and diglyme (53 mL) were placed in a reaction vessel under a nitrogen stream to bring the internal temperature to about 100 ° C. Silver trifluoromethanesulfonate (1.89 g) was added, and the oil bath was immediately raised to 130 ° C. and stirred for 2 hours. After cooling to room temperature, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (dichloromethane / hexane = 1/1). Compound D-4 was obtained as a yellow solid in an amount of 2.49 g.
<化合物(D−7)の合成例> <Synthesis example of compound (D-7)>
反応容器に窒素気流下、m−ターフェニルボロン酸(44.5g)、m−ブロモヨードベンゼン(45.9g)、2Mリン酸三カリウム水溶液(200mL)、トルエン(300mL)およびエタノール(150mL)を加え、窒素を30分バブリングした。その後撹拌しながらさらにPd(PPh3)4]4.67gを加え、100℃で3.5時間撹拌還流した。その後室温まで冷却し、水を加え分液洗浄後、有機層を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/へキサン=5/95から10/90)にて精製することにより、中間体16(48.0g)を無色油状物質として得た。Add m-terphenylboronic acid (44.5 g), m-bromoiodobenzene (45.9 g), 2M tripotassium phosphate aqueous solution (200 mL), toluene (300 mL) and ethanol (150 mL) to the reaction vessel under a nitrogen stream. In addition, nitrogen was bubbled for 30 minutes. Then, while stirring, 4.67 g of Pd (PPh 3 ) 4 ] was further added, and the mixture was stirred at 100 ° C. for 3.5 hours and refluxed. Then, the mixture was cooled to room temperature, water was added, and the mixture was separated and washed, and then the organic layer was dried over magnesium sulfate. Then, the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (dichloromethane / hexane = 5/95 to 10/90) to obtain Intermediate 16 (48.0 g) as a colorless oily substance.
反応容器に窒素気流下、中間体16(36.8g)、ビス(ピナコラート)ジボロン(29.1g)、酢酸カリウム(33.8g)、脱水ジメチルスルホキシド(330mL)を加え、窒素を30分バブリングした。その後撹拌しながらさらに[PdCl2dppf]CH2Cl2(2.81g)を加え、100℃で3.5時間撹拌した。その後室温まで冷却し、水を加え分液洗浄後、有機層を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン/酢酸エチル=90/10/5から60/40/5)にて精製することにより、中間体17(23.1g)を白色固体として得た。Intermediate 16 (36.8 g), bis (pinacolat) diboron (29.1 g), potassium acetate (33.8 g), and dehydrated dimethyl sulfoxide (330 mL) were added to the reaction vessel under a nitrogen stream, and nitrogen was bubbled for 30 minutes. .. Then, while stirring, [PdCl 2 dichloromethane] CH 2 Cl 2 (2.81 g) was further added, and the mixture was stirred at 100 ° C. for 3.5 hours. Then, the mixture was cooled to room temperature, water was added, and the mixture was separated and washed, and then the organic layer was dried over magnesium sulfate. Then, the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / dichloromethane / ethyl acetate = 90/10/5 to 60/40/5) to obtain intermediate 17 (23.1 g) as a white solid. ..
反応容器に窒素気流下、中間体17(14.3g)、2−(3−ブロモフェニル)ピリジン(7.7g)、2Mリン酸三カリウム水溶液(42mL)、トルエン(70mL)およびエタノール(35mL)を加え、窒素を30分バブリングした。その後撹拌しながらさらに[Pd(PPh3)]4(0.95g)を加え、100℃で3時間撹拌還流した。室温まで冷却し、水を加え分液洗浄後、有機層を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン/酢酸エチル=75/25/3から60/40/3)にて精製することにより、中間体18(14.8g)を黄色固体物質として得た。Intermediate 17 (14.3 g), 2- (3-bromophenyl) pyridine (7.7 g), 2M tripotassium phosphate aqueous solution (42 mL), toluene (70 mL) and ethanol (35 mL) in a reaction vessel under a nitrogen stream. Was added and nitrogen was bubbled for 30 minutes. Then, while stirring, [Pd (PPh 3 )] 4 (0.95 g) was further added, and the mixture was stirred at 100 ° C. for 3 hours and refluxed. The mixture was cooled to room temperature, water was added, and the mixture was separated and washed, and then the organic layer was dried over magnesium sulfate. Then, the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / dichloromethane / ethyl acetate = 75/25/3 to 60/40/3) to obtain intermediate 18 (14.8 g) as a yellow solid substance. rice field.
反応容器に窒素気流下、中間体18(14.2g)、塩化イリジウムn水和物(5.32g)と2−エトキシエタノール(68mL)、ジグリム(68mL)および蒸留水(21mL)を加え、オイルバスの温度を105℃から135℃まで段階的に上げて計7時間撹拌した。その間還流される液は側管から除いた。その後室温に冷却し、蒸留水400mLに反応液を投入後、析出固体をろ過し、メタノール200mLで洗浄後乾燥した。中間体19(16.0g)を黄色固体として得た。 Add intermediate 18 (14.2 g), iridium chloride n hydrate (5.32 g) and 2-ethoxyethanol (68 mL), diglyme (68 mL) and distilled water (21 mL) to the reaction vessel under a nitrogen stream, and add oil. The temperature of the bath was gradually raised from 105 ° C. to 135 ° C., and the mixture was stirred for a total of 7 hours. During that time, the refluxed liquid was removed from the side tube. Then, the mixture was cooled to room temperature, the reaction solution was added to 400 mL of distilled water, the precipitated solid was filtered, washed with 200 mL of methanol, and dried. Intermediate 19 (16.0 g) was obtained as a yellow solid.
反応容器にアルゴン気流下、中間体8(100.0g)、1−ブロモ−3−ヨードベンゼン(120.3g)、2M炭酸カリウム水溶液(443mL)、(トルエン)900mLおよびエタノール(450mL)を加え、撹拌しながらさらに[Pd(PPh3)4](12.31g)を加え、90℃で15時間撹拌還流した。その後室温まで冷却し、水を加え分液洗浄後、有機層を無水硫酸マグネシウムで乾燥した。溶媒を減圧化に留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/へキサン=1/19)に処し、ブロモ体100.5gを得た。引き続きこれを3L反応容器に入れ、アルゴン気流下、乾燥THF1Lを加え、内温−75℃に冷却し、1.65Mのn−ブチルリチウムヘキサン溶液186mLを内温−66℃以下で滴下し、−70℃にて1時間撹拌した。次いで、ほう酸トリメチル85.0gを内温−64℃で50分間かけて滴下し、−70℃にて5時間撹拌した。反応混合物に3M塩酸 270mLを滴下し、室温に戻しながら一夜撹拌した後、酢酸エチル500mLを注ぎ、油水を分離し、水層を酢酸エチルで抽出した。全ての有機層を合わせ、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過、ろ液を濃縮し、黄色油状の粗体を得た。この粗体をシリカゲルカラムクロマトグラフィー(酢酸エチル/ジクロロメタン/ヘキサン=1/0/4〜1/2/0)に処しで精製し、中間体20を淡黄色固体として55.6g得た。Intermediate 8 (100.0 g), 1-bromo-3-iodobenzene (120.3 g), 2M aqueous potassium carbonate solution (443 mL), 900 mL of (toluene) and ethanol (450 mL) were added to the reaction vessel under an argon stream. Further [Pd (PPh 3 ) 4 ] (12.31 g) was added with stirring, and the mixture was stirred and refluxed at 90 ° C. for 15 hours. Then, the mixture was cooled to room temperature, water was added, and the mixture was separated and washed, and then the organic layer was dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the obtained residue was subjected to silica gel column chromatography (dichloromethane / hexane = 1/19) to obtain 100.5 g of a bromo compound. Subsequently, this was placed in a 3 L reaction vessel, 1 L of dry THF was added under an argon air flow, the mixture was cooled to an internal temperature of −75 ° C., and 186 mL of a 1.65 M n-butyllithium hexane solution was added dropwise at an internal temperature of −66 ° C. or lower. The mixture was stirred at 70 ° C. for 1 hour. Then, 85.0 g of trimethylborate was added dropwise at an internal temperature of −64 ° C. over 50 minutes, and the mixture was stirred at −70 ° C. for 5 hours. 270 mL of 3M hydrochloric acid was added dropwise to the reaction mixture, and the mixture was stirred overnight while returning to room temperature, 500 mL of ethyl acetate was poured, oil and water were separated, and the aqueous layer was extracted with ethyl acetate. All the organic layers were combined, washed with saturated brine, dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated to obtain a crude yellow oil. This crude product was purified by silica gel column chromatography (ethyl acetate / dichloromethane / hexane = 1/0/4 to 1/2/0) to obtain 55.6 g of the intermediate 20 as a pale yellow solid.
反応容器に窒素気流下、中間体12(13.4g)、中間体20(13.0g)、2Mリン酸三カリウム水溶液45mL、トルエン90mLおよびエタノール45mLを加え、窒素を30分バブリングした。その後撹拌しながらさらに[Pd(PPh3)]41.0gを加え、100℃で1.5時間撹拌還流した。その後室温まで冷却し、水を加え分液洗浄後、有機層を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/へキサン=2/8)にて精製することにより、中間体21(14.4g)を無色油状物質として得た。Intermediate 12 (13.4 g), intermediate 20 (13.0 g), 45 mL of 2M tripotassium phosphate aqueous solution, 90 mL of toluene and 45 mL of ethanol were added to the reaction vessel under a nitrogen stream, and nitrogen was bubbled for 30 minutes. Then, while stirring, 4 1.0 g of [Pd (PPh 3 )] was further added, and the mixture was stirred at 100 ° C. for 1.5 hours and refluxed. Then, the mixture was cooled to room temperature, water was added, and the mixture was separated and washed, and then the organic layer was dried over magnesium sulfate. Then, the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (ethyl acetate / hexane = 2/8) to obtain Intermediate 21 (14.4 g) as a colorless oily substance.
反応容器に窒素気流下、中間体19(6.6g)、中間体21(4.0g)、ジグリム53mLを入れ内温を約100℃とした。トリフルオロメタンスルホン酸銀1.64gを投入し、直ちに油浴を134℃まで上げて1.5時間撹拌した。室温に冷却後、溶媒を減圧除去して残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=1/1)にて精製した。化合物D−7を2.24g、黄色固体として得た。 Intermediate 19 (6.6 g), intermediate 21 (4.0 g), and 53 mL of diglyme were placed in a reaction vessel under a nitrogen stream to bring the internal temperature to about 100 ° C. 1.64 g of silver trifluoromethanesulfonate was added, and the oil bath was immediately raised to 134 ° C. and stirred for 1.5 hours. After cooling to room temperature, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (dichloromethane / hexane = 1/1). Compound D-7 was obtained as a yellow solid in an amount of 2.24 g.
<化合物(D−8)の合成例> <Synthesis example of compound (D-8)>
反応容器に窒素気流下、2−(3−ブロモフェニル)ピリジン40.3g、塩化イリジウムn水和物28.8gと2−エトキシエタノール200mLおよび蒸留水60mLを加え、オイルバスの温度を135℃とし8時間撹拌した。その間還流される液は側管から除いた。その後室温に冷却し、メタノール100mLを反応液に投入後、析出固体をろ過し、メタノール400mLで洗浄後乾燥した。中間体22(49.0g)を黄色固体として得た。 To the reaction vessel, add 40.3 g of 2- (3-bromophenyl) pyridine, 28.8 g of iridium chloride n hydrate, 200 mL of 2-ethoxyethanol and 60 mL of distilled water under a nitrogen stream, and set the temperature of the oil bath to 135 ° C. The mixture was stirred for 8 hours. During that time, the refluxed liquid was removed from the side tube. Then, the mixture was cooled to room temperature, 100 mL of methanol was added to the reaction solution, the precipitated solid was filtered, washed with 400 mL of methanol, and dried. Intermediate 22 (49.0 g) was obtained as a yellow solid.
反応容器に窒素気流下、中間体22(8.0g)、中間体15(12.3g)、DMF120mLを入れ、オイルバスの温度を170℃とし、弱い還流とした。トリフルオロメタンスルホン酸銀 3.52gを投入し、2時間撹拌した。室温に冷却後、水300mLとトルエン300mL、ジクロロメタン300mLで分液洗浄したのち、硫酸マグネシウムで乾燥させ、ろ過し溶媒を減圧下除去した。残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=1/1)にて精製した。中間体23を4.3g、黄色固体として得た。 Intermediate 22 (8.0 g), intermediate 15 (12.3 g) and 120 mL of DMF were placed in a reaction vessel under a nitrogen stream, and the temperature of the oil bath was set to 170 ° C. to make a weak reflux. 3.52 g of silver trifluoromethanesulfonate was added and stirred for 2 hours. After cooling to room temperature, the mixture was separated and washed with 300 mL of water, 300 mL of toluene, and 300 mL of dichloromethane, dried over magnesium sulfate, filtered, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (dichloromethane / hexane = 1/1). Intermediate 23 was obtained in 4.3 g as a yellow solid.
反応容器に窒素気流下、中間体23(4.3g)、ビス(ピナコラート)ジボロン2.7g、酢酸カリウム2.7g、脱水ジメチルスルホキシド400mLを加え、窒素を30分バブリングした。その後撹拌しながらさらに[PdCl2dppf]CH2Cl2(0.92g)を加え、100℃で7時間撹拌した。その後室温まで冷却し、水500mLとジクロロメタン500mLを加え分液洗浄後、有機層を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン/酢酸エチル=60/30/1から70/0/30)にて精製することにより、中間体24(2.5g)を黄色固体として得た。Intermediate 23 (4.3 g), bis (pinacolato) diboron 2.7 g, potassium acetate 2.7 g, and dehydrated dimethyl sulfoxide 400 mL were added to the reaction vessel under a nitrogen stream, and nitrogen was bubbled for 30 minutes. Then, [PdCl 2 dppf] CH 2 Cl 2 (0.92 g) was further added with stirring, and the mixture was stirred at 100 ° C. for 7 hours. Then, the mixture was cooled to room temperature, 500 mL of water and 500 mL of dichloromethane were added, and the mixture was separated and washed, and then the organic layer was dried over magnesium sulfate. Then, the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / dichloromethane / ethyl acetate = 60/30/1 to 70/0/30) to obtain intermediate 24 (2.5 g) as a yellow solid. ..
反応容器に窒素気流下、3,5−ジブロモベンゾニトリル10.4g、m−ビフェニルボロン酸7.6g、2Mリン酸三カリウム水溶液50mL、トルエン60mLおよびエタノール30mLを加え、窒素を30分バブリングした。その後撹拌しながらさらに[Pd(PPh3)4]1.2gを加え、100℃で2時間撹拌還流した。その後室温まで冷却し、水を加え分液洗浄後、有機層を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/へキサン=3/7)にて精製することにより、中間体25(8.2g)を無色油状物質として得た。To the reaction vessel, 10.4 g of 3,5-dibromobenzonitrile, 7.6 g of m-biphenylboronic acid, 50 mL of a 2M tripotassium phosphate aqueous solution, 60 mL of toluene and 30 mL of ethanol were added under a nitrogen stream, and nitrogen was bubbled for 30 minutes. Then, while stirring, 1.2 g of [Pd (PPh 3 ) 4 ] was further added, and the mixture was stirred at 100 ° C. for 2 hours and refluxed. Then, the mixture was cooled to room temperature, water was added, and the mixture was separated and washed, and then the organic layer was dried over magnesium sulfate. Then, the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (dichloromethane / hexane = 3/7) to obtain Intermediate 25 (8.2 g) as a colorless oily substance.
反応容器に窒素気流下、中間体24(2.5g)、中間体25(2.6g)、2Mリン酸三カリウム水溶液18mL、トルエン50mLおよびエタノール25mLを加え、窒素を30分バブリングした。その後撹拌しながらさらに[Pd(PPh3)4]0.3gを加え、100℃で2.5時間撹拌還流した。その後室温まで冷却し、水を加え分液洗浄後、有機層を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/へキサン=65/35)にて精製することにより、化合物D−8(1.2g)を黄色固体物質として得た。Intermediate 24 (2.5 g), intermediate 25 (2.6 g), 18 mL of 2M tripotassium phosphate aqueous solution, 50 mL of toluene and 25 mL of ethanol were added to the reaction vessel under a nitrogen stream, and nitrogen was bubbled for 30 minutes. Then, while stirring, 0.3 g of [Pd (PPh 3 ) 4 ] was further added, and the mixture was stirred at 100 ° C. for 2.5 hours and refluxed. Then, the mixture was cooled to room temperature, water was added, and the mixture was separated and washed, and then the organic layer was dried over magnesium sulfate. Then, the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (dichloromethane / hexane = 65/35) to obtain Compound D-8 (1.2 g) as a yellow solid substance.
<参考例1>
化合物D−1と類似の方法で合成した化合物D−9は、100℃で調整されたフェニルシクロヘキサンの1wt%溶液が室温まで冷却されると速やかに析出した。溶解性が非常に低く、インクとすることができなかった。<Reference example 1>
Compound D-9, which was synthesized by a method similar to that of compound D-1, precipitated rapidly when a 1 wt% solution of phenylcyclohexane prepared at 100 ° C. was cooled to room temperature. The solubility was so low that it could not be used as an ink.
<有機電界発光素子の作製1>
図1に示す構造を有する有機電界発光素子を以下の方法で作製した。但し、実施例1および2と比較例1および2における発光層中のイリジウム原子濃度は、およそ0.095mmol/gとなるように調整した。同様に、実施例3および4と比較例3および4における発光層中のイリジウム原子濃度は、およそ0.19mmol/gとなるように調整した。<Manufacturing of
An organic electroluminescent device having the structure shown in FIG. 1 was manufactured by the following method. However, the iridium atom concentration in the light emitting layers in Examples 1 and 2 and Comparative Examples 1 and 2 was adjusted to be approximately 0.095 mmol / g. Similarly, the iridium atom concentration in the light emitting layers in Examples 3 and 4 and Comparative Examples 3 and 4 was adjusted to be approximately 0.19 mmol / g.
(実施例1)
ガラス基板1の上に、インジウム・スズ酸化物(ITO)透明導電膜を70nmの厚さに堆積したもの(ジオマテック社製、スパッタ成膜品)を、通常のフォトリソグラフィー技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極2を形成した。パターン形成したITO基板を、界面活性剤水溶液による超音波洗浄、超純水による水洗、超純水による超音波洗浄、超純水による水洗の順で洗浄後、圧縮空気で乾燥させ、最後に紫外線オゾン洗浄を行った。このITOは、透明電極2として機能する。(Example 1)
A transparent conductive film of indium tin oxide (ITO) deposited on a
次に、下の構造式(P−1)に示すアリールアミンポリマー、構造式(A−1)に示す4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラートおよび安息香酸エチルを含有する正孔注入層形成用塗布液を調製した。この塗布液を下記条件で陽極上にスピンコートにより成膜して、膜厚40nmの正孔注入層3を得た。 Next, it contains an arylamine polymer represented by the structural formula (P-1) below, 4-isopropyl-4'-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate represented by the structural formula (A-1), and ethyl benzoate. A coating liquid for forming a hole injection layer was prepared. This coating liquid was formed on the anode by spin coating under the following conditions to obtain a hole injection layer 3 having a film thickness of 40 nm.
<正孔注入層形成用塗布液>
溶剤 安息香酸エチル
塗布液濃度 P−1 2.5質量%
A−1 0.4質量%
<正孔注入層3の成膜条件>
スピンコート雰囲気 大気中
加熱条件 乾燥大気中 240℃ 1時間<Coating liquid for forming hole injection layer>
Solvent Ethyl benzoate Coating solution concentration P-1 2.5% by mass
A-1 0.4% by mass
<Conditions for forming the hole injection layer 3>
Spin coating atmosphere Atmosphere heating conditions Dry air 240 ° C for 1 hour
次に、下記に示す構造を有する化合物(P−2)を含有する正孔輸送層形成用塗布液を調製し、下記の条件でスピンコートにより成膜して、加熱により重合させることにより膜厚11nmの正孔輸送層4を形成した。
Next, a coating liquid for forming a hole transport layer containing a compound (P-2) having the structure shown below is prepared, formed by spin coating under the following conditions, and polymerized by heating to form a film thickness. A
<正孔輸送層形成用塗布液>
溶剤 フェニルシクロヘキサン
塗布液濃度 1.0質量%
<成膜条件>
スピンコート雰囲気 乾燥窒素中
加熱条件 230℃、1時間(乾燥窒素下)<Coating liquid for forming hole transport layer>
Solvent phenylcyclohexane coating solution concentration 1.0% by mass
<Film formation conditions>
Spin coating atmosphere in dry nitrogen
Heating conditions 230 ° C, 1 hour (under dry nitrogen)
次に、発光層を形成するにあたり、電荷輸送材料として、以下に示す、有機化合物(H−1)、有機化合物(H−2)及び、発光材料として、上記で合成した、イリジウム錯体化合物(D−1)を用いて下記に示すイリジウム錯体化合物含有組成物を調製し、以下に示す条件で正孔輸送層上にスピンコートして膜厚60nmで発光層を得た。この発光層の単位重量当たりのイリジウム錯体化合物のドープ濃度は、0.096mmol/gである。 Next, in forming the light emitting layer, the organic compound (H-1) and the organic compound (H-2) shown below as the charge transport material, and the iridium complex compound (D) synthesized above as the light emitting material. The iridium complex compound-containing composition shown below was prepared using -1) and spin-coated on the hole transport layer under the conditions shown below to obtain a light emitting layer having a film thickness of 60 nm. The doping concentration of the iridium complex compound per unit weight of the light emitting layer is 0.096 mmol / g.
<発光層形成用塗布液>
溶剤 フェニルシクロヘキサン:1900質量部
発光層組成 H−1: 45質量部
H−2: 55質量部
D−1: 14.8質量部
<成膜条件>
スピンコート雰囲気 乾燥窒素中
加熱条件 120℃×20分(乾燥窒素下)<Coating liquid for forming a light emitting layer>
Solvent Phenylcyclohexane: 1900 parts by mass Light emitting layer composition H-1: 45 parts by mass
H-2: 55 parts by mass
D-1: 14.8 parts by mass
<Film formation conditions>
Spin coating atmosphere in dry nitrogen
Heating conditions 120 ° C x 20 minutes (under dry nitrogen)
ここで、発光層までを成膜した基板を、真空蒸着装置内に移し、装置内の真空度が2.0x10−4Pa以下になるまで排気した後、化合物(HB−1)を真空蒸着法にて蒸着速度を0.8〜1.0Å/秒の範囲で制御し、発光層の上に積層させ、膜厚10nmの正孔阻止層6を得た。Here, the substrate on which the light emitting layer is formed is transferred into a vacuum vapor deposition apparatus, exhausted until the degree of vacuum in the apparatus becomes 2.0 × 10 -4 Pa or less, and then the compound (HB-1) is vacuum-deposited. The vapor deposition rate was controlled in the range of 0.8 to 1.0 Å / sec and laminated on the light emitting layer to obtain a
引き続き、下記に示す構造を有する有機化合物(ET−1)を真空蒸着法にて蒸着速度を0.8〜1.0Å/秒の範囲で制御し、正孔阻止層6の上に積層させ、膜厚20nmの電子輸送層7を形成した。
Subsequently, the organic compound (ET-1) having the structure shown below was laminated on the
ここで、電子輸送層7までの蒸着を行った素子を一度取り出し、別の蒸着装置に設置し、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極2のITOストライプとは直交するように素子に密着させて排気を行った。
電子注入層8として、先ずフッ化リチウム(LiF)を、モリブデンボートを用いて、0.5nmの膜厚で電子輸送層7の上に成膜した。次に、陰極9としてアルミニウムを同様にモリブデンボートにより加熱して、膜厚80nmのアルミニウム層を形成した。以上の2層の蒸着時の基板温度は室温に保持した。Here, the element that has been vapor-deposited up to the electron transport layer 7 is once taken out, installed in another vapor deposition apparatus, and a 2 mm wide striped shadow mask is used as a mask for cathode vapor deposition, which is orthogonal to the ITO stripe of the
As the
引き続き、素子が保管中に大気中の水分等で劣化することを防ぐため、以下に記載の方法で封止処理を行った。
窒素グローブボックス中で、23mm×23mmサイズのガラス板の外周部に、約1mmの幅で光硬化性樹脂30Y−437(スリーボンド社製)を塗布し、中央部に水分ゲッターシート(ダイニック社製)を設置した。この上に、陰極形成を終了した基板を、蒸着された面が乾燥剤シートと対向するように貼り合わせた。その後、光硬化性樹脂が塗布された領域のみに紫外光を照射し、樹脂を硬化させた。
以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。Subsequently, in order to prevent the device from being deteriorated by moisture in the atmosphere during storage, the sealing treatment was carried out by the method described below.
In the nitrogen glove box, a photocurable resin 30Y-437 (manufactured by ThreeBond Co., Ltd.) is applied to the outer periphery of a glass plate having a size of 23 mm × 23 mm with a width of about 1 mm, and a moisture getter sheet (manufactured by Dynic Co., Ltd.) is applied to the central part. Was installed. On this, the substrate for which the cathode formation was completed was bonded so that the vapor-deposited surface faced the desiccant sheet. Then, only the region coated with the photocurable resin was irradiated with ultraviolet light to cure the resin.
As described above, an organic electroluminescent device having a light emitting area portion having a size of 2 mm × 2 mm was obtained.
(実施例2)
実施例1において、発光層を形成する際に用いた化合物D−1を、化合物D−4に変更し、その発光層形成用塗布液中の濃度を16.5質量部に変えた以外は、実施例1と同様にして図1に示す有機電界発光素子を作製した。(Example 2)
Except that in Example 1, compound D-1 used for forming the light emitting layer was changed to compound D-4, and the concentration in the coating liquid for forming the light emitting layer was changed to 16.5 parts by mass. The organic electroluminescent device shown in FIG. 1 was produced in the same manner as in Example 1.
(比較例1)
実施例1において、発光層を形成する際に用いた化合物D−1を、下記式で表される化合物D−5に変更し、その発光層形成用塗布液中の濃度を14.7質量部に変えた以外は、実施例1と同様にして図1に示す有機電界発光素子を作製した。(Comparative Example 1)
In Example 1, the compound D-1 used for forming the light emitting layer was changed to the compound D-5 represented by the following formula, and the concentration in the coating liquid for forming the light emitting layer was changed to 14.7 parts by mass. The organic electroluminescent device shown in FIG. 1 was produced in the same manner as in Example 1 except that it was changed to.
(比較例2)
実施例1において、発光層を形成する際に用いた化合物D−1を、下記式で表される化合物D−6に変更し、その発光層形成用塗布液中の濃度を15.0質量部に変えた以外は、実施例1と同様にして図1に示す有機電界発光素子を作製した。(Comparative Example 2)
In Example 1, the compound D-1 used for forming the light emitting layer was changed to the compound D-6 represented by the following formula, and the concentration in the coating liquid for forming the light emitting layer was changed to 15.0 parts by mass. The organic electroluminescent device shown in FIG. 1 was produced in the same manner as in Example 1 except that it was changed to.
(実施例3)
実施例1において、発光層形成用塗布液中の発光材料の濃度を34.6質量部に変えた以外は、実施例1と同様にして図1に示す有機電界発光素子を作製した。(Example 3)
In Example 1, the organic electroluminescent device shown in FIG. 1 was produced in the same manner as in Example 1 except that the concentration of the light emitting material in the coating liquid for forming a light emitting layer was changed to 34.6 parts by mass.
(実施例4)
実施例2において、発光層形成用塗布液中の発光材料の濃度を38.5質量部に変えた以外は、実施例2と同様にして図1に示す有機電界発光素子を作製した。(Example 4)
In Example 2, the organic electroluminescent device shown in FIG. 1 was produced in the same manner as in Example 2 except that the concentration of the light emitting material in the coating liquid for forming a light emitting layer was changed to 38.5 parts by mass.
(比較例3)
比較例1において、発光層形成用塗布液中の発光材料の濃度を34.4質量部に変えた以外は、比較例1と同様にして図1に示す有機電界発光素子を作製した。(Comparative Example 3)
In Comparative Example 1, the organic electroluminescent device shown in FIG. 1 was produced in the same manner as in Comparative Example 1 except that the concentration of the light emitting material in the coating liquid for forming the light emitting layer was changed to 34.4 parts by mass.
(比較例4)
比較例2において、発光層形成用塗布液中の発光材料の濃度を35.0質量部に変えた以外は、実施例2と同様にして図1に示す有機電界発光素子を作製した。
このようにして得られた素子の性能を表1、表2に示す。
表1に、素子に10mA/cm2通電した場合の発光効率(cd/A)を、比較例1を100とした相対値で示す。(Comparative Example 4)
In Comparative Example 2, the organic electroluminescent device shown in FIG. 1 was produced in the same manner as in Example 2 except that the concentration of the light emitting material in the coating liquid for forming the light emitting layer was changed to 35.0 parts by mass.
The performance of the element thus obtained is shown in Tables 1 and 2.
Table 1 shows the luminous efficiency (cd / A) when the element is energized at 10 mA / cm 2 as a relative value with Comparative Example 1 as 100.
本願発明の化合物を発光層に通常ドープ濃度でドープした素子および、ヘビードープ濃度でドープした素子とも、発光効率が高いことがわかる。表2に、素子に15mA/cm2通電した場合の初期輝度(cd/m2)を、比較例1を100とした相対値、および、素子を15mA/cm2で120時間定電流駆動した後の輝度を初期輝度で除して輝度保持率をもとめ、比較例1の輝度保持率を100とした場合の相対値を示す。It can be seen that both the device in which the compound of the present invention is doped in the light emitting layer at a normal doping concentration and the device in which the compound of the present invention is doped at a heavy doping concentration have high luminous efficiency. Table 2 shows the relative values of the initial brightness (cd / m 2 ) when the element is energized at 15 mA / cm 2 with Comparative Example 1 as 100, and after the element is driven at a constant current of 15 mA / cm 2 for 120 hours. The brightness retention rate is obtained by dividing the brightness of the above by the initial brightness, and the relative value when the brightness retention rate of Comparative Example 1 is 100 is shown.
実施例1〜4、比較例1〜3により、本願発明の化合物を発光層に通常ドープ濃度でドープした素子および、ヘビードープ濃度でドープした素子とも、高い駆動寿命を有する素子であることがわかった。
また、特に、本願発明の化合物を発光層にヘビードープ濃度でドープした素子は、発光効率が高く、高い駆動寿命を有する素子であることがわかった。From Examples 1 to 4 and Comparative Examples 1 to 3, it was found that both the device in which the compound of the present invention was doped in the light emitting layer at a normal doping concentration and the device in which the compound of the present invention was doped at a heavy doping concentration were devices having a high drive life. ..
Further, in particular, it was found that the device obtained by doping the light emitting layer with the compound of the present invention at a heavy doping concentration has high luminous efficiency and a long drive life.
<発光層形成用塗布液の保存安定性>
該塗布液の保存安定性試験においては、液に濁りが無いこと、および、赤色レーザー光を当てチンダル現象が観察されないこと、を目視で確認できた場合、溶液状態が保持された均一状態であると判断した。
(実施例5)実施例3と同様に作成した発光層形成用塗布液を、150℃で30分加熱し均一状態を確認したのち45℃で4時間静置したところ、均一状態を保持していた。
(実施例6)実施例4と同様に作成した発光層形成用塗布液を、150℃で30分加熱し均一状態を確認したのち45℃で4時間静置したところ、均一状態を保持していた。
(実施例7)実施例5において、化合物D−1を化合物D−7に変更し、その発光層形成用塗布液中の濃度を44.4質量部に変えた以外は、実施例5と同様に作成した発光層形成用塗布液を、150℃で30分加熱し均一状態を確認したのち45℃で4時間静置したところ、均一状態を保持していた。
(実施例8)実施例5において、化合物D−1を化合物D−8に変更し、その発光層形成用塗布液中の濃度を39.8質量部に変えた以外は、実施例5と同様に作成した発光層形成用塗布液を、150℃で30分加熱し均一状態を確認したのち45℃で4時間静置したところ、均一状態を保持していた。
(参考例2)比較例3と同様に作成した発光層形成用塗布液を、150℃で30分加熱し均一状態を確認したのち45℃で4時間静置したところ、均一状態を保持していた。
(比較例5)比較例4と同様に作成した発光層形成用塗布液を、150℃で30分加熱し均一状態を確認したのち45℃で4時間静置したところ、固体の析出が認められた。
(比較例6)比較例3において、化合物D−5を下式に示す化合物D−10に変更し、その発光層形成用塗布液中の濃度を47.0質量部に変えた以外は、比較例3と同様に作成した発光層形成用塗布液を、150℃で30分加熱し均一状態を確認したのち45℃で4時間静置したところ、固体の析出が認められた。
<化合物D−10><Storage stability of coating liquid for forming a light emitting layer>
In the storage stability test of the coating liquid, if it can be visually confirmed that the liquid is not turbid and that the Tyndall phenomenon is not observed by irradiating the red laser light, the solution state is maintained in a uniform state. I decided.
(Example 5) The coating liquid for forming a light emitting layer prepared in the same manner as in Example 3 was heated at 150 ° C. for 30 minutes to confirm a uniform state, and then allowed to stand at 45 ° C. for 4 hours to maintain the uniform state. rice field.
(Example 6) The coating liquid for forming a light emitting layer prepared in the same manner as in Example 4 was heated at 150 ° C. for 30 minutes to confirm a uniform state, and then allowed to stand at 45 ° C. for 4 hours to maintain the uniform state. rice field.
(Example 7) The same as in Example 5 except that compound D-1 was changed to compound D-7 and the concentration in the coating liquid for forming a light emitting layer was changed to 44.4 parts by mass in Example 5. The coating liquid for forming a light emitting layer prepared in 1 was heated at 150 ° C. for 30 minutes to confirm a uniform state, and then allowed to stand at 45 ° C. for 4 hours to maintain the uniform state.
(Example 8) In Example 5, the same as in Example 5 except that compound D-1 was changed to compound D-8 and the concentration in the coating liquid for forming a light emitting layer was changed to 39.8 parts by mass. The coating liquid for forming a light emitting layer prepared in 1 was heated at 150 ° C. for 30 minutes to confirm a uniform state, and then allowed to stand at 45 ° C. for 4 hours to maintain the uniform state.
(Reference Example 2) The coating liquid for forming a light emitting layer prepared in the same manner as in Comparative Example 3 was heated at 150 ° C. for 30 minutes to confirm a uniform state, and then allowed to stand at 45 ° C. for 4 hours to maintain the uniform state. rice field.
(Comparative Example 5) When the coating liquid for forming a light emitting layer prepared in the same manner as in Comparative Example 4 was heated at 150 ° C. for 30 minutes to confirm a uniform state and then allowed to stand at 45 ° C. for 4 hours, precipitation of a solid was observed. rice field.
(Comparative Example 6) In Comparative Example 3, the compound D-5 was changed to the compound D-10 shown in the following formula, and the concentration in the coating liquid for forming a light emitting layer was changed to 47.0 parts by mass. The coating liquid for forming a light emitting layer prepared in the same manner as in Example 3 was heated at 150 ° C. for 30 minutes to confirm a uniform state, and then allowed to stand at 45 ° C. for 4 hours. As a result, solid precipitation was observed.
<Compound D-10>
(比較例7)比較例3において、化合物D−5を下式に示す化合物D−11に変更し、その発光層形成用塗布液中の濃度を28.0質量部に変えた以外は、比較例3と同様に作成した発光層形成用塗布液を、150℃で30分加熱し均一状態を確認したのち45℃で4時間静置したところ、固体の析出が認められた。 (Comparative Example 7) In Comparative Example 3, the compound D-5 was changed to the compound D-11 shown in the following formula, and the concentration in the coating liquid for forming a light emitting layer was changed to 28.0 parts by mass. The coating liquid for forming a light emitting layer prepared in the same manner as in Example 3 was heated at 150 ° C. for 30 minutes to confirm a uniform state, and then allowed to stand at 45 ° C. for 4 hours. As a result, solid precipitation was observed.
<化合物D−11>
以上の結果を表3に示す。 The above results are shown in Table 3.
実施例5〜8、比較例5〜7より、本願発明の化合物をヘビードープ濃度で発光層形成用塗布液に用いた組成物は、保存安定性が良好であることがわかる。 From Examples 5 to 8 and Comparative Examples 5 to 7, it can be seen that the composition in which the compound of the present invention is used in the coating liquid for forming a light emitting layer at a heavy dope concentration has good storage stability.
<有機電界発光素子の作製2>
(実施例9)
図1に示す構造を有する有機電界発光素子を以下の方法で作製した。但し、発光層中のイリジウム原子濃度は、およそ0.19mmol/gとなるように調整した。<Manufacturing of
(Example 9)
An organic electroluminescent device having the structure shown in FIG. 1 was manufactured by the following method. However, the iridium atom concentration in the light emitting layer was adjusted to be about 0.19 mmol / g.
ガラス基板1および透明電極2は実施例3における有機電界発光素子の作製1と同様に作成した。
The
次に、下の構造式(P−3)に示すアリールアミンポリマー、前記構造式(A−1)に示す4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラートおよび安息香酸エチルを含有する正孔注入層形成用塗布液を調製した。この塗布液を下記条件で陽極上にスピンコートにより成膜して、膜厚29nmの正孔注入層3を得た。 Next, the arylamine polymer represented by the structural formula (P-3) below, 4-isopropyl-4'-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate represented by the structural formula (A-1), and ethyl benzoate are added. A coating liquid for forming a hole injection layer to be contained was prepared. This coating liquid was formed on the anode by spin coating under the following conditions to obtain a hole injection layer 3 having a film thickness of 29 nm.
<正孔注入層形成用塗布液>
溶剤 安息香酸エチル
塗布液濃度 P−3 2.0質量%
A−1 0.4質量%
<正孔注入層3の成膜条件>
スピンコート雰囲気 大気中
加熱条件 乾燥大気中 230℃ 1時間<Coating liquid for forming hole injection layer>
Solvent Ethyl benzoate Coating solution concentration P-3 2.0% by mass
A-1 0.4% by mass
<Conditions for forming the hole injection layer 3>
Spin coating atmosphere Atmosphere heating conditions Dry air 230 ° C for 1 hour
次に、下記に示す構造を有する化合物(P−4)を含有する正孔輸送層形成用塗布液を調製し、下記の条件でスピンコートにより成膜して、加熱により重合させることにより膜厚20nmの正孔輸送層4を形成した。
Next, a coating liquid for forming a hole transport layer containing a compound (P-4) having the structure shown below is prepared, formed by spin coating under the following conditions, and polymerized by heating to form a film thickness. A 20 nm
<正孔輸送層形成用塗布液>
溶剤 フェニルシクロヘキサン
塗布液濃度 1.5質量%
<成膜条件>
スピンコート雰囲気 乾燥窒素中
加熱条件 230℃、1時間(乾燥窒素下)<Coating liquid for forming hole transport layer>
Solvent phenylcyclohexane coating solution concentration 1.5% by mass
<Film formation conditions>
Spin coating atmosphere in dry nitrogen
Heating conditions 230 ° C, 1 hour (under dry nitrogen)
発光層の形成から最後の封止処理まで、実施例3と同様に行い、素子を作成した。 From the formation of the light emitting layer to the final sealing treatment, the same procedure as in Example 3 was carried out to prepare an element.
(実施例10)
実施例9において、発光層形成用塗布液を実施例6の組成に変えた以外は、実施例9と同様にして図1に示す有機電界発光素子を作製した。(Example 10)
In Example 9, the organic electroluminescent device shown in FIG. 1 was produced in the same manner as in Example 9 except that the coating liquid for forming a light emitting layer was changed to the composition of Example 6.
(実施例11)
実施例9において、発光層形成用塗布液を実施例7の組成に変えた以外は、実施例9と同様にして図1に示す有機電界発光素子を作製した。(Example 11)
In Example 9, the organic electroluminescent device shown in FIG. 1 was produced in the same manner as in Example 9 except that the coating liquid for forming a light emitting layer was changed to the composition of Example 7.
(比較例8)
実施例9において、発光層形成用塗布液を比較例3の組成に変えた以外は、実施例9と同様にして図1に示す有機電界発光素子を作製した。
このようにして得られた素子を15mA/cm2で定電流駆動し、輝度が90%に低下した時の時間をLT90(h)として求め、比較例8のLT90を100とした場合の相対値を表4に示す。(Comparative Example 8)
In Example 9, the organic electroluminescent device shown in FIG. 1 was produced in the same manner as in Example 9 except that the coating liquid for forming a light emitting layer was changed to the composition of Comparative Example 3.
The element thus obtained is driven with a constant current at 15 mA / cm 2 , the time when the brightness is reduced to 90% is obtained as LT90 (h), and the relative value when LT90 of Comparative Example 8 is set to 100. Is shown in Table 4.
比較例8で用いた化合物D−5は、参考例2で示した通り、発光層形成用塗布液としての保存安定性は良好であったものの、駆動寿命は実施例9〜11に対して劣っており、本願発明の化合物を発光層に用いることで、発光層形成用塗布液としての優れた保存安定性と素子としての高駆動寿命の両立が図れることが判った。 As shown in Reference Example 2, the compound D-5 used in Comparative Example 8 had good storage stability as a coating liquid for forming a light emitting layer, but its drive life was inferior to that of Examples 9 to 11. It has been found that by using the compound of the present invention for the light emitting layer, both excellent storage stability as a coating liquid for forming a light emitting layer and a long drive life as an element can be achieved.
(実施例12)
実施例9において、発光層形成用塗布液を実施例8の組成に変えた以外は、実施例9と同様にして図1に示す有機電界発光素子を作製したところ、素子の極大波長は517nmであった。(Example 12)
In Example 9, the organic electroluminescent device shown in FIG. 1 was produced in the same manner as in Example 9 except that the coating liquid for forming the light emitting layer was changed to the composition of Example 8, and the maximum wavelength of the device was 517 nm. there were.
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2015年5月29日出願の日本特許出願(特願2015−110255)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on May 29, 2015 (Japanese Patent Application No. 2015-11255), the contents of which are incorporated herein by reference.
本発明は、有機電界発光素子をはじめとする有機デバイス用の材料のほか、有機電界発光素子が使用される各種の分野、例えば、フラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯、照明装置等の分野において、好適に使用することが出来る。 In addition to materials for organic devices such as organic electroluminescent elements, the present invention relates to various fields in which organic electroluminescent elements are used, such as flat panel displays (for example, for OA computers and wall-mounted televisions) and surface emission. It can be suitably used in the fields of light sources (for example, light sources of copying machines, backlight sources of liquid crystal displays and instruments), display boards, indicator lights, lighting devices, etc. that make the best use of the characteristics of the body.
1 基板
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 正孔阻止層
7 電子輸送層
8 電子注入層
9 陰極1 board
2 Anode
3 hole injection layer
4 hole transport layer
5 Light emitting layer
6 Hole blocking layer
7 Electron transport layer
8 electron injection layer
9 Cathode
Claims (6)
環Cy1は炭素原子C1およびC2を含むベンゼン環を表し、
環Cy2は炭素原子C3および窒素原子N1を含む、ピリジン環を表し、
環Cy3は炭素原子C4およびC5を含むベンゼン環を表し、
環Cy4は炭素原子C6および窒素原子N2を含む、ピリジン環を表す。
m=1であり、
m+n=3である。
a及びcはそれぞれ独立に1〜2の整数を表し、b及びdはそれぞれ独立して0〜2の整数を表す。
a個のR 1 のうちひとつは下記式(2)で表され、c個のR 3 のうちひとつは下記式(3)で表され、他のR1及びR3はそれぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、アミノ基、ヒドロキシ基、メルカプト基、炭素数1〜30のアルキル基、炭素数1〜30のアルコキシ基、炭素数2〜30のアルケニル基、炭素数1〜30のアルキルアミノ基、炭素数3〜30のアリールオキシ基、炭素数3〜30のアリール基、炭素数3〜30のヘテロアリール基、炭素数3〜30のアリールアミノ基、及び炭素数7〜40のアラルキル基から選ばれ、R 2 及びR4はそれぞれ独立に、フッ素原子、塩素原子、臭素原子、アミノ基、ヒドロキシ基、メルカプト基、炭素数1〜30のアルキル基、炭素数1〜30のアルコキシ基、炭素数2〜30のアルケニル基、炭素数1〜30のアルキルアミノ基、炭素数3〜30のアリールオキシ基、炭素数3〜30のアリール基、炭素数3〜30のヘテロアリール基、炭素数3〜30のアリールアミノ基、及び炭素数7〜40のアラルキル基から選ばれる。
hは1〜3の整数を表す。
*は結合手を表す。
Rはそれぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、シアノ基、フッ素原子でさらに置換されていてもよい炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基、炭素数5〜30のアリール基でさらに置換されていてもよいアミノ基、及び炭素数1〜20のアシル基から選ばれる。
R’はそれぞれ独立に、フッ素原子でさらに置換されていてもよい、フェニルメチル基、フェニルエチル基、1,1−ジメチル−1−フェニルメチル基、3−フェニル−1−プロピル基、4−フェニル−1−n−ブチル基、1−メチル−1−フェニルエチル基、5−フェニル−1−n−プロピル基、6−フェニル−1−n−ヘキシル基、7−フェニル−1−n−ヘプチル基、8−フェニル−1−n−オクチル基、及び4−フェニルシクロヘキシル基から選ばれる。
yは1〜10の整数を表す。
*は結合手を表す。
Rは式(2)と同義であり、
R’’はその出現ごとにそれぞれ同一であっても異なっていてもよく、それぞれ独立に、フッ素原子、フッ素原子でさらに置換されていてもよい炭素数1〜20のアルキル基、炭素数1〜20のアルキル基またはアリール基で置換されていてもよいナフチル基、及び炭素数1〜20のヘテロアリール基から選ばれる。
前記水素原子、前記フッ素原子、前記塩素原子、前記臭素原子、並びに、前記式(2)および前記式(3)で表される基、を除く前記R1〜R4の基は、さらに、フッ素原子、塩素原子、臭素原子、フッ素原子でさらに置換されていてもよい炭素数1〜30のアルキル基、炭素数1〜30のアルキル基でさらに置換されていてもよい炭素数3〜30のアリール基または炭素数3〜30のアリールアミノ基で置換されていてもよい。
R1〜R4がそれぞれ複数個ある場合は、それぞれ同一であっても異なっていてもよい。
複数のR1〜R4が、同一の環上で互いに隣り合う場合、隣り合っているR1〜R4同士が、直接結合あるいは炭素数3〜12のアルキレン基、炭素数3〜12のアルケニレン基もしくは炭素数6〜12のアリーレン基を介して結合して、環を形成してもよく、これらの環はさらに、フッ素原子、塩素原子、臭素原子、フッ素原子でさらに置換されていてもよい炭素数1〜30のアルキル基、炭素数1〜30のアルコキシ基、炭素数3〜30のアリールオキシ基、炭素数1〜30のアルキル基でさらに置換されていてもよい炭素数3〜30のアリール基または炭素数3〜30のアリールアミノ基で置換されていてもよい。
また、R1とR2、あるいはR3とR4が、直接結合あるいは炭素数3〜12のアルキレン基、炭素数3〜12のアルケニレン基もしくは炭素数6〜12のアリーレン基を介して結合して、環を形成してもよく、これらの環はさらに、フッ素原子、塩素原子、臭素原子、フッ素原子でさらに置換されていてもよい炭素数1〜30のアルキル基、炭素数1〜30のアルコキシ基、炭素数3〜30のアリールオキシ基、炭素数1〜30のアルキル基でさらに置換されていてもよい炭素数3〜30のアリール基または炭素数3〜30のアリールアミノ基で置換されていてもよい。 An iridium complex compound represented by the following formula (1).
Ring Cy 1 represents a benzene ring containing carbon atoms C 1 and C 2.
Ring Cy 2 represents a pyridine ring containing carbon atom C 3 and nitrogen atom N 1.
Ring Cy 3 represents a benzene ring containing carbon atoms C 4 and C 5.
Ring Cy 4 represents a pyridine ring containing carbon atom C 6 and nitrogen atom N 2.
m = 1 and
m + n = 3.
a and c independently represent an integer of 1 to 2, and b and d independently represent an integer of 0 to 2.
one of a number of R 1 is represented by the following formula (2), one of c number of R 3 is represented by the following formula (3), to each of the other R 1 and R 3 are independently a hydrogen atom , Fluorine atom, chlorine atom, bromine atom, amino group, hydroxy group, mercapto group, alkyl group having 1 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, alkenyl group having 2 to 30 carbon atoms, 1 to 1 carbon atoms. An alkylamino group of 30, an aryloxy group having 3 to 30 carbon atoms, an aryl group having 3 to 30 carbon atoms, a heteroaryl group having 3 to 30 carbon atoms, an arylamino group having 3 to 30 carbon atoms, and an arylamino group having 7 to 7 carbon atoms. Selected from 40 arylyl groups , R 2 and R 4 are independently fluorine atoms, chlorine atoms, bromine atoms, amino groups, hydroxy groups, mercapto groups, alkyl groups with 1 to 30 carbon atoms, and 1 to 30 carbon atoms, respectively. Alkoxy group, alkenyl group having 2 to 30 carbon atoms, alkylamino group having 1 to 30 carbon atoms, aryloxy group having 3 to 30 carbon atoms, aryl group having 3 to 30 carbon atoms, heteroaryl group having 3 to 30 carbon atoms. It is selected from a group, an arylamino group having 3 to 30 carbon atoms, and an aralkyl group having 7 to 40 carbon atoms.
h represents an integer of 1 to 3.
* Represents a bond.
R is an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and carbon which may be further substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a cyano group, and a fluorine atom, respectively. It is selected from an amino group which may be further substituted with an aryl group of several 5 to 30 and an acyl group having 1 to 20 carbon atoms.
R'independently may be further substituted with a fluorine atom , phenylmethyl group, phenylethyl group, 1,1-dimethyl-1-phenylmethyl group, 3-phenyl-1-propyl group, 4-phenyl. -1-n-butyl group, 1-methyl-1-phenylethyl group, 5-phenyl-1-n-propyl group, 6-phenyl-1-n-hexyl group, 7-phenyl-1-n-heptyl group , 8-Phenyl-1-n-octyl group, and 4-phenylcyclohexyl group .
y represents an integer of 1-10.
* Represents a bond.
R is synonymous with equation (2) and
R'' may be the same or different for each appearance, and may be independently further substituted with a fluorine atom or a fluorine atom. Alkyl group having 1 to 20 carbon atoms, carbon number 1 to 1 20 alkyl or aryl naphthyl group which may be substituted with a group, and is selected from heteroaryl groups having 1 to 20 carbon atoms.
Except for the hydrogen atom, the fluorine atom, the chlorine atom, the bromine atom, and the groups represented by the formulas (2) and (3), the groups of R 1 to R 4 are further composed of fluorine. An alkyl group having 1 to 30 carbon atoms which may be further substituted with an atom, a chlorine atom, a bromine atom or a fluorine atom, and an aryl having 3 to 30 carbon atoms which may be further substituted with an alkyl group having 1 to 30 carbon atoms. It may be substituted with a group or an arylamino group having 3 to 30 carbon atoms.
When there are a plurality of R 1 to R 4 , they may be the same or different.
When a plurality of R 1 to R 4 are adjacent to each other on the same ring, the adjacent R 1 to R 4 are directly bonded or have an alkylene group having 3 to 12 carbon atoms and an alkaneylene having 3 to 12 carbon atoms. Rings may be formed by bonding via a group or an arylene group having 6 to 12 carbon atoms, and these rings may be further substituted with a fluorine atom, a chlorine atom, a bromine atom, or a fluorine atom. Alkyl groups having 1 to 30 carbon atoms, alkoxy groups having 1 to 30 carbon atoms, aryloxy groups having 3 to 30 carbon atoms, and alkyl groups having 1 to 30 carbon atoms may be further substituted with 3 to 30 carbon atoms. It may be substituted with an aryl group or an arylamino group having 3 to 30 carbon atoms.
Further, R 1 and R 2 or R 3 and R 4 are directly bonded or bonded via an alkylene group having 3 to 12 carbon atoms, an alkaneylene group having 3 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms. These rings may be further substituted with a fluorine atom, a chlorine atom, a bromine atom, or a fluorine atom, and have an alkyl group having 1 to 30 carbon atoms and 1 to 30 carbon atoms. It is further substituted with an alkoxy group, an aryloxy group having 3 to 30 carbon atoms, an alkyl group having 1 to 30 carbon atoms, an aryl group having 3 to 30 carbon atoms or an arylamino group having 3 to 30 carbon atoms. May be.
qは0から10の整数を表し、
rは0から2の整数を表し、
p+q+rは0から10の整数である。
*は結合手を表す。
R、R’およびhは式(2)と同義である。
tは1から10の整数を表し、
uは0から2の整数を表し、
wは0から4の整数を表し、
s+t+u+wは1から10の整数である。
*は結合手を表す。
R、R’’およびkは式(3)と同義である。 The iridium complex compound according to claim 1, wherein the formula (2) is represented by the following formula (4), and the formula (3) is represented by the following formula (5).
q represents an integer from 0 to 10
r represents an integer from 0 to 2
p + q + r is an integer from 0 to 10.
* Represents a bond.
R, R'and h are synonymous with equation (2).
t represents an integer from 1 to 10
u represents an integer from 0 to 2
w represents an integer from 0 to 4
s + t + u + w is an integer from 1 to 10.
* Represents a bond.
R, R'' and k are synonymous with equation (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021093298A JP7420116B2 (en) | 2015-05-29 | 2021-06-02 | Iridium complex compound, organic electroluminescent device containing the compound, display device, and lighting device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015110255 | 2015-05-29 | ||
JP2015110255 | 2015-05-29 | ||
PCT/JP2016/065644 WO2016194784A1 (en) | 2015-05-29 | 2016-05-26 | Iridium complex compound, organic electroluminescent element containing said compound, display device and lighting device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021093298A Division JP7420116B2 (en) | 2015-05-29 | 2021-06-02 | Iridium complex compound, organic electroluminescent device containing the compound, display device, and lighting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2016194784A1 JPWO2016194784A1 (en) | 2018-03-15 |
JP6922734B2 true JP6922734B2 (en) | 2021-08-18 |
Family
ID=57441016
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017521888A Active JP6922734B2 (en) | 2015-05-29 | 2016-05-26 | Iridium complex compound, organic electroluminescent device containing the compound, display device and lighting device |
JP2021093298A Active JP7420116B2 (en) | 2015-05-29 | 2021-06-02 | Iridium complex compound, organic electroluminescent device containing the compound, display device, and lighting device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021093298A Active JP7420116B2 (en) | 2015-05-29 | 2021-06-02 | Iridium complex compound, organic electroluminescent device containing the compound, display device, and lighting device |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP6922734B2 (en) |
KR (1) | KR102609664B1 (en) |
CN (1) | CN107614510B (en) |
TW (1) | TWI697541B (en) |
WO (1) | WO2016194784A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201511300D0 (en) * | 2015-06-26 | 2015-08-12 | Cambridge Display Tech Ltd | Metal complex and organic light-emitting device |
EP3719028B1 (en) | 2017-11-29 | 2024-06-12 | Mitsubishi Chemical Corporation | Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device and illumination device |
JP7148271B2 (en) * | 2018-05-10 | 2022-10-05 | 住友化学株式会社 | Compound, method for producing compound, and method for producing luminescent material using the same |
EP3909963A4 (en) | 2019-01-10 | 2022-03-02 | Mitsubishi Chemical Corporation | Iridium complex compound |
US11239435B2 (en) * | 2019-01-21 | 2022-02-01 | Luminescence Technology Corp. | Iridium complex and organic electroluminescence device using the same |
KR20220008818A (en) * | 2019-05-15 | 2022-01-21 | 미쯔비시 케미컬 주식회사 | An iridium complex compound, a composition containing the compound and a solvent, an organic electroluminescent device containing the compound, a display device, and a lighting device |
CN115135662A (en) | 2020-02-12 | 2022-09-30 | 三菱化学株式会社 | Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element and method for producing same, organic EL display device, and organic EL lighting device |
CN113121579B (en) * | 2021-04-19 | 2023-06-06 | 河北松辰医药科技有限公司 | Synthesis method of 3- (6-phenylhexyl) phenylboronic acid and derivative thereof |
WO2022250044A1 (en) * | 2021-05-25 | 2022-12-01 | 三菱ケミカル株式会社 | Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element and method for producing same |
WO2023136252A1 (en) | 2022-01-13 | 2023-07-20 | 三菱ケミカル株式会社 | Iridium complex compound, composition for organic electroluminescent element, organic electroluminescent element and method for producing same, and display device |
WO2024203548A1 (en) * | 2023-03-24 | 2024-10-03 | 三菱ケミカル株式会社 | Iridium complex compound, composition, method for producing organic electroluminescent element, and organic electroluminescent element |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10238903A1 (en) | 2002-08-24 | 2004-03-04 | Covion Organic Semiconductors Gmbh | New heteroaromatic rhodium and iridium complexes, useful in electroluminescent and/or phosphorescent devices as the emission layer and for use in solar cells, photovoltaic devices and organic photodetectors |
JP2004292423A (en) * | 2002-08-30 | 2004-10-21 | Dainippon Ink & Chem Inc | Iridium (iii) complex and organic electroluminescent element including the same |
US8119255B2 (en) * | 2006-12-08 | 2012-02-21 | Universal Display Corporation | Cross-linkable iridium complexes and organic light-emitting devices using the same |
US7993763B2 (en) * | 2007-05-10 | 2011-08-09 | Universal Display Corporation | Organometallic compounds having host and dopant functionalities |
KR100933226B1 (en) * | 2007-11-20 | 2009-12-22 | 다우어드밴스드디스플레이머티리얼 유한회사 | Novel red phosphorescent compound and organic light emitting device employing it as light emitting material |
WO2013105615A1 (en) | 2012-01-13 | 2013-07-18 | 三菱化学株式会社 | Iridium complex compound, solution composition containing iridium complex compound, organic electroluminescent element, display device, and lighting device |
EP2828274A4 (en) * | 2012-03-23 | 2015-10-21 | Du Pont | Green luminescent materials |
WO2014024889A1 (en) | 2012-08-08 | 2014-02-13 | 三菱化学株式会社 | Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element, display device and lighting device |
JP6119171B2 (en) | 2012-10-05 | 2017-04-26 | 三菱化学株式会社 | Iridium complex compound, composition containing the compound and solvent, organic electroluminescent device containing the compound, display device and lighting device |
JP6331617B2 (en) | 2013-04-15 | 2018-05-30 | 住友化学株式会社 | Metal complex and light emitting device using the same |
-
2016
- 2016-05-26 JP JP2017521888A patent/JP6922734B2/en active Active
- 2016-05-26 CN CN201680030667.3A patent/CN107614510B/en active Active
- 2016-05-26 WO PCT/JP2016/065644 patent/WO2016194784A1/en active Application Filing
- 2016-05-26 KR KR1020177033548A patent/KR102609664B1/en active IP Right Grant
- 2016-05-27 TW TW105116618A patent/TWI697541B/en active
-
2021
- 2021-06-02 JP JP2021093298A patent/JP7420116B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP7420116B2 (en) | 2024-01-23 |
KR20180013895A (en) | 2018-02-07 |
JPWO2016194784A1 (en) | 2018-03-15 |
CN107614510B (en) | 2021-04-20 |
TW201702351A (en) | 2017-01-16 |
JP2021138735A (en) | 2021-09-16 |
WO2016194784A1 (en) | 2016-12-08 |
CN107614510A (en) | 2018-01-19 |
KR102609664B1 (en) | 2023-12-04 |
TWI697541B (en) | 2020-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7420116B2 (en) | Iridium complex compound, organic electroluminescent device containing the compound, display device, and lighting device | |
JP5810417B2 (en) | Iridium complex compound, composition containing the compound, organic electroluminescent element, display device and lighting device | |
JP5459447B2 (en) | Iridium complex compound and solution composition containing the compound, organic electroluminescent element, display device and lighting device | |
WO2011024922A1 (en) | Monoamine compound, charge-transporting material, composition for charge-transporting film, organic electroluminescent element, organic el display device and organic el lighting | |
JP7513022B2 (en) | Organic electroluminescent device and display device | |
JP7140014B2 (en) | A composition for an organic electroluminescent device, an organic electroluminescent device, a display device and a lighting device. | |
US11404652B2 (en) | Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device | |
JP6866576B2 (en) | Polymers, compositions for organic electroluminescent devices, organic electroluminescent devices, organic EL display devices and organic EL lighting | |
JP6119171B2 (en) | Iridium complex compound, composition containing the compound and solvent, organic electroluminescent device containing the compound, display device and lighting device | |
WO2020230811A1 (en) | Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device and lighting device | |
US20240147833A1 (en) | Iridium Complex Compound, Iridium Complex Compound-Containing Composition, Organic Electroluminescent Element, and Method for Manufacturing the Same | |
JP7047355B2 (en) | Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device and lighting device. | |
WO2020251031A1 (en) | Composition for organic electroluminescent elements, organic electroluminescent element, display device and lighting device | |
JP2021061316A (en) | Composition for organic electroluminescent element, organic electroluminescent element, display device, and lighting device | |
JP2008024698A (en) | Organic compound, charge transport material, charge transport material composition and organic electroluminescent device | |
WO2024203548A1 (en) | Iridium complex compound, composition, method for producing organic electroluminescent element, and organic electroluminescent element | |
JP2021127325A (en) | Aromatic diamine derivative | |
JP2024125195A (en) | Iridium complex compound, composition for organic electroluminescence device, and method for producing organic electroluminescence device | |
TW202346311A (en) | Light-emitting layer composition, organic electroluminescent element, and production method therefor | |
JP2021075493A (en) | Oled element forming composition and oled element | |
KR20240148922A (en) | Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device and illumination device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200609 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200925 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210602 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210602 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210610 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210629 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210712 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6922734 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |