JP6918522B2 - Lithium-ion battery scrap disposal method - Google Patents
Lithium-ion battery scrap disposal method Download PDFInfo
- Publication number
- JP6918522B2 JP6918522B2 JP2017041919A JP2017041919A JP6918522B2 JP 6918522 B2 JP6918522 B2 JP 6918522B2 JP 2017041919 A JP2017041919 A JP 2017041919A JP 2017041919 A JP2017041919 A JP 2017041919A JP 6918522 B2 JP6918522 B2 JP 6918522B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- electrolyte battery
- battery
- free
- free electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 50
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 50
- 238000000034 method Methods 0.000 title claims description 18
- 239000003792 electrolyte Substances 0.000 claims description 185
- 229920000642 polymer Polymers 0.000 claims description 96
- 238000010438 heat treatment Methods 0.000 claims description 51
- 229910052782 aluminium Inorganic materials 0.000 description 52
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 52
- 229910017052 cobalt Inorganic materials 0.000 description 24
- 239000010941 cobalt Substances 0.000 description 24
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 24
- 238000007873 sieving Methods 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 239000011888 foil Substances 0.000 description 16
- 229910052744 lithium Inorganic materials 0.000 description 15
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 238000002485 combustion reaction Methods 0.000 description 13
- 238000009826 distribution Methods 0.000 description 11
- 238000011084 recovery Methods 0.000 description 11
- 238000002156 mixing Methods 0.000 description 9
- 239000007774 positive electrode material Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000002386 leaching Methods 0.000 description 5
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical group N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Secondary Cells (AREA)
- Processing Of Solid Wastes (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
この発明は、たとえばリチウムイオン電池スクラップから有価金属を回収する際に、酸浸出に先立って、リチウムイオン電池スクラップを加熱して処理する方法に関するものであり、特には、処理時間やコストの増大を抑制しつつ、有価金属の回収率向上を実現することのできる技術を提案するものである。 The present invention relates to, for example, a method of heating and processing lithium ion battery scrap prior to acid leaching when recovering valuable metal from lithium ion battery scrap, and in particular, increasing processing time and cost. It proposes a technology that can improve the recovery rate of valuable metals while suppressing it.
各種の電子デバイスをはじめとして多くの産業分野で使用されているリチウムイオン電池は、マンガン、ニッケルおよびコバルトを含有するリチウム金属塩を正極活物質として用い、その正極活物質を含む正極材及び負極材の周囲を、アルミニウムを含む筐体で包み込んだものであり、近年は、その使用量の増加および使用範囲の拡大に伴い、電池の製品寿命や製造過程での不良により廃棄される量が増大している状況にある。
かかる状況の下では、大量に廃棄されるリチウムイオン電池スクラップから、上記のニッケルおよびコバルト等の有価金属を、再利用するべく比較的低コストで容易に回収することが望まれる。
Lithium ion batteries used in many industrial fields including various electronic devices use a lithium metal salt containing manganese, nickel and cobalt as a positive electrode active material, and a positive electrode material and a negative electrode material containing the positive electrode active material. It is wrapped in a housing containing aluminum, and in recent years, with the increase in the amount used and the range of use, the amount discarded due to the product life of the battery and defects in the manufacturing process has increased. Is in a situation.
Under such circumstances, it is desired to easily recover the above-mentioned valuable metals such as nickel and cobalt from the lithium-ion battery scrap that is discarded in large quantities at a relatively low cost for reuse.
有価金属の回収のために、リチウムイオン電池スクラップを処理するには、はじめに、リチウムイオン電池スクラップを加熱・焙焼することによって、内部に含まれる有害な電解質(可燃性液体等)を除去して無害化するとともに、その後に破砕、篩別を順に行って、筐体や正極基材に含まれるアルミニウムをある程度除去する前工程を実施する。
次いで、前工程により得られる粉末状の正極材を酸浸出し、そこに含まれ得るリチウム、ニッケル、コバルト、マンガン、アルミニウム等を溶液中に溶解させて、浸出後液を得る浸出工程を行う。
To process lithium-ion battery scrap for the recovery of valuable metals, first, by heating and roasting the lithium-ion battery scrap, harmful electrolytes (flammable liquid, etc.) contained inside are removed. In addition to detoxifying, crushing and sieving are performed in this order to carry out a pre-step of removing aluminum contained in the housing and the positive electrode base material to some extent.
Next, the powdered positive electrode material obtained in the previous step is acid-leached, and lithium, nickel, cobalt, manganese, aluminum and the like that can be contained therein are dissolved in the solution to obtain a liquid after leaching.
そしてその後、浸出後液に溶解している各金属元素を分離させる回収工程を行う。ここでは、浸出後液に浸出しているそれぞれの金属を分離させるため、浸出後液に対し、分離させる金属に応じた複数段階の溶媒抽出もしくは中和等を順次に施し、さらには、各段階で得られたそれぞれの溶液に対して、逆抽出、電解、炭酸化その他の処理を施す。具体的には、まずアルミニウムを回収し、続いてマンガン、そしてコバルト、その後にニッケルを回収して、最後に水相にリチウムを残すことで、各有価金属を回収することができる。 After that, a recovery step is performed to separate each metal element dissolved in the liquid after leaching. Here, in order to separate each metal leached into the leached solution, the leached solution is sequentially subjected to multiple steps of solvent extraction or neutralization according to the metal to be separated, and further, each step. The respective solutions obtained in the above are subjected to back extraction, electrolysis, carbonation and other treatments. Specifically, each valuable metal can be recovered by first recovering aluminum, then manganese, then cobalt, then nickel, and finally leaving lithium in the aqueous phase.
ところで近年は、リチウムイオン電池の正極と負極の間でリチウムイオンを流すための電解質にポリマーを使用した、いわゆるリチウムイオンポリマー電池が、使用に際する発火の危険性が低いという利点等から実用化されるに至っている。 By the way, in recent years, a so-called lithium ion polymer battery, which uses a polymer as an electrolyte for flowing lithium ions between the positive electrode and the negative electrode of a lithium ion battery, has been put into practical use because of its low risk of ignition during use. It has come to be done.
しかるに、このようなリチウムイオンポリマー電池は、使用後等に廃棄され、これから有価金属を回収しようとした場合、上記の前工程の加熱時に、ポリマーを含む当該電解質が難燃性であることに起因して燃焼温度が上昇し難く、燃焼が不十分となる。それにより、加熱後でもコバルト等の有価金属がアルミニウム箔から剥がれにくく、有価金属がアルミニウム箔に密着した状態が維持されるので、篩別工程にてコバルト等の分配率が低下する。
一方、有価金属をアルミニウム箔から剥がしやすくするには、燃焼温度が上昇し難いリチウムイオンポリマー電池を長時間にわたって加熱することが必要になり、処理時間及びコストが増大するという問題がある。
However, when such a lithium ion polymer battery is discarded after use or the like and an attempt is made to recover a valuable metal from the battery, the electrolyte containing the polymer is flame-retardant during the heating in the above-mentioned previous step. As a result, the combustion temperature does not rise easily, and combustion becomes insufficient. As a result, the valuable metal such as cobalt is not easily peeled off from the aluminum foil even after heating, and the state in which the valuable metal is in close contact with the aluminum foil is maintained, so that the distribution rate of cobalt or the like is lowered in the sieving step.
On the other hand, in order to easily peel off the valuable metal from the aluminum foil, it is necessary to heat the lithium ion polymer battery whose combustion temperature does not easily rise for a long period of time, which causes a problem that the processing time and cost increase.
この発明は、このような問題を解決することを課題とするものであり、その目的は、リチウムイオンポリマー電池等のポリマー非含有電解質電池を加熱して処理するに当り、処理時間及びコストの増大を抑制しつつ、有価金属の回収率向上に寄与することができるリチウムイオン電池スクラップの処理方法を提供することにある。 An object of the present invention is to solve such a problem, and an object of the present invention is to increase processing time and cost in heating and processing a polymer-free electrolyte battery such as a lithium ion polymer battery. It is an object of the present invention to provide a method for treating lithium ion battery scrap, which can contribute to the improvement of the recovery rate of valuable metals while suppressing the above.
発明者は、これまでのポリマーを含まない電解質を有するリチウムイオン電池の電解液成分が可燃性であることから、加熱時に昇温速度が速く、温度上昇が急激に起こり、さらに燃焼温度が高くなりやすい点に着目し、このようなポリマーを含まない電解質を有するポリマー非含有電解質電池とともに、先述のリチウムイオンポリマー電池のようなポリマーを含む電解質を有するポリマー含有電解質電池を加熱することで、ポリマー含有電解質電池を十分に燃焼させることができると考えた。 The inventor has stated that since the electrolyte component of the conventional lithium-ion battery having a polymer-free electrolyte is flammable, the temperature rise rate is high during heating, the temperature rises rapidly, and the combustion temperature rises further. Focusing on the ease of use, by heating a polymer-containing electrolyte battery having a polymer-containing electrolyte such as the above-mentioned lithium ion polymer battery together with a polymer-free electrolyte battery having such a polymer-free electrolyte, the polymer-containing electrolyte battery is heated. We thought that the electrolyte battery could be sufficiently burned.
なお、ポリマー非含有電解質電池は、それ単独で加熱すると、燃焼温度が高くなり過ぎることにより、アルミニウム箔が脆化・粉末化しやすく、その後の破砕時にアルミニウム箔が粉砕されやすくなるので、篩別の際にアルミニウム箔を篩上に残して取り除くことが困難となる。そして、このようにアルミニウムが篩下に得られる正極材に多く混入すると、回収工程でアルミニウムの分離・除去のための処理が必要になり、それによるコストが嵩むという問題がある。
これに対し、上述したように、ポリマー非含有電解質電池を、ポリマー含有電解質電池とともに加熱することにより、ポリマー含有電解質電池の難燃性の電解質によってポリマー非含有電解質電池の燃焼温度の上昇が抑制される結果として、昇温速度および最高到達温度を適切な範囲に制御できて、両電池を有効に加熱処理することができると考えられる。
When the polymer-free electrolyte battery is heated by itself, the combustion temperature becomes too high, so that the aluminum foil is easily embrittled and powdered, and the aluminum foil is easily crushed during the subsequent crushing. At this time, it becomes difficult to remove the aluminum foil by leaving it on the sieve. If a large amount of aluminum is mixed in the positive electrode material obtained under the sieve in this way, a treatment for separating / removing aluminum is required in the recovery step, which causes a problem that the cost increases.
On the other hand, as described above, by heating the polymer-free electrolyte battery together with the polymer-containing electrolyte battery, the flame-retardant electrolyte of the polymer-containing electrolyte battery suppresses an increase in the combustion temperature of the polymer-free electrolyte battery. As a result, it is considered that the rate of temperature rise and the maximum temperature reached can be controlled within an appropriate range, and both batteries can be effectively heat-treated.
上記の知見の下、この発明のリチウムイオン電池スクラップの処理方法は、リチウムイオン電池スクラップを加熱して処理する方法であって、前記リチウムイオン電池スクラップが、ポリマーを含む電解質を有するポリマー含有電解質電池、及び、ポリマーを含まない電解質を有するポリマー非含有電解質電池を含み、前記リチウムイオン電池スクラップ中の前記ポリマー非含有電解質電池の比率を、重量比で、20%以上70%以下として、前記ポリマー含有電解質電池をポリマー非含有電解質電池とともに加熱し、加熱時に、前記ポリマー含有電解質電池とポリマー非含有電解質電池とを交互に重ねて、互いに接触した状態で配置することにある。 Based on the above findings, the method for treating the lithium ion battery scrap of the present invention is a method for treating the lithium ion battery scrap by heating, and the lithium ion battery scrap is a polymer-containing electrolyte battery having an electrolyte containing a polymer. , And a polymer-free electrolyte battery having a polymer-free electrolyte, and the ratio of the polymer-free electrolyte battery in the lithium ion battery scrap is set to 20% or more and 70% or less by weight, and the polymer is contained. The present invention is to heat the electrolyte battery together with the polymer-free electrolyte battery , and at the time of heating, the polymer-containing electrolyte battery and the polymer-free electrolyte battery are alternately stacked and arranged in contact with each other .
ここでは特に、前記リチウムイオン電池スクラップ中のポリマー非含有電解質電池の比率を、質量比で、好ましくは20%以上とし、より好ましくは30%以上とする。 Here, in particular, the ratio of the polymer-free electrolyte battery in the lithium ion battery scrap is preferably 20% or more, more preferably 30% or more in terms of mass ratio.
また好ましくは、加熱時に、前記ポリマー含有電解質電池とポリマー非含有電解質電池を加熱用容器内に配置することにより、ポリマー含有電解質電池とポリマー非含有電解質電池の筐体に火炎が直接的に当たることを防ぎながら、ポリマー含有電解質電池とポリマー非含有電解質電池を加熱する。 Further, preferably, by arranging the polymer-containing electrolyte battery and the polymer-free electrolyte battery in the heating container at the time of heating, the flame directly hits the housings of the polymer-containing electrolyte battery and the polymer-free electrolyte battery. Heat the polymer-containing electrolyte battery and the polymer-free electrolyte battery while preventing them.
また、加熱時には、50℃/sec以上の昇温速度での前記ポリマー含有電解質電池とポリマー非含有電解質電池の温度の上昇範囲が300℃以下、特に200℃以下となるように、ポリマー含有電解質電池とポリマー非含有電解質電池を加熱することが好ましい。
なお、前記リチウムイオン電池スクラップの加熱処理には、定置炉を用いることができる。
Further, at the time of heating is such that the 50 ° C. / sec or more Noborihan circumference on the temperature of the polymer-containing electrolyte battery and a polymer-free electrolyte batteries at a heating rate of 300 ° C. or less, in particular 200 ° C. or less, the polymer containing It is preferable to heat the electrolyte battery and the polymer-free electrolyte battery.
A stationary furnace can be used for the heat treatment of the lithium ion battery scrap.
この発明によれば、ポリマー含有電解質電池をポリマー非含有電解質電池とともに加熱することにより、それらの燃焼温度の大小を利用して、昇温速度および最高温度を適切な範囲に制御することができる。
その結果として、ポリマー含有電解質電池を単独で加熱する場合に比して、有価金属の回収率を向上させつつ、処理時間の短縮化及びコストの低減を実現することができる。
According to the present invention, by heating the polymer-containing electrolyte battery together with the polymer-free electrolyte battery, the heating rate and the maximum temperature can be controlled in an appropriate range by utilizing the magnitude of their combustion temperatures.
As a result, it is possible to shorten the processing time and reduce the cost while improving the recovery rate of the valuable metal as compared with the case where the polymer-containing electrolyte battery is heated alone.
以下に、この発明の実施の形態について詳細に説明する。
この発明の一の実施形態に係るリチウムイオン電池スクラップの処理方法は、リチウムイオン電池スクラップを加熱して処理する方法であって、前記リチウムイオン電池スクラップが、ポリマーを含む電解質を有するポリマー含有電解質電池、及び、ポリマーを含まない電解質を有するポリマー非含有電解質電池を含み、前記ポリマー含有電解質電池とポリマー非含有電解質電池とを混合させて加熱する。
Hereinafter, embodiments of the present invention will be described in detail.
The method for treating a lithium ion battery scrap according to an embodiment of the present invention is a method for treating the lithium ion battery scrap by heating, and the lithium ion battery scrap is a polymer-containing electrolyte battery having an electrolyte containing a polymer. And, a polymer-free electrolyte battery having a polymer-free electrolyte is included, and the polymer-containing electrolyte battery and the polymer-free electrolyte battery are mixed and heated.
(リチウムイオン電池)
この発明で対象とするリチウムイオン電池スクラップは、携帯電話その他の種々の電子機器等で使用され得るリチウムイオン電池の廃棄物等である。より具体的には、電池製品の寿命や製造不良またはその他の理由によって廃棄されたものであり、このようなリチウムイオン電池スクラップを対象とすることにより、資源の有効活用を図ることができる。
この発明の実施形態では、リチウムイオン電池スクラップとして具体的に、ポリマーを含む電解質を有するポリマー含有電解質電池と、ポリマーを含まない電解質を有するポリマー非含有電解質電池とを用いる。これら以外の種類のリチウムイオン電池をさらに用いてもよい。
(Lithium-ion battery)
The lithium-ion battery scrap targeted by the present invention is a waste of a lithium-ion battery that can be used in various electronic devices such as mobile phones. More specifically, it is discarded due to the life of the battery product, manufacturing failure, or other reasons, and by targeting such lithium-ion battery scrap, it is possible to effectively utilize resources.
In the embodiment of the present invention, specifically, as the lithium ion battery scrap, a polymer-containing electrolyte battery having a polymer-containing electrolyte and a polymer-free electrolyte battery having a polymer-free electrolyte are used. Lithium-ion batteries of other types may be further used.
この発明でいう「電解質」とは、電気伝導性を有し、正極と負極との間でリチウムイオン等のイオンを行き来させる物質を意味し、液体状、固体状、ゲル状等のその形態は問わない。
ポリマー非含有電解質電池の電解質は一般に、リチウム塩を有機溶媒に溶解させた溶液である。リチウム塩としては、たとえば、LiPF6、LiBF4、LiClO4、Li[PF3(C2CF5)3]等を挙げることができ、また有機溶媒としては、たとえば、propylene carbonate(PC)、ethylene carbonate(EC)、diethyl carbonate(DEC)、dimethyl carbonate(DMC)、ethyl methyl carbonate(EMC)等を挙げることができる。
The "electrolyte" as used in the present invention means a substance having electrical conductivity and allowing ions such as lithium ions to be exchanged between the positive electrode and the negative electrode, and the form thereof such as liquid, solid, and gel is used. It doesn't matter.
The electrolyte of a polymer-free electrolyte battery is generally a solution of a lithium salt dissolved in an organic solvent. Examples of the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , Li [PF 3 (C 2 CF 5 ) 3 ] and the like, and examples of the organic solvent include propylene carbonate (PC) and ethylene. Examples thereof include carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and lithium carbonate (EMC).
ポリマー含有電解質電池の電解質は通常、上記の溶液を、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリフッ化ビニリデン(PVdF)等のポリマーに含浸させてゲル化したもの、ポリアクリルニトリル(PAN)などの溶液自体が高分子化しているもの、ポリマー自体に電導性を持たせたもの等があり、かかるポリマー含有電解質電池は、リチウムイオンポリマー電池と称されることもある。電解質の少なくとも一部にポリマーが含まれるものであれば、ポリマー非含有電解質電池との混合加熱による燃焼温度の制御の効果を得ることができる。 The electrolyte of the polymer-containing electrolyte battery is usually a gel obtained by impregnating the above solution with a polymer such as polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinylidene fluoride (PVdF), or polyacrylic nitrile (PAN). There are those in which the solution itself is polymerized, those in which the polymer itself is made conductive, and the like, and such a polymer-containing electrolyte battery is sometimes referred to as a lithium ion polymer battery. If at least a part of the electrolyte contains a polymer, the effect of controlling the combustion temperature by mixing and heating with the polymer-free electrolyte battery can be obtained.
ポリマー非含有電解質電池は、たとえば、周囲がアルミニウムを含む筐体で包み込まれたラミネート型のものが一般的であるが、これに限らず、缶型等のものであってもよい。
ポリマー非含有電解質電池の筐体としては、たとえば、アルミニウムのみからなるものや、アルミニウム及び鉄、アルミラミネート等を含むものがある。
なお、最近ではラミネート技術を利用したポリマー含有電解質電池も製造されるようになってきているため、ポリマー含有電解質電池もまた、ポリマー非含有電解質電池と同様に、周囲がアルミニウムを含む筐体で包み込まれたラミネート型のものであることが一般的であるが、これに限らず、缶型等のものであってもよい。
The polymer-free electrolyte battery is generally a laminated type battery in which the periphery is wrapped in a housing containing aluminum, but the present invention is not limited to this, and a can type or the like may be used.
Examples of the housing of the polymer-free electrolyte battery include those made of only aluminum and those containing aluminum, iron, aluminum laminate, and the like.
Recently, polymer-containing electrolyte batteries using laminating technology have also been manufactured. Therefore, the polymer-containing electrolyte batteries are also wrapped in a housing containing aluminum in the same manner as the polymer-free electrolyte batteries. Generally, it is a laminated type, but it is not limited to this, and a can type or the like may be used.
上述したポリマー非含有電解質電池およびポリマー含有電解質電池のいずれであっても、一般的なリチウムイオン電池と同様に、内部に、リチウム、ニッケル、コバルト及びマンガンのうちの一種の単独金属酸化物又は、二種以上の複合金属酸化物等からなる正極活物質や、正極活物質が有機バインダー等によって塗布されて固着されたアルミニウム箔(正極基材)を含むものとすることができる。またその他に、ポリマー非含有電解質電池およびポリマー含有電解質電池には、銅、鉄等が含まれる場合がある。 In either of the above-mentioned polymer-free electrolyte battery and polymer-containing electrolyte battery, as in the case of a general lithium ion battery, a single metal oxide of lithium, nickel, cobalt and manganese, or a single metal oxide of lithium, nickel, cobalt and manganese is contained inside. It can include a positive electrode active material composed of two or more kinds of composite metal oxides and the like, and an aluminum foil (positive electrode base material) to which the positive electrode active material is applied and fixed by an organic binder or the like. In addition, the polymer-free electrolyte battery and the polymer-containing electrolyte battery may contain copper, iron and the like.
ポリマー非含有電解質電池およびポリマー含有電解質電池は、その電極構造が、たとえば巻回型もしくは積層型等であり、全体の形態としては、円筒型、角型等がある。角型の場合、実質的に正方形もしくは長方形状の平面輪郭形状を有するものとすることができ、この場合、加熱処理前の寸法として、たとえば、縦が40mm〜80mm、横が35mm〜65mm、厚みが4mm〜5mmのものを対象とすることができるが、この寸法のものに限定されない。 The polymer-free electrolyte battery and the polymer-containing electrolyte battery have an electrode structure of, for example, a wound type or a laminated type, and the overall form includes a cylindrical type, a square type, and the like. In the case of a square shape, it can have a substantially square or rectangular planar contour shape, and in this case, the dimensions before heat treatment are, for example, 40 mm to 80 mm in length, 35 mm to 65 mm in width, and thickness. Can be targeted for 4 mm to 5 mm, but is not limited to those having this size.
(加熱工程)
加熱工程では、先に述べたポリマー非含有電解質電池およびポリマー含有電解質電池を混合させて加熱する。
(Heating process)
In the heating step, the polymer-free electrolyte battery and the polymer-containing electrolyte battery described above are mixed and heated.
ポリマー非含有電解質電池だけを燃焼させると、その電解質の成分が可燃性であることに起因して昇温速度が速くなり、急激に温度上昇し、さらに燃焼温度が高くなりやすい。特にここでは、スパイク状の急激な温度上昇による最高温度の超越が生じることもある。それにより、アルミニウムを含む筺体やアルミニウム箔が脆化・粉末化して、これらが後述の粉砕工程で粉砕されやすくなり、アルミニウムを後述の篩別工程で篩上に残して取り除くことが困難となる。
一方、ポリマー含有電解質電池だけを燃焼させると、その電解質が難燃性であることによって、燃焼温度が上昇し難く、燃焼が不十分となる。この場合、コバルト等の有価金属がアルミニウム箔から十分に剥がれず、後述の回収工程でのコバルト等の分配率が低下する。
When only the polymer-free electrolyte battery is burned, the temperature rise rate becomes high due to the flammability of the electrolyte component, the temperature rises sharply, and the combustion temperature tends to rise further. Especially here, the maximum temperature may be transcended due to a spike-like rapid temperature rise. As a result, the housing containing aluminum and the aluminum foil become brittle and pulverized, and these are easily crushed in the pulverization step described later, and it becomes difficult to remove the aluminum by leaving it on the sieve in the sieving step described later.
On the other hand, when only the polymer-containing electrolyte battery is burned, the combustion temperature is difficult to rise due to the flame retardancy of the electrolyte, and the combustion becomes insufficient. In this case, the valuable metal such as cobalt is not sufficiently peeled off from the aluminum foil, and the distribution rate of cobalt or the like in the recovery step described later is lowered.
これに対し、この発明の実施形態のように、ポリマー非含有電解質電池およびポリマー含有電解質電池を混合させて加熱することにより、昇温速度および最高温度を適切の範囲に制御することができるので、ポリマー非含有電解質電池のアルミニウム箔の脆化・粉末化が抑制されるとともに、ポリマー含有電解質電池の未燃焼化が防止される。その結果として、アルミニウムを篩別工程で有効に除去することができ、またコバルト等をアルミニウム箔から効果的に剥離させることができる。 On the other hand, as in the embodiment of the present invention, by mixing and heating the polymer-free electrolyte battery and the polymer-containing electrolyte battery, the heating rate and the maximum temperature can be controlled in an appropriate range. The brittleness and powdering of the aluminum foil of the polymer-free electrolyte battery are suppressed, and the non-combustibility of the polymer-containing electrolyte battery is prevented. As a result, aluminum can be effectively removed in the sieving step, and cobalt and the like can be effectively peeled from the aluminum foil.
ポリマー非含有電解質電池を単独で加熱処理する場合に比して処理時間を有効に短縮させるとの観点より、リチウムイオン電池スクラップに含まれるポリマー非含有電解質電池の比率ないし割合は、重量比で、20%以上とすることが好ましく、特に30%以上とすることがより一層好ましい。
一方、ポリマー非含有電解質電池の比率が多すぎると、燃焼温度が急上昇して、アルミニウムの脆化等による微細化に起因して、その後の有価金属の回収でアルミニウムの除去が問題となることが懸念される。それ故に、リチウムイオン電池スクラップ中のポリマー非含有電解質電池の比率ないし割合は、重量比で、70%以下とすることが好適である。
From the viewpoint of effectively shortening the processing time as compared with the case where the polymer-free electrolyte battery is heat-treated alone, the ratio or ratio of the polymer-free electrolyte battery contained in the lithium ion battery scrap is a weight ratio. It is preferably 20% or more, and more preferably 30% or more.
On the other hand, if the ratio of the polymer-free electrolyte battery is too large, the combustion temperature rises sharply, and due to miniaturization due to embrittlement of aluminum, removal of aluminum may become a problem in the subsequent recovery of valuable metals. I am concerned. Therefore, the ratio or ratio of the polymer-free electrolyte battery in the lithium ion battery scrap is preferably 70% or less in terms of weight ratio.
また、より具体的には、昇温速度および最高温度をさらに適切にコントロールするため、ポリマー含有電解質電池とポリマー非含有電解質電池との混合比率は、50:50〜78:22とすることが好ましく、特に60:40〜78:22とすることがより一層好ましい。ポリマー非含有電解質電池の割合が多すぎると、その電解質の量も多くなって、急激な温度上昇を十分に抑制できないことが懸念される。一方、ポリマー含有電解質電池の割合が多すぎると、難燃性のポリマーを含む電解質が多く存在することにより、燃焼が十分に行われないおそれがある。 More specifically, in order to more appropriately control the heating rate and the maximum temperature, the mixing ratio of the polymer-containing electrolyte battery and the polymer-free electrolyte battery is preferably 50:50 to 78:22. In particular, it is even more preferable to set the temperature from 60:40 to 78:22. If the proportion of the polymer-free electrolyte battery is too large, the amount of the electrolyte is also large, and there is a concern that the rapid temperature rise cannot be sufficiently suppressed. On the other hand, if the proportion of the polymer-containing electrolyte battery is too large, combustion may not be sufficiently performed due to the presence of a large amount of the electrolyte containing a flame-retardant polymer.
ポリマー非含有電解質電池およびポリマー含有電解質電池を混合させて加熱するに当っては、ポリマー非含有電解質電池とポリマー含有電解質電池とを交互に重ねて、互いに接触した状態で配置することが好適である。このように重ねて交互に配置することで、ポリマー含有電解質電池へ熱を逃がすことができやすくなる。 When the polymer-free electrolyte battery and the polymer-containing electrolyte battery are mixed and heated, it is preferable that the polymer-free electrolyte battery and the polymer-containing electrolyte battery are alternately stacked and arranged in contact with each other. .. By stacking and arranging them alternately in this way, it becomes easy for heat to be released to the polymer-containing electrolyte battery.
またここでは、火炎により焼却対象物を焼却処理する通常の焼却炉、たとえば定置炉を用いることが、特殊な設備を用いる場合に比して設備コストの増大を抑えることができる点で有利である。
但し、このような焼却炉内で、上述したような筐体を有するポリマー非含有電解質電池およびポリマー含有電解質電池の筐体に火炎を直接的に当てて、ポリマー非含有電解質電池およびポリマー含有電解質電池を加熱すると、筺体およびアルミニウム箔、銅箔が酸化・脆化する。この場合、加熱工程後にポリマー非含有電解質電池およびポリマー含有電解質電池を破砕する際に、脆化した筺体、箔もまた細かく粉砕されやすくなるので、篩下に回収される粉末状の正極材に、筺体等に含まれるアルミニウムが多く混入する。それにより、後にアルミニウムを回収する作業及びコストが増大する。
Further, here, it is advantageous to use an ordinary incinerator that incinerates the object to be incinerated by a flame, for example, a stationary incinerator, in that an increase in equipment cost can be suppressed as compared with the case where special equipment is used. ..
However, in such an incinerator, a flame is directly applied to the housing of the polymer-free electrolyte battery and the polymer-containing electrolyte battery having the housing as described above, and the polymer-free electrolyte battery and the polymer-containing electrolyte battery are directly applied. When heated, the housing, aluminum foil, and copper foil are oxidized and brittle. In this case, when the polymer-free electrolyte battery and the polymer-containing electrolyte battery are crushed after the heating step, the embrittled housing and foil are also easily crushed into small pieces. A large amount of aluminum contained in the housing and the like is mixed. This increases the work and cost of recovering the aluminum later.
これに対処するため、この実施形態では、ポリマー非含有電解質電池およびポリマー含有電解質電池に火炎が直接的に当たることを防ぐ目的で、ポリマー非含有電解質電池およびポリマー含有電解質電池を加熱用容器内に配置し、その加熱用容器ごと焼却炉内に投入して、ポリマー非含有電解質電池とポリマー含有電解質電池を加熱する。
それにより、加熱用容器により、その内部に配置されたポリマー非含有電解質電池およびポリマー含有電解質電池の筺体に、火炎が当たることを防ぐことができるので、ポリマー非含有電解質電池およびポリマー含有電解質電池の筺体、箔の酸化が防止されて、ポリマー非含有電解質電池およびポリマー含有電解質電池を有効に焙焼することができる。その結果として、加熱工程の終了まで、筐体でポリマー非含有電解質電池およびポリマー含有電解質電池のそれぞれの周囲が包み込まれた状態が維持されることから、破砕・篩別時に筐体、箔の細粒化を防止して、篩上にこれらを取り除くことを容易かつ確実に行うことができる。
To deal with this, in this embodiment, the polymer-free electrolyte battery and the polymer-containing electrolyte battery are placed in a heating container in order to prevent the flame from directly hitting the polymer-free electrolyte battery and the polymer-containing electrolyte battery. Then, the heating container is put into the incinerator to heat the polymer-free electrolyte battery and the polymer-containing electrolyte battery.
Thereby, the heating container can prevent the housing of the polymer-free electrolyte battery and the polymer-containing electrolyte battery arranged therein from being exposed to the flame, so that the polymer-free electrolyte battery and the polymer-containing electrolyte battery can be prevented from being exposed to flames. Oxidation of the housing and foil is prevented, and the polymer-free electrolyte battery and the polymer-containing electrolyte battery can be effectively roasted. As a result, until the end of the heating process, the housing maintains the surroundings of the polymer-free electrolyte battery and the polymer-containing electrolyte battery, so that the housing and foil can be thinned during crushing and sieving. Granulation can be prevented and these can be easily and reliably removed on the sieve.
加熱用容器は、焼却炉内の高温に耐え得るものであれば、様々な材質及び形状のものを用いることが可能である。加熱用容器は、たとえば鋼鉄その他の鉄製のものとして、リチウムイオン電池の加熱処理における焼却炉内の温度に対する耐熱性を有するものとすることができる。
加熱に伴ってポリマー非含有電解質電池等からは、液体状の電解質の気化に起因するガスが発生するところ、このガスが加熱用容器から外部に排出されることができなければ、ガスによる爆発のおそれがある。それ故に、加熱用容器は密閉しないことが望ましい。加熱用容器に、ガス抜きのための隙間を設けることもできる。
As the heating container, various materials and shapes can be used as long as it can withstand the high temperature in the incinerator. The heating container may be made of, for example, steel or other iron, and may have heat resistance to the temperature inside the incinerator in the heat treatment of the lithium ion battery.
A gas is generated from a polymer-free electrolyte battery or the like due to vaporization of a liquid electrolyte due to heating, but if this gas cannot be discharged to the outside from the heating container, an explosion due to the gas will occur. There is a risk. Therefore, it is desirable that the heating container is not sealed. The heating container may be provided with a gap for venting gas.
またこの加熱工程では、加熱時に、ポリマー非含有電解質電池およびポリマー含有電解質電池の昇温速度が、バーナーによる昇温傾向に対して、急上昇する温度範囲として300℃以下となるように、リチウムイオン電池を加熱することが好適である。つまり、この温度が300℃を超える場合、試料温度がAlの融点以上となる可能性がある。したがって、さらに好ましくは、この温度を200℃以下とする。
一方、昇温速度が遅すぎると、加熱処理時間が長くなり、実際処理時のボトルネックとなり得る。したがって、上記の温度範囲は、たとえば200℃以上、好ましくは250℃以上とすることができる。
なおここで、「急上昇」とは、50℃/sec以上の温度上昇速度とすることができる。
Further, in this heating step, the lithium ion battery is set so that the temperature rise rate of the polymer-free electrolyte battery and the polymer-containing electrolyte battery during heating is 300 ° C. or lower as a temperature range in which the temperature rises sharply with respect to the tendency of temperature rise by the burner. It is preferable to heat. That is, when this temperature exceeds 300 ° C., the sample temperature may be higher than the melting point of Al. Therefore, more preferably, this temperature is set to 200 ° C. or lower.
On the other hand, if the heating rate is too slow, the heat treatment time becomes long, which may become a bottleneck during the actual treatment. Therefore, the above temperature range can be, for example, 200 ° C. or higher, preferably 250 ° C. or higher.
Here, the “rapid rise” can be a temperature rise rate of 50 ° C./sec or more.
(浸出工程及び回収工程)
上記の加熱工程の後、所要に応じて破砕及び篩別することにより、アルミニウムが十分に除去された粒状ないし粉状等の正極材を含む篩別物を得ることができる。
その後、この粒状ないし粉状の正極材を含む篩別物を、硫酸等の酸性溶液に添加して浸出させて得た浸出後液から、浸出後液中に溶解しているニッケル、コバルト、マンガン等を回収する。具体的には、たとえば、溶媒抽出又は中和により、はじめにマンガンを分離させて回収し、次いでコバルトを、その後にニッケルを順次に分離させて回収し、最後に水相にリチウムを残す。
(Leaching process and recovery process)
After the above heating step, by crushing and sieving as necessary, a sieving product containing a positive electrode material such as granular or powdery material from which aluminum is sufficiently removed can be obtained.
Then, a sieve containing the granular or powdery positive electrode material is added to an acidic solution such as sulfuric acid and leached from the leached liquid, and nickel, cobalt, manganese, etc. dissolved in the leached liquid are used. To collect. Specifically, for example, manganese is first separated and recovered by solvent extraction or neutralization, then cobalt is then sequentially separated and recovered, and finally lithium is left in the aqueous phase.
ここでは、上述した加熱工程にて、ポリマー非含有電解質電池とポリマー含有電解質電池とを混合させて加熱することで、昇温速度および最高温度を適切な範囲に制御できる結果として、浸出後液に溶解した金属に、アルミニウムがほとんど含まれなくなることから、回収工程でのアルミニウムの分離除去に要する処理を簡略化ないし省略することができる。それにより、処理能率の向上および処理コストの低減を実現することができる。
また、上述した加熱工程ならびに破砕及び篩別により、アルミニウム箔からコバルト等が十分に剥離されるので、回収工程でのコバルト等の分配率を大きく高めることができる。
Here, by mixing and heating the polymer-free electrolyte battery and the polymer-containing electrolyte battery in the heating step described above, the rate of temperature rise and the maximum temperature can be controlled within an appropriate range, and as a result, the liquid after leaching is prepared. Since the molten metal contains almost no aluminum, the process required for separating and removing the aluminum in the recovery step can be simplified or omitted. As a result, it is possible to improve the processing efficiency and reduce the processing cost.
Further, since cobalt and the like are sufficiently peeled from the aluminum foil by the above-mentioned heating step and crushing and sieving, the distribution rate of cobalt and the like in the recovery step can be greatly increased.
次に、この発明のリチウムイオン電池の処理方法を試験的に実施し、その効果を確認したので以下に説明する。但し、ここでの説明は、単なる例示を目的としたものであり、それに限定されることを意図するものではない。
下記の実施例1〜3および比較例1のように、ポリマー非含有電解質電池とポリマー含有電解質電池との混合比率を変化させた試料を準備し、これらを加熱して破砕した後に篩別する試験を行い、篩下におけるアルミニウム品位、アルミニウムに対するリチウムの比および、コバルト分配率をそれぞれ求めた。
Next, the method for treating the lithium ion battery of the present invention was carried out on a trial basis, and its effect was confirmed, which will be described below. However, the description here is for the purpose of mere illustration, and is not intended to be limited thereto.
A test in which samples having different mixing ratios of a polymer-free electrolyte battery and a polymer-containing electrolyte battery are prepared as in Examples 1 to 3 and Comparative Example 1 below, and these are heated, crushed, and then sieved. The aluminum grade under the sieve, the ratio of lithium to aluminum, and the cobalt partition ratio were determined respectively.
(実施例1)
試料として、ポリマー含有電解質電池を101.5g、ポリマー非含有電解質電池を128.4g準備した。ポリマー含有電解質電池とポリマー非含有電解質電池との混合比率は、44:56である。これらを混合させて焼却炉内で加熱した。その際の試料温度及び炉内温度を図1に示す。その後、篩別を行って篩下を確認したところ、ポリマー含有電解質電池とポリマー非含有電解質電池のそれぞれの篩下の各金属の品位は、篩別サイズに応じて、表1、2のそれぞれに示すとおりであった。
ポリマー含有電解質電池(ポリマー)とポリマー非含有電解質電池(ラミネート)のそれぞれの、篩下におけるアルミニウム品位、アルミニウムに対するリチウムの比および、コバルト分配率を、図2に示す。
(Example 1)
As samples, 101.5 g of a polymer-containing electrolyte battery and 128.4 g of a polymer-free electrolyte battery were prepared. The mixing ratio of the polymer-containing electrolyte battery and the polymer-free electrolyte battery is 44:56. These were mixed and heated in an incinerator. The sample temperature and the temperature inside the furnace at that time are shown in FIG. After that, when sieving was performed and the sieving was confirmed, the grades of each metal under the sieving of the polymer-containing electrolyte battery and the polymer-free electrolyte battery were shown in Tables 1 and 2 according to the sieving size. It was as shown.
The aluminum grade under the sieve, the ratio of lithium to aluminum, and the cobalt distribution ratio of each of the polymer-containing electrolyte battery (polymer) and the polymer-free electrolyte battery (laminate) are shown in FIG.
(実施例2)
試料として、ポリマー含有電解質電池を126.4g、ポリマー非含有電解質電池を85.6準備した。ポリマー含有電解質電池とポリマー非含有電解質電池との混合比率は、60:40である。これらを混合させて焼却炉内で加熱した。その際の試料温度及び炉内温度を図3に示す。その後、篩別を行って篩下を確認したところ、ポリマー含有電解質電池とポリマー非含有電解質電池のそれぞれの篩下の各金属の品位は、篩別サイズに応じて、表3、4のそれぞれに示すとおりであった。
ポリマー含有電解質電池(ポリマー)とポリマー非含有電解質電池(ラミネート)のそれぞれの、篩下におけるアルミニウム品位、アルミニウムに対するリチウムの比および、コバルト分配率を、図4に示す。
(Example 2)
As a sample, 126.4 g of a polymer-containing electrolyte battery and 85.6 of a polymer-free electrolyte battery were prepared. The mixing ratio of the polymer-containing electrolyte battery and the polymer-free electrolyte battery is 60:40. These were mixed and heated in an incinerator. The sample temperature and the temperature inside the furnace at that time are shown in FIG. After that, when sieving was performed and the sieving was confirmed, the grades of each metal under the sieving of the polymer-containing electrolyte battery and the polymer-free electrolyte battery were shown in Tables 3 and 4, respectively, according to the sieving size. It was as shown.
The aluminum grade under the sieve, the ratio of lithium to aluminum, and the cobalt distribution ratio of each of the polymer-containing electrolyte battery (polymer) and the polymer-free electrolyte battery (laminate) are shown in FIG.
(実施例3)
試料として、ポリマー含有電解質電池を150.0g、ポリマー非含有電解質電池を42.5g準備した。ポリマー含有電解質電池とポリマー非含有電解質電池との混合比率は、78:22である。これらを混合させて焼却炉内で加熱した。その際の試料温度及び炉内温度を図5に示す。その後、篩別を行って篩下を確認したところ、ポリマー含有電解質電池とポリマー非含有電解質電池のそれぞれの篩下の各金属の品位は、篩別サイズに応じて、表5、6のそれぞれに示すとおりであった。
ポリマー含有電解質電池(ポリマー)とポリマー非含有電解質電池(ラミネート)のそれぞれの、篩下におけるアルミニウム品位、アルミニウムに対するリチウムの比および、コバルト分配率を、図6に示す。
(Example 3)
As samples, 150.0 g of a polymer-containing electrolyte battery and 42.5 g of a polymer-free electrolyte battery were prepared. The mixing ratio of the polymer-containing electrolyte battery and the polymer-free electrolyte battery is 78:22. These were mixed and heated in an incinerator. The sample temperature and the temperature inside the furnace at that time are shown in FIG. After that, when sieving was performed and the sieving was confirmed, the grades of each metal under the sieving of the polymer-containing electrolyte battery and the polymer-free electrolyte battery were shown in Tables 5 and 6, respectively, according to the sieving size. It was as shown.
The aluminum grade under the sieve, the ratio of lithium to aluminum, and the cobalt distribution ratio of each of the polymer-containing electrolyte battery (polymer) and the polymer-free electrolyte battery (laminate) are shown in FIG.
(比較例1)
試料として、ポリマー含有電解質電池のみを準備した。ポリマー含有電解質電池とポリマー非含有電解質電池との混合比率は、100:0である。これを焼却炉内で加熱した。その際の試料温度及び炉内温度を図7に示す。その後、篩別を行って篩下を確認したところ、篩下の各金属の品位は、篩別サイズに応じて、表7に示すとおりであった。
篩下におけるアルミニウム品位、アルミニウムに対するリチウムの比および、コバルト分配率を、図8に示す。
(Comparative Example 1)
As a sample, only a polymer-containing electrolyte battery was prepared. The mixing ratio of the polymer-containing electrolyte battery and the polymer-free electrolyte battery is 100: 0. This was heated in an incinerator. The sample temperature and the temperature inside the furnace at that time are shown in FIG. After that, when sieving was performed and the under-sieving was confirmed, the grade of each metal under the sieving was as shown in Table 7 according to the sieving size.
The aluminum grade under the sieve, the ratio of lithium to aluminum, and the cobalt distribution ratio are shown in FIG.
以上の結果より、比較例1でポリマー含有電解質電池のみを加熱した場合、図7に示すように、炉内温度に対して試料温度の上昇が緩慢で、多くの処理時間を要したのに対し、実施例1〜3でポリマー含有電解質電池とポリマー非含有電解質電池を混合して加熱した場合、図1、3、5に示すように、試料温度が急増し、処理時間を短縮できたことが解かる。また、この傾向は、ポリマー非含有電解質電池の割合が多くなるほど顕著になることが明らかである。
よって、この発明によれば、処理時間及びコストの増大を有効に抑制できることが解かった。
From the above results, when only the polymer-containing electrolyte battery was heated in Comparative Example 1, as shown in FIG. 7, the sample temperature rose slowly with respect to the temperature inside the furnace, which required a lot of processing time. When the polymer-containing electrolyte battery and the polymer-free electrolyte battery were mixed and heated in Examples 1 to 3, the sample temperature rapidly increased and the processing time could be shortened, as shown in FIGS. I understand. Further, it is clear that this tendency becomes more remarkable as the proportion of the polymer-free electrolyte battery increases.
Therefore, according to the present invention, it has been found that an increase in processing time and cost can be effectively suppressed.
Claims (6)
前記リチウムイオン電池スクラップが、ポリマーを含む電解質を有するポリマー含有電解質電池、及び、ポリマーを含まない電解質を有するポリマー非含有電解質電池を含み、
前記リチウムイオン電池スクラップ中の前記ポリマー非含有電解質電池の比率を、重量比で、20%以上70%以下として、前記ポリマー含有電解質電池をポリマー非含有電解質電池とともに加熱し、
加熱時に、前記ポリマー含有電解質電池とポリマー非含有電解質電池とを交互に重ねて、互いに接触した状態で配置する、リチウムイオン電池スクラップの処理方法。 A method of heating and processing lithium-ion battery scrap.
The lithium ion battery scrap comprises a polymer-containing electrolyte battery having a polymer-containing electrolyte and a polymer-free electrolyte battery having a polymer-free electrolyte.
The ratio of the polymer-free electrolyte battery in the lithium ion battery scrap is set to 20% or more and 70% or less by weight, and the polymer-containing electrolyte battery is heated together with the polymer-free electrolyte battery.
A method for treating lithium ion battery scrap, in which the polymer-containing electrolyte battery and the polymer-free electrolyte battery are alternately stacked and arranged in contact with each other during heating.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017041919A JP6918522B2 (en) | 2017-03-06 | 2017-03-06 | Lithium-ion battery scrap disposal method |
JP2021121033A JP7133688B2 (en) | 2017-03-06 | 2021-07-21 | How to dispose of lithium-ion battery scrap |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017041919A JP6918522B2 (en) | 2017-03-06 | 2017-03-06 | Lithium-ion battery scrap disposal method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021121033A Division JP7133688B2 (en) | 2017-03-06 | 2021-07-21 | How to dispose of lithium-ion battery scrap |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018147734A JP2018147734A (en) | 2018-09-20 |
JP6918522B2 true JP6918522B2 (en) | 2021-08-11 |
Family
ID=63591531
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017041919A Active JP6918522B2 (en) | 2017-03-06 | 2017-03-06 | Lithium-ion battery scrap disposal method |
JP2021121033A Active JP7133688B2 (en) | 2017-03-06 | 2021-07-21 | How to dispose of lithium-ion battery scrap |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021121033A Active JP7133688B2 (en) | 2017-03-06 | 2021-07-21 | How to dispose of lithium-ion battery scrap |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6918522B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3974231A1 (en) | 2018-08-06 | 2022-03-30 | Koito Manufacturing Co., Ltd. | Vehicle display system and vehicle |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6116999B2 (en) * | 2013-05-21 | 2017-04-19 | 太平洋セメント株式会社 | Waste lithium battery roasting apparatus and roasting method |
JP2016157608A (en) | 2015-02-25 | 2016-09-01 | トヨタ自動車株式会社 | Method for processing all-solid battery |
JP2016204676A (en) * | 2015-04-15 | 2016-12-08 | Jx金属株式会社 | Processing method of lithium ion batteries |
JP6708468B2 (en) * | 2015-04-17 | 2020-06-10 | Jx金属株式会社 | Lithium-ion battery treatment method |
JP6495780B2 (en) | 2015-08-13 | 2019-04-03 | Jx金属株式会社 | Lithium-ion battery processing method |
JP6483569B2 (en) * | 2015-08-13 | 2019-03-13 | Jx金属株式会社 | Lithium-ion battery processing method |
-
2017
- 2017-03-06 JP JP2017041919A patent/JP6918522B2/en active Active
-
2021
- 2021-07-21 JP JP2021121033A patent/JP7133688B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP7133688B2 (en) | 2022-09-08 |
JP2021180184A (en) | 2021-11-18 |
JP2018147734A (en) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11145915B2 (en) | Method for treating lithium ion battery | |
WO2021201055A1 (en) | Heat treatment method for battery-waste and lithium recovery method | |
Vanitha et al. | Waste minimization and recovery of valuable metals from spent lithium-ion batteries–a review | |
JP2017037807A (en) | Processing method of lithium ion battery | |
Natarajan et al. | Recycling/reuse of current collectors from spent lithium‐ion batteries: benefits and issues | |
JP7520144B2 (en) | Method for reusing active material using cathode scraps | |
JP2017036490A (en) | Method for processing lithium ion battery | |
JP7350185B2 (en) | How to reuse active materials using cathode scraps | |
JP6469547B2 (en) | Lithium-ion battery processing method | |
JP6994839B2 (en) | Lithium-ion battery scrap disposal method | |
JP7133688B2 (en) | How to dispose of lithium-ion battery scrap | |
Al-Asheh et al. | Treatment and recycling of spent lithium-based batteries: a review | |
JP6571123B2 (en) | Method for leaching lithium ion battery scrap and method for recovering metal from lithium ion battery scrap | |
JP2016204676A (en) | Processing method of lithium ion batteries | |
Pigłowska et al. | Novel recycling technologies and safety aspects of lithium ion batteries for electric vehicles | |
JP7357801B2 (en) | How to reuse active materials using cathode scraps | |
JP7242581B2 (en) | How to dispose of lithium-ion batteries | |
JP7422900B2 (en) | How to reuse active materials using cathode scraps | |
JP7343943B2 (en) | How to dispose of waste lithium-ion batteries | |
WO2024166762A1 (en) | Recycling method for lithium ion secondary batteries | |
KR102721367B1 (en) | Reuse method of active material of positive electrode scrap | |
Martynková et al. | Recyclability, circular economy, and environmental aspects of lithium–sulfur batteries | |
JP2024128250A (en) | Method for discharging used batteries and method for recycling lithium-ion secondary batteries | |
JP2024033303A (en) | Method of discharging waste battery and recycling method of lithium ion secondary battery | |
Fazal et al. | A comprehensive review on the challenges associated with lithium-ion batteries and their possible solutions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210413 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210622 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210721 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6918522 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |