JP6918808B2 - Antibody measurement method using antigen-supporting insoluble carrier particles in which antigens are immobilized by different methods, reagents for antibody measurement - Google Patents

Antibody measurement method using antigen-supporting insoluble carrier particles in which antigens are immobilized by different methods, reagents for antibody measurement Download PDF

Info

Publication number
JP6918808B2
JP6918808B2 JP2018537356A JP2018537356A JP6918808B2 JP 6918808 B2 JP6918808 B2 JP 6918808B2 JP 2018537356 A JP2018537356 A JP 2018537356A JP 2018537356 A JP2018537356 A JP 2018537356A JP 6918808 B2 JP6918808 B2 JP 6918808B2
Authority
JP
Japan
Prior art keywords
particles
latex
antigen
antibody
insoluble carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018537356A
Other languages
Japanese (ja)
Other versions
JPWO2018043584A1 (en
Inventor
祐輔 上野
祐輔 上野
達範 菊池
達範 菊池
裕輔 村上
裕輔 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eiken Chemical Co Ltd
Original Assignee
Eiken Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiken Chemical Co Ltd filed Critical Eiken Chemical Co Ltd
Publication of JPWO2018043584A1 publication Critical patent/JPWO2018043584A1/en
Application granted granted Critical
Publication of JP6918808B2 publication Critical patent/JP6918808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54353Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/545Synthetic resin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2469/00Immunoassays for the detection of microorganisms
    • G01N2469/20Detection of antibodies in sample from host which are directed against antigens from microorganisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Description

本発明は、生体物質の測定方法に関する発明であり、更に具体的には異なる方式で抗原を固定化した抗原担持不溶性担体粒子、例えば、抗原担持ラテックス粒子、同士を混合して用いる抗体の測定手段に関する発明である。 The present invention relates to a method for measuring a biological substance, and more specifically, an antibody measuring means for using an antigen-supporting insoluble carrier particle in which an antigen is immobilized by a different method, for example, an antigen-supporting latex particle, which are mixed with each other. Is an invention related to.

現在不溶性担体粒子を用いた診断薬においては、特に免疫学的測定方法の1つとしてラテックス凝集法を用いる試薬が汎用されている。 Currently, in diagnostic agents using insoluble carrier particles, reagents using the latex agglutination method as one of immunological measurement methods are widely used.

ラテックス凝集法では、液相中において抗原又は抗体を担持させたラテックス粒子を用い、抗体又は抗原を検出する測定系を形成する。免疫複合体の形成によりラテックス粒子が凝集する性質に基づき、凝集の程度を目視により確認するか、光学的に濁度の増加を吸光度又は散乱光強度の変化として測定を行うことができる(以下、ラテックス法ともいう:特許文献1)。 The latex agglutination method, using latex particles supporting an antigen or antibody in a liquid phase, to form a measuring system for detecting the antibody or antigen. Based on the property that latex particles aggregate due to the formation of immune complexes, the degree of aggregation can be visually confirmed, or the increase in turbidity can be measured optically as a change in absorbance or scattered light intensity (hereinafter,). Also referred to as latex method: Patent Document 1).

ELISA等のサンドイッチ免疫測定法は、測定自体は正確であり、基準法として用いることが可能であるが、測定の過程において測定サンプルに含まれる被測定物質以外の成分や測定試薬中の成分を除去する洗浄工程を含むため、測定に長時間を要し、測定操作が煩雑であるという欠点を有する。そのため、短時間での多数の測定試料の測定には適していない。 The sandwich immunoassay method such as ELISA has an accurate measurement itself and can be used as a reference method, but in the process of measurement, components other than the substance to be measured and components in the measurement reagent contained in the measurement sample are removed. Since it includes a cleaning step, it takes a long time for measurement and has a drawback that the measurement operation is complicated. Therefore, it is not suitable for measuring a large number of measurement samples in a short time.

これに対してラテックス法は、操作が簡便で、臨床検査で広く用いられている汎用の生化学自動分析装置への適用が容易であり、短時間での測定と多数の被験試料の測定が可能である。 On the other hand, the latex method is easy to operate, easy to apply to general-purpose automatic biochemical analyzers widely used in clinical tests, and enables measurement in a short time and measurement of a large number of test samples. Is.

従って、多くの臨床検査項目において、ラテックス法が用いられている。 Therefore, the latex method is used in many clinical examination items.

特開昭53−62826号公報Japanese Unexamined Patent Publication No. 53-62826

本発明では、抗原が担持されたラテックス粒子等の不溶性担体粒子を用いた抗体測定において測定範囲を拡大すること、及び、感度と特異性の向上、を課題とする。特に、微生物由来の溶解物等の複数物質の混合物を担持させても良好な測定結果を得る手段の提供を行うものである。 An object of the present invention is to expand the measurement range in antibody measurement using insoluble carrier particles such as latex particles carrying an antigen, and to improve sensitivity and specificity. In particular, it provides a means for obtaining good measurement results even when a mixture of a plurality of substances such as a lysate derived from a microorganism is supported.

不溶性担体粒子を用いる診断薬の開発に際しては、不溶性担体粒子に担持させる物質の分子量や、担持方式の選択が、その性能に大きく影響する。 When developing a diagnostic agent using insoluble carrier particles, the molecular weight of the substance to be supported on the insoluble carrier particles and the selection of the supporting method have a great influence on the performance.

例えば、物理吸着法を用いる場合、つまり、不溶性担体粒子と担持蛋白質との静電的相互作用(疎水性相互作用)を利用して、直接的な接触により不溶性担体粒子に蛋白質等を担持させる場合は、比較的高分子量の物質の担持には適している。しかしながら、低分子量の物質やハプテンの担持には、不溶性担体表面における埋没や、非特異的な凝集を抑制するために用いられるブロッキング剤による埋没が起こり得るという難点がある。また、疎水性アミノ酸残基が非常に乏しい蛋白質の担持にも、物理吸着法は難点が認められる。 For example, when a physical adsorption method is used, that is, when a protein or the like is supported on the insoluble carrier particles by direct contact using an electrostatic interaction (hydrophobic interaction) between the insoluble carrier particles and the supported protein. Is suitable for carrying relatively high molecular weight substances. However, carrying a low molecular weight substance or hapten has a drawback that it may be buried on the surface of an insoluble carrier or buried by a blocking agent used for suppressing non-specific aggregation. In addition, the physical adsorption method has some drawbacks in supporting proteins with very few hydrophobic amino acid residues.

化学結合法を用いる場合、つまり、不溶性担体粒子又は蛋白質表面のカルボキシル基とアミノ基をカルボジイミド等のカップリング試薬により共有結合させる方法、不溶性担体粒子表面のアルデヒド基やトシル基等と蛋白質のアミノ基とを結合させる方法等、により不溶性担体粒子に蛋白質等を担持する場合は、物理的吸着法に対しては難点がある低分子量の蛋白質やハプテンの担持も比較的容易である。さらに化学結合法を用いる場合は、不溶性担体の官能基を適宜選択することにより、共有結合を形成する蛋白質側の結合部位側のコントロール、つまり、蛋白質側の結合部位(共有結合するアミノ酸残基)を選択することが可能である。しかしながら、官能基に乏しい蛋白質(言い換えれば、疎水性の高い蛋白質)の担持が困難であるという問題が認められ、さらに、当該担持粒子の作製工程が煩雑であり、担持蛋白質の変性の問題も認められる。 When the chemical bonding method is used, that is, a method of covalently bonding a carboxyl group and an amino group on the surface of an insoluble carrier particle or a protein with a coupling reagent such as carbodiimide, an aldehyde group or a tosyl group on the surface of an insoluble carrier particle and an amino group of the protein. When a protein or the like is supported on the insoluble carrier particles by a method of binding with or the like, it is relatively easy to support a low molecular weight protein or hapten, which is difficult for the physical adsorption method. Furthermore, when a chemical bond method is used, the functional group of the insoluble carrier is appropriately selected to control the binding site on the protein side that forms a covalent bond, that is, the binding site on the protein side (covalently bonded amino acid residue). It is possible to select. However, the problem that it is difficult to support a protein lacking in functional groups (in other words, a protein having high hydrophobicity) is recognized, and further, the process of producing the supported particles is complicated, and the problem of denaturation of the supported protein is also recognized. Be done.

特に、微生物由来の溶解物等の「複数の物質の混合物」を担持させる場合、担持方式が物理吸着法又は化学結合法のいずれか一方のみであると、物質毎に、その大きさや、蛋白質においては親水性アミノ酸残基と疎水性アミノ酸残基の含有量が異なるので、担持される物質に偏りが生じてしまい、その結果、得られた抗原担持不溶性担体粒子では、良好な測定結果を得ることが困難である、という問題、つまり、捕捉される標的抗体の種類が、限られた物質に結合するものに限定されてしまい、当該標的抗体が由来する疾病等の原因となる微生物等についてのデータ取得が、十分に行われない可能性がある、という問題がある。 In particular, when supporting a "mixture of multiple substances" such as a lysate derived from a microorganism, if the supporting method is only one of the physical adsorption method and the chemical bonding method, the size and protein of each substance may be changed. Since the contents of hydrophilic amino acid residues and hydrophobic amino acid residues are different, the substances supported are biased, and as a result, good measurement results can be obtained with the obtained antigen-supporting insoluble carrier particles. That is, the type of target antibody to be captured is limited to those that bind to a limited substance, and data on microorganisms that cause diseases, etc. from which the target antibody is derived. There is a problem that the acquisition may not be performed sufficiently.

また、生体内における微生物に対する抗体は、単一の抗原に対する抗体ではなく、複数の抗原に対する複数の抗体として存在するため、これらの複数の抗体を一度に捕捉できれば、より確実なデータ取得につながる。抗原として、生物由来の抗原性物質等の不特定多数の物質の混合物を担持した不溶性担体粒子を用いた例は、本願の出願時において、本発明者の知る限り存在しない。 Further, since an antibody against a microorganism in a living body exists not as an antibody against a single antigen but as a plurality of antibodies against a plurality of antigens, if these plurality of antibodies can be captured at one time, more reliable data acquisition will be achieved. As far as the present inventor knows, there is no example in which insoluble carrier particles carrying a mixture of an unspecified number of substances such as an antigenic substance derived from a living organism are used as an antigen.

本発明者らは、上記の課題に対して検討を行い、物理吸着法により抗原物質の担持が行なわれた不溶性担体粒子と、化学結合法により当該抗原物質の担持が行われた不溶性担体粒子の双方を含有する、不溶性担体粒子の含有液を抗体測定において用いることにより、広い測定範囲と共に、高い感度と特異性を実現すること、特に抗原が、生物由来の抗原性物質等の複数物質の混合物である場合においても実現することが可能であることを見出し、本発明を完成した。 The present inventors have investigated the above-mentioned problems, and have investigated the insoluble carrier particles in which the antigenic substance is supported by the physical adsorption method and the insoluble carrier particles in which the antigenic substance is supported by the chemical binding method. By using a solution containing insoluble carrier particles containing both in antibody measurement, high sensitivity and specificity can be achieved with a wide measurement range, especially a mixture of multiple substances such as antigenic substances derived from living organisms. The present invention has been completed by finding that it can be realized even in the case of.

すなわち本発明は、物理吸着により所定の抗原が担持された不溶性担体粒子(以下、物理吸着粒子ともいう)、及び、化学結合により当該抗原が担持された不溶性担体粒子(以下、化学結合粒子ともいう)、の双方を含有する不溶性担体粒子の含有液(以下、本発明の含有液ともいう)を、標的抗体を含有し得る生体から分離されたサンプルと接触させて、当該担体粒子に担持された抗原と、当該サンプル中の標的抗体との抗原抗体反応による当該担体粒子の凝集反応を検出することを特徴とする、抗体測定方法(以下、本発明の測定方法ともいう)を提供する。本発明の抗体測定方法において、好適には、本発明の含有液に加えて、希釈液が用いられる。希釈液を用いる場合、標的抗体を含有し得る生体から分離されたサンプルを希釈液で希釈した後、不溶性担体粒子の含有液と接触させるのが好ましい。 That is, in the present invention, insoluble carrier particles carrying a predetermined antigen by physical adsorption (hereinafter, also referred to as physically adsorbed particles) and insoluble carrier particles carrying the antigen by chemical binding (hereinafter, also referred to as chemically bound particles). ), The solution containing the insoluble carrier particles containing both of () and (hereinafter, also referred to as the solution of the present invention) was brought into contact with a sample separated from a living body capable of containing the target antibody and supported on the carrier particles. Provided is an antibody measuring method (hereinafter, also referred to as the measuring method of the present invention), which comprises detecting the aggregation reaction of the carrier particles due to the antigen-antibody reaction between the antigen and the target antibody in the sample. In the antibody measuring method of the present invention, a diluted solution is preferably used in addition to the containing solution of the present invention. When a diluent is used, it is preferable to dilute the sample separated from the living body that can contain the target antibody with the diluent and then bring it into contact with the solution containing the insoluble carrier particles.

また本発明は、物理吸着粒子、及び、化学結合粒子、の双方を含有する不溶性担体粒子の含有液(本発明の含有液)であることを特徴とする、抗体の測定用試薬(以下、本発明の測定用試薬ともいう)を提供する。
さらに本発明は、本発明の測定用試薬(本発明の含有液)及び希釈液を含むことを特徴とする、測定用キット(以下、本発明のキットともいう)を提供する。
Further, the present invention is a reagent for measuring an antibody (hereinafter referred to as the present invention), which is a liquid containing insoluble carrier particles containing both physically adsorbed particles and chemically bound particles (the liquid contained in the present invention). Also referred to as a measurement reagent of the invention).
Furthermore, the present invention provides a measurement kit (hereinafter, also referred to as the kit of the present invention), which comprises the measurement reagent of the present invention (containing liquid of the present invention) and a diluent.

物理吸着粒子も化学結合粒子も、共にラテックス粒子として提供されることが好適である。その他、シリカコロイド、磁性粒子、金属コロイド等の不溶性担体粒子を用いることができる。含有液とは、不溶性担体粒子を含有していれば、その含有状態は特に限定されない。すなわち、含有液には、分散液、乳化液、浮遊液、沈殿液、多層分離液等が含まれる。また、含有液中の不溶性担体粒子は、必要に応じた表面処理が施されていてもよい。 It is preferable that both the physically adsorbed particles and the chemically bonded particles are provided as latex particles. In addition, insoluble carrier particles such as silica colloid, magnetic particles, and metal colloid can be used. The content liquid is not particularly limited as long as it contains insoluble carrier particles. That is, the contained liquid includes a dispersion liquid, an emulsion liquid, a suspension liquid, a precipitation liquid, a multilayer separation liquid and the like. Further, the insoluble carrier particles in the contained liquid may be subjected to surface treatment as required.

物理吸着粒子は、上記の規定通りに物理吸着法により所定の抗原が担持された不溶性担体粒子である。物理吸着粒子の平均粒径は、0.01μm−1.0μmの範囲で用いることが可能であり、好適には0.05μm−0.35μm、さらに好適には0.10μm−0.35μm、最も好適には0.20μm−0.35μmである。物理吸着粒子は、物理吸着法を行う対象となる不溶性担体粒子の含有液に、吸着対象抗原を接触させることにより作製することができる。 The physically adsorbed particles are insoluble carrier particles in which a predetermined antigen is carried by a physical adsorption method as specified above. The average particle size of the physically adsorbed particles can be used in the range of 0.01 μm to 1.0 μm, preferably 0.05 μm to 0.35 μm, more preferably 0.10 μm to 0.35 μm, and most preferably. It is preferably 0.20 μm −0.35 μm. The physically adsorbed particles can be produced by bringing the antigen to be adsorbed into contact with the solution containing the insoluble carrier particles to be subjected to the physical adsorption method.

化学結合粒子は、上記の規定通りに化学結合法により所定の抗原が担持された不溶性担体粒子である。化学結合粒子の平均粒径は、0.01μm−1.0μmの範囲で用いることが可能であり、好適には0.05μm−0.35μm、さらに好適には0.10μm−0.35μm、最も好適には0.20μm−0.35μmである。化学結合粒子は、化学結合法を行う対象となる不溶性担体粒子の含有液に、結合対象抗原を共有結合させる操作を行うことにより作製することができる。 The chemically bonded particles are insoluble carrier particles in which a predetermined antigen is supported by a chemical bonding method as specified above. The average particle size of the chemically bonded particles can be used in the range of 0.01 μm to 1.0 μm, preferably 0.05 μm to 0.35 μm, more preferably 0.10 μm to 0.35 μm, and most preferably. It is preferably 0.20 μm −0.35 μm. The chemically bonded particles can be produced by performing an operation of covalently binding the target antigen to the containing liquid of the insoluble carrier particles to be subjected to the chemical bonding method.

すなわち、本発明の含有液は、好適には、上記の「物理吸着粒子の含有液」と「化学結合粒子の含有液」を混合することにより調製することができる。 That is, the containing liquid of the present invention can be preferably prepared by mixing the above-mentioned "containing liquid of physically adsorbed particles" and "containing liquid of chemically bonded particles".

物理吸着粒子と化学結合粒子の混合比(質量比)は、好適には10:1−1:10(物理吸着粒子:化学結合粒子)、さらに好適には5:1−1:5(物理吸着粒子:化学結合粒子)、極めて好適には3:1−1:3(物理吸着粒子:化学結合粒子)、最も好適には3:1−1:2(物理吸着粒子:化学結合粒子)、である。ただし、サンプル中の標的抗体の測定する際の測定用試薬中又は、希釈液を用いる場合には測定用試薬及び希釈液の混合液中の物理吸着粒子の含有量が0.045質量%以上であると、当該粒子の含有量の増加に見合った効果の向上が認められなくなる傾向がある。 The mixing ratio (mass ratio) of the physically adsorbed particles and the chemically bonded particles is preferably 10: 1-1: 10 (physisorbed particles: chemically bonded particles), and more preferably 5: 1-1: 5 (physisorbed). Particles: chemically bonded particles), very preferably 3: 1-1: 3 (physisorbed particles: chemically bonded particles), most preferably 3: 1-1: 2 (physisorbed particles: chemically bonded particles). be. However, when the content of physically adsorbed particles in the measurement reagent when measuring the target antibody in the sample or in the mixed solution of the measurement reagent and the diluent is 0.045% by mass or more when a diluent is used. If there is, there is a tendency that the improvement of the effect corresponding to the increase in the content of the particles is not recognized.

「所定の抗原」における「所定の」とは、例えば、「選択された」と言い換えることができる。測定の対象として選択された抗体に結合する抗原として「定められた」、又は、「選択された」、という意味であり、一旦定められ、又は、一旦選択されれば、当該抗原は一意的に確定する。 The "predetermined" in the "predetermined antigen" can be paraphrased as, for example, "selected". It means "defined" or "selected" as an antigen that binds to the antibody selected for measurement, and once defined or once selected, the antigen is unique. Determine.

「所定の抗原」となり得る抗原は特に限定されず、測定対象の抗体に結合する物質であれば広く選択できるが、好ましくは生体から分離されたサンプル中の抗体に結合する抗原である。すなわち、特定の疾病や体質に伴い生体内に存在する物質に対する抗体を標的抗体として、これに結合する抗原を「所定の抗原」とすることが好適である。「所定の抗原」となり得る物質は、蛋白質が代表的であるが、糖鎖、脂質等の他の物質も含まれる。 The antigen that can be a "predetermined antigen" is not particularly limited and can be widely selected as long as it is a substance that binds to the antibody to be measured, but it is preferably an antigen that binds to the antibody in the sample separated from the living body. That is, it is preferable that an antibody against a substance existing in the living body due to a specific disease or constitution is used as a target antibody, and an antigen that binds to the target antibody is used as a “predetermined antigen”. A typical substance that can be a "predetermined antigen" is a protein, but other substances such as sugar chains and lipids are also included.

また、「生体」は広く生物一般の体を指すが、通常は人体である。 In addition, "living body" broadly refers to the body of living things in general, but is usually the human body.

当該抗原を「複数物質の混合物」とすることにより、本発明の効果が好適に発揮される。当該混合物としては、生物由来の抗原性物質が挙げられ、好適には、細菌、ウイルス等の微生物由来の溶解物が挙げられる。 By using the antigen as a "mixture of a plurality of substances", the effects of the present invention are suitably exhibited. Examples of the mixture include antigenic substances derived from living organisms, and preferred examples thereof include lysates derived from microorganisms such as bacteria and viruses.

また、当該抗原は、分子量が5000以上、特に好ましくは10000以上の物質を少なくとも1種含む場合に、本発明の効果が好適に発揮される。微生物由来の溶解物に対して、物理吸着粒子と化学結合粒子の両者を併せて用いることにより、総体として多様なエピトープ提示が可能となる。当該分子量の上限は不溶性担体粒子に対する担持が可能な限り特に限定されないが、概ね2000000以下程度であることが好適である。上記の「複数物質の混合物」が、この特定分子量の条件に当て嵌まる場合もある。 Further, the effect of the present invention is preferably exhibited when the antigen contains at least one substance having a molecular weight of 5,000 or more, particularly preferably 10,000 or more. By using both the physically adsorbed particles and the chemically bonded particles in combination with respect to the lysate derived from the microorganism, it is possible to present various epitopes as a whole. The upper limit of the molecular weight is not particularly limited as long as it can be supported on the insoluble carrier particles, but it is preferably about 2000000 or less. In some cases, the above-mentioned "mixture of multiple substances" meets the conditions of this specific molecular weight.

上記の本発明の含有液を、標的抗体を含有し得る生体から分離されたサンプルと接触させて、当該含有液の不溶性担体粒子に担持された抗原と、当該サンプル中の標的抗体との抗原抗体反応による当該担体粒子の凝集反応の程度を検出することができる。 The above-mentioned containing solution of the present invention is brought into contact with a sample separated from a living body that can contain a target antibody, and an antigen-antibody between the antigen carried on the insoluble carrier particles of the containing solution and the target antibody in the sample. The degree of agglutination of the carrier particles due to the reaction can be detected.

「標的抗体を含有し得る生体から分離されたサンプル」は、被測定抗体を含有する可能性があるものであれば特に限定されず、例えば、血液、血清、血漿、尿、リンパ液、穿刺液、髄液、汗、唾液、胃液、肺洗浄液、糞便等が挙げられる。これらのうち、血液、血清、血漿が好適である。 The "sample isolated from the living body that can contain the target antibody" is not particularly limited as long as it may contain the antibody to be measured, and for example, blood, serum, plasma, urine, lymph, puncture fluid , and the like. Examples include cerebrospinal fluid, sweat, saliva, gastric fluid, lung lavage fluid, feces and the like. Of these, blood, serum and plasma are preferable.

「抗原抗体反応による所定の抗原が担持された不溶性担体粒子の反応」として主要なものは、凝集反応であり、スライド凝集法、光学測定法、マイクロタイター法、フィルター分離法等を用いて、不溶性担体粒子の凝集を検出することにより、所望の抗体の測定を行うことができる。 The main "reaction of insoluble carrier particles carrying a predetermined antigen by an antigen-antibody reaction" is an agglutination reaction, which is insoluble using a slide agglutination method, an optical measurement method, a microtiter method, a filter separation method, or the like. By detecting the aggregation of the carrier particles, the desired antibody can be measured.

本発明の測定方法は、好適には、生化学自動分析装置を用いて行われる。生化学自動分析装置は、光学的測定方法を測定原理とするものであり、通常、用時に、血清等のサンプルを希釈液で希釈して加温した後に、試薬(本発明の場合であれば、本発明の含有液)を加えて測定を行う仕様となっている。現在提供されている生化学自動分析装置としては、例えば、日立7180形、LABOSPECT 008、LABOSPECT 006等(株式会社日立ハイテクノロジース製);JCA−BM6010、JCA−BM6050、JCA−BM9130等(日本電子株式会社製);TBA−c16000、TBA−2000FR、TBA−120FR等(東芝メディカルシステムズ株式会社製);AU680、AU5800等(ベックマン・コールター株式会社製)、などが挙げられるが、これらに限定されるものではない。 The measuring method of the present invention is preferably carried out using an automatic biochemical analyzer. The biochemical automatic analyzer is based on an optical measurement method, and usually, at the time of use, a sample such as serum is diluted with a diluent and heated, and then a reagent (in the case of the present invention) is used. , The content of the present invention) is added for measurement. Examples of the biochemical automatic analyzers currently provided include Hitachi 7180, LABOPSECT 008, LABOPSECT 006 (manufactured by Hitachi High-Technologies Co., Ltd.); JCA-BM6010, JCA-BM6050, JCA-BM9130, etc. (JEOL Ltd.) Co., Ltd.); TBA-c16000, TBA-2000FR, TBA-120FR, etc. (manufactured by Toshiba Medical Systems Co., Ltd.); AU680, AU5800, etc. (manufactured by Beckman Coulter Ltd.), etc., but are limited thereto. It's not a thing.

本発明により、広い測定範囲と共に、高い感度と特異性を伴って抗体を測定する手段が提供される。 INDUSTRIAL APPLICABILITY The present invention provides a means for measuring an antibody with high sensitivity and specificity, as well as a wide measurement range.

粒径0.145μmの化学結合ラテックス粒子と粒径0.235μmの物理吸着ラテックス粒子の混合の反応性における効果を検討した図面である。It is a figure which examined the effect on the reactivity of the mixture of the chemically bonded latex particle of the particle diameter 0.145 μm, and the physically adsorbed latex particle of the particle diameter 0.235 μm. 粒径0.235μmの物理吸着ラテックス粒子に対する、粒径0.300μmの化学結合ラテックス粒子の混合量を変化させることによる反応性における効果を検討した図面である。It is a figure which examined the effect on the reactivity by changing the mixing amount of the chemically bonded latex particles of a particle size of 0.300 μm with respect to the physically adsorbed latex particles of a particle size of 0.235 μm.

1.本発明の含有液
上述のように本発明の含有液は、物理吸着粒子、及び、化学結合粒子、の双方を含有する含有液である。
1. 1. The liquid contained in the present invention As described above, the liquid contained in the present invention is a liquid containing both physically adsorbed particles and chemically bonded particles.

(1)不溶性担体粒子の調達
上述したように、物理吸着粒子も化学結合粒子も、共にラテックス粒子として提供されることが好適である。ラテックスは、水性溶媒中にポリマーの微粒子(ラテックス粒子)が安定に分散したエマルジョンである。
(1) Procurement of Insoluble Carrier Particles As described above, it is preferable that both the physically adsorbed particles and the chemically bonded particles are provided as latex particles. Latex is an emulsion in which polymer fine particles (latex particles) are stably dispersed in an aqueous solvent.

ラテックスの作製方法は、乳化重合法、ソープフリー乳化重合法、シード重合法、ステージフィード乳化重合法、パワーフィード重合法、懸濁重合法等の常法を用いて行うことが可能である。粒径の調節も、これらのラテックスの調製方法の各々における常法を用いて行うことができる。例えば、乳化重合法であれば、モノマー、乳化剤、開始剤の種類と量、重合温度等を調節することにより、ラテックスの粒径の調節を行うことができる。ラテックスの市販品を用いることも当然に可能である。 The latex can be produced by using a conventional method such as an emulsion polymerization method, a soap-free emulsion polymerization method, a seed polymerization method, a stage feed emulsion polymerization method, a power feed polymerization method, or a suspension polymerization method. The particle size can also be adjusted using conventional methods in each of these latex preparation methods. For example, in the case of the emulsion polymerization method, the particle size of the latex can be adjusted by adjusting the type and amount of the monomer, emulsifier, and initiator, the polymerization temperature, and the like. Of course, it is also possible to use a commercially available latex product.

ラテックスの種類は、物理吸着粒子の作製に用いられる物理吸着法、又は、化学結合粒子の作製に用いられる化学結合法、を適用することができる限りにおいて特に限定されず、物理吸着法及び化学結合法のそれぞれに適した種類を選択することが好適である。 The type of latex is not particularly limited as long as the physical adsorption method used for producing physically adsorbed particles or the chemical bond method used for producing chemically bonded particles can be applied, and the physical adsorption method and chemical bonding are not particularly limited. It is preferable to select the type suitable for each of the methods.

物理吸着法に適したラテックスとしては、ポリスチレンラテックス、極低カルボン酸ラテックス、親水基局在化ラテックス等が挙げられる。 Examples of latex suitable for the physical adsorption method include polystyrene latex, ultra-low carboxylic acid latex, and hydrophilic group localized latex.

化学結合法に適したラテックスとしては、カルボキシル基、水酸基、アミノ基、アルデヒド基、又は、トシル基等を表面に有するラテックス粒子を含有するラテックスが挙げられる。 Examples of latex suitable for the chemical bonding method include latex containing latex particles having a carboxyl group, a hydroxyl group, an amino group, an aldehyde group, a tosyl group, or the like on the surface.

物理吸着法に適したラテックスであっても、又は、化学結合法に適したラテックスであっても、着色が施された着色ラテックスや、蛍光物質が施された蛍光ラテックスを用いることも可能である。 It is also possible to use a colored latex that has been colored or a fluorescent latex that has been subjected to a fluorescent substance, whether it is a latex suitable for the physical adsorption method or a latex suitable for the chemical bonding method. ..

前述のように、物理吸着を行うラテックス粒子も化学結合を行うラテックス粒子の粒径も特に限定されず、0.01μm−1.0μmの範囲で用いることが可能であり、好適には0.05μm−0.35μm、さらに好適には0.10μm−0.35μm、最も好適には0.20μm−0.35μmである。 As described above, the particle size of the latex particles that perform physical adsorption and the latex particles that perform chemical bonding are not particularly limited, and can be used in the range of 0.01 μm to 1.0 μm, preferably 0.05 μm. It is −0.35 μm, more preferably 0.10 μm −0.35 μm, and most preferably 0.20 μm −0.35 μm.

これら双方の担持方式のラテックス粒子のそれぞれにおいて、担持抗原と測定抗体の性質に応じた適切な感度と特異性と測定範囲を得るために、測定において用いるラテックス粒子の粒径を決定することができる。具体的には、免疫反応によるラテックスの凝集性を高めたい場合には、中程度から大きな粒径(0.20−0.35μm)を選択することが好適であるが、測定対象(抗体)の濃度が非常に高い場合には、小さな粒径(0.10μm以下)を選択することが好ましい場合もある。 For each of these two carrying latex particles, the particle size of the latex particles used in the measurement can be determined in order to obtain appropriate sensitivity, specificity and measurement range according to the properties of the carrying antigen and the measurement antibody. .. Specifically, when it is desired to enhance the cohesiveness of latex by an immune reaction, it is preferable to select a medium to large particle size (0.20 to 0.35 μm), but the measurement target (antibody) If the concentration is very high, it may be preferable to select a small particle size (0.10 μm or less).

上述したように、ラテックス粒子以外の不溶性担体粒子として、シリカコロイド粒子、磁性粒子、金属コロイド粒子等が挙げられる。これらの不溶性担体粒子には、物理吸着又は化学結合に適した官能基を付加する粒子表面の改質を行うことにより、本発明において用いることが可能な不溶性担体粒子とすることが可能である。 As described above, examples of the insoluble carrier particles other than the latex particles include silica colloidal particles, magnetic particles, and metal colloidal particles. These insoluble carrier particles can be made into insoluble carrier particles that can be used in the present invention by modifying the particle surface to which a functional group suitable for physical adsorption or chemical bonding is added.

(2)不溶性担体粒子への担持工程
(ア)担持抗原
不溶性担体粒子に対して担持させる抗原は、測定の標的とする抗体と結合可能である限り全く限定されないが、前述のように、「複数物質の混合物」や「大きな分子量の物質の含有物」とすることにより、本発明の効果が好適に発揮される。当該混合物としては、生物由来の抗原性物質が挙げられ、好適には、細菌、ウイルス等の微生物由来の溶解物が挙げられる。例えば、後述した実施例において用いたヘリコバクター・ピロリの溶解物には、ウレアーゼB(UreaseB)、ウレアーゼA(UreaseA)、キャグA(CagA)、フラジェリン(Flagellin)、ヒートショックプロテイン(Heat Shock Protein)、その他の物質、が含有されている。これらのヘリコバクター・ピロリの溶解物に含まれる物質の分子量は、大部分が10000−200000程度である。
(2) Step of supporting on insoluble carrier particles (a) Supported antigen The antigen to be supported on the insoluble carrier particles is not limited as long as it can bind to the antibody to be measured, but as described above, "plurality". The effect of the present invention is preferably exhibited by using a "mixture of substances" or a "containing substance having a large molecular weight". Examples of the mixture include antigenic substances derived from living organisms, and preferred examples thereof include lysates derived from microorganisms such as bacteria and viruses. For example, the lysates of Helicobacter pylori used in the examples described later include urease B, urease A, Cag A, flagellin, heat shock protein, and the like. Other substances, are contained. Most of the substances contained in the lysates of Helicobacter pylori have a molecular weight of about 10,000 to 200,000.

このヘリコバクター・ピロリのような体内における感染微生物の特定のために、当該感染微生物に特有の物質を担持抗原として用いることができる。微生物としては、このヘリコバクター・ピロリの他、A群溶菌レンサ球菌、B群溶菌レンサ球菌、肺炎球菌尿中抗原、大腸菌O157、クロストリジウムディフィシル、レジオネラ菌、コレラ菌、髄膜炎起因菌等の細菌類;インフルエンザウイルス、パラインフルエンザウイルス、ロタウイルス、ノロウイルス、日本脳炎ウイルス、狂犬病ウイルス、ポリオウイルス、エコーウイルス、コクサッキーウイルスA群、コクサッキーウイルスB群、ムンプスウイルス、単純ヘルペスウイルス、水痘・帯状ヘルペスウイルス、麻疹ウイルス、風疹ウイルス、EBウイルス、パピローマウイルス、伝染性軟属腫ウイルス、手足口病ウイルス、急性出血性結膜炎ウイルス、HAV、HBV、HCV、流行性角結膜炎ウイルス、ハンターウイルス、ヒトTリンパ球好性ウイルス、HIV、リンパ球性脈絡髄膜炎ウイルス、RSウイルス、アデノウイルス、レオウイルス、ライノウイルス、コロナウイルス等のウイルス類;カンジダ症、アスペルギルス症、クリプトコッカス症、接合菌症、ニューモシスチス肺炎、トリコスポロン症等の深在性真菌症の原因となる真菌;ツツガムシ病、紅斑熱、発疹チフス等の原因となるリケッチア;クラジミア、原虫、寄生虫等が挙げられる。 In order to identify an infectious microorganism in the body such as Helicobacter pylori, a substance peculiar to the infectious microorganism can be used as a supporting antigen. As microorganisms, in addition to this helicobacter pylori, bacteria such as group A lytic bacterium Lensa bacterium, group B lytic bacterium Lensa bacterium, pneumonia bacterium urinary antigen, Escherichia coli O157, Clostridium difficile, Regionella bacterium, cholera bacterium, and meningitis-causing bacterium. Influenza virus, parainfluenza virus, rotavirus, norovirus, Japanese encephalitis virus, mad dog disease virus, poliovirus, echo virus, coxsackie virus A group, coxsackie virus B group, mumps virus, simple herpes virus, varicella / herpes zoster virus, measles virus, Eczema virus, EB virus, papillomavirus, infectious soft tumor virus, limb mouth disease virus, acute hemorrhagic conjunctivitis virus, HAV, HBV, HCV, epidemic keratoconjunctivitis virus, hunter virus, human T lymphocyte-loving virus, Viruses such as HIV, lymphocytic choriomyelitis virus, RS virus, adenovirus, leovirus, rhinovirus, coronavirus; Fungi that cause deep-seated mycosis; liquettia that causes tsutsugamushi disease, erythema fever, rash typhoid, etc .; clazimia, protozoa, parasites and the like.

微生物由来の抗原以外に本発明に用いることができる担持抗原として、抗TSH受容体抗体、抗アセチルコリン受容体抗体、抗インスリン受容体抗体等の抗受容体抗体に対する抗原;抗サイログロブリン抗体、抗マイクロゾーム抗体等の抗甲状腺抗体に対する抗原;抗膵島細胞抗体、抗GAD抗体、抗インスリン抗体等の抗膵島抗体に対する抗原;抗副腎皮質抗体、抗平滑筋抗体、抗LKM抗体、抗胃壁細胞抗体、抗内因子抗体、抗横紋筋抗体、抗心筋抗体、抗皮膚デスモグレイン抗体、抗好中球細胞質抗体、抗リン脂質抗体等の臓器特異的自己抗体に対する抗原等が挙げられる。 In addition to microbial-derived antigens, as supporting antigens that can be used in the present invention, antigens against anti-receptor antibodies such as anti-TSH receptor antibody, anti-acetylcholine receptor antibody, and anti-insulin receptor antibody; anti-thyroglobulin antibody, anti-microsome. Antibodies to anti-thyroid antibodies such as antibodies; Anti-pancreatic islet cells antibodies, anti-GAD antibodies, anti-pancreatic islets antibodies such as anti-insulin antibodies; Examples thereof include antigens for organ-specific autoantibodies such as factor antibodies, anti-horizontal muscle antibodies, anti-myocardial antibodies, anti-skin desmograin antibodies, anti-neutrophil cytoplasmic antibodies, and anti-phospholipid antibodies.

さらに、本発明に用いることができる担持抗原として、DNA、ヌクレオソーム、ヒストン、ポリADPリボース、セントロメア、Scl−70、Ku等のクロマチンに分布する自己抗原;U1RNP、Sm、SS−B/LA,SS−A/Ro、PCNA、Ki等の核質に分布する自己抗原;U3RNP、Th/To、PM−Sci、RNAポリメラーゼ等の核小体に分布する自己抗原;AA−A/Ro、Jo−1、リボソームP、ミトコンドリアM2、シグナル認識粒子等の細胞質に分布する自己抗原等の臓器非特異的自己抗体に対する抗原が挙げられる。 Furthermore, as carrying antigens that can be used in the present invention, autoantigens distributed in chromatin such as DNA, nucleosome, histone, polyADP ribose, centromea, Scl-70, Ku; U1RNP, Sm, SS-B / LA, SS -Autoantigens distributed in the nucleoplasm such as A / Ro, PCNA, Ki; Autoantigens distributed in the nucleolus such as U3RNP, Th / To, PM-Sci, RNA polymerase; AA-A / Ro, Jo-1 , Ribosome P, mitochondria M2, antigens against organ-nonspecific autoantigens such as autoantigens distributed in the nucleoplasm such as signal recognition particles.

以上の記載は例示列挙であり、それ以外の現時点で適用可能な抗原を用いることも可能であり、さらに将来提供される抗原を用いることも可能である。 The above description is an example list, and other antigens applicable at present time can be used, and antigens provided in the future can also be used.

(イ)抗原の担持工程
抗原の不溶性担体粒子への担持は、物理吸着法、化学結合法、それぞれ常法に従って行うことができる。
(B) Antigen carrying step The antigen can be supported on the insoluble carrier particles according to a physical adsorption method and a chemical binding method, respectively.

物理吸着法は、例えば、蒸留水やPBSにおいて0.1−1質量%程度で不溶性担体粒子を含有する含有液を、担持しようとする抗原と混合し、不溶性担体粒子に当該抗原を担持させることができる。さらに遠心分離を用いて未吸着の抗原と、抗原担持担体粒子を分け、水性溶媒(通常、緩衝液)中に再分散させることにより、物理吸着粒子の含有液を作製することができる。緩衝液としては、例えば、HEPES緩衝液等のグッド緩衝液、TRIS緩衝液,グリシン緩衝液、ホウ酸緩衝液等が挙げられる。 In the physical adsorption method, for example, a solution containing insoluble carrier particles in distilled water or PBS in an amount of about 0.1-1% by mass is mixed with an antigen to be supported, and the insoluble carrier particles are made to support the antigen. Can be done. Further, the unadsorbed antigen and the antigen-supporting carrier particles are separated by centrifugation and redispersed in an aqueous solvent (usually a buffer solution) to prepare a solution containing the physically adsorbed particles. Examples of the buffer solution include Good's buffer solution such as HEPES buffer solution, TRIS buffer solution, glycine buffer solution, boric acid buffer solution and the like.

化学結合法は、不溶性担体粒子表面の官能基を利用し、所定の抗原を共有結合で結合する。例えば、不溶性担体粒子表面の官能基が、カルボキシル基、水酸基、アミノ基の場合は、それぞれ、カルボジイミド、ブロムシアン、グルタルアルデヒドを活性剤として利用することで抗原を不溶性担体粒子表面に共有結合させることが可能である。活性化剤で事前に不溶性担体粒子表面の官能基を活性化させてから抗原と接触させることも可能であり、活性化剤と抗原を同時に不溶性担体粒子と接触させてもよい。不溶性担体粒子表面の官能基が、アルデヒド基、トシル基である場合には、活性剤を用いる必要がない。さらに、不溶性担体粒子と抗原の間に、オリゴアミノ酸やアミノカルボン酸等のスペーサー分子を入れて共有結合を行うことも可能である。 The chemical bond method utilizes a functional group on the surface of insoluble carrier particles to covalently bond a predetermined antigen. For example, when the functional groups on the surface of the insoluble carrier particles are a carboxyl group, a hydroxyl group, and an amino group, the antigen can be covalently bonded to the surface of the insoluble carrier particles by using carbodiimide, bromcian, and glutaraldehyde as activators, respectively. It is possible. It is also possible to activate the functional groups on the surface of the insoluble carrier particles with an activator in advance and then contact the antigen, or the activator and the antigen may be contacted with the insoluble carrier particles at the same time. When the functional group on the surface of the insoluble carrier particles is an aldehyde group or a tosyl group, it is not necessary to use an activator. Further, it is also possible to insert a spacer molecule such as an oligoamino acid or an aminocarboxylic acid between the insoluble carrier particles and the antigen to carry out a covalent bond.

上記の化学結合反応は、水性溶媒(通常、緩衝液)中において行われ、得られた化学結合粒子を、水性溶媒(通常、緩衝液)中に再分散させることにより、化学結合粒子の含有液を作製することができる。緩衝液としては、例えば、HEPES緩衝液等のグッド緩衝液、TRIS緩衝液,グリシン緩衝液、ホウ酸緩衝液等が挙げられる。 The above chemical bond reaction is carried out in an aqueous solvent (usually a buffer), and the obtained chemical bond particles are redispersed in an aqueous solvent (usually a buffer) to contain the chemical bond particles. Can be produced. Examples of the buffer solution include Good's buffer solution such as HEPES buffer solution, TRIS buffer solution, glycine buffer solution, boric acid buffer solution and the like.

このようにして、物理吸着粒子と化学結合粒子を作製することができる。物理吸着粒子と化学結合粒子は、水性溶媒中で不溶性担体粒子の含有液として保存される。 In this way, physically adsorbed particles and chemically bonded particles can be produced. The physically adsorbed particles and the chemically bonded particles are stored in an aqueous solvent as a liquid containing the insoluble carrier particles.

(3)本発明の含有液
本発明の含有液は、物理吸着粒子、及び、化学結合粒子、の双方を含有する含有液であり、その溶媒は、通常、緩衝液である。緩衝液としては、例えば、HEPES緩衝液等のグッド緩衝液、TRIS緩衝液,グリシン緩衝液、ホウ酸緩衝液等が挙げられる。例えば、本発明の含有液は、上記の物理吸着粒子の含有液として作製された物理吸着粒子と、化学結合粒子の含有液として作製された化学結合粒子とを、水性溶媒(通常、緩衝液)中で混合することにより作製することができる。物理吸着粒子、及び、化学結合粒子、の双方を含有する含有液が得られるのであれば、本発明の含有液の作製方法は、これに限定されない。
(3) Containing liquid of the present invention The contained liquid of the present invention is a containing liquid containing both physically adsorbed particles and chemically bonded particles, and the solvent thereof is usually a buffer solution. Examples of the buffer solution include Good's buffer solution such as HEPES buffer solution, TRIS buffer solution, glycine buffer solution, boric acid buffer solution and the like. For example, the containing liquid of the present invention is an aqueous solvent (usually, a buffer) containing the physically adsorbed particles prepared as the containing liquid of the above physically adsorbing particles and the chemically bonded particles prepared as the containing liquid of the chemically bonded particles. It can be produced by mixing in. The method for producing the containing liquid of the present invention is not limited to this as long as a containing liquid containing both physically adsorbed particles and chemically bonded particles can be obtained.

本発明の含有液には、必要に応じて、例えば、各種電解質、安定化剤、界面活性剤、増感剤等が含有されていてもよい。 If necessary, the liquid containing the present invention may contain, for example, various electrolytes, stabilizers, surfactants, sensitizers, and the like.

本発明の含有液中における、それぞれの抗原担持担体粒子の含有比は、所望する測定範囲と感度によっても異なるが、好適には質量比で10:1−1:10(物理吸着粒子:化学結合粒子)、さらに好適には5:1−1:5(物理吸着粒子:化学結合粒子)、極めて好適には3:1−1:3(物理吸着粒子:化学結合粒子)、最も好適には3:1−1:2(物理吸着粒子:化学結合粒子)、である。ただし、サンプル中の標的抗体を測定する際の含有液中又は、希釈液を用いる場合には含有液及び希釈液の混合液中の物理吸着粒子の含有量が0.045質量%以上であると、当該粒子の含有量の増加に見合った効果の向上が認められなくなる傾向がある。 The content ratio of each antigen-carrying carrier particle in the containing liquid of the present invention varies depending on the desired measurement range and sensitivity, but is preferably 10: 1-1: 10 (physically adsorbed particles: chemical bond) in terms of mass ratio. Particles), more preferably 5: 1-1: 5 (physically adsorbed particles: chemically bound particles), extremely preferably 3: 1-1: 3 (physically adsorbed particles: chemically bound particles), most preferably 3 1-1: 2 (physically adsorbed particles: chemically bonded particles). However, when the target antibody in the sample is measured, the content of the physically adsorbed particles in the contained liquid or, when the diluted liquid is used, in the mixed liquid of the contained liquid and the diluted liquid is 0.045% by mass or more. , There is a tendency that the improvement of the effect corresponding to the increase in the content of the particles is not recognized.

2.抗体の測定
本発明の測定方法では、上述した本発明の含有液を用いて抗体の測定を行う。すなわち、本発明の含有液を、標的抗体を含有し得る生体から分離されたサンプルと接触させて、当該含有液の不溶性担体粒子に担持された抗原と、当該サンプル中の標的抗体との抗原抗体反応による当該微粒子の反応を検出することができる。希釈液を用いないで本発明の測定方法を行うことも可能であるが、好適には希釈液を用いて行われる。
2. Measurement of antibody In the measurement method of the present invention, the antibody is measured using the above-mentioned solution of the present invention. That is, the containing solution of the present invention is brought into contact with a sample separated from a living body that can contain the target antibody, and the antigen antibody between the antigen carried on the insoluble carrier particles of the containing solution and the target antibody in the sample. The reaction of the fine particles due to the reaction can be detected. Although it is possible to carry out the measurement method of the present invention without using a diluent, it is preferably carried out using a diluent.

希釈液を用いて測定を行う場合、希釈液を混合して希釈した本発明の含有液を当該サンプルと接触させることもできるが、好適には、当該サンプルに希釈液を加えて希釈した当該サンプルと、本発明の含有液を接触させる。本発明の含有液に対して、容積比で9倍以下の希釈液を用いるのが好ましく、1−5倍の希釈液を用いるのが特に好ましい。 When the measurement is carried out using a diluted solution, the containing solution of the present invention diluted by mixing the diluted solution can be brought into contact with the sample, but preferably, the sample diluted by adding the diluted solution to the sample. And the liquid containing the present invention are brought into contact with each other. It is preferable to use a diluted solution having a volume ratio of 9 times or less, and it is particularly preferable to use a diluted solution having a volume ratio of 1 to 5 times or less with respect to the containing solution of the present invention.

「標的抗体を含有し得る生体から分離されたサンプル」は、被測定抗体を含有する可能性があるものであれば特に限定されないことは、上記の通りであり、例えば、血液、血清、血漿、尿、リンパ液、穿刺液、髄液、汗、唾液、胃液、肺洗浄液、糞便等が挙げられ、これらのうち、血液、血清、血漿が好適である。血清等のサンプルは、必要に応じて、生理食塩水等で希釈され得る。生理食塩水等で希釈されたサンプルも、「標的抗体を含有し得る生体から分離されたサンプル」に含まれる。なお、ここでの希釈は、希釈液による希釈とは別個である。 As described above, the "sample isolated from the living body that can contain the target antibody" is not particularly limited as long as it may contain the antibody to be measured. For example, blood, serum, plasma, etc. Examples thereof include urine, lymph, puncture fluid , spinal fluid, sweat, saliva, gastric fluid, lung lavage fluid, feces and the like, of which blood, serum and plasma are preferable. Samples such as serum can be diluted with physiological saline or the like, if necessary. Samples diluted with physiological saline or the like are also included in "samples isolated from living organisms that may contain the target antibody". The dilution here is separate from the dilution with the diluent.

3.本発明のキット
本発明のキットは、本発明の測定方法を行うための測定用キットであり、本発明の含有液及び下記の希釈液を構成要素として含むものである。
3. 3. Kit of the present invention The kit of the present invention is a measurement kit for carrying out the measurement method of the present invention, and includes the containing solution of the present invention and the following diluted solution as components.

本発明の含有液以外の本発明のキットにおける構成要素としては、例えば、測定対象となる標的抗体の標準品、精度管理用試料、希釈液等が挙げられる。 Examples of the components in the kit of the present invention other than the containing liquid of the present invention include a standard product of the target antibody to be measured, a sample for quality control, a diluent and the like.

希釈液は、好適には、「標的抗体を含有し得る生体から分離されたサンプル」を、本発明の含有液と接触させる前に、希釈するための液体であり、標的抗体の測定を実質的に阻害しない限り、特に限定されない。希釈液は、本発明の含有液と同様、緩衝液が典型的である。緩衝液としては、例えば、HEPES緩衝液等のグッド緩衝液、TRIS緩衝液,グリシン緩衝液、ホウ酸緩衝液等が挙げられる。当該希釈液には、必要に応じて、例えば、各種電解質、安定化剤、界面活性剤、増感剤等が含有されていてもよい。当該希釈液は、本発明の含有液の溶媒と同一または類似であることが好ましい。 The diluent is preferably a liquid for diluting the "sample separated from the living body which may contain the target antibody" before contacting with the solution of the present invention, and the measurement of the target antibody is substantially performed. There is no particular limitation as long as it does not interfere with. As the diluent, a buffer solution is typical as in the case of the containing solution of the present invention. Examples of the buffer solution include Good's buffer solution such as HEPES buffer solution, TRIS buffer solution, glycine buffer solution, boric acid buffer solution and the like. If necessary, the diluent may contain, for example, various electrolytes, stabilizers, surfactants, sensitizers, and the like. The diluted solution is preferably the same as or similar to the solvent of the containing solution of the present invention.

また、本発明のキットを用いて本発明の測定方法を行う場合、希釈液を用いないで測定を行うこともあり得るが、希釈液を用いる場合には、本発明の含有液に対して、容積比で好ましくは9倍以下、特に好ましくは1−5倍の希釈液を用いる。 Further, when the measurement method of the present invention is carried out using the kit of the present invention, the measurement may be carried out without using the diluent, but when the diluent is used, the containing liquid of the present invention is subjected to the measurement. A diluted solution of 9 times or less, particularly preferably 1 to 5 times by volume is used.

後述する実施例においては、用時希釈液である第1試薬が上記の希釈液であり、ラテックス粒子分散液である第2試薬が本発明の含有液である。これらの第1試薬と第2試薬を構成要素として含むものが、本発明のキットの具体例の一つである。 In the examples described later, the first reagent, which is a diluted solution before use, is the above-mentioned diluted solution, and the second reagent, which is a latex particle dispersion, is the containing solution of the present invention. One of the specific examples of the kit of the present invention is one containing these first reagent and second reagent as constituent elements.

以下、本発明の実施例を記載する。%は、特に断らない限り質量%である。 Hereinafter, examples of the present invention will be described. % Is mass% unless otherwise specified.

[製造例]
1.ラテックス
本実施例において用いたラテックスは下記の通りである。
(1)物理吸着法を行うラテックス
・0.235μmポリスチレンラテックス粒子(以下、物理ラテックス1という)
・0.223μmポリスチレンラテックス粒子(以下、物理ラテックス2という)
・0.310μmポリスチレンラテックス粒子(以下、物理ラテックス3という)
[Manufacturing example]
1. 1. Latex The latex used in this example is as follows.
(1) Latex to be subjected to physical adsorption method-0.235 μm polystyrene latex particles (hereinafter referred to as physical latex 1)
0.223 μm polystyrene latex particles (hereinafter referred to as physical latex 2)
-0.310 μm polystyrene latex particles (hereinafter referred to as physical latex 3)

(2)化学結合法を行うラテックス
・0.145μmカルボキシラテックス粒子(以下、化学ラテックス1という)
・0.245μmカルボキシラテックス粒子(以下、化学ラテックス2という)
・0.300μmカルボキシラテックス粒子(以下、化学ラテックス3という)
(2) Latex to be chemically bonded ・ 0.145 μm carboxylatex particles (hereinafter referred to as chemical latex 1)
-0.245 μm carboxylatex particles (hereinafter referred to as chemical latex 2)
0.300 μm carboxylatex particles (hereinafter referred to as chemical latex 3)

2.担持抗原の調製
本実施例の細菌由来の担持抗原としては、ピロリ菌(ヘリコバクター・ピロリ)の調製抗原を用いた。当該細菌由来抗原の調製は、下記の手順で行った。
2. Preparation of supported antigen As the supported antigen derived from the bacteria of this example, the prepared antigen of Helicobacter pylori was used. The bacterial antigen was prepared according to the following procedure.

(1)予備培養
元菌株を、ヘリコバクター・ピロリ選択分離用ポアメディア(登録商標)HP分離培地(栄研化学株式会社)を用いて、アネロパック(三菱ガス化学株式会社)により微好気環境にし、37℃で培養した。
(1) Pre-culture The original strain was made into a slightly aerobic environment by Aneropack (Mitsubishi Gas Chemical Company, Inc.) using Poremedia (registered trademark) HP separation medium (Eiken Chemical Co., Ltd.) for selective separation of Helicobacter pylori. It was cultured at 37 ° C.

(2)本培養
本培養の培養液は、パールコア(登録商標)ブレインハートインフュジョンブイヨン培地‘栄研’(栄研化学株式会社)に5%馬血清を加えた培養液200mLを用いた。この本培養液に、上記予備培地の単コロニーを釣菌した後、McFarland No.1.0に調整した接種菌液を接種し、微好気ガス下で、37℃で振盪培養を行った。
(2) Main culture As the culture solution for this culture, 200 mL of a culture solution obtained by adding 5% horse serum to Pearl Core (registered trademark) Brain Heart Infusion Bouillon medium'Eiken'(Eiken Chemical Co., Ltd.) was used. After catching a single colony of the above-mentioned preliminary medium in this main culture medium, McFarland No. The inoculated bacterial solution adjusted to 1.0 was inoculated, and the cells were cultured with shaking at 37 ° C. under slightly aerobic gas.

(3)溶菌
上記本培養完了後、遠心にて集菌を行い、さらに生理食塩水にて遠心洗浄し、沈殿に溶菌液(0.15M NaCl、0.1% ポリオキシエチレンオクチルフェニルエーテル、5mM EDTA、0.1%NaN3を含む50mM HEPES緩衝液、pH7.4)を添加して、これを凍結融解にて溶菌を行った。
(3) Bacteriolysis After the above main culture is completed, the cells are collected by centrifugation, washed centrifugally with physiological saline, and the precipitate is lysed with a lytic solution (0.15 M NaCl, 0.1% polyoxyethylene octylphenyl ether, 5 mM). EDTA, 50 mM HEPES buffer containing 0.1% NaCl 3 , pH 7.4) was added, and this was lysed by freeze-thaw.

(4)抗原調製
上記のヘリコバクター・ピロリの溶解物を、0.15M NaCl、0.1% NaN3を含むHEPES緩衝液(pH7.4)に対して透析後、遠心上清を得て、これに孔径0.45μmのメンブレンフィルター濾過を施した。当該濾過物を抗原として、抗原調製を完了し、これを「ヘリコバクター・ピロリ溶解物」として、以下の工程に供した。ヘリコバクター・ピロリ溶解物の抗原蛋白濃度はBCA法により測定した。
(4) Preparation of antigen The above lysate of Helicobacter pylori was dialyzed against HEPES buffer (pH 7.4) containing 0.15 M NaCl and 0.1% NaN 3, and then a centrifugal supernatant was obtained. Was filtered through a membrane filter having a pore size of 0.45 μm. Using the filtered product as an antigen, antigen preparation was completed, and this was used as a "Helicobacter pylori lysate" and subjected to the following steps. The antigen protein concentration of Helicobacter pylori lysate was measured by the BCA method.

3.ラテックス粒子への担持工程
(1)物理吸着法による担持
0.09%ポリスチレンラテックス粒子含有液21.1mLに0.5M CHES緩衝液(pH8.8)0.48mLを添加した後、8mg/mLのヘリコバクター・ピロリ溶解物0.25mLを混合した。混合液を室温で30分攪拌した後、10%BSA溶液1.04mLを添加し、精製水で全量を24.0mLとした。さらに、56℃で4時間加熱処理した後、遠心分離にて未吸着抗原を除去した。遠心分離にて未吸着抗原を除去したラテックス粒子を0.01M HEPES緩衝液(pH7.4)4.0mLに再分散させ、10%BSA溶液0.04mLを添加した後、これを56℃で2時間加熱処理した。加熱後の抗原吸着ラテックス粒子含有液を濾過し、ラテックス粒子濃度0.48%の物理吸着ラテックスを作製した。
3. 3. Supporting step on latex particles (1) Supporting by physical adsorption method After adding 0.48 mL of 0.5 M CHES buffer (pH 8.8) to 21.1 mL of 0.09% polystyrene latex particle-containing solution, 8 mg / mL 0.25 mL of Helicobacter pyroli lysate was mixed. After stirring the mixed solution at room temperature for 30 minutes, 1.04 mL of a 10% BSA solution was added, and the total volume was adjusted to 24.0 mL with purified water. Further, after heat treatment at 56 ° C. for 4 hours, the unadsorbed antigen was removed by centrifugation. Latex particles from which unadsorbed antigens have been removed by centrifugation are redispersed in 4.0 mL of 0.01 M HEPES buffer (pH 7.4), 0.04 mL of 10% BSA solution is added, and then this is added at 56 ° C. for 2 Heat treated for hours. The heated antigen-adsorbing latex particle- containing liquid was filtered to prepare a physically adsorbed latex having a latex particle concentration of 0.48%.

遠心分離による未吸着抗原除去後にラテックス粒子の再分散に用いる0.01M HEPES緩衝液(pH7.4)の容量を適宜変更することにより、作製する物理吸着ラテックスのラテックス粒子濃度を適宜調整することができる(化学結合についても同様)。 The latex particle concentration of the physically adsorbed latex to be produced can be appropriately adjusted by appropriately changing the volume of 0.01 M HEPES buffer (pH 7.4) used for redispersion of latex particles after removing the unadsorbed antigen by centrifugation. Yes (same for chemical bonds).

(2)化学結合法による担持
0.3%カルボキシラテックス粒子含有液6.4mLに1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩をカルボキシル基の2モル等量添加し、15分攪拌反応させカルボキシル基を活性化した。カルボキシル基を活性化させたラテックス粒子含有液に、精製水63.2mL及び0.5M HEPES緩衝液(pH7.0)1.28mLを添加後、8mg/mLのヘリコバクター・ピロリ溶解物0.340mLを混合し、3時間反応させた。反応混合液に10%BSA溶液0.776mLを添加し、4時間反応させた後、遠心分離にて未吸着抗原を除去した。遠心分離にて未結合抗原を除去したラテックス粒子を0.01M HEPES緩衝液(pH7.4)4.0mLに再分散させ、10%BSA溶液0.04mLを添加し、56℃で4時間加熱処理した。加熱後の抗原結合ラテックス粒子含有液を濾過し、ラテックス粒子濃度0.48%の化学結合ラテックスを作製した。
(2) Support by chemical bonding method Add 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride to 6.4 mL of a 0.3% carboxylatex particle-containing liquid in an equal amount of 2 mol of carboxyl groups for 15 minutes. The carboxyl group was activated by a stirring reaction. After adding 63.2 mL of purified water and 1.28 mL of 0.5 M HEPES buffer (pH 7.0) to the latex particle- containing solution in which the carboxyl group has been activated, 0.340 mL of 8 mg / mL Helicobacter pylori lysate is added. It was mixed and reacted for 3 hours. 0.776 mL of a 10% BSA solution was added to the reaction mixture, and the mixture was reacted for 4 hours, and then the unadsorbed antigen was removed by centrifugation. Latex particles from which unbound antigens have been removed by centrifugation are redispersed in 4.0 mL of 0.01 M HEPES buffer (pH 7.4), 0.04 mL of 10% BSA solution is added, and heat treatment is performed at 56 ° C. for 4 hours. did. The heated antigen-bonded latex particle- containing liquid was filtered to prepare a chemically bonded latex having a latex particle concentration of 0.48%.

(3)ラテックス粒子分散液の調製
0.3M NaCl、0.8M L−アルギニン塩酸塩及び0.2%NaN3を含むHEPES緩衝液(pH7.4)2.5mLに、前記(1)で調製した物理吸着ラテックス1.563mL及び前記(2)で調製した化学結合ラテックス0.521mLを添加し、精製水にて全量5.0mLとして、0.15%の物理吸着ラテックス粒子と0.05%の化学結合ラテックス粒子を含むラテックス粒子分散液を調製した。
(3) Preparation of Latex Particle Dispersion Solution Prepared in 2.5 mL of HEPES buffer (pH 7.4) containing 0.3M NaCl, 0.8ML-arginine hydrochloride and 0.2% NaN 3 according to (1) above. Add 1.563 mL of the physically adsorbed latex and 0.521 mL of the chemically bonded latex prepared in (2) above, and add 0.15% of the physically adsorbed latex particles and 0.05% of the total amount to 5.0 mL with purified water. A latex particle dispersion containing chemically bonded latex particles was prepared.

物理吸着ラテックスと化学結合ラテックスの添加量を適宜選択することで、種々の混合比率とすることができる。 Various mixing ratios can be obtained by appropriately selecting the addition amounts of the physically adsorbed latex and the chemically bonded latex.

4.測定系
本実施例における測定は、濁度法を用いて行った。
4. Measurement system The measurement in this example was performed using the turbidity method.

第1試薬は、希釈液(用時希釈液)であって、0.05M HEPES、0.15M NaCl、0.5% chondroitin sulfate Na、0.1% BSA、0.1% PBC−34、0.1% NaN3 pH7.4、残量は精製水である。The first reagent is a diluent (diluted solution before use), 0.05M HEPES, 0.15M NaCl, 0.5% chondroitin sulfate Na, 0.1% BSA, 0.1% PBC-34, 0. .1% NaCl 3 pH 7.4, remaining amount is purified water.

第2試薬は、ラテックス粒子分散液(本発明の含有液)であって、0.05M HEPES、0.15M NaCl、0.4M L−Arg・HCl、0.1% NaN3ラテックス粒子 pH7.4、残量は精製水である。 The second reagent is a latex particle dispersion (containing solution of the present invention), 0.05M HEPES, 0.15M NaCl, 0.4M L-Arg HCl, 0.1% NaN 3 , and latex particle pH 7. 4. The remaining amount is purified water.

測定は、生化学自動分析装置JCA−BM2250(日本電子株式会社)を用いて行った。 The measurement was performed using an automatic biochemical analyzer JCA-BM2250 (JEOL Ltd.).

具体的には、当該装置にて、生理食塩水で5倍に希釈したサンプル(血清サンプル)6.0μLに第1試薬60μLを混合し37℃で5分間インキュベーションした後、この混合液に第2試薬を20μL混合し37℃で反応させ、第2試薬混合後約3分間の主波長658nm及び副波長805nmの二波長での吸光度変化を測定した。すなわち、本実施例では、第2試薬に対して、容積比で3倍の第1試薬を用いた(希釈倍率:4倍)。 Specifically, in the apparatus, 60 μL of the first reagent was mixed with 6.0 μL of a sample (serum sample) diluted 5-fold with physiological saline, incubated at 37 ° C. for 5 minutes, and then the second reagent was added to this mixed solution. 20 μL of the reagent was mixed and reacted at 37 ° C., and the change in absorbance at two wavelengths of a main wavelength of 658 nm and a sub-wavelength of 805 nm was measured for about 3 minutes after mixing the second reagent. That is, in this example, the first reagent having a volume ratio of 3 times was used with respect to the second reagent (dilution ratio: 4 times).

基準法として、ELISA法(Eプレート‘栄研’H.ピロリII:栄研化学株式会社)による測定を行った。 As a reference method, measurement was performed by the ELISA method (E plate'Eiken'H. pylori II: Eiken Chemical Co., Ltd.).

[実施例1] 2種のラテックス粒子の混合効果の検討
上記のように、異なる方式でヘリコバクター・ピロリ溶解物を担持させた、粒径0.235μmの物理吸着ラテックス粒子(物理ラテックス)と、粒径0.145μmの化学結合ラテックス粒子(化学ラテックス1)を用いて、物理吸着ラテックス粒子のみを使用した場合、化学結合ラテックス粒子のみを使用した場合、及びこれらの混合物を使用した場合の反応性を、プール血清の希釈系列を用い、確認した(表1・図1)。検討に用いた第2試薬のラテックス粒子濃度は、物理吸着ラテックス粒子のみを使用した場合は0.15%、化学結合ラテックス粒子のみを使用した場合は0.30%、混合物を使用した場合は物理吸着ラテックス粒子、化学結合ラテックス粒子、それぞれ0.15%、0.30%とした。次いで血清サンプルを測定して、それぞれの場合の特異性を検討した(表2)。なお、「表1の反応性の単位」と「図1の縦軸の単位」は、吸光度変化量(ΔOD/min)を10000倍したものである。
[Example 1] Examination of mixing effect of two types of latex particles As described above, physically adsorbed latex particles (physical latex 1 ) having a particle size of 0.235 μm and carrying a helicobacter pyrori lysate by different methods, Reactivity of chemically bonded latex particles (chemical latex 1) having a particle size of 0.145 μm, when only physically adsorbed latex particles are used, when only chemically bonded latex particles are used, and when a mixture thereof is used. Was confirmed using a dilution series of pooled serum (Table 1, FIG. 1). The latex particle concentration of the second reagent used in the study was 0.15% when only physically adsorbed latex particles were used, 0.30% when only chemically bonded latex particles were used, and physical when a mixture was used. Adsorbed latex particles and chemically bonded latex particles were set to 0.15% and 0.30%, respectively. Serum samples were then measured to examine the specificity of each case (Table 2). The "unit of reactivity in Table 1" and "unit of the vertical axis in FIG. 1" are obtained by multiplying the amount of change in absorbance (ΔOD / min) by 10,000.

また、表1に示された物理吸着ラテックス粒子及び化学結合ラテックス粒子の濃度は、上記の通り第2試薬における濃度であり、測定時における当該ラテックス濃度は、第1試薬による希釈により、それぞれ当該表示の1/4である。例えば、「物理ラテックス1 0.15%」の表示であれば、測定時における物理ラテックス1の濃度は、「0.15×1/4=0.0375%」である。 The concentrations of the physically adsorbed latex particles and the chemically bonded latex particles shown in Table 1 are the concentrations in the second reagent as described above, and the latex concentrations at the time of measurement are indicated by dilution with the first reagent, respectively. It is 1/4 of. For example, if "Physical Latex 1 0.15%" is displayed, the concentration of Physical Latex 1 at the time of measurement is "0.15 x 1/4 = 0.0375%".

Figure 0006918808
Figure 0006918808

Figure 0006918808
Figure 0006918808

物理吸着ラテックス粒子に化学結合ラテックス粒子を混合することで、高い陰性一致率を維持したまま陽性一致率が向上し特異性が向上し、物理吸着ラテックス粒子、化学結合ラテックス粒子の第2試薬における濃度を、それぞれ0.15%、0.30%(1:2)とした場合に、全体の一致率において好ましい結果が認められた(表2)。 By mixing the chemically bonded latex particles with the physically adsorbed latex particles , the positive matching rate is improved and the specificity is improved while maintaining a high negative matching rate, and the concentrations of the physically adsorbed latex particles and the chemically bonded latex particles in the second reagent. When were set to 0.15% and 0.30% (1: 2), respectively, favorable results were observed in the overall concordance rate (Table 2).

[実施例2] 2種のラテックス粒子の混合比率の検討
上記のように、異なる方式でヘリコバクター・ピロリ溶解物を担持させた、粒径0.223μmの物理吸着ラテックス粒子(物理ラテックス2)の第2試薬中の濃度を0.20%とし、これに粒径0.145μmの化学結合ラテックス粒子(化学ラテックス1)を0−0.20%となるように添加して、血清サンプルを測定し特異性を検討した(表3)。
[Example 2] Examination of mixing ratio of two types of latex particles As described above, the first of physically adsorbed latex particles (physical latex 2) having a particle size of 0.223 μm, which carries a helicobacter pyrori lysate by different methods. 2 The concentration in the reagent was set to 0.20%, and chemically bonded latex particles (chemical latex 1) having a particle size of 0.145 μm were added so as to be 0-0.20%, and the serum sample was measured and peculiar. The sex was examined (Table 3).

また、表3における物理吸着ラテックス粒子と化学結合ラテックス粒子の濃度の表示と、第1試薬による4倍希釈による測定時のそれらの濃度の関係は、実施例1に記載した通りである。 Further, the relationship between the display of the concentrations of the physically adsorbed latex particles and the chemically bonded latex particles in Table 3 and the relationship between the concentrations at the time of measurement by 4-fold dilution with the first reagent is as described in Example 1.

Figure 0006918808
Figure 0006918808

化学結合ラテックス粒子を混合した場合は、化学結合ラテックス粒子の混合量が増加することで一致率が向上した。特に、化学結合ラテックス粒子の第2試薬中の濃度が0%、0.05%、0.10%、0.20%と増加するのに伴い陽性一致率が53%、67%、73%、80%と顕著に向上し、偽陰性(見逃し)を回避することが可能であることが分かった。ただし、物理吸着ラテックス粒子の混合量が0.20%であり、後述する0.18%(測定時:0.045%)を超えているので、一致率の伸びは抑制的であった(表3)。 When the chemically bonded latex particles were mixed, the matching rate was improved by increasing the mixing amount of the chemically bonded latex particles. In particular, as the concentration of the chemically bonded latex particles in the second reagent increased to 0%, 0.05%, 0.10%, 0.20%, the positive concordance rate increased to 53%, 67%, 73%, It was found that it was significantly improved to 80% and it was possible to avoid false negatives (missing). However, since the mixed amount of the physically adsorbed latex particles was 0.20%, which exceeded 0.18% (measured: 0.045%) described later, the increase in the concordance rate was suppressed (Table). 3).

[実施例3] 2種のラテックス粒子の混合比率の検討(1)
上記のように、異なる方式でヘリコバクター・ピロリ溶解物を担持させた、粒径0.235μmの物理吸着ラテックス粒子(物理ラテックス1)の第2試薬中の濃度を0.12%として、これに粒径0.300μmの化学結合ラテックス粒子(化学ラテックス3)を0−0.10%となるように添加した場合の、反応性をLZ−H.ピロリ抗体キャリブレータ‘栄研’(栄研化学株式会社)を用いて検討し(表4・図2)、次いで、血清サンプルを測定して特異性を検討した(表5)。なお、「表4の反応性の単位」と「図2の縦軸の単位」は、吸光度変化量(ΔOD/min)を10000倍したものである。
[Example 3] Examination of mixing ratio of two types of latex particles (1)
As described above, the concentration of the physically adsorbed latex particles (physical latex 1) having a particle size of 0.235 μm in which the helicobacter pyrrol lysate was carried by different methods in the second reagent was set to 0.12%, and the particles were added to the particles. When chemically bonded latex particles (chemical latex 3) having a diameter of 0.300 μm were added so as to be 0-0.10%, the reactivity was determined to be LZ-H. The examination was carried out using the Helicobacter pylori antibody calibrator'Eiken'(Eiken Chemical Co., Ltd.) (Table 4, Fig. 2), and then the serum sample was measured to examine the specificity (Table 5). The "unit of reactivity in Table 4" and "unit of the vertical axis in FIG. 2" are obtained by multiplying the amount of change in absorbance (ΔOD / min) by 10,000.

また、表4及び表5における物理吸着ラテックス粒子と化学結合ラテックス粒子の濃度の表示と、第1試薬による4倍希釈による測定時のそれらの濃度の関係は、実施例1に記載した通りである。 Further, the relationship between the indication of the concentrations of the physically adsorbed latex particles and the chemically bonded latex particles in Tables 4 and 5 and their concentrations at the time of measurement by 4-fold dilution with the first reagent is as described in Example 1. ..

Figure 0006918808
Figure 0006918808

Figure 0006918808
Figure 0006918808

この結果より、物理吸着ラテックス粒子に対する化学結合ラテックス粒子の混合量が増加する従い、陽性一致率が向上し、偽陰性(見逃し)を回避することができた。さらに、化学結合ラテックス粒子の混合量が増加する従い、反応性が向上し、物理吸着ラテックス粒子と化学結合ラテックス粒子の第2試薬中の濃度比が、12:5−12:10(3:1−1:3以内)において、全体の一致率は好適であった(表5)。 From this result, as the amount of the chemically bonded latex particles mixed with the physically adsorbed latex particles increased, the positive concordance rate improved, and false negatives (missing) could be avoided. Further, as the mixing amount of the chemically bonded latex particles is increased, the reactivity is improved, and the concentration ratio of the physically adsorbed latex particles and the chemically bonded latex particles in the second reagent is 12: 5-12: 10 (3: 1). Within -1: 3), the overall concordance rate was favorable (Table 5).

[実施例4]2種のラテックス粒子の混合比率の検討(2)
実施例3と同趣旨の検討を、さらに測定範囲を拡大して行った。用いたラテックス粒子は、実施例3と同様に物理ラテックス1と化学ラテックス3である。
[Example 4] Examination of mixing ratio of two types of latex particles (2)
A study to the same effect as in Example 3 was carried out by further expanding the measurement range. The latex particles used are physical latex 1 and chemical latex 3 as in Example 3.

(1)物理ラテックス1の第2試薬中の濃度を0.12%に固定して、化学ラテックス3の濃度を0%(物理吸着:化学結合=7.5:0)、0.016%(7.5:1)、0.048%(7.5:3)、0.08%(7.5:5)、0.12%(7.5:7.5)、0.16%(7.5:10)とした場合の特異性を、血清サンプルを測定して検討した(表6)。H.ピロリ抗体値は、LZ−H.ピロリ抗体キャリブレータ‘栄研’(栄研化学株式会社)を用いて作成した検量線から求めた。 (1) The concentration of the physical latex 1 in the second reagent is fixed at 0.12%, and the concentration of the chemical latex 3 is 0% (physical adsorption: chemical bond = 7.5: 0) and 0.016% (physical adsorption: chemical bond = 7.5: 0). 7.5: 1), 0.048% (7.5: 3), 0.08% (7.5: 5), 0.12% (7.5: 7.5), 0.16% ( The specificity in the case of 7.5: 10) was examined by measuring a serum sample (Table 6). The H. pylori antibody level is LZ-H. It was obtained from the calibration curve prepared using the Helicobacter pylori antibody calibrator'Eiken'(Eiken Chemical Co., Ltd.).

また、表6における物理吸着ラテックス粒子と化学結合ラテックス粒子の濃度の表示と、第1試薬による4倍希釈による測定時のそれらの濃度の関係は、実施例1に記載した通りである。 Further, the relationship between the display of the concentrations of the physically adsorbed latex particles and the chemically bonded latex particles in Table 6 and the relationship between the concentrations at the time of measurement by 4-fold dilution with the first reagent is as described in Example 1.

Figure 0006918808
Figure 0006918808

(2)化学ラテックス3の第2試薬中の濃度を0.08%に固定して、物理ラテックス1の濃度を0%(物理吸着:化学結合=0:5)、0.024%(1.5:5)、0.072%(4.5:5)、0.12%(7.5:5)、0.18%(11.3:5)、0.24%(15:5)とした場合の特異性を、血清サンプルを測定して検討した(表7)。H.ピロリ抗体値は、LZ−H.ピロリ抗体キャリブレータ‘栄研’(栄研化学株式会社)を用いて作成した検量線から求めた。 (2) The concentration of the chemical latex 3 in the second reagent was fixed at 0.08%, and the concentration of the physical latex 1 was 0% (physical adsorption: chemical bond = 0: 5) and 0.024% (1. 5: 5), 0.072% (4.5: 5), 0.12% (7.5: 5), 0.18% (11.3: 5), 0.24% (15: 5) The specificity of the case was examined by measuring a serum sample (Table 7). The H. pylori antibody level is LZ-H. It was obtained from the calibration curve prepared using the Helicobacter pylori antibody calibrator'Eiken'(Eiken Chemical Co., Ltd.).

また、表7における物理吸着ラテックス粒子と化学結合ラテックス粒子の濃度の表示と、第1試薬による4倍希釈による測定時のそれらの濃度の関係は、実施例1に記載した通りである。 Further, the relationship between the display of the concentrations of the physically adsorbed latex particles and the chemically bonded latex particles in Table 7 and the relationship between the concentrations at the time of measurement by 4-fold dilution with the first reagent is as described in Example 1.

Figure 0006918808
Figure 0006918808

上記(1)(2)において、上記実施例よりも広い範囲における、物理吸着ラテックス粒子と化学結合ラテックス粒子の混合の効果が確認された。 In the above (1) and (2), the effect of mixing the physically adsorbed latex particles and the chemically bonded latex particles in a wider range than that of Example 3 was confirmed.

すなわち、物理吸着ラテックス粒子と化学結合ラテックス粒子の第2試薬中の濃度比が、7.5:1−7.5:10の範囲において検討を行った結果、7.5:1の例においては、これら2種のラテックス粒子の混合効果が認められ、他の7.5:3−7.5:10(3:1−1:3以内)において、全体の一致率は好適であった(表6)。 That is, as a result of examining the concentration ratio of the physically adsorbed latex particles and the chemically bonded latex particles in the second reagent in the range of 7.5: 1-7.5: 10, in the example of 7.5: 1. , The effect of mixing these two types of latex particles was observed, and the overall concordance rate was favorable at the other 7.5: 3-7.5: 10 (within 3: 1-1: 3) (Table). 6).

また、上記濃度比が、1.5:5−15:5の範囲において検討を行った結果、1.5:5(5:1−1:5以内)、及び、4.5:5と7.5:5(3:1−1:3以内)において、全体の一致率は好適であったが、物理吸着ラテックス粒子の第2試薬における濃度が0.18%(測定時:0.045%)以上の2例(11.3:5と15:5の例)は、配合比自体は3:1−1:3の範囲であるものの、混合による特異性の向上効果が妨げられた(表7)。 Further, as a result of examining the above concentration ratio in the range of 1.5: 5-15: 5, 1.5: 5 (within 5: 1-1: 5) and 4.5: 5 and 7 At .5: 5 (within 3: 1-1: 3), the overall concordance ratio was favorable, but the concentration of the physically adsorbed latex particles in the second reagent was 0.18% (measured: 0.045%). ) In the above two cases (11.3: 5 and 15: 5 cases), although the compounding ratio itself was in the range of 3: 1-1: 3, the effect of improving the specificity by mixing was hindered (Table). 7).

なお、物理吸着ラテックス粒子と化学結合ラテックス粒子のいずれか一方の使用の場合は、陽性一致率と陰性一致率の差が一層極端であったが、これはサンプル数が少ないことが要因となっていると考えられる。 In the case of using either the physically adsorbed latex particles or the chemically bonded latex particles , the difference between the positive concordance rate and the negative concordance rate was even more extreme, but this was due to the small number of samples. It is thought that there is.

[実施例5] ラテックス粒子の粒径についての検討
上記のように、異なる方式でヘリコバクター・ピロリ溶解物を担持した、粒径を0.235μmの物理吸着ラテックス粒子(物理ラテックス1)の第2試薬中の濃度を0.15%とし、これに粒径0.245μm又は0.300μmの化学結合ラテックス粒子(それぞれ化学ラテックス2(中粒径)、化学ラテックス3(大粒径))を0.05%混合して、それぞれの特異性を、血清サンプルを測定して検討した。H.ピロリ抗体値は、LZ−H.ピロリ抗体キャリブレータ‘栄研’(栄研化学株式会社)を用いて作成した検量線から求めた。その結果、全体の一致率(陽性一致率と陰性一致率を併せたもの)が、それぞれ92%と88%で、双方実質的な差異は認められなかった。
[Example 5] Examination of particle size of latex particles As described above, a second reagent of physically adsorbed latex particles (physical latex 1) having a particle size of 0.235 μm, which carries a helicobacter pyrori lysate in a different manner. The medium concentration is 0.15%, and chemically bonded latex particles having a particle size of 0.245 μm or 0.300 μm (chemical latex 2 (medium particle size) and chemical latex 3 (large particle size), respectively) are added to this. % Mixing and each specificity was examined by measuring serum samples. The H. pylori antibody level is LZ-H. It was obtained from the calibration curve prepared using the Helicobacter pylori antibody calibrator'Eiken'(Eiken Chemical Co., Ltd.). As a result, the overall concordance rate (combined positive concordance rate and negative concordance rate) was 92% and 88%, respectively, and no substantial difference was observed between the two.

さらに物理吸着ラテックス粒子間の粒径の測定値に与える影響を確認するため、物理ラテックス2(粒径:0.223μm(中粒径))と物理ラテックス3(粒径:0.310μm(大粒径))を、それぞれ第2試薬中0.10%の濃度として、それぞれの特異性を、上記と同様の方法で測定したが、陽性一致率、陰性一致率、及び、全体の一致率において実質的な差異は認められなかった。
なお、本実施例5においても、物理吸着ラテックス粒子と化学結合ラテックス粒子の濃度の表示と、第1試薬による4倍希釈による測定時のそれらの濃度の関係は、実施例1に記載した通りである。
Furthermore, in order to confirm the effect on the measured value of the particle size between the physically adsorbed latex particles , the physical latex 2 (particle size: 0.223 μm (medium particle size)) and the physical latex 3 (particle size: 0.310 μm (large particle size)) The specificity of each of the diameters)) was measured at a concentration of 0.10% in the second reagent by the same method as described above, but the positive agreement rate, the negative agreement rate, and the overall agreement rate were substantially the same. No particular difference was observed.
Also in this Example 5, the relationship between the display of the concentrations of the physically adsorbed latex particles and the chemically bonded latex particles and the concentration at the time of measurement by 4-fold dilution with the first reagent is as described in Example 1. be.

この結果より、化学結合ラテックス粒子の粒径と物理吸着ラテックス粒子の粒径は、少なくとも中ないし大粒径においては、共に生体から分離されたサンプルの測定の特異性には実質的に影響を及ぼさないことが確認された。 From this result, the particle size of the chemically bonded latex particles and the particle size of the physically adsorbed latex particles both substantially affect the measurement specificity of the sample separated from the living body, at least in medium to large particle sizes. It was confirmed that there was no such thing.

Claims (11)

物理吸着により所定の抗原が担持された不溶性担体粒子、及び、化学結合により当該抗原が担持された不溶性担体粒子、の双方を含有する不溶性担体粒子の含有液を、標的抗体を含有し得る生体から分離されたサンプルと接触させて、当該担体粒子に担持された抗原と、当該サンプル中の標的抗体との抗原抗体反応による当該担体粒子の凝集反応を検出することを特徴とする、抗体測定方法。 A liquid containing insoluble carrier particles containing both an insoluble carrier particle carrying a predetermined antigen by physical adsorption and an insoluble carrier particle carrying the antigen by a chemical bond can be obtained from a living body capable of containing a target antibody. A method for measuring an antibody, which comprises contacting with a separated sample to detect an aggregation reaction of the carrier particles due to an antigen-antibody reaction between an antigen carried on the carrier particles and a target antibody in the sample. 所定の抗原は、複数物質の混合物であることを特徴とする、請求項1に記載の抗体測定方法。 The antibody measuring method according to claim 1, wherein the predetermined antigen is a mixture of a plurality of substances. 複数物質の混合物は、微生物由来の溶解物であることを特徴とする、請求項2に記載の抗体測定方法。 The antibody measuring method according to claim 2, wherein the mixture of the plurality of substances is a lysate derived from a microorganism. 所定の抗原は、分子量が5000以上の物質を少なくとも1種含むことを特徴とする、請求項1−3のいずれか1項に記載の抗体測定方法。 The antibody measuring method according to any one of claims 1-3, wherein the predetermined antigen contains at least one substance having a molecular weight of 5000 or more. 不溶性担体粒子は、ラテックス粒子であることを特徴とする、請求項1−4のいずれか1項に記載の抗体測定方法。 The antibody measuring method according to any one of claims 1-4, wherein the insoluble carrier particles are latex particles. 生体から分離されたサンプル中の標的抗体との抗原抗体反応による抗原担持担体粒子の反応を検出するための抗体の測定用試薬であって、物理吸着により所定の抗原が担持された不溶性担体粒子、及び、化学結合により当該抗原が担持された不溶性担体粒子、の双方を含有する不溶性担体粒子の含有液であることを特徴とする、抗体の測定用試薬。 An antibody measuring reagent for detecting the reaction of an antigen-supporting carrier particle by an antigen-antibody reaction with a target antibody in a sample separated from a living body, and an insoluble carrier particle in which a predetermined antigen is supported by physical adsorption. A reagent for measuring an antibody, which is a liquid containing insoluble carrier particles containing both an insoluble carrier particle in which the antigen is supported by a chemical bond. 所定の抗原は、複数物質の混合物であることを特徴とする、請求項6に記載の測定用試薬。 The measuring reagent according to claim 6, wherein the predetermined antigen is a mixture of a plurality of substances. 複数物質の混合物は、微生物由来の溶解物であることを特徴とする、請求項7に記載の測定用試薬。 The reagent for measurement according to claim 7, wherein the mixture of the plurality of substances is a lysate derived from a microorganism. 所定の抗原は、分子量が5000以上の物質を少なくとも1種含むことを特徴とする、請求項6−8のいずれか1項に記載の測定用試薬。 The measuring reagent according to any one of claims 6-8, wherein the predetermined antigen contains at least one substance having a molecular weight of 5000 or more. 不溶性担体粒子は、ラテックス粒子であることを特徴とする、請求項6−9のいずれか1項に記載の測定用試薬。 The measuring reagent according to any one of claims 6-9, wherein the insoluble carrier particles are latex particles. 請求項6−10のいずれか1項に記載の測定用試薬及び希釈液を含むことを特徴とする、測定用キット。 A measurement kit comprising the measurement reagent and diluent according to any one of claims 6-10.
JP2018537356A 2016-08-31 2017-08-30 Antibody measurement method using antigen-supporting insoluble carrier particles in which antigens are immobilized by different methods, reagents for antibody measurement Active JP6918808B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016168772 2016-08-31
JP2016168772 2016-08-31
PCT/JP2017/031218 WO2018043584A1 (en) 2016-08-31 2017-08-30 Antibody measurement method using antigen-carrying insoluble carrier particles on which antigen is immobilized by different methods, and reagent for antibody measurement

Publications (2)

Publication Number Publication Date
JPWO2018043584A1 JPWO2018043584A1 (en) 2019-06-24
JP6918808B2 true JP6918808B2 (en) 2021-08-11

Family

ID=61300978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018537356A Active JP6918808B2 (en) 2016-08-31 2017-08-30 Antibody measurement method using antigen-supporting insoluble carrier particles in which antigens are immobilized by different methods, reagents for antibody measurement

Country Status (7)

Country Link
EP (1) EP3508849B1 (en)
JP (1) JP6918808B2 (en)
KR (1) KR102505384B1 (en)
CN (1) CN109642899B (en)
AU (1) AU2017321642A1 (en)
TW (1) TWI757328B (en)
WO (1) WO2018043584A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485443A (en) * 2020-11-12 2021-03-12 山东博科生物产业有限公司 High-sensitivity anti-Ro 52 antibody detection kit
CN112798794B (en) * 2020-12-30 2023-11-17 迪亚莱博(张家港)生物科技有限公司 Alpha 1 acid glycoprotein detection kit
WO2023190003A1 (en) * 2022-03-29 2023-10-05 ミナリスメディカル株式会社 Method for measuring sialyl-lewis antigen, reagent for measurement, and kit for measurement

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1087285B (en) 1976-11-10 1985-06-04 Hoffmann La Roche IMMUNOLOGICAL DETERMINATION PROCEDURE
JPH0810224B2 (en) * 1987-04-30 1996-01-31 日東電工株式会社 A latex for immobilizing a physiologically active substance and a latex reagent using this latex
CN1078805A (en) * 1992-03-26 1993-11-24 荣研化学株式会社 Hepatitis C is checked with reagent and inspection method
CA2270163C (en) * 1996-12-19 2007-04-24 Chiron Corporation Helicobacter pylori diagnostics
JPH10239317A (en) * 1996-12-28 1998-09-11 Shinotesuto:Kk Method and reagent for restrainedly measuring zone phenomenon suppression and measuring reagent
KR20030021182A (en) * 2000-06-30 2003-03-12 교와메덱스 코리미티드 Insoluble Carrier Particle Nephelometric Immunoassay Reagent
EP1474504A2 (en) * 2002-01-24 2004-11-10 Pointilliste, Inc. Use of collections of binding sites for sample profiling and other applications
US7592429B2 (en) * 2005-05-03 2009-09-22 Ucb Sa Sclerostin-binding antibody
FR2917173B1 (en) * 2007-06-08 2009-07-31 Bio Rad Pasteur Sa MULTIPLEX METHOD OF DETECTING INFECTION
JP5351054B2 (en) * 2008-05-09 2013-11-27 アークレイ株式会社 Method for producing insoluble carrier particles, insoluble carrier particles, measurement reagent, sample analysis tool, and immunoturbidimetric method
US8614297B2 (en) * 2008-12-22 2013-12-24 Hoffmann-La Roche Inc. Anti-idiotype antibody against an antibody against the amyloid β peptide
ES2440326T3 (en) * 2009-03-05 2014-01-28 Denka Seiken Co., Ltd. Test reagent kit and use in a procedure to measure an analyte in a test sample
GB201014805D0 (en) * 2010-09-07 2010-10-20 Multi Sense Technologies Ltd Microfluidics based assay device
JP6192018B2 (en) * 2012-11-06 2017-09-06 国立大学法人群馬大学 Peptide and antibody test materials that detect both S. falciparum and P. falciparum malaria

Also Published As

Publication number Publication date
KR20190067779A (en) 2019-06-17
AU2017321642A1 (en) 2019-04-11
EP3508849B1 (en) 2023-04-19
EP3508849A1 (en) 2019-07-10
CN109642899B (en) 2024-03-08
CN109642899A (en) 2019-04-16
TW201812302A (en) 2018-04-01
TWI757328B (en) 2022-03-11
WO2018043584A1 (en) 2018-03-08
EP3508849A4 (en) 2020-04-01
KR102505384B1 (en) 2023-03-06
JPWO2018043584A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP5037350B2 (en) Microbubbles for affinity separation
TWI250281B (en) Method for assay of antibodies and antibody assay device
JP6918808B2 (en) Antibody measurement method using antigen-supporting insoluble carrier particles in which antigens are immobilized by different methods, reagents for antibody measurement
JPH01227962A (en) Lower alcohol sulfate cleaning liquid, test kit and measurement of immunological ligand
JPH01248061A (en) Washing liquid, test kit and measurement of immunological ligand
JPH0613582B2 (en) Polyfunctional hydrophilic spherical fine particles, method for producing the same and method for using the same
JPS61286755A (en) Solid phase immunity testing method and composition using light-emitting fine particle
WO2013146977A1 (en) Immunological analysis method and reagent
JP6442291B2 (en) Particle dispersion, kit for use in detection of target substance, and target substance detection method
JP2004325414A (en) Method and kit for measuring immunity
CN113125715A (en) Human immunodeficiency virus antibody detection kit and application thereof
JPH05232111A (en) Artificial standard and contrast serum and manufacture and use thereof
CN111999495A (en) Kit for detecting Coxsackie group B virus IgM antibody by magnetic particle chemiluminescence method and preparation method thereof
JP2005512074A (en) Method for reducing non-specific assembly of latex microparticles in the presence of serum or plasma
JP3663516B2 (en) Post-synthesis chemical modification of particle reagents
JP2000046828A (en) Immunoassay reagent and production thereof
JP3328058B2 (en) Method for producing immunodiagnostic drug
JP3618797B2 (en) Immunoassay
JP4694867B2 (en) Method and kit for measuring a substance to be measured in a sample for measuring a ring appearing on a porous membrane
JP4452324B2 (en) Purified serum albumin and immunoassay
JP2004117068A (en) Immunoassay reagent and immunoassay method
JPS63231265A (en) Agglutination reagent and manufacture thereof
JP4104219B2 (en) Method for producing anti-treponema antibody measuring reagent, measuring reagent and measuring method
JP2006138776A (en) Biological measurement method
JPH08278308A (en) Immunoassay method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210721

R150 Certificate of patent or registration of utility model

Ref document number: 6918808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150