JP6922011B2 - Fireproof structure of beam - Google Patents
Fireproof structure of beam Download PDFInfo
- Publication number
- JP6922011B2 JP6922011B2 JP2020023702A JP2020023702A JP6922011B2 JP 6922011 B2 JP6922011 B2 JP 6922011B2 JP 2020023702 A JP2020023702 A JP 2020023702A JP 2020023702 A JP2020023702 A JP 2020023702A JP 6922011 B2 JP6922011 B2 JP 6922011B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- expandable
- fire
- hole
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Building Environments (AREA)
Description
本発明は、梁の耐火構造、特には貫通孔が設けられた梁の耐火構造に関する。 The present invention relates to a fireproof structure of a beam, particularly a fireproof structure of a beam provided with a through hole.
鉄骨構造の建築物内の使用できる空間を確保するために、やむを得ず、鉄骨梁に、空調用ダクト(スリーブ)や換気用ダクト(スリーブ)等の空調用や衛生用の配管や、および/または電気ケーブル等の配線を貫通することがある。このような場合、前もって前記鉄骨梁に貫通孔を設け、この貫通孔に上記ダクト等を挿通させる必要がある。 In order to secure a usable space in a steel-framed building, it is unavoidable to attach air-conditioning and sanitary piping such as air-conditioning ducts (sleeve) and ventilation ducts (sleeve) to steel beams, and / or electricity. It may penetrate wiring such as cables. In such a case, it is necessary to provide a through hole in the steel beam in advance and insert the duct or the like through the through hole.
この場合、前記鉄骨梁を火災等の際に生じる高温から保護し、耐火性能を担保するために、前記鉄骨梁にロックウール等の耐火被覆材を規定の厚さに被覆することが望ましい。 In this case, in order to protect the steel beam from the high temperature generated in the event of a fire or the like and to ensure the fire resistance performance, it is desirable to cover the steel beam with a fire resistant coating material such as rock wool to a specified thickness.
一方、鉄骨梁にケーブル等を貫通させる場合、鉄骨梁に耐火被覆をした後にケーブル等を貫通させたのでは前記耐火被覆やケーブル等の損傷を招くため、耐火被覆施工前に鉄骨梁の貫通孔に金属製のスリーブ管を先行的に取付けるとともに、ケーブル等を前記スリーブ管に貫通状態で設置し、耐火被覆材の吹付け施工を行うようにしている。 On the other hand, when a cable or the like is passed through a steel beam, if the cable or the like is passed through the steel beam after the fireproof coating is applied, the fireproof coating or the cable or the like will be damaged. A metal sleeve pipe is attached to the sleeve pipe in advance, and a cable or the like is installed in the sleeve pipe in a penetrating state to spray a fireproof coating material.
そのようなスリーブとして例えば特許文献1に記載された鉄骨耐火被覆用貫通スリーブが挙げられるが、このような従来のスリーブは施工にコストと手間がかかった。また、貫通孔とスリーブの隙間から延焼する恐れがあった。
Examples of such a sleeve include the through sleeve for steel frame fireproof coating described in
本発明の目的は、簡単な構成で耐火性能を向上させた梁の耐火構造を提供することにある。 An object of the present invention is to provide a fireproof structure of a beam having improved fireproof performance with a simple configuration.
本発明者らは、上記の目的を達成すべく、特には熱膨張の耐火シートからなる貫通処理材を、梁における貫通孔を区画形成する面と、スリーブを構成する不燃性材料とに跨るように配置することで、上記の課題を解決できることを見出し、本発明を完成するに至った。 In order to achieve the above object, the present inventors, in particular, straddle a penetrating material made of a heat-expandable refractory sheet between a surface forming a through hole in a beam and a nonflammable material constituting the sleeve. It was found that the above-mentioned problems could be solved by arranging the above-mentioned problems, and the present invention was completed.
すなわち、本発明は以下の通りである。
[1]貫通孔が設けられた梁の耐火構造であって、
梁における貫通孔を区画形成する面に不燃性材料が配置され、
前記梁と、前記不燃性材料との上に貫通処理材が配置されていることを特徴とする梁の耐火構造。
[2]配管または配線が貫通孔に挿通され、
前記貫通処理材がさらに前記配管または配線と、前記不燃性材料との上に配置されていることを特徴とする項1に記載の梁の耐火構造。
[3]前記不燃性材料が金属製のスリーブまたは熱膨張性耐火シートからなることを特徴とする項1または2に記載の梁の耐火構造。
[4]前記貫通処理材が熱膨張性耐火シートからなることを特徴とする項1〜3のいずれ
かに記載の梁の耐火構造。
That is, the present invention is as follows.
[1] A fireproof structure of a beam provided with a through hole.
A non-combustible material is placed on the surface that partitions the through hole in the beam.
A fireproof structure of a beam, characterized in that a penetration treatment material is arranged on the beam and the nonflammable material.
[2] Piping or wiring is inserted through the through hole,
[3] The fireproof structure of a beam according to
[4] The fireproof structure of a beam according to any one of
本発明によれば、梁と、梁の貫通孔に設けられた不燃性材料との上に連続して貫通処理材が配置されるため、耐火性能を確保するとともに、容易且つ確実に隙間を塞ぎ、火災による延焼を防ぐことができる。 According to the present invention, since the penetrating material is continuously arranged on the beam and the non-combustible material provided in the through hole of the beam, fire resistance is ensured and the gap is easily and surely closed. , It is possible to prevent the spread of fire due to fire.
以下、本発明の鉄骨梁の耐火構造の第1実施形態について図1〜6を参照しながら説明する。 Hereinafter, the first embodiment of the fireproof structure of the steel beam of the present invention will be described with reference to FIGS. 1 to 6.
図1において、コンクリートを打設して形成されたコンクリートスラブ等からなる床3の下面には、H形鋼等の鉄骨梁1が設けられている。鉄骨梁1には断面略円形の貫通孔2が設けられており、床3の内周面8が貫通孔2を区画形成している。この貫通孔2には空調用ダクトや換気用ダクト等の配管、および/または配線、配管用スリーブを初めとするスリーブ等を挿通させることができる。
In FIG. 1, a
なお、貫通孔2の形状は断面略円形のものに限定されず、貫通孔2に挿通する配管および/または配線の断面形状等に合わせて適宜選択することができる。例えば、配管および/または配線等の断面形状が円形であれば、貫通孔2の形状は円形とすることができ、配管および/または配線等の断面形状が矩形等であれば、前記貫通孔2の形状は矩形等とすることができる。
The shape of the
図2に示すように、貫通孔2を区画形成する内周面8には、不燃性材料としての熱膨張性耐火シート4が設けられている。
As shown in FIG. 2, a heat-expandable
図3に例示される様に、熱膨張性耐火シート4は、貫通孔2の内面8の全面に設けることもできるし、貫通孔2の内面8の一部の面に設けることもできる(非図示)が、火災の際の耐火性の観点、および後述する耐火被覆材の設置の面から、前記熱膨張性耐火シート4を前記貫通孔2の内面8の全面に設けることが好ましい。 熱膨張性耐火シート4は丸めて貫通孔2の内面に挿入される。熱膨張性耐火シート4は、その一つの表面が粘着性を付与し、その粘着性を利用して貫通孔2の内面8に貼着されてもよいし、接着剤等を用いて貫通孔2の内面8に貼着されてもよい。
As illustrated in FIG. 3, the heat-expandable
熱膨張性耐火シート4は、図4に示される様に、貫通孔2から前記鉄骨梁1の両方の外側へ延長して設けられることが好ましい。熱膨張性耐火シート4の外側への延長幅は、図4の鉄骨梁1に示される一点破線a−aおよび一点破線b−b間の距離を基準に、10〜
100mmの範囲が好ましく、15〜65mmの範囲であればより好ましく、20〜30mmの範囲であればさらに好ましい。貫通孔2の反対の面における前記熱膨張性耐火シート4の外側への延長幅についても同様である。
延長幅が10mm未満の場合では、前記貫通孔2付近に耐火被覆材を設置することが困難となり、延長幅が100mmを超えると、前記耐火被覆材の重みによるたわみ等により施工性が低下することがある。
As shown in FIG. 4, the heat-expandable
The range of 100 mm is preferable, the range of 15 to 65 mm is more preferable, and the range of 20 to 30 mm is further preferable. The same applies to the outward extension width of the heat-expandable
If the extension width is less than 10 mm, it becomes difficult to install the fireproof coating material in the vicinity of the through
熱膨張性耐火シート4としては、火災等の熱により膨張する熱膨張性耐火材からなるものであれば特に限定はないが、例えば、特開2007-198029に記載したような熱膨張性耐火
シートが使用可能であり、具体的には熱可塑性樹脂やエポキシ樹脂等の樹脂成分、熱膨張性層状無機物、無機充填材等を含む樹脂組成物(I)からなるもの、無機繊維、熱膨張性層状無機物、焼結性無機質材等に対し前記樹脂成分をバインダーとして含むバインダー樹脂組成物(II)からなるもの等を挙げることができる。
The heat-expandable fire-
樹脂組成物(I)または前記バインダー樹脂組成物(II)の各成分のうち、まず前記樹脂成分について説明する。 Of each component of the resin composition (I) or the binder resin composition (II), the resin component will be described first.
熱可塑性樹脂としては、例えば、ポリプロピレン系樹脂、ポリエチレン系樹脂、ポリ(1−)ブテン系樹脂、ポリペンテン系樹脂等のポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)系樹脂、ポリカーボネート系樹脂、ポリフェニレンエーテル系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリ塩化ビニル系樹脂、フェノール系樹脂、ポリウレタン系樹脂、ポリイソブチレン等の合成樹脂類、天然ゴム、イソプレンゴム、ブタジエンゴム、1.2−ポリブタジエンゴム、スチレン−ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、塩素化ブチルゴム、エチレン−プロピレンゴム、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、多加硫ゴム、非加硫ゴム、シリコンゴム、フッ素ゴム、ウレタンゴム等のゴム物質等が挙げられる。 Examples of the thermoplastic resin include polyolefin resins such as polypropylene resins, polyethylene resins, poly (1-) butene resins, and polypentene resins, polystyrene resins, acrylonitrile-butadiene-styrene (ABS) resins, and polycarbonates. Synthetic resins such as resin, polyphenylene ether resin, acrylic resin, polyamide resin, polyvinyl chloride resin, phenol resin, polyurethane resin, polyisobutylene, natural rubber, isoprene rubber, butadiene rubber, 1.2 -Polybutadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, chlorinated butyl rubber, ethylene-propylene rubber, chlorosulfonated polyethylene, acrylic rubber, epichlorohydrin rubber, polyvulase rubber, non-vulture rubber, silicon rubber, fluorine Examples include rubber substances such as rubber and urethane rubber.
これらの合成樹脂類及び/又はゴム物質は、一種もしくは二種以上を使用することができる。 As these synthetic resins and / or rubber substances, one kind or two or more kinds can be used.
合成樹脂類及び/又はゴム物質には、更に、本発明における発泡断熱材の耐火性能を阻害しない範囲で、架橋や変性が施されてもよい。 The synthetic resin and / or the rubber substance may be further crosslinked or modified as long as the fire resistance performance of the foamed heat insulating material in the present invention is not impaired.
次に前記樹脂組成物(I)または前記バインダー樹脂組成物(II)の各成分のうち、熱膨張性層状無機物について説明する。 Next, among the components of the resin composition (I) or the binder resin composition (II), the heat-expandable layered inorganic substance will be described.
熱膨張性層状無機物は加熱時に膨張するものであるが、かかる熱膨張性層状無機物に特に限定はなく、例えば、バーミキュライト、カオリン、マイカ、熱膨張性黒鉛等を挙げることができる。 The heat-expandable layered inorganic material expands when heated, but the heat-expandable layered inorganic material is not particularly limited, and examples thereof include vermiculite, kaolin, mica, and heat-expandable graphite.
熱膨張性黒鉛とは、従来公知の物質であり、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等の粉末を、濃硫酸、硝酸、セレン酸等の無機酸と、濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、重クロム酸塩、過酸化水素等の強酸化剤とで処理してグラファイト層間化合物を生成させたものであり、炭素の層状構造を維持したままの結晶化合物の一種である。
上記のように酸処理して得られた熱膨張性黒鉛は、更にアンモニア、脂肪族低級アミン、アルカリ金属化合物、アルカリ土類金属化合物等で中和したものを使用するのが好ましい。
Thermally expandable graphite is a conventionally known substance, in which powders such as natural scaly graphite, thermally decomposed graphite, and kiss graphite are mixed with inorganic acids such as concentrated nitric acid, nitric acid, and selenic acid, and concentrated nitric acid, perchloric acid, and excess. A graphite interlayer compound was produced by treatment with a strong oxidizing agent such as chlorate, permanganate, dichromate, dichromate, hydrogen peroxide, etc., and the layered structure of carbon was maintained. It is a kind of raw crystalline compound.
As the heat-expandable graphite obtained by the acid treatment as described above, it is preferable to use one neutralized with ammonia, an aliphatic lower amine, an alkali metal compound, an alkaline earth metal compound or the like.
中和された熱膨張性黒鉛の市販品としては、例えば、UCARCARBON社製の「GRAFGUARD#160」、「GRAFGUARD#220」、東ソー社製の「GREP−EG」等が挙げられる。 Examples of commercially available products of neutralized heat-expandable graphite include "GRAFGUARD # 160" and "GRAFGUARD # 220" manufactured by UCARCARBON, and "GREP-EG" manufactured by Tosoh Corporation.
次に先の樹脂組成物(I)の各成分のうち、無機充填材について説明する。 Next, among the components of the above resin composition (I), the inorganic filler will be described.
無機充填材としては、特に限定されないが、例えば、シリカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、石膏繊維、ケイ酸カルシウム等のカリウム塩、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セビオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコン酸鉛、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、ホウ酸亜鉛、各種磁性粉、スラグ繊維、フライアッシュ、無機系リン化合物、シリカアルミナ繊維、アルミナ繊維、シリカ繊維、ジルコニア繊維等が挙げられる。これらは、一種もしくは二種以上を使用することができる。無機充填材は骨材的役割を果たして、加熱後に生成する膨張断熱層強度の向上や熱容量の増大に寄与する。 The inorganic filler is not particularly limited, but for example, silica, diatomaceous earth, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, ferrites, calcium hydroxide, magnesium hydroxide. , Aluminum hydroxide, basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dosonite, hydrotalcite, calcium sulfate, barium sulfate, gypsum fiber, potassium salts such as calcium silicate, talc, clay, mica , Montmorillonite, Bentnite, Active white clay, Sebiolite, Imogolite, Cerisite, Glass fiber, Glass beads, Silica-based balun, Aluminum oxide, Borone nitride, Silicon nitride, Carbon black, Graphite, Carbon fiber, Carbon balun, Charcoal powder, Various metals Powder, potassium titanate, magnesium sulfate, lead zirconate titanate, aluminum volate, molybdenum sulfide, silicon carbide, stainless steel fiber, zinc borate, various magnetic powders, slag fiber, fly ash, inorganic phosphorus compound, silica alumina fiber, Alumina fiber, silica fiber, zirconia fiber and the like can be mentioned. These can be used alone or in combination of two or more. The inorganic filler plays an aggregate role and contributes to the improvement of the strength of the expanded heat insulating layer generated after heating and the increase of the heat capacity.
このため、炭酸カルシウム、炭酸亜鉛で代表される金属炭酸塩、骨材的役割の他に加熱時に吸熱効果も付与する水酸化アルミニウム、水酸化マグネシウムで代表される含水無機物が好ましく、アルカリ金属、アルカリ土類金属、及び周期律表IIbの金属炭酸塩又はこれらと前記含水無機物との混合物が好ましい。 For this reason, metal carbonates typified by calcium carbonate and zinc carbonate, aluminum hydroxide that imparts a heat absorbing effect during heating in addition to the role of aggregate, and hydrous inorganic substances typified by magnesium hydroxide are preferable, and alkali metals and alkalis are preferable. Earth metals and metal carbonates of Periodic Table IIb or mixtures of these with the hydrous inorganics are preferred.
無機充填材の中でも、特に骨材的役割を果たす炭酸カルシウム、炭酸亜鉛等の金属炭酸塩;骨材的役割の他に加熱時に吸熱効果を付与する水酸化アルミニウム、水酸化マグネシウム等の含水無機物が好ましい。 Among the inorganic fillers, metal carbonates such as calcium carbonate and zinc carbonate that play an especially aggregate role; and water-containing inorganic substances such as aluminum hydroxide and magnesium hydroxide that impart an endothermic effect during heating in addition to the aggregate role. preferable.
含水無機物の市販品としては、例えば、水酸化アルミニウムとして、粒径1μmの「商品名:ハイジライトH−42M」(昭和電工社製)、粒径18μmの「商品名:ハイジライトH−31」(昭和電工社製)等が挙げられる。 Commercially available products of water-containing inorganic substances include, for example, "trade name: Heidilite H-42M" (manufactured by Showa Denko KK) with a particle size of 1 μm and "trade name: Heidilite H-31" with a particle size of 18 μm as aluminum hydroxide. (Made by Showa Denko) and the like.
炭酸カルシウムの市販品としては、例えば、粒径1.8μmの「商品名:ホワイトンSB赤」(白石カルシウム社製)、粒径8μmの「商品名:BF300」(備北粉化社製)等が挙げられる。 Examples of commercially available calcium carbonate products include "trade name: Whiten SB Red" (manufactured by Shiraishi Calcium Co., Ltd.) with a particle size of 1.8 μm and "trade name: BF300" (manufactured by Bikita Flour Chemical Co., Ltd.) with a particle size of 8 μm. Can be mentioned.
また、樹脂組成物(I)には、難燃性を向上させる為にリン化合物が用いられてもよい。 Further, a phosphorus compound may be used in the resin composition (I) in order to improve flame retardancy.
リン化合物としては、特に限定されず、例えば、赤リン;トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート等の各種リン酸エステル;リン酸ナトリウム、リン酸カリウム、リン酸マグネシウム等のリン酸金属塩;ポリリン酸アンモニウム類;化学式1で表される化合物等が挙げられる。これらのリン化合物は、一種もしくは二種以上を使用することができる。
The phosphorus compound is not particularly limited, and for example, various phosphate esters such as red phosphorus; triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresil diphenyl phosphate, xylenyl diphenyl phosphate; sodium phosphate, Metal phosphates such as potassium phosphate and magnesium phosphate; ammonium polyphosphates; compounds represented by
これらのうち、耐火性の観点から、赤リン、下記の化学式で表される化合物、及び、ポリリン酸アンモニウム類が好ましく、性能、安全性、費用等の点においてポリリン酸アン
モニウム類がより好ましい。
Of these, red phosphorus, compounds represented by the following chemical formulas, and ammonium polyphosphates are preferable from the viewpoint of fire resistance, and ammonium polyphosphates are more preferable in terms of performance, safety, cost, and the like.
化学式中、Rl及びR3は、水素、炭素数1〜16の直鎖状若しくは分岐状のアルキル基、又は、炭素数6〜16のアリール基を表す。 In the chemical formula, Rl and R3 represent hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms.
R2は、水酸基、炭素数1〜16の直鎖状若しくは分岐状のアルキル基、炭素数1〜1
6の直鎖状若しくは分岐状のアルコキシル基、炭素数6〜16のアリール基、又は、炭素数6〜16のアリールオキシ基を表す。
R2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, and 1 to 1 carbon atoms.
Represents a linear or branched alkoxyl group of 6, an aryl group having 6 to 16 carbon atoms, or an aryloxy group having 6 to 16 carbon atoms.
リン化合物の市販品としては、例えば、クラリアント社の「商品名:EXOLITAP422」及び「商品名:EXOLITAP462」等が挙げられる。 Examples of commercially available phosphorus compounds include "trade name: EXOLITAP 422" and "trade name: EXOLITAP 462" of Clariant AG.
リン化合物は、炭酸カルシウム、炭酸亜鉛等の金属炭酸塩と反応して、金属炭酸塩の膨張を促すと考えられ、特に、リン化合物として、ポリリン酸アンモニウムを使用した場合に、高い膨張効果が得られる。また、有効な骨材として働き、燃焼後に形状保持性の高い残渣を形成する。 It is considered that the phosphorus compound reacts with a metal carbonate such as calcium carbonate and zinc carbonate to promote the expansion of the metal carbonate. In particular, when ammonium polyphosphate is used as the phosphorus compound, a high expansion effect is obtained. Be done. It also acts as an effective aggregate and forms a residue with high shape retention after combustion.
次に先のバインダー樹脂組成物(II)の各成分のうち、無機繊維としては、例えば、具体的にはシリカアルミナ繊維、アルミナ繊維、シリカ繊維、ジルコニア繊維等のセラミック繊維等が挙げられる。 Next, among the components of the binder resin composition (II) described above, examples of the inorganic fiber include ceramic fibers such as silica-alumina fiber, alumina fiber, silica fiber, and zirconia fiber.
セラミック繊維を使用する場合には、焼結性無機質材をさらに併用することが好ましい。かかる焼結性無機質材としては、例えば、電気絶縁性ガラス等を例示することができる。電気絶縁性ガラスとしては、例えば、具体的には二酸化ケイ素が50〜60重量%、酸化アルミニウムが10〜20重量%、酸化カルシウムが10〜20重量%、酸化マグネシウムが1〜10重量%、酸化ホウ素が8〜13重量%等の範囲で含まれるEガラスと呼ばれるもの等を挙げることができる。 When ceramic fibers are used, it is preferable to further use a sinterable inorganic material in combination. Examples of such a sinterable inorganic material include electrically insulating glass and the like. Specific examples of the electrically insulating glass include silicon dioxide in an amount of 50 to 60% by weight, aluminum oxide in an amount of 10 to 20% by weight, calcium oxide in an amount of 10 to 20% by weight, magnesium oxide in an amount of 1 to 10% by weight, and oxidation. Examples thereof include what is called E-glass in which boron is contained in the range of 8 to 13% by weight or the like.
次に、樹脂組成物(I)及びバインダー樹脂組成物(II)における上記各成分の含有量について説明する。 Next, the content of each of the above components in the resin composition (I) and the binder resin composition (II) will be described.
樹脂組成物(I)は、熱可塑性樹脂やエポキシ樹脂等の樹脂成分100重量部に対し、熱膨張性層状無機物を20〜350重量部及び無機充填材を50〜400重量部の範囲で含むものが好ましい。また、熱膨張性層状無機物および無機充填材の合計は、200〜600重量部の範囲であれば好ましい。この配合によれば、発泡断熱材は火災等の加熱によって膨張し、必要な体積膨張率を得ることができ、膨張後は所定の断熱性能を有すると共に所定の強度を有する残渣を形成することができ、樹脂組成物は安定した防火性能を達成することができる。 The resin composition (I) contains 20 to 350 parts by weight of a heat-expandable layered inorganic substance and 50 to 400 parts by weight of an inorganic filler with respect to 100 parts by weight of a resin component such as a thermoplastic resin or an epoxy resin. Is preferable. The total amount of the heat-expandable layered inorganic substance and the inorganic filler is preferably in the range of 200 to 600 parts by weight. According to this formulation, the foamed heat insulating material can be expanded by heating such as a fire to obtain a required volume expansion coefficient, and after expansion, a residue having a predetermined heat insulating performance and a predetermined strength can be formed. The resin composition can achieve stable fire protection performance.
バインダー樹脂組成物(II)は、無機繊維55〜85重量%、熱膨張性層状無機物5〜30重量%、焼結性無機質材5〜25重量%、および樹脂成分5〜15重量%の範囲で含むものが好ましい。この配合によれば、耐火性と形状保持性の両方が保持される。 The binder resin composition (II) is in the range of 55 to 85% by weight of the inorganic fiber, 5 to 30% by weight of the heat-expandable layered inorganic material, 5 to 25% by weight of the sinterable inorganic material, and 5 to 15% by weight of the resin component. Those containing are preferable. According to this formulation, both fire resistance and shape retention are maintained.
さらに本発明に使用する前記樹脂組成物(I)または前記バインダー樹脂組成物(II)は、それぞれ本発明の目的を損なわない範囲で、必要に応じて、フェノール系、アミン系、イオウ系等の酸化防止剤の他、金属害防止剤、耐電防止剤、安定剤、架橋剤、滑剤、軟化剤、顔料、粘着付与樹脂等の添加剤、ポリブテン、石油樹脂等の粘着付与剤を含むことができる。 Further, the resin composition (I) or the binder resin composition (II) used in the present invention may be, if necessary, phenol-based, amine-based, sulfur-based or the like, as long as the object of the present invention is not impaired. In addition to antioxidants, it can contain additives such as metal damage inhibitors, antistatic agents, stabilizers, cross-linking agents, lubricants, softeners, pigments, tackifier resins, and tackifiers such as polybutene and petroleum resins. ..
樹脂組成物(I)およびバインダー樹脂組成物(II)の各成分を押出機、バンバリーミキサー、ニーダーミキサー等公知の混練装置に供給して溶融混練したり、樹脂組成物の各成分を有機溶剤に懸濁さたり、加温して溶融させたりして塗料状にしたりして、必要に応じて加熱硬化することにより、樹脂組成物(I)またはバインダー樹脂組成物(II)を得ることができる。 Each component of the resin composition (I) and the binder resin composition (II) is supplied to a known kneading device such as an extruder, a Banbury mixer, or a kneader mixer for melt kneading, or each component of the resin composition is used as an organic solvent. The resin composition (I) or the binder resin composition (II) can be obtained by suspending, heating and melting to form a paint, and then heat-curing as necessary.
前記熱膨張性耐火シート4は市販品として入手可能であり、例えば、住友スリーエム社のファイアバリア(クロロプレンゴムとバーキュライトを含有する樹脂組成物からなる熱膨張性耐火シート、膨張率:3倍、熱伝導率:0.20kcal/m・h・℃)、三井金属塗料社のメジヒカット(ポリウレタン樹脂と熱膨張性黒鉛を含有する樹脂組成物からなる熱膨張性耐火シート、膨張率:4倍、熱伝導率:0.21kcal/m・h・℃)、積水化学工業社製フィブロック(エポキシ樹脂、ブチルゴム、塩化ビニルを樹脂成分として含む熱膨張性耐火シート)等の熱膨張性耐火シート等も挙げられる。また従来公知の耐火塗料を塗布あるいは成形により得られたシートを用いてもよい。
The heat-expandable fire-
熱膨張性耐火シート4は、火災時などの高温にさらされた際にその膨張層により断熱し、かつその膨張層の強度があるものであれば特に限定されないが、50kW/m2の加熱条件下で30分間加熱した後の体積膨張率が3〜50倍のものであれば好ましい。また、熱膨張性耐火シート4を絶縁性にすれば、耐火性のみならず絶縁性も付与される。
The heat-expandable
次に、貫通処理材6について説明する。図2および図5を参照すると、ダクト5は貫通孔2の内周面8に設置された熱膨張性耐シート4を介して前記鉄骨梁1に挿通されている。貫通処理材6は、ダクト5と熱膨張性耐火シート4に跨って、および熱膨張性耐火シート4と鉄骨梁1に跨って配置されている。つまり、ダクト5と熱膨張性耐火シート4、および熱膨張性耐火シート4と鉄骨梁1のそれぞれ2つの部材の上に、貫通処理材6が連続的に配置されている。具体的には、貫通処理材6は、ダクト5の上にダクト5と略平行に配置された第1水平部分6aと、第1水平部分6aから連続的に略垂直に延び、熱膨張性耐火シート4の側面4a上に配置された第1垂直部分6bと、第1垂直部分6bから連続的に略垂直に延び、熱膨張性耐火シート4の外周面4b上に配置された第2水平部分6cと、第2水平部分6cから連続的に垂直に延び、鉄骨梁1上に配置された第2垂直部分6dとを備えている。上下の第2垂直部分6d,6dは、鉄骨梁1の平行な上下2つの部分の対向する面(ダクト5側の面)1a,1bまでそれぞれ延びている。このため、熱膨張性耐火シート4は、ダクト5と熱膨張性耐火シート4の間を介した、および熱膨張性耐火シート4と鉄骨梁1の間を介した、鉄骨梁1の貫通孔2に対する一方(例えば図5の左側)から他方(例えば図5の右側)への火災の延焼を防ぐことができる。
Next, the
貫通処理材6は、任意の耐火性材料から形成されてもよく、熱膨張性耐シート4の材料と同じであっても異なっていてもよい。例えば、貫通処理材6は熱膨張性耐シート4の材料と同一または同様な特開2007-198029に記載したような熱膨張性耐火シートであり、具
体的には熱可塑性樹脂やエポキシ樹脂等の樹脂成分、熱膨張性層状無機物、無機充填材等
を含む樹脂組成物(I)からなるもの、無機繊維、熱膨張性層状無機物、焼結性無機質材等に対し前記樹脂成分をバインダーとして含むバインダー樹脂組成物(II)からなるもの等であり、樹脂組成物(I)およびバインダー樹脂組成物(II)は熱膨張性耐シート4の構成成分に関して上述した通りである。
The penetration-treated
図6に示されるように、図5の耐火構造から、さらに鉄骨梁1に耐火被覆材7が設けられる。耐火被覆材7は鉄骨梁1にロックウール等の耐火被覆材を吹き付ける等の方法により設けることができる。
As shown in FIG. 6, from the fireproof structure of FIG. 5, a
前記耐火被覆材の厚みは、前記鉄骨梁に求められる耐火時間により適宜定められるが、通常は20〜65mmの範囲であり、先に説明した前記熱膨張性耐火シートの外側への延長幅と略等しいことがさらに好ましい。 The thickness of the fireproof coating material is appropriately determined by the fireproof time required for the steel frame beam, but is usually in the range of 20 to 65 mm, and is abbreviated as the extension width to the outside of the heat-expandable fireproof sheet described above. Equal is even more preferred.
上記の第1実施形態は以下の効果を有する。 The first embodiment described above has the following effects.
第1実施形態によれば、鉄骨梁1と、鉄骨梁1の貫通孔2に設けられた熱膨張性耐火シート4との上に連続して貫通処理材6が配置されるため、耐火性能を確保するとともに、容易且つ確実に隙間を塞ぎ、火災による延焼を防ぐことができる。
According to the first embodiment, since the
さらに、ダクト5と熱膨張性耐火シート4との上にも連続して貫通処理材6が配置されているため、鉄骨梁1の貫通孔2に対する一方から他方への火災の延焼を防ぐことができる。
Further, since the
貫通処理材6として、熱膨張性耐火シート4と同じ材料を用いれば安価かつ施工が容易となる。
If the same material as the heat-expandable
本発明は、第1実施形態に限られず、以下のような種々の変形が可能である。
・上記の第1実施形態では、不燃性材料として熱膨張性耐火シート4を用いたが、金属製スリーブ、特には鋼製スリーブなどの、他の不燃性材料が用いられてもよい。
・図7(a)に示すように、熱膨張性耐火シート4の長さが貫通孔2の軸方向の長さと同一かそれよりも小さく、貫通処理材6は、ダクト5の上にダクト5と略平行に配置された第1水平部分6aと、第1水平部分6aから連続的に略垂直に延び、熱膨張性耐火シート4の側面4a及び鉄骨梁1上に配置された第1垂直部分6eとを備えていてもよい。この場合、第1垂直部分6eは、鉄骨梁1の平行な上下2つの部分の対向する面1a,1bまで延びず、鉄骨梁1の垂直な部分の途中で終端していてもよい。この実施形態でも、鉄骨梁1と、鉄骨梁1の貫通孔2に設けられた熱膨張性耐火シート4との上、ならびにダクト5と熱膨張性耐火シート4との上には連続して貫通処理材6が配置されるため、耐火性能を確保するとともに、容易且つ確実に隙間を塞ぎ、火災による延焼を防ぐことができる。
The present invention is not limited to the first embodiment, and various modifications such as the following are possible.
-In the above-mentioned first embodiment, the heat-expandable
As shown in FIG. 7A, the length of the heat-expandable
図7(b)に示すように、熱膨張性耐火シート4が、熱膨張性耐火シート4の外周面4bからさらに鉄骨梁1の上に延びる部分4cを備えていてもよい。貫通処理材6は、ダクト5の上にダクト5と略平行に配置された第1水平部分6aと、第1水平部分6aから連続的に略垂直に延び、熱膨張性耐火シート4の側面4a上に配置された第1垂直部分6bと、第1垂直部分6bから連続的に略垂直に延び、熱膨張性耐火シート4の外周面4b上に配置された第2水平部分6cと、第2水平部分6cから連続的に垂直に延び、熱膨張性耐火シート4の上に配置された第2垂直部分6dとを備えている。この実施形態でも、鉄骨梁1と、鉄骨梁1の貫通孔2に設けられた熱膨張性耐火シート4との上、ならびにダクト5と熱膨張性耐火シート4との上には連続して貫通処理材6が配置されるため、耐火性能を確保するとともに、容易且つ確実に隙間を塞ぎ、火災による延焼を防ぐことができる。
・図8(a)に示すように、図4の状態からダクト5は設けずに、貫通処理材6が、熱膨張性耐火シート4の側面4a上に配置された第1垂直部分6bと、熱膨張性耐火シート4の外周面4b上に配置された第2水平部分6cと、第2水平部分6cから連続的に垂直に延び、熱膨張性耐火シート4の上に配置された第2垂直部分6dとを備えているようにしてもよい。この実施形態では、貫通孔2が塞がれる。この実施形態でも、鉄骨梁1と、鉄骨梁1の貫通孔2に設けられた熱膨張性耐火シート4との上に連続して貫通処理材6が配置されるため、耐火性能を確保するとともに、容易且つ確実に隙間を塞ぎ、火災による延焼を防ぐことができる。
・図8(b)に示すように、図8(a)に対して熱膨張性耐火シート4の長さを貫通孔2の軸方向の長さと同一かそれよりも小さくしてもよい。この実施形態でも、鉄骨梁1と、鉄骨梁1の貫通孔2に設けられた熱膨張性耐火シート4との上に連続して貫通処理材6が配置されるため、耐火性能を確保するとともに、容易且つ確実に隙間を塞ぎ、火災による延焼を防ぐことができる。
・図8(c)に示すように、熱熱膨張性耐火シート4が熱膨張性耐火シート4の外周面4bからさらに鉄骨梁1の垂直な部分の上に延びる部分4cと、部分4cから連続的に略垂直に梁1の上に延びる部分4dとを備え、貫通処理材6は部分4dに接して終端する構成でもよい。この実施形態でも、鉄骨梁1と、鉄骨梁1の貫通孔2に設けられた熱膨張性耐火シート4との上に連続して貫通処理材6が配置されるため、耐火性能を確保するとともに、容易且つ確実に隙間を塞ぎ、火災による延焼を防ぐことができる。
・上記第1実施形態及び上記の別例では、熱熱膨張性耐火シート4や貫通処理材6が連続的に配置される例を示したが、例えば熱熱膨張性耐火シート4や貫通処理材6は、複数の部分に切断したものを互いに重ねて、接して、または少し離間させて配置してもよい。
As shown in FIG. 7B, the heat-expandable
As shown in FIG. 8A, from the state of FIG. 4, the penetrating
As shown in FIG. 8 (b), the length of the heat-expandable
As shown in FIG. 8C, the heat-expandable
-In the first embodiment and the above alternative example, an example in which the heat-expandable
1・・・鉄骨梁、2…貫通孔、4…不燃性材料としての熱膨張性耐火シート、5…配管としてのダクト、6…貫通処理材、8…貫通孔を区画形成する面としての内周面。 1 ... Steel beam, 2 ... Through hole, 4 ... Heat-expandable refractory sheet as non-combustible material, 5 ... Duct as piping, 6 ... Penetration treatment material, 8 ... Inside as a surface for partitioning the through hole Circumferential surface.
Claims (3)
前記貫通孔には、配管または配線が挿通され、
梁における貫通孔を区画形成する面に不燃性材料が配置され、
前記梁と、前記不燃性材料と、前記配管または配線とに跨り、前記不燃性材料と前記配管または配線との間の隙間を閉塞するように、貫通処理材が配置されていることを特徴とする梁の耐火構造。 It is a fireproof structure of a beam with a through hole,
Piping or wiring is inserted through the through hole,
A non-combustible material is placed on the surface that partitions the through hole in the beam.
It is characterized in that a penetration processing material is arranged so as to straddle the beam, the non-combustible material, and the pipe or wiring and close a gap between the non-combustible material and the pipe or wiring. Fireproof structure of the beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020023702A JP6922011B2 (en) | 2015-03-26 | 2020-02-14 | Fireproof structure of beam |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015064355A JP6666654B2 (en) | 2015-03-26 | 2015-03-26 | Fire resistant structure of beam |
JP2020023702A JP6922011B2 (en) | 2015-03-26 | 2020-02-14 | Fireproof structure of beam |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015064355A Division JP6666654B2 (en) | 2015-03-26 | 2015-03-26 | Fire resistant structure of beam |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020073784A JP2020073784A (en) | 2020-05-14 |
JP6922011B2 true JP6922011B2 (en) | 2021-08-18 |
Family
ID=70610509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020023702A Active JP6922011B2 (en) | 2015-03-26 | 2020-02-14 | Fireproof structure of beam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6922011B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2604426Y2 (en) * | 1993-09-24 | 2000-05-15 | 大成建設株式会社 | Pre-installed sleeve before fireproofing construction |
JP2007198029A (en) * | 2006-01-27 | 2007-08-09 | Sekisui Chem Co Ltd | Construction method of fire resisting structure of steel frame beam equipped with through hole |
JP5839928B2 (en) * | 2011-10-17 | 2016-01-06 | 株式会社竹中工務店 | Fireproof coated multilayer structure |
-
2020
- 2020-02-14 JP JP2020023702A patent/JP6922011B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020073784A (en) | 2020-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6837736B2 (en) | Through-hole cover and fireproof structure of compartment through-hole | |
JP3838780B2 (en) | Refractory sheet-like molded body and sheet laminate | |
JP3148209U (en) | Penetration through structure of compartment | |
JP2007315007A (en) | Fire protection structure | |
JP5139693B2 (en) | Fireproof coating structure | |
JP6666654B2 (en) | Fire resistant structure of beam | |
JP5001629B2 (en) | Fireproof pillar and unit building using it | |
JP2007332715A (en) | Fire resistive coating structure | |
JP6777427B2 (en) | Fire protection material and fire protection structure of compartment penetration | |
JP6922011B2 (en) | Fireproof structure of beam | |
JP2018044356A (en) | Sleeve provided in floor of architectural structure or section penetration part of wall body | |
JP4320108B2 (en) | Wall structure | |
JP6867166B2 (en) | Door structure | |
JP6876396B2 (en) | Fireproof filling structure and construction method of fireproof filling structure | |
JP6941662B2 (en) | Coating material, piping, and fireproof structure | |
JP6901527B2 (en) | Cover member and compartment penetration structure for compartment penetration | |
JP7243997B2 (en) | Fireproof materials and fireproof structures of structural members | |
JP4137285B2 (en) | Fireproof / firewall construction | |
JP4320110B2 (en) | Fireproof wall structure | |
JP6010427B2 (en) | Through-hole insertion cylinder for use in outlet box and fire prevention structure using the same | |
JP2017131561A (en) | Fire-protection material and method for molding fire-protection material | |
JP6769762B2 (en) | Piping system in compartment penetration structure | |
JPH11333989A (en) | Fire resistant multi-layered sheet | |
JP2002227325A (en) | Construction method and structure for fire compartment penetration part | |
JP6546499B2 (en) | Fireproof structure of building compartments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210311 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210706 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210728 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6922011 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |