JP6920248B2 - Ground child - Google Patents

Ground child Download PDF

Info

Publication number
JP6920248B2
JP6920248B2 JP2018100441A JP2018100441A JP6920248B2 JP 6920248 B2 JP6920248 B2 JP 6920248B2 JP 2018100441 A JP2018100441 A JP 2018100441A JP 2018100441 A JP2018100441 A JP 2018100441A JP 6920248 B2 JP6920248 B2 JP 6920248B2
Authority
JP
Japan
Prior art keywords
ground element
element substrate
substrate
coil
outer shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018100441A
Other languages
Japanese (ja)
Other versions
JP2019202712A (en
Inventor
亮 久賀谷
亮 久賀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosan Electric Manufacturing Co Ltd
Original Assignee
Kyosan Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosan Electric Manufacturing Co Ltd filed Critical Kyosan Electric Manufacturing Co Ltd
Priority to JP2018100441A priority Critical patent/JP6920248B2/en
Publication of JP2019202712A publication Critical patent/JP2019202712A/en
Application granted granted Critical
Publication of JP6920248B2 publication Critical patent/JP6920248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、地上子およびその製造方法に係り、例えば、鉄道の列車位置検知を行うための地上子およびその製造方法に関する。 The present invention relates to a ground element and a method for manufacturing the same, for example, a ground element for detecting a train position of a railway and a method for producing the same.

現在、使用されている自動列車停車装置(以下、「ATS」という)は、大きく変周式とトランスポンダ式に分類される。変周式ATSでは、共振回路を有する地上子を通過した場合に、車上子の信号周波数が地上子の共振周波数へ変周する現象により地上子を検知する。停止現示や速度超過の場合にブレーキを動作させることで安全を確保することができる。トランスポンダ式ATSでは、地上子からデジタル伝送を行うため多くの情報を伝送可能であり、車上側で速度パターンを生成することで効率の良い列車制御が可能となる。しかし、トランスポンダ式ATSは、変周式ATSと比較して高価であり、変周式ATSからトランスポンダ式ATSへのシステム更新時には、全ての車上子および地上子を交換する必要が生じる。 The automatic train stop currently in use (hereinafter referred to as "ATS") is roughly classified into a variable frequency type and a transponder type. In the variable frequency ATS, when passing through a ground element having a resonance circuit, the ground element is detected by a phenomenon in which the signal frequency of the on-board element changes to the resonance frequency of the ground element. Safety can be ensured by operating the brake when a stop is indicated or the speed is exceeded. In the transponder type ATS, a lot of information can be transmitted because digital transmission is performed from the ground element, and efficient train control becomes possible by generating a speed pattern on the upper side of the vehicle. However, the transponder type ATS is more expensive than the variable frequency type ATS, and when the system is updated from the variable frequency type ATS to the transponder type ATS, it becomes necessary to replace all the on-board and ground elements.

両方式に使用される地上子について、従来の地上子は、電線を巻いてコイルとし、コイル等の部品の組み立て作業、充填剤の注入作業、封止用の樹脂の注型作業などを行い、地上子を製造する。そのような技術として、ポリプロピレンをベースとし、ガラス繊維を加えた強度を有する合成樹脂に、注型材シリコーンゴムを注入して、部品類を固定・一体化して地上子とする成形方法が知られている(例えば特許文献1参照)。 Regarding the ground element used in both methods, the conventional ground element is made by winding an electric wire to make a coil, and assembling parts such as a coil, injecting a filler, casting resin for sealing, etc. Manufacture ground coils. As such a technique, a molding method is known in which a casting material, silicone rubber, is injected into a synthetic resin based on polypropylene and having strength to which glass fibers are added, and parts are fixed and integrated to form a ground element. (See, for example, Patent Document 1).

特開2000−127970号公報Japanese Unexamined Patent Publication No. 2000-127970

ところで、従来の地上子では、その製造工程に示すように多くの工数が掛かっており、製造時間や製造コストの観点で改善が求められており、特許文献1の技術でも同様の課題があった。すなわち、熱硬化性樹脂を使用して地上子の充填剤の注入する作業、封止用樹脂注型作業の一切を省き、地上子成形工程手順を極端に簡略化することで地上子製作に掛かる費用を削減すると同時に、地上子の軽量化と、使用する部品の全てを受動部品として保守性の向上も図り、工事・交換等に掛かる保守作業員への負担を軽減することが求められていた。 By the way, the conventional ground element requires a lot of man-hours as shown in the manufacturing process, and improvement is required from the viewpoint of manufacturing time and manufacturing cost, and the technique of Patent Document 1 also has the same problem. .. That is, the work of injecting the filler of the ground element using the thermosetting resin and the work of casting the sealing resin are all omitted, and the ground element molding process procedure is extremely simplified to start the ground element manufacturing. At the same time as reducing costs, it was required to reduce the weight of the ground element, improve maintainability by using all the parts used as passive parts, and reduce the burden on maintenance workers involved in construction and replacement. ..

本発明は、以上のような状況に鑑みなされたものであって、上記課題を解決する技術を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for solving the above problems.

本発明の地上子は、コイルとコンデンサを接続したLC回路を有する地上子であって、パターンコイルを有するパターンコイル基板にコンデンサを実装したLC回路のみを設けた地上子基板と、前記地上子基板を覆う樹脂成形用部材の外殻部材と、を有し、前記パターンコイルはスパイラル形状とされて前記地上子基板に形成され、前記地上子基板において、前記スパイラル形状の中心に、前記地上子基板を厚さ方向で貫通する貫通孔が形成され、前記外殻部材は、前記貫通孔を埋め込んで前記地上子基板の両面側に形成される。 The ground element of the present invention is a ground element having an LC circuit in which a coil and a capacitor are connected, and is provided with only an LC circuit in which a capacitor is mounted on a pattern coil substrate having a pattern coil, and the ground element substrate. The pattern coil has a spiral shape and is formed on the ground element substrate, and in the ground element substrate, the ground element substrate is located at the center of the spiral shape. A through hole is formed so as to penetrate the through hole in the thickness direction, and the outer shell member is formed on both side surfaces of the ground element substrate by embedding the through hole.

本発明によると、地上子において低コストで小型化・軽量化する技術を実現することができる。 According to the present invention, it is possible to realize a technique for reducing the size and weight of a ground element at low cost.

本実施形態に係る、地上子を示す図である。It is a figure which shows the ground element which concerns on this embodiment. 本実施形態に係る、地上子基板を示す図である。It is a figure which shows the ground element substrate which concerns on this embodiment. 本実施形態に係る、地上子の製造工程を示す図である。It is a figure which shows the manufacturing process of the ground element which concerns on this embodiment. 本実施形態に係る、比較例である公知の地上子の製造工程を示す図である。It is a figure which shows the manufacturing process of the known ground element which is a comparative example which concerns on this embodiment. 本実施形態の変形例に係る、地上子基板を示す図である。It is a figure which shows the ground element substrate which concerns on the modification of this embodiment.

次に、本発明を実施するための形態(以下、単に「実施形態」という)を、図面を参照して具体的に説明する。 Next, an embodiment for carrying out the present invention (hereinafter, simply referred to as “embodiment”) will be specifically described with reference to the drawings.

図1は、本実施形態に係る地上子1を示す図であり、図1(a)が平面図、図1(b)が正面図を示している。地上子1は、直方体の形状を有し、内部の地上子基板10と、それを覆う樹脂外殻40とによって形成されている。 1A and 1B are views showing a ground element 1 according to the present embodiment, FIG. 1A shows a plan view, and FIG. 1B shows a front view. The ground element 1 has a rectangular parallelepiped shape, and is formed by an internal ground element substrate 10 and a resin outer shell 40 that covers the ground element substrate 10.

樹脂外殻40は、後述する製造工程によって用いるSMCシート(第1SMCシート41、第2SMCシート42)を圧縮成形(SMC成形)することで、地上子基板10の外殻構造として形成される。SMCシートは、不飽和ポリエステル樹脂等の熱硬化性樹脂、硬化剤、増粘剤、内部離型剤、充填材などを混合した樹脂ペーストをチョップドストランドに含浸させ、両面をフイルムで被服したシート状の物を所定の温度条件で加熱し増粘させ、取扱い性を良好にしてシート状にしたものである。SMC成形は、SMCシートを、プレス成形用の金型に投入し、加圧加熱し硬化させ成形品を得る成形法である。 The resin outer shell 40 is formed as an outer shell structure of the ground element substrate 10 by compression molding (SMC molding) of the SMC sheets (first SMC sheet 41, second SMC sheet 42) used in the manufacturing process described later. The SMC sheet is a sheet in which chopped strands are impregnated with a resin paste mixed with a thermosetting resin such as an unsaturated polyester resin, a curing agent, a thickener, an internal mold release agent, a filler, etc., and both sides are covered with a film. This product is made into a sheet by heating it under a predetermined temperature condition to thicken it and improve its handleability. SMC molding is a molding method in which an SMC sheet is put into a mold for press molding and heated under pressure to be cured to obtain a molded product.

図2は、地上子基板10を示した図であり、図2(a)が平面図、図2(b)が正面図、図2(c)が底面図を示している。地上子基板10は、板状のプリント基板である基板本体20と、基板本体20に設けられた2組のパターンコイル31(第1及び第2パターンコイル31a、31b)とチップコンデンサ32(第1及び第2チップコンデンサ32a、32b)とを備える。チップコンデンサ32は、例えば、積層セラミックコンデンサであって、温度150度で1000時間放置しても特性に影響がない性能を有する。なお、チップコンデンサ32は、チップ型ではないコンデンサであってもよい。基板本体20の板厚は、例えば2〜5mm程度の薄さにすることができる。 2A and 2B are views showing the ground element substrate 10, FIG. 2A is a plan view, FIG. 2B is a front view, and FIG. 2C is a bottom view. The ground element substrate 10 includes a substrate main body 20 which is a plate-shaped printed circuit board, two sets of pattern coils 31 (first and second pattern coils 31a and 31b) provided on the substrate main body 20, and a chip capacitor 32 (first). And second chip capacitors 32a, 32b). The chip capacitor 32 is, for example, a monolithic ceramic capacitor, and has a performance that does not affect the characteristics even if it is left at a temperature of 150 degrees for 1000 hours. The chip capacitor 32 may be a non-chip type capacitor. The plate thickness of the substrate body 20 can be as thin as, for example, about 2 to 5 mm.

具体的には、基板本体20は、上下に貫通する二つの矩形の開孔部21a、21bが正面視で左右対称に形成されている。図示で表面20aの右側の開孔部21aの周囲に第1パターンコイル31aがスパイラル状に形成されている。それに対になる第1チップコンデンサ32aが裏面20bに第1パターンコイル31aと対向する位置に設けられている。第1パターンコイル31aと第1チップコンデンサ32aとは、それぞれの端部が接続し、いわゆるLC回路を形成している。図示で裏面20bの左側の開孔部21bの周囲に第2パターンコイル31bがスパイラル状に形成されている。それに対になる第2チップコンデンサ32bが表面20aに第2パターンコイル31bと対向する位置に設けられている。第2パターンコイル31bと第2チップコンデンサ32bとも、それぞれの端部が接続し、いわゆるLC回路を形成している。 Specifically, in the substrate main body 20, two rectangular opening portions 21a and 21b penetrating vertically are formed symmetrically in a front view. In the figure, the first pattern coil 31a is formed in a spiral shape around the opening portion 21a on the right side of the surface 20a. A pair of first chip capacitors 32a is provided on the back surface 20b at a position facing the first pattern coil 31a. The ends of the first pattern coil 31a and the first chip capacitor 32a are connected to each other to form a so-called LC circuit. In the figure, the second pattern coil 31b is formed in a spiral shape around the opening portion 21b on the left side of the back surface 20b. A pair of second chip capacitors 32b are provided on the surface 20a at positions facing the second pattern coil 31b. The ends of the second pattern coil 31b and the second chip capacitor 32b are also connected to form a so-called LC circuit.

地上子基板10に実装される部品、すなわち地上子1の内部の部品は、パターンコイル31とチップコンデンサ32との受動部品のみであり、地上子1としての故障率を大幅に低減させることができる。 The component mounted on the ground element board 10, that is, the component inside the ground element 1, is only a passive component of the pattern coil 31 and the chip capacitor 32, and the failure rate of the ground element 1 can be significantly reduced. ..

図3は、地上子1の製造工程を示した図であり、上型51と下型52とを備えるプレス成形金型を用いて地上子1を製造する。まず、図3(a)の第1SMCシート配置工程に示すように、下型52の上面に形成されたキャビティ状の凹部54に第1SMCシート41を配置する。 FIG. 3 is a diagram showing a manufacturing process of the ground element 1, and the ground element 1 is manufactured by using a press-molded die including an upper die 51 and a lower die 52. First, as shown in the first SMC sheet arranging step of FIG. 3A, the first SMC sheet 41 is arranged in the cavity-shaped recess 54 formed on the upper surface of the lower mold 52.

つぎに、図3(b)の地上子基板配置工程に示すように、第1SMCシート41の上に地上子基板10を載せる。このとき、凹部54は、地上子基板10を所定の位置に配置できるように位置決め構造が形成されている。 Next, as shown in the ground element substrate arrangement step of FIG. 3B, the ground element substrate 10 is placed on the first SMC sheet 41. At this time, the recess 54 is formed with a positioning structure so that the ground element substrate 10 can be arranged at a predetermined position.

つづいて、図3(c)の第2SMCシート配置工程に示すように、地上子基板10の上に、その下の第1SMCシート41と挟むようにして、第2SMCシート42を配置する。 Subsequently, as shown in the second SMC sheet arranging step of FIG. 3C, the second SMC sheet 42 is arranged on the ground element substrate 10 so as to be sandwiched between the first SMC sheet 41 below the ground element substrate 10.

第1SMCシート41、第2SMCシート42、地上子基板10の配置が終了したら、図3(d)のプレス成形工程に示すように、上型51を下型52に下ろし、上型51の凸部53を下型52の凹部54に嵌め込み、加圧加熱する。加圧加熱の工程は、温度140度、成形時間15〜20分程度である。この工程によって、第1SMCシート41、第2SMCシート42は、所定の外形に成形され、また、地上子基板10の開孔部21a、21bに嵌まり、それによってアンカー効果が発揮される。 After the arrangement of the first SMC sheet 41, the second SMC sheet 42, and the ground element substrate 10 is completed, the upper die 51 is lowered to the lower die 52 as shown in the press molding step of FIG. 3 (d), and the convex portion of the upper die 51 is formed. The 53 is fitted into the recess 54 of the lower mold 52 and heated under pressure. The step of pressurizing and heating is a temperature of 140 degrees and a molding time of about 15 to 20 minutes. By this step, the first SMC sheet 41 and the second SMC sheet 42 are formed into a predetermined outer shape, and are fitted into the holes 21a and 21b of the ground element substrate 10, whereby the anchor effect is exhibited.

最後に、図3(e)の脱型工程に示すように、上型51を下型52から離して、地上子1をプレス成形金型(すなわち下型52)から取り出す。これら工程によって、地上子1の成形が完成する。 Finally, as shown in the demolding step of FIG. 3E, the upper die 51 is separated from the lower die 52, and the ground element 1 is taken out from the press molding die (that is, the lower die 52). By these steps, the molding of the ground element 1 is completed.

図4に、比較例として公知の地上子の製造工程を模式的に示す。ここでは、地上子の断面構造にてその製造工程を示している。この製造工程では、図4(a)のように、まず樹脂外殻(外殻部材)101をプレス成形等により用意する。つぎに図4(b)のように、樹脂外殻(外殻部材)101のキャビティ部(凹部)に基板102を配置し、図4(c)のように、絶縁性合成樹脂の充填剤103を注入する。充填剤103は、硬化に24時間程度必要とされる。その後、図4(d)のように、硬化した充填剤103の上をエポキシ樹脂104で覆い封止する。エポキシ樹脂104の硬化には、1次硬化で12時間、2次硬化で6時間程度必要とされる。最後に、図4(e)のように、ガラスクロス105でエポキシ樹脂104を覆い封止を強化する。 FIG. 4 schematically shows a manufacturing process of a known ground element as a comparative example. Here, the manufacturing process is shown by the cross-sectional structure of the ground element. In this manufacturing process, as shown in FIG. 4A, first, the resin outer shell (outer shell member) 101 is prepared by press molding or the like. Next, as shown in FIG. 4 (b), the substrate 102 is arranged in the cavity (recess) of the resin outer shell (outer shell member) 101, and as shown in FIG. 4 (c), the filler 103 of the insulating synthetic resin. Inject. The filler 103 is required to cure for about 24 hours. Then, as shown in FIG. 4D, the cured filler 103 is covered with the epoxy resin 104 and sealed. Curing of the epoxy resin 104 requires about 12 hours for the primary curing and about 6 hours for the secondary curing. Finally, as shown in FIG. 4 (e), the epoxy resin 104 is covered with the glass cloth 105 to strengthen the sealing.

このように、公知の地上子では、1台の製造に2日程度必要とされる。一方で、本実施形態の地上子1では、上述のように、充填剤や接着剤の注入作業が不要であり、1台の製造に15分〜20分程度しか必要とされない。すなわち、大幅な製造時間の削減が可能となり、大量生産へも対応できる。 As described above, with a known ground element, it takes about two days to manufacture one unit. On the other hand, in the ground element 1 of the present embodiment, as described above, the injection work of the filler and the adhesive is unnecessary, and it takes only about 15 to 20 minutes to manufacture one unit. That is, it is possible to significantly reduce the manufacturing time and to cope with mass production.

また、公知の地上子では、同程度の機械的性能を実現した場合、例えば、サイズ280×510×40mm、重量5.2kgや、サイズ250×445×40mm、重量6.3kgであった。本実施形態の地上子1では、試作品として、サイズ242×380×15mm、重量2.6kg程度で実現できることを確認済みである。このように、大幅な軽量化、小型化(特に薄板化)が可能となる。その結果、従来と比較して、地上子1の設置の自由度が向上する。例えば、壁面に嵌め込ませて一体化させるような設置が可能となる。また、設置作業や交換・メンテナンス作業が容易になり、保守作業負荷の低減、保守費用の削減、ひいては保守作業に関わる作業員の安全確保を向上させることができる。 Further, in the known ground element, when the same mechanical performance is realized, for example, the size is 280 × 510 × 40 mm and the weight is 5.2 kg, and the size is 250 × 445 × 40 mm and the weight is 6.3 kg. It has been confirmed that the ground element 1 of the present embodiment can be realized as a prototype with a size of 242 x 380 x 15 mm and a weight of about 2.6 kg. In this way, it is possible to significantly reduce the weight and size (particularly thinning the plate). As a result, the degree of freedom in installing the ground element 1 is improved as compared with the conventional case. For example, it can be installed so as to be fitted into a wall surface and integrated. In addition, installation work, replacement / maintenance work can be facilitated, maintenance work load can be reduced, maintenance cost can be reduced, and safety assurance of workers involved in maintenance work can be improved.

以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素や処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiments. This embodiment is an example, and it will be understood by those skilled in the art that various modifications are possible in the combination of each of these components and processing processes, and that such modifications are also within the scope of the present invention.

例えば、SMCシート(第1SMCシート41、第2SMCシート42)の代わりに、BMC(Bulk Molding Compound)のように、不飽和ポリエステル樹脂等の熱硬化性樹脂や充填材の混合材をバルク状としたものを用いてプレス成形により樹脂外殻40を形成してもよい。 For example, instead of the SMC sheet (1st SMC sheet 41, 2nd SMC sheet 42), a mixture of a thermosetting resin such as an unsaturated polyester resin or a filler such as BMC (Bulk Molding Compound) is bulked. The resin outer shell 40 may be formed by press molding using a material.

また、LC回路は2組に限らず、1組や3組以上であってもよい。図5は、変形例の地上子基板210を示している。図5(a)が平面図、図5(b)が正面図、図5(c)が底面図を示している。図示のように、この地上子基板210では、パターンコイル231とチップコンデンサ232が1組のみとなっており、他の構造は、同様となっている。具体的には、基板本体220の中央に形成された矩形の開孔部221の表面220a側の周囲に、パターンコイル231がスパイラル状に形成されている。裏面220bには、開孔部221の左側領域にチップコンデンサ232が設けられている。この構造によって、1組のLC回路が形成されている。 Further, the LC circuit is not limited to two sets, and may be one set or three or more sets. FIG. 5 shows a ground element substrate 210 of a modified example. 5 (a) is a plan view, FIG. 5 (b) is a front view, and FIG. 5 (c) is a bottom view. As shown in the figure, in this ground element substrate 210, the pattern coil 231 and the chip capacitor 232 are only one set, and the other structures are the same. Specifically, the pattern coil 231 is spirally formed around the surface 220a side of the rectangular opening portion 221 formed in the center of the substrate main body 220. The back surface 220b is provided with a chip capacitor 232 in the left region of the hole 221. This structure forms a set of LC circuits.

1 地上子
10、210 地上子基板
20、220 基板本体
20a、220a 表面
20b、220b 裏面
21a、21b、221 開孔部(貫通孔)
31、231 パターンコイル
31a 第1コイルパターン
31b 第2コイルパターン
32、232 チップコンデンサ
32a 第1チップコンデンサ
32b 第2チップコンデンサ
40 樹脂外殻(外殻部材)
41 第1SMCシート
42 第2SMCシート
51 上型
52 下型
53 凸部
54 凹部
1 Ground element 10, 210 Ground element substrate 20, 220 Substrate body 20a, 220a Front surface 20b, 220b Back surface 21a, 21b, 221 Holes (through holes)
31,231 Pattern coil 31a 1st coil pattern 31b 2nd coil pattern 32, 232 Chip capacitor 32a 1st chip capacitor 32b 2nd chip capacitor 40 Resin outer shell (outer shell member)
41 1st SMC sheet 42 2nd SMC sheet 51 Upper die 52 Lower die 53 Convex part 54 Concave part

Claims (1)

コイルとコンデンサを接続したLC回路を有する地上子であって、
パターンコイルを有するパターンコイル基板にコンデンサを実装したLC回路のみを設けた地上子基板と、
前記地上子基板を覆う樹脂成形用部材の外殻部材と、
を有し、
前記パターンコイルはスパイラル形状とされて前記地上子基板に形成され、
前記地上子基板において、前記スパイラル形状の中心に、前記地上子基板を厚さ方向で貫通する貫通孔が形成され、
前記外殻部材は、前記貫通孔を埋め込んで前記地上子基板の両面側に形成されたことを特徴とする地上子。
A ground element having an LC circuit in which a coil and a capacitor are connected.
A ground element board provided only with an LC circuit in which a capacitor is mounted on a pattern coil board having a pattern coil,
The outer shell member of the resin molding member that covers the ground element substrate and
Have,
The pattern coil has a spiral shape and is formed on the ground element substrate.
In the ground element substrate, a through hole penetrating the ground element substrate in the thickness direction is formed at the center of the spiral shape.
The outer shell member is a ground element formed on both side surfaces of the ground element substrate by embedding the through hole.
JP2018100441A 2018-05-25 2018-05-25 Ground child Active JP6920248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018100441A JP6920248B2 (en) 2018-05-25 2018-05-25 Ground child

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018100441A JP6920248B2 (en) 2018-05-25 2018-05-25 Ground child

Publications (2)

Publication Number Publication Date
JP2019202712A JP2019202712A (en) 2019-11-28
JP6920248B2 true JP6920248B2 (en) 2021-08-18

Family

ID=68725946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018100441A Active JP6920248B2 (en) 2018-05-25 2018-05-25 Ground child

Country Status (1)

Country Link
JP (1) JP6920248B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021160670A (en) * 2020-04-02 2021-10-11 株式会社京三製作所 Manufacturing method for wayside coil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890713U (en) * 1981-12-14 1983-06-20 日本信号株式会社 Transmission/reception coils for railway ground coils and onboard coils
JPH01226316A (en) * 1988-03-07 1989-09-11 Hitachi Chem Co Ltd Preparation of molded item containing insert
JP3805426B2 (en) * 1996-05-27 2006-08-02 三菱電機株式会社 Ground laying coil device and manufacturing method thereof
JP2011095963A (en) * 2009-10-29 2011-05-12 Toppan Printing Co Ltd Ic tag-equipped laminate body

Also Published As

Publication number Publication date
JP2019202712A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
CN108293305B (en) Electronic control device
EP1693176B1 (en) Electronic device and method of producing the same
WO2013001592A1 (en) Inductor and manufacturing method therefor
JP5040739B2 (en) Split stator member, split stator member manufacturing method, and stator
JP6920248B2 (en) Ground child
US9084371B2 (en) Wiring substrate and manufacturing method for wiring substrate
KR20170019437A (en) Manufacturing method of surface mounted inductor
KR20120025614A (en) Battery pack case and method for manufacturing same, and battery pack and method for manufacturing same
JP6420563B2 (en) Reactor
KR102148550B1 (en) Method for producing a measurement transmitter
JP2021160670A (en) Manufacturing method for wayside coil
CN113619155B (en) Integral co-curing forming die and method for unmanned aerial vehicle body and rotor wing rod
KR101830247B1 (en) The manufacturing method of curved type board and the circuit board using the same
JP7105179B2 (en) substrate
CN109637775B (en) Ignition coil for internal combustion engine
JP2018117267A (en) Electronic device and method of manufacturing the same
JPH04278504A (en) Resin-molded coil and manufacture thereof
JP2018038166A (en) Method for producing rotor
JP2004134707A (en) Resin mold coil, mold transformer using the same, and method for manufacturing the mold transformer
JPS59119814A (en) Manufacture of resin sealed coil
JP2015079902A (en) Method of manufacturing reactor
JPH01241496A (en) Production of contactless-type ic card
CN112352474B (en) Resin sealed vehicle-mounted electronic control device
WO2014038083A1 (en) Embedded printed circuit board and method for manufacturing same
JPS63136506A (en) Manufacture of resin-molded coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210726

R150 Certificate of patent or registration of utility model

Ref document number: 6920248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150