JP6917727B2 - Laser processing equipment - Google Patents

Laser processing equipment Download PDF

Info

Publication number
JP6917727B2
JP6917727B2 JP2017026033A JP2017026033A JP6917727B2 JP 6917727 B2 JP6917727 B2 JP 6917727B2 JP 2017026033 A JP2017026033 A JP 2017026033A JP 2017026033 A JP2017026033 A JP 2017026033A JP 6917727 B2 JP6917727 B2 JP 6917727B2
Authority
JP
Japan
Prior art keywords
laser beam
laser
image rotation
processing
rotation prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017026033A
Other languages
Japanese (ja)
Other versions
JP2018130739A (en
Inventor
圭司 能丸
圭司 能丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2017026033A priority Critical patent/JP6917727B2/en
Priority to TW107100872A priority patent/TWI744460B/en
Priority to KR1020180015066A priority patent/KR102310753B1/en
Priority to CN201810127358.9A priority patent/CN108436287B/en
Publication of JP2018130739A publication Critical patent/JP2018130739A/en
Application granted granted Critical
Publication of JP6917727B2 publication Critical patent/JP6917727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)

Description

本発明は、ポリゴンミラーによってレーザー光線の照射方向を分散し、加工点に複数のレーザー光線を照射するレーザー加工装置に関する。 The present invention relates to a laser processing apparatus that disperses the irradiation direction of a laser beam by a polygon mirror and irradiates a plurality of laser beams to a processing point.

IC、LSI等の複数のデバイスが分割予定ラインによって区画され表面に形成されたウエーハは、切削ブレードを回転可能に備えた切削装置によって個々のデバイスに分割され、携帯電話、パソコン等の電気機器に利用される。 A wafer formed on the surface of a plurality of devices such as ICs and LSIs separated by a planned division line is divided into individual devices by a cutting device equipped with a rotatable cutting blade, and is used for electric devices such as mobile phones and personal computers. It will be used.

また、シリコン等の半導体基板の上面に低誘電率絶縁膜(Low−k膜)が何層も積層された機能層によってデバイスが形成されたウエーハにおいては、切削ブレードで分割予定ラインを切削すると、分割予定ラインに積層された機能層が雲母のように剥離してデバイスの品質を低下させることから切削ブレードで分割予定ラインを切削する前にレーザー加工装置によって分割予定ライン上記積層されたLow−k膜を除去する技術が本出願人によって提案されている(特許文献1を参照。)。 Further, in a wafer in which a device is formed by a functional layer in which a low dielectric constant insulating film (Low-k film) is laminated on the upper surface of a semiconductor substrate such as silicon, when a cutting blade is used to cut a planned division line, Since the functional layer laminated on the planned division line peels off like a mica and deteriorates the quality of the device, the planned division line is divided by a laser processing device before cutting the planned division line with a cutting blade. A technique for removing a film has been proposed by the applicant (see Patent Document 1).

更に、レーザー光線を分割予定ラインに照射してアブレーション加工によってLow−k膜を除去して分割溝を形成しようとすると、Low−k膜の溶融物が排出されずにレーザー光線によって形成される溝に埋め戻ることによって必要な幅の分割溝が形成されないおそれがあるため、十分な幅の分割溝を確保すべく分割予定ラインに沿ってレーザー光線を何度も照射しなければならず、生産性が悪いという問題がある。本出願人は、この問題に対処すべく、レーザー発振器と集光器との間にレーザー光線を加工方向に分散して加工点に複数のレーザー光線が照射されるレーザー加工装置を開発し、既に提案している(特許文献2を参照。)。 Further, when the low-k film is removed by ablation processing by irradiating the planned division line with a laser beam to form a dividing groove, the melt of the Low-k film is not discharged and is filled in the groove formed by the laser beam. Since there is a possibility that a dividing groove of the required width will not be formed by returning, it is necessary to irradiate the laser beam many times along the planned dividing line in order to secure a dividing groove of sufficient width, which is said to be poor in productivity. There's a problem. In order to deal with this problem, the applicant has developed and already proposed a laser machining apparatus in which a laser beam is dispersed between a laser oscillator and a condenser in the machining direction and a plurality of laser beams are irradiated to the machining point. (See Patent Document 2).

特開2005−064231号公報Japanese Unexamined Patent Publication No. 2005-064231 特開2015−085347号公報Japanese Unexamined Patent Publication No. 2015-085347

上記特許文献2に記載された発明によれば、レーザー発振器と集光器との間にレーザー光線を加工方向に分散して加工点に複数のレーザー光線が照射されるように構成したことから、効率よくレーザー光線を加工方向に分散して加工点に複数のレーザー光線が照射させることができる。しかし、加工方向とレーザー光線の分散方向とを所定の関係に維持しながら生産性を向上させるために、正回転のポリゴンミラーと、逆回転のポリゴンミラーとを設置して、ウエーハを往復加工する際に正回転のポリゴンミラーから逆回転のポリゴンミラーに切り替える構成となっており、構成が複雑になって故障を誘発するという問題を含んでいる。 According to the invention described in Patent Document 2, a laser beam is dispersed between the laser oscillator and the condenser in the processing direction so that a plurality of laser beams are irradiated to the processing point, which is efficient. It is possible to disperse the laser beam in the processing direction and irradiate the processing point with a plurality of laser beams. However, in order to improve productivity while maintaining the processing direction and the dispersion direction of the laser beam in a predetermined relationship, when a forward-rotating polygon mirror and a reverse-rotating polygon mirror are installed to reciprocate the wafer. In addition, the configuration is such that the polygon mirror that rotates in the forward direction is switched to the polygon mirror that rotates in the reverse direction, which includes a problem that the configuration becomes complicated and a failure is induced.

本発明は、上記事実に鑑みなされたものであり、その主たる技術課題は、簡素な構成であっても、ポリゴンミラーによって加工方向とレーザー光線の分散方向とを所定の関係に維持することができるレーザー加工装置を提供することにある。 The present invention has been made in view of the above facts, and its main technical problem is that a laser capable of maintaining a predetermined relationship between a processing direction and a laser beam dispersion direction by a polygon mirror even with a simple configuration. The purpose is to provide processing equipment.

上記主たる技術課題を解決するため、本発明によれば、レーザー加工装置であって、被加工物を保持する保持手段と、該保持手段に保持された被加工物にレーザー光線を照射するレーザー光線照射手段と、該保持手段と該レーザー光線照射手段とをX方向に相対的に加工送りするX方向移動手段と、該保持手段と該レーザー光線照射手段とを該X方向と直交するY方向に相対的に加工送りするY方向移動手段と、を少なくとも含み、該レーザー光線照射手段は、レーザー光線を発振するレーザー発振器と、該レーザー発振器が発振したレーザー光線を所定の分散角度で分散しX方向にスキャンするポリゴンミラーと、X方向にスキャンされたレーザー光線を該保持手段に保持された被加工物に集光する集光器と、該ポリゴンミラーと該集光器との間に配設されレーザー光線のスキャン方向を反転させる反転器と、から少なくとも構成され、該反転器は、イメージローテーションプリズムと、該分散角度の中央を回転軸として該イメージローテーションプリズムを90度回転させる駆動部と、該ポリゴンミラーと該イメージローテーションプリズムとの間に配設され該分散角度で分散されたレーザー光線を平行光に修正する第一のリレーレンズと、該イメージローテーションプリズムと該集光器との間に配設され該イメージローテーションプリズムを通過した平行光を該分散角度に戻す第二のリレーレンズと、から少なくとも構成され、該保持手段に保持された被加工物にレーザー光線を照射して往路で加工する際と、復路で加工する際とで、該イメージローテーションプリズムを90度回転させてレーザー光線のスキャン方向を反転させるレーザー加工装置が提供される。 In order to solve the above-mentioned main technical problem, according to the present invention, in the laser processing apparatus, a holding means for holding the workpiece and a laser beam irradiating means for irradiating the workpiece held by the holding means with a laser beam. The holding means and the laser beam irradiating means are processed and fed relative to each other in the X direction, and the holding means and the laser beam irradiating means are processed relative to the Y direction orthogonal to the X direction. The laser beam irradiating means includes at least a Y-direction moving means for feeding, a laser oscillator that oscillates a laser beam, a polygon mirror that disperses the laser beam oscillated by the laser oscillator at a predetermined dispersion angle, and scans in the X direction. A condenser that concentrates the laser beam scanned in the X direction on the workpiece held by the holding means, and an inversion that is arranged between the polygon mirror and the condenser and reverses the scanning direction of the laser beam. The reversing device is composed of at least a device, and the reversing device includes an image rotation prism, a driving unit that rotates the image rotation prism 90 degrees around the center of the dispersion angle, a polygon mirror, and the image rotation prism. A first relay lens arranged between the laser beams dispersed at the dispersion angle to correct the laser beam into parallel light, and parallel arranged between the image rotation prism and the condenser and passing through the image rotation prism. A second relay lens that returns light to the dispersion angle, and at least when the workpiece held by the holding means is irradiated with a laser beam and processed on the outward path and when processed on the return path. the image rotation prism 90 degrees by rotating laser beam laser processing apparatus scanning direction Ru is inverted is provided.

本発明によって構成されるレーザー加工装置は、被加工物を保持する保持手段と、該保持手段に保持された被加工物にレーザー光線を照射するレーザー光線照射手段と、該保持手段と該レーザー光線照射手段とをX方向に相対的に加工送りするX方向移動手段と、該保持手段と該レーザー光線照射手段とを該X方向と直交するY方向に相対的に加工送りするY方向移動手段と、を少なくとも含み、該レーザー光線照射手段は、レーザー光線を発振するレーザー発振器と、該レーザー発振器が発振したレーザー光線を所定の分散角度で分散しX方向にスキャンするポリゴンミラーと、X方向にスキャンされたレーザー光線を該保持手段に保持された被加工物に集光する集光器と、該ポリゴンミラーと該集光器との間に配設されレーザー光線のスキャン方向を反転させる反転器と、から少なくとも構成され、該反転器は、イメージローテーションプリズムと、該分散角度の中央を回転軸として該イメージローテーションプリズムを90度回転させる駆動部と、該ポリゴンミラーと該イメージローテーションプリズムとの間に配設され該分散角度で分散されたレーザー光線を平行光に修正する第一のリレーレンズと、該イメージローテーションプリズムと該集光器との間に配設され該イメージローテーションプリズムを通過した平行光を該分散角度に戻す第二のリレーレンズと、から少なくとも構成され、該保持手段に保持された被加工物にレーザー光線を照射して往路で加工する際と、復路で加工する際とで、該イメージローテーションプリズムを90度回転させてレーザー光線のスキャン方向を反転させるので、ポリゴンミラーによって加工方向とレーザー光線の分散方向とを所定の関係に維持することができるレーザー加工装置を簡素な構成によって実現することができる。 The laser processing apparatus configured by the present invention includes a holding means for holding a work piece, a laser beam irradiating means for irradiating a work piece held by the holding means with a laser beam, the holding means, and the laser beam irradiating means. Includes at least an X-direction moving means that processes and feeds the laser beam relative to the X direction, and a Y-direction moving means that processes and feeds the holding means and the laser beam irradiating means in the Y direction orthogonal to the X direction. The laser beam irradiating means includes a laser oscillator that oscillates a laser beam, a polygon mirror that disperses the laser beam oscillated by the laser oscillator at a predetermined dispersion angle and scans it in the X direction, and a holding means that holds the laser beam scanned in the X direction. a condenser for condensing the workpiece held in the inverter to be inverted scanning direction of the laser beam arranged between the polygon mirror and the condenser unit, at least consists of, said inverter Is disposed between the image rotation prism, a drive unit that rotates the image rotation prism by 90 degrees with the center of the dispersion angle as the rotation axis, and the polygon mirror and the image rotation prism, and is dispersed at the dispersion angle. A first relay lens that corrects the laser beam to parallel light, and a second relay that is arranged between the image rotation prism and the condenser and returns the parallel light that has passed through the image rotation prism to the dispersion angle. A laser beam is formed by rotating the image rotation prism by 90 degrees between when the workpiece, which is composed of at least the lens and is held by the holding means, is irradiated with a laser beam and processed on the outward path and when the object is processed on the return path. it can reverse the scanning direction of Runode, realized by a simple configuration of a laser processing apparatus capable of maintaining the dispersion direction of the working direction and the laser beam in a predetermined relationship by the polygon mirror.

本発明に基づいて構成されたレーザー加工装置の一実施形態を示す全体斜視図である。It is an overall perspective view which shows one Embodiment of the laser processing apparatus configured based on this invention. 図1に示すレーザー加工装置に採用されるレーザー光線照射手段を説明するためのブロック図である。It is a block diagram for demonstrating the laser beam irradiation means adopted in the laser processing apparatus shown in FIG. 図2に示すレーザー光線照射手段の反転器を構成するイメージローテーションプリズム及びそれを駆動する駆動モータと、イメージローテーションプリズムの反転原理を説明するための説明図である。It is explanatory drawing for demonstrating the image rotation prism which constitutes the reversing device of the laser beam irradiation means shown in FIG. 2, the drive motor which drives the image rotation prism, and the reversing principle of the image rotation prism.

以下、本発明に基づき構成されるレーザー加工装置の実施形態について添付図面を参照して、更に詳細に説明する。 Hereinafter, embodiments of a laser processing apparatus configured based on the present invention will be described in more detail with reference to the accompanying drawings.

図1には、本実施形態のレーザー加工装置2、及び被加工物であるウエーハ10の全体斜視図が示されている。レーザー加工装置2は、ウエーハ10を保持する保持手段6と、静止基台2a上に配設され該保持手段6を移動させる移動手段8と、該保持手段6に保持されるウエーハ10にレーザー光線を照射するレーザー光線照射手段24と、該静止基台2a上の移動手段8の側方に立設される垂直壁部51、及び該垂直壁部51の上端部から水平方向に延びる水平壁部52からなる枠体50とを備えている。枠体50の水平壁部52内部には、該レーザー光線照射手段24の光学系が内蔵されており、水平壁部52の先端下面には、該レーザー光線照射手段24の集光器241が配設されている。また、該集光器241に対しX方向に隣接した位置には、撮像手段26が配設される。なお、保持手段6には、図中に拡大して示す環状のフレームFに粘着テープTを介して保持されたウエーハ10が保持される。 FIG. 1 shows an overall perspective view of the laser machining apparatus 2 of the present embodiment and the wafer 10 as a workpiece. The laser processing device 2 sends a laser beam to the holding means 6 for holding the wafer 10, the moving means 8 arranged on the stationary base 2a to move the holding means 6, and the wafer 10 held by the holding means 6. From the laser beam irradiating means 24 to irradiate, the vertical wall portion 51 erected on the side of the moving means 8 on the stationary base 2a, and the horizontal wall portion 52 extending in the horizontal direction from the upper end portion of the vertical wall portion 51. It is provided with a frame body 50. The optical system of the laser beam irradiating means 24 is built in the horizontal wall portion 52 of the frame body 50, and the condenser 241 of the laser beam irradiating means 24 is arranged on the lower surface of the tip of the horizontal wall portion 52. ing. Further, an imaging means 26 is arranged at a position adjacent to the condenser 241 in the X direction. The holding means 6 holds the wafer 10 held by the adhesive tape T on the annular frame F enlarged in the drawing.

該保持手段6は、図中に矢印Xで示すX方向において移動自在に基台2aに搭載された矩形状のX方向可動板30と、図中に矢印Yで示すY方向において移動自在にX方向可動板30に搭載された矩形状のY方向可動板31と、Y方向可動板31の上面に固定された円筒状の支柱32と、支柱32の上端に固定された矩形状のカバー板33とを含む。カバー板33には、X方向に蛇腹が配設され(図示は省略している。)、該カバー板33上に形成されたY方向に伸びる長穴を通って上方に延びる円形状の被加工物を保持し、図示しない回転駆動手段により周方向に回転可能に構成されたチャックテーブル34が配設されている。チャックテーブル34の上面には、多孔質材料から形成され実質上水平に延在する円形状の吸着チャック35が配置されている。吸着チャック35は、支柱32を通る流路によって図示しない吸引手段に接続されている。なお、X方向は図1に矢印Xで示す方向であり、Y方向は矢印Yで示す方向であってX方向に直交する方向である。X方向、Y方向で規定される平面は実質上水平である。 The holding means 6 has a rectangular X-direction movable plate 30 mounted on the base 2a so as to be movable in the X direction indicated by the arrow X in the drawing, and an X movablely movable in the Y direction indicated by the arrow Y in the drawing. A rectangular Y-direction movable plate 31 mounted on the directional movable plate 30, a cylindrical support plate 32 fixed to the upper surface of the Y-direction movable plate 31, and a rectangular cover plate 33 fixed to the upper end of the support column 32. And include. A bellows is arranged in the X direction on the cover plate 33 (not shown), and a circular workpiece extending upward through an elongated hole extending in the Y direction formed on the cover plate 33 is processed. A chuck table 34 that holds an object and is configured to be rotatable in the circumferential direction by a rotation driving means (not shown) is arranged. On the upper surface of the chuck table 34, a circular suction chuck 35 formed of a porous material and extending substantially horizontally is arranged. The suction chuck 35 is connected to a suction means (not shown) by a flow path passing through the support column 32. The X direction is the direction indicated by the arrow X in FIG. 1, and the Y direction is the direction indicated by the arrow Y and is orthogonal to the X direction. The planes defined in the X and Y directions are substantially horizontal.

移動手段8は、X方向移動手段40と、Y方向移動手段41と、を含む。X方向移動手段40は、ボールねじ40aを介してモータ40bの回転運動を直線運動に変換してX方向可動板30に伝達し、基台2a上の案内レールに沿ってX方向可動板30をX方向において進退させる。Y方向移動手段41は、ボールねじ41aを介してモータ41bの回転運動を直線運動に変換し、Y方向可動板31に伝達し、X方向可動板30上の案内レールに沿ってY方向可動板31をY方向において進退させる。なお、図示は省略するが、X方向移動手段40、Y方向移動手段41、該回転駆動手段には、それぞれ位置検出手段が配設されており、チャックテーブル34のX方向の位置、Y方向の位置、周方向の回転位置が正確に検出され、図示しない制御手段から指示される信号に基づいてX方向移動手段40、Y方向移動手段41、及び該回転駆動手段が駆動され、任意の位置および角度にチャックテーブル34を正確に位置付けることが可能になっている。 The moving means 8 includes an X-direction moving means 40 and a Y-direction moving means 41. The X-direction moving means 40 converts the rotational motion of the motor 40b into a linear motion via the ball screw 40a and transmits it to the X-direction movable plate 30, and moves the X-direction movable plate 30 along the guide rail on the base 2a. Move forward and backward in the X direction. The Y-direction moving means 41 converts the rotational motion of the motor 41b into a linear motion via the ball screw 41a, transmits it to the Y-direction movable plate 31, and transmits the Y-direction movable plate along the guide rail on the X-direction movable plate 30. 31 is moved forward and backward in the Y direction. Although not shown, position detecting means are provided in the X-direction moving means 40, the Y-direction moving means 41, and the rotation driving means, respectively, and the positions of the chuck table 34 in the X-direction and the Y-direction are arranged. The position and the rotational position in the circumferential direction are accurately detected, and the X-direction moving means 40, the Y-direction moving means 41, and the rotational driving means are driven based on a signal instructed from a control means (not shown), and the arbitrary position and the rotation driving means are driven. It is possible to accurately position the chuck table 34 at an angle.

図2に基づいて、本発明のウエーハの加工装置を実現すべく構成されたレーザー光線照射手段24をより具体的に説明する。図2(a)に示すように、レーザー光線照射手段24は、シリコン(Si)からなるウエーハ10に対して吸収性を有する532nm波長のレーザー光線を該集光器241から照射するためのレーザー発振器242を備えている。レーザー発振器242から発振されたレーザー光線LBは、透過率を調整することによりレーザー光線の出力を調整するアッテネータ243に入射される。アッテネータ243にて所望の出力に調整されたレーザー光線LBは、反射ミラー244にて進行方向が変換され、進行方向が変換されたレーザー光線LBは、ポリゴンミラー245に照射される。該ポリゴンミラー245は、図示しない駆動モータにより図中矢印245’で示す方向に回転させられることでレーザー光線LBの反射方向を所定の分散角度をなすレーザー光線LBa〜LBbの範囲で分散させる複数の反射面245aを備えている。 Based on FIG. 2, the laser beam irradiating means 24 configured to realize the wafer processing apparatus of the present invention will be described more specifically. As shown in FIG. 2A, the laser beam irradiating means 24 provides a laser oscillator 242 for irradiating a laser beam having a wavelength of 532 nm, which has absorption with respect to a wafer 10 made of silicon (Si), from the condenser 241. I have. The laser beam LB oscillated from the laser oscillator 242 is incident on the attenuator 243 that adjusts the output of the laser beam by adjusting the transmittance. The laser beam LB adjusted to a desired output by the attenuator 243 is changed in the traveling direction by the reflection mirror 244, and the laser beam LB whose traveling direction is changed is irradiated to the polygon mirror 245. The polygon mirror 245 has a plurality of reflecting surfaces that disperse the reflection direction of the laser beam LB in the range of the laser beam LBa to LBb forming a predetermined dispersion angle by being rotated in the direction indicated by the arrow 245'in the drawing by a drive motor (not shown). It is equipped with 245a.

ポリゴンミラー245の該反射面245aにて反射されたレーザー光線LBa〜LBbは、反転器246に照射される。該反転器246は、図に示すように、ポリゴンミラー245によって分散されるレーザー光線LBa〜LBbを平行光に修正する第一のリレーレンズ246aと、第一のリレーレンズ246aによって平行光に修正されたレーザー光線が照射され、駆動モータ246bによって回転可能に構成されたイメージローテーションプリズム246cと、該イメージローテーションプリズム246cを通過した平行光を該分散角度に戻す第二のリレーレンズ246dとから構成されている。該イメージローテーションプリズム246cは、外周部に配設された被駆動ギア246fと駆動モータ246bの駆動ギア246eとが噛み合うことで90度回転させられるように構成される。 The laser beams LBa to LBb reflected by the reflecting surface 245a of the polygon mirror 245 are irradiated to the reversing device 246. As shown in the figure, the reversing device 246 is corrected to parallel light by a first relay lens 246a that corrects the laser beams LBa to LBb dispersed by the polygon mirror 245 to parallel light, and a first relay lens 246a. It is composed of an image rotation prism 246c which is irradiated with a laser beam and is rotatably configured by a drive motor 246b, and a second relay lens 246d which returns parallel light passing through the image rotation prism 246c to the dispersion angle. The image rotation prism 246c is configured to be rotated by 90 degrees by meshing the driven gear 246f arranged on the outer peripheral portion with the drive gear 246e of the drive motor 246b.

該反転器246は、図2(a)に示すように、ポリゴンミラー245の回転に伴うレーザー光線LBa〜LBbのスキャン方向D1を反転させてスキャン方向D2として出射する状態と、図2(b)に示すように、該入射されたレーザー光線LBa〜LBbのスキャン方向D1を変更せずに、そのままスキャン方向D2’として出射する状態とに切換え可能に構成されている。そして、図2(a)に示すように、該反転器246によってレーザー光線LBa〜LBbのスキャン方向がD2に反転される場合、該反転器246から出射されたレーザー光線LBa〜LBbは、反射ミラー249によって反射され、該集光器241に内蔵されたテレセントリックfθレンズ241aによって集光され、チャックテーブル34に保持されたウエーハ10上に照射される。この際、該集光器241から照射されるレーザー光線は、該分散角度に応じた範囲、すなわち、レーザー光線LBaの照射位置P1からレーザー光線LBbの照射位置P2で示す範囲で矢印D3により示す方向にスキャンされる。また、図2(b)に示すように、該反転器246に入射されるレーザー光線LBa〜LBbのスキャン方向D1が反転されずに維持されてスキャン方向D2’にて出射された場合は、該反転器246から出射されたレーザー光線LBa〜LBbは、チャックテーブル34に保持されたウエーハ10上において、該分散角度に応じた範囲、すなわち、レーザー光線LBaの照射位置P1’からレーザー光線LBbの照射位置P2’で示す位置の範囲で、矢印D3’で示す方向にスキャンされる。なお、ポリゴンミラー245によってもたらされる分散角度は、チャックテーブル34上に照射されるレーザー光線の照射位置P1(P1’)から照射位置P2(P2’)までの距離が8mmとなるように設定されている。 As shown in FIG. 2A, the reversing device 246 reverses the scanning direction D1 of the laser beams LBa to LBb accompanying the rotation of the polygon mirror 245 and emits the laser beam 246 as the scanning direction D2. As shown, it is possible to switch to a state in which the incident laser beams LBa to LBb are emitted in the scanning direction D2'as they are without changing the scanning direction D1. Then, as shown in FIG. 2A, when the scanning direction of the laser beams LBa to LBb is inverted to D2 by the reversing device 246, the laser beams LBa to LBb emitted from the reversing device 246 are transmitted by the reflection mirror 249. It is reflected, collected by the telecentric fθ lens 241a built in the concentrator 241 and irradiated onto the wafer 10 held on the chuck table 34. At this time, the laser beam emitted from the condenser 241 is scanned in the direction indicated by the arrow D3 in the range corresponding to the dispersion angle, that is, in the range indicated by the irradiation position P1 of the laser beam LBa to the irradiation position P2 of the laser beam LBb. NS. Further, as shown in FIG. 2B, when the scanning directions D1 of the laser beams LBa to LBb incident on the reversing device 246 are maintained without being reversed and emitted in the scanning direction D2', the reversing is performed. The laser beams LBa to LBb emitted from the vessel 246 are on the wafer 10 held by the chuck table 34 in a range corresponding to the dispersion angle, that is, from the irradiation position P1'of the laser beam LBa to the irradiation position P2'of the laser beam LBb. In the range of the indicated position, the scan is performed in the direction indicated by the arrow D3'. The dispersion angle provided by the polygon mirror 245 is set so that the distance from the irradiation position P1 (P1') of the laser beam irradiated on the chuck table 34 to the irradiation position P2 (P2') is 8 mm. ..

該反転器246を構成するイメージローテーションプリズム246c、及び駆動モータ246bの構成の一例について、図3を参照しながら更に詳細に説明する。図に示すように、イメージローテーションプリズム246cは、所謂、像反転プリズムとして一般的に知られているものである。より具体的に説明すると、図3(b)に示すように、レーザー光線が入射される入射面Qを備えた入射側プリズム246c1と、出射面Rを備えた出射側プリズム246c2とを、入射側プリズム246c1の内側斜面Uと、出射側プリズム246c2の内側斜面Vとの間に僅かな隙間246c3を設けて対向させつつ、入射面Qと出射面Rとが平行になるように組み合わせることにより、外側傾斜面S、Tを有する側方視で略台形形状をなす組み合わせプリズムから構成することができる。 An example of the configuration of the image rotation prism 246c and the drive motor 246b constituting the reversing device 246 will be described in more detail with reference to FIG. As shown in the figure, the image rotation prism 246c is generally known as a so-called image inversion prism. More specifically, as shown in FIG. 3B, an incident side prism 246c1 having an incident surface Q on which a laser beam is incident and an emitting side prism 246c2 having an emitting surface R are combined with each other. The incident surface Q and the exit surface R are combined so as to be parallel to each other while providing a slight gap 246c3 between the inner slope U of the 246c1 and the inner slope V of the exit side prism 246c2. It can be composed of a combination prism having surfaces S and T and having a substantially trapezoidal shape in a lateral view.

図3を参照しながら、該イメージローテーションプリズム246cによってスキャン方向が反転される原理について説明する。図3(b)には、該イメージローテーションプリズム246cを側方視で台形形状をなす方向から見た状態を概略図で示し、レーザー光線の入射面Qにおける入射位置が矢印W1の方向(図3(a)の矢印d1の方向)で移動する場合の光線経路a、b、cが示されている。なお、光線経路bは、入射面Qの中心位置から入射されるものであり、光線経路a、cの入射位置は、光線経路bの入射位置を中心とした点対象の位置である。また、レーザー光線が光線経路aで進行する場合を実線で、光線経路bで進行する場合を点線で、光線経路cで進行する場合を一点鎖線で示している。 The principle that the scanning direction is reversed by the image rotation prism 246c will be described with reference to FIG. FIG. 3B is a schematic view showing a state in which the image rotation prism 246c is viewed from a side view in a trapezoidal shape, and the incident position of the laser beam on the incident surface Q is in the direction of arrow W1 (FIG. 3 (B). The ray paths a, b, and c when moving in the direction of the arrow d1 in a) are shown. The ray path b is incident from the center position of the incident surface Q, and the incident positions of the ray paths a and c are point-symmetrical positions centered on the incident position of the ray path b. Further, the case where the laser beam travels along the ray path a is shown by a solid line, the case where the laser beam travels along the ray path b is shown by a dotted line, and the case where the laser beam travels along the ray path c is shown by a alternate long and short dash line.

図で示すように、レーザー光線は入射面Qに対して直角に入射するように設定されており、入射面Qに対し光線経路aで入射したレーザー光線は、入射側プリズム246c1の内側斜面U、更には外側傾斜面Tにて反射され、出射側プリズム246c2の内側斜面Vに直角に入射する。そして、隙間246c3を直進し、出射側プリズム246c2に入光したレーザー光線は、出射面R、外側傾斜面S、内側斜面Vにて反射した後、出射面Rから出射される。また、光線経路b、cも同様に、入射側プリズム246c1側で2回、出射側プリズム246c2で3回反射し、図3(b)で示すような位置から出射される。図から明らかなように、入射面Qから入射された光線経路a、b、cは、光線経路bを中心に180度回転された状態で出射面Rから照射されることになり、入射面Q側でa、b、cの順、即ち図3(b)において矢印W1で示す方向にレーザー光線がスキャンされると、出射面R側では矢印W2で示す方向にスキャン方向が反転される。また、図3(a)において入射面Qの中心にて矢印d1と直交する矢印d2で示す方向にレーザー光線をスキャンさせる場合は、該レーザー光線が図3(b)の光線経路bで示す位置で、且つ紙面に垂直な方向にその入射位置が移動させられることになり、その場合の出射位置は、図3(b)の出射面Rの光線経路bで示す位置で、且つ紙面に垂直な方向で移動することになるから、入射されるレーザー光線のスキャン方向は反転されることなくそのまま出射させられる。 As shown in the figure, the laser beam is set to be incident at right angles to the incident surface Q, and the laser beam incident on the incident surface Q in the light path a is the inner slope U of the incident side prism 246c1 and further. It is reflected by the outer slope T and is incident on the inner slope V of the exit side prism 246c2 at right angles. Then, the laser beam that travels straight through the gap 246c3 and enters the exit-side prism 246c2 is reflected by the emission surface R, the outer slope S, and the inner slope V, and then is emitted from the exit surface R. Similarly, the light path paths b and c are reflected twice by the incident side prism 246c1 side and three times by the exit side prism 246c2, and are emitted from the position shown in FIG. 3 (b). As is clear from the figure, the light path a, b, and c incident from the incident surface Q are irradiated from the exit surface R in a state of being rotated 180 degrees around the light path b, and the incident surface Q is emitted. When the laser beam is scanned in the order of a, b, c on the side, that is, in the direction indicated by the arrow W1 in FIG. 3B, the scanning direction is reversed in the direction indicated by the arrow W2 on the exit surface R side. Further, when the laser beam is scanned in the direction indicated by the arrow d2 perpendicular to the arrow d1 at the center of the incident surface Q in FIG. 3 (a), the laser beam is at the position indicated by the ray path b in FIG. 3 (b). In addition, the incident position is moved in the direction perpendicular to the paper surface, and the emission position in that case is the position indicated by the light beam path b of the emission surface R in FIG. 3 (b) and in the direction perpendicular to the paper surface. Since it moves, the scanning direction of the incident laser beam is not inverted and is emitted as it is.

本実施形態の反転器246は、上記したように、駆動モータ246bを備えており、図3(a)に示す状態からイメージローテーションプリズム246cを90度回転させることができるように構成されている。よって、本実施形態のようにポリゴンミラー245により分散させられるレーザー光線のスキャン方向が固定されている場合は、該駆動モータ246bを駆動させてイメージローテ―ションプリズム246cの方向を90度回転させることにより、イメージローテーションプリズム246cの入射面Q上にてスキャンされる方向D1を、反転器246にてスキャン方向が反転される方向(図3(a)にて矢印d1で示す方向)に一致させる状態(図2(a))と、入射面Q上にてスキャンされる方向D1を、スキャン方向が反転されずに出射される方向(図3(a)の矢印d2で示す方向)に一致させる状態(図2(b))とで切替えることができる。 As described above, the reversing device 246 of the present embodiment includes the drive motor 246b, and is configured to be able to rotate the image rotation prism 246c by 90 degrees from the state shown in FIG. 3A. Therefore, when the scanning direction of the laser beam dispersed by the polygon mirror 245 is fixed as in the present embodiment, the driving motor 246b is driven to rotate the direction of the image rotation prism 246c by 90 degrees. , A state in which the direction D1 scanned on the incident surface Q of the image rotation prism 246c is matched with the direction in which the scanning direction is reversed by the reversing device 246 (the direction indicated by the arrow d1 in FIG. 3A). A state in which FIG. 2A) and the direction D1 scanned on the incident surface Q coincide with the direction in which the scanning direction is emitted without being reversed (the direction indicated by the arrow d2 in FIG. 3A) ( It can be switched with FIG. 2 (b)).

本発明のレーザー加工装置2は、概ね以上のような構成を備えており、レーザー加工装置2によって実施されるレーザー加工について以下に説明する。 The laser processing apparatus 2 of the present invention generally has the above-described configuration, and the laser processing performed by the laser processing apparatus 2 will be described below.

図1に示すように、被加工物となるウエーハ10に対してレーザー加工を実施するに際し、表面側の機能層に複数のデバイス14が形成されたウエーハ10を、保護テープTを介して環状のフレームFに支持された状態でチャックテーブル34に載置し、吸引保持する。次いで、チャックテーブル34を、移動手段8によって集光器241に対しX方向に隣接した位置に配設された撮像手段26の直下に位置付ける。該ウエーハ10が撮像手段26の直下に位置付けられたならば、パターンマッチング等の画像処理手段を実行し、集光器241とウエーハ10上の加工位置との位置合わせを実施し、位置合わせした結果は、図示しない制御手段に送られ記憶される(アライメント工程)。該アライメント工程を実施したならば、移動手段8を作動してチャックテーブル34上のウエーハ10の所定の分割予定ライン12の一端部側(加工開始位置)を、集光器241の直下に位置付ける。このとき、集光器241から照射されるレーザー光線の集光点を、デバイス14が形成された機能層の上面付近になるように位置付け、反転器246のイメージローテーションプリズム246cを予めスキャン方向が反転される位置になるように該制御手段により設定しておく。 As shown in FIG. 1, when laser machining is performed on a wafer 10 to be a work piece, the wafer 10 in which a plurality of devices 14 are formed on a functional layer on the surface side is annularly formed via a protective tape T. It is placed on the chuck table 34 while being supported by the frame F, and is sucked and held. Next, the chuck table 34 is positioned directly under the imaging means 26 arranged at a position adjacent to the condenser 241 in the X direction by the moving means 8. If the wafer 10 is positioned directly under the image pickup means 26, an image processing means such as pattern matching is executed, the condenser 241 and the processing position on the wafer 10 are aligned, and the result of the alignment is achieved. Is sent to and stored in a control means (not shown) (alignment step). When the alignment step is performed, the moving means 8 is operated to position one end side (machining start position) of the predetermined division scheduled line 12 of the wafer 10 on the chuck table 34 directly below the condenser 241. At this time, the condensing point of the laser beam emitted from the concentrator 241 is positioned near the upper surface of the functional layer on which the device 14 is formed, and the scanning direction of the image rotation prism 246c of the reversing device 246 is reversed in advance. The position is set by the control means.

次に、該制御手段により、レーザー光線発振器242、アッテネータ243を作動させ、ポリゴンミラー245を図示しないモータを作動することで、たとえば5000回転/秒の回転速度で回転させ、チャックテーブル34を図2(a)にて矢印Xで示す往路方向(図中右方から左方)に所定の加工送り速度で移動させて、該分割予定ライン12に沿って所謂アブレーション加工を実施し分割溝を形成する。このとき、図に示すように、矢印Xで示すチャックテーブル34が移動する往路方向に対して、ウエーハ10上のスキャン方向D3は逆方向となる。 Next, the laser beam oscillator 242 and the attenuator 243 are operated by the control means, and the polygon mirror 245 is operated by a motor (not shown) to rotate the chuck table 34 at a rotation speed of, for example, 5000 rpm. In a), the vehicle is moved in the outward route direction (from right to left in the figure) indicated by the arrow X at a predetermined processing feed rate, and so-called ablation processing is performed along the planned division line 12 to form a division groove. At this time, as shown in the figure, the scanning direction D3 on the wafer 10 is opposite to the outward direction in which the chuck table 34 indicated by the arrow X moves.

該往路方向にチャックテーブル34を移動させながらレーザー加工を実行し、分割予定ライン12の他端部側が集光器241の直下位置に達したならば、レーザー光線の照射を一旦停止し、チャックテーブル34の移動を停止する。上記したレーザー加工においては、ポリゴンミラー245の作用により、チャックテーブル34の移動速度に比して矢印Xの方向において高速で且つ繰り返しスキャンされるので、ウエーハ10の分割予定ライン12上にて重複してアブレーション加工が繰り返し施され、レーザー加工による溶融物が形成された分割溝に埋め戻されることを効果的に防止することができる。 Laser machining is performed while moving the chuck table 34 in the outward direction, and when the other end side of the scheduled division line 12 reaches a position directly below the condenser 241, the irradiation of the laser beam is temporarily stopped and the chuck table 34 is temporarily stopped. Stop moving. In the above laser machining, due to the action of the polygon mirror 245, scanning is performed repeatedly in the direction of arrow X at a higher speed than the moving speed of the chuck table 34, so that the laser machining overlaps on the scheduled division line 12 of the waiha 10. The ablation process is repeatedly performed, and it is possible to effectively prevent the melt formed by the laser process from being backfilled in the divided groove.

なお、上記レーザー加工は、例えば、以下の加工条件で実施される。
レーザー光線の波長 :532nm
繰り返し周波数 :5MHz
平均出力 :10W
加工送り速度 :500mm/秒
The laser processing is performed under the following processing conditions, for example.
Wavelength of laser beam: 532 nm
Repeat frequency: 5MHz
Average output: 10W
Machining feed rate: 500 mm / sec

また、ポリゴンミラーは、例えば、以下のように構成される。
回転ミラーの数 :10枚
回転数 :5000回転/秒
スキャンパルス :100パルス
Further, the polygon mirror is configured as follows, for example.
Number of rotating mirrors: 10 rotations: 5000 rotations / sec Scan pulse: 100 pulses

次に、該制御手段は、Y方向移動手段41を作動して、チャックテーブル34をウエーハ10に形成された分割予定ライン12の間隔だけY方向(割り出し送り方向)に移動すると共に、隣接する分割予定ライン12の他端部側を集光器241のレーザー光線照射位置に位置付ける。このとき、反転器246の駆動モータ246bを作動して、イメージローテーションプリズム246cを90度回転させて、図2(b)の状態とする。すなわち、入射面Qに入射されるレーザー光線LBa〜LBbのスキャン方向が反転されずに、そのままの方向D2’で出射面Rから出射される状態としておく。そして、集光器241から照射されるレーザー光線の集光点を、分割予定ライン12におけるデバイス14が形成された表面付近に位置付けて、上記した往路方向にチャックテーブル34を移動させた場合と同様のレーザー加工条件にてレーザー光線を照射する。それと同時に、チャックテーブル34を図2(b)にて矢印Xで示す復路方向(図中左方から右方)に所定の加工送り速度で移動させて、該分割予定ライン12に沿って所謂アブレーション加工を実施し、分割溝を形成する。図に示すように、この場合も、矢印Xで示すチャックテーブル34の移動方向に対して、ウエーハ10上のスキャン方向D3’は逆方向となる。このようにして、該復路方向に対してもチャックテーブル34を移動させながらレーザー加工を実行し、分割予定ライン12の一端部側が集光器241の直下位置に達したならば、レーザー光線の照射を一旦停止し、チャックテーブル34の移動を停止する。このレーザー加工においても往路方向に移動させる場合と同様に、矢印Xの方向において8mmの範囲で繰り返しスキャンするので、矢印Xの方向において分割予定ライン12上にて重複してアブレーション加工が施され、形成される分割溝にレーザー加工によって溶融物が埋め戻されることを効果的に防止することができる。以降、移動手段8とレーザー光線照射手段24を適宜作動させることにより、ウエーハ10上の全ての分割予定ライン12に対して同様のレーザー加工を施し、分割溝を形成するレーザー加工を実施する。 Next, the control means operates the Y-direction moving means 41 to move the chuck table 34 in the Y direction (indexing feed direction) by the interval of the scheduled division lines 12 formed on the wafer 10, and the adjacent divisions. The other end side of the scheduled line 12 is positioned at the laser beam irradiation position of the condenser 241. At this time, the drive motor 246b of the reversing device 246 is operated to rotate the image rotation prism 246c by 90 degrees to obtain the state shown in FIG. 2 (b). That is, the scanning directions of the laser beams LBa to LBb incident on the incident surface Q are not reversed, and are emitted from the emitting surface R in the same direction D2'. Then, the condensing point of the laser beam emitted from the concentrator 241 is positioned near the surface on which the device 14 is formed on the scheduled division line 12, and the chuck table 34 is moved in the outward direction as described above. Irradiate a laser beam under laser processing conditions. At the same time, the chuck table 34 is moved at a predetermined machining feed rate in the return path direction (from left to right in the figure) indicated by the arrow X in FIG. 2 (b), and so-called ablation is performed along the scheduled division line 12. Processing is carried out to form a dividing groove. As shown in the figure, also in this case, the scanning direction D3'on the wafer 10 is opposite to the moving direction of the chuck table 34 indicated by the arrow X. In this way, laser machining is performed while moving the chuck table 34 also in the return direction, and when one end side of the scheduled division line 12 reaches a position directly below the condenser 241, the laser beam is irradiated. It stops once, and the movement of the chuck table 34 is stopped. In this laser processing as well, as in the case of moving in the outward direction, scanning is repeated within a range of 8 mm in the direction of arrow X, so that ablation processing is performed overlappingly on the scheduled division line 12 in the direction of arrow X. It is possible to effectively prevent the melt from being backfilled in the formed dividing groove by laser processing. After that, by appropriately operating the moving means 8 and the laser beam irradiating means 24, the same laser processing is performed on all the scheduled division lines 12 on the wafer 10, and the laser processing for forming the dividing groove is performed.

図2(a)、(b)から理解されるように、本実施形態によれば、チャックテーブル34を復路方向に移動させてレーザー加工を実施する場合においても、往路方向に移動させる場合のレーザー加工と同じ条件で加工することが可能になり、往路方向に移動させながらレーザー加工を実行した場合と、復路方向に移動させながらレーザー加工を実行した場合とで、分割予定ライン12に対応する分割溝の加工品質を同一にすることができる。また、加工品質を同一にするための構成が、反転器246におけるイメージローテーションプリズム246cを90度回転させる構成によって実現できるため、構成が複雑化したり、故障が誘発されたりすることがなく、メンテナンスの手間を削減することができる。 As can be understood from FIGS. 2A and 2B, according to the present embodiment, even when the chuck table 34 is moved in the return direction to perform laser machining, the laser is moved in the outward direction. It is possible to process under the same conditions as processing, and there are cases where laser processing is performed while moving in the outward direction and cases where laser processing is performed while moving in the return direction. The processing quality of the grooves can be made the same. Further, since the configuration for making the processing quality the same can be realized by the configuration in which the image rotation prism 246c in the reversing device 246 is rotated by 90 degrees, the configuration is not complicated or a failure is not induced, and maintenance is performed. The labor can be reduced.

なお、本発明は、上記した実施形態に限定されず、本発明の技術的範囲に含まれる範囲において、種々の変形例が想定される。例えば、上記した実施形態では、イメージローテーションプリズム246cを90度回転させることにより、チャックテーブル34が往路方向、復路方向のいずれに移動する場合も、レーザー光線がスキャンされる方向を逆方向とすることで分割溝を形成した場合の加工品質が同一となるようにしたが、本発明はこれに限定されず、チャックテーブル34が移動する方向に対して設定されるイメージローテーション246cの方向を逆に設定し、チャックテーブル34の移動方向に対して、レーザー光線のスキャン方向が順方向になるように設定することで、分割溝を形成する場合の加工品質を同一にしてもよい。 The present invention is not limited to the above-described embodiment, and various modifications are assumed within the scope of the technical scope of the present invention. For example, in the above-described embodiment, by rotating the image rotation prism 246c by 90 degrees, the direction in which the laser beam is scanned is reversed regardless of whether the chuck table 34 moves in the outward path direction or the return path direction. The processing quality when the dividing groove is formed is the same, but the present invention is not limited to this, and the direction of the image rotation 246c set with respect to the direction in which the chuck table 34 moves is set in the opposite direction. By setting the scanning direction of the laser beam to be forward with respect to the moving direction of the chuck table 34, the processing quality when forming the dividing groove may be the same.

また、本実施形態では、反転器246に使用されるイメージローテーションプリズム246cを、入射側プリズム246c1と出射側プリズム246c2とを組み合わせることにより実現したが、本発明はこれに限定されず、像反転機能を奏するその他の光学手段、例えば、台形プリズム、梯形プリズム、ダブプリズム等を採用することもできる。 Further, in the present embodiment, the image rotation prism 246c used in the reversing device 246 is realized by combining the incident side prism 246c1 and the exit side prism 246c2, but the present invention is not limited to this, and the image inversion function is not limited to this. Other optical means such as a trapezoidal prism, a ladder prism, a dub prism, and the like can also be adopted.

2:レーザー加工装置
6:保持手段
8:移動手段
10:ウエーハ
12:分割予定ライン
14:デバイス
24:レーザー光線照射手段
241:集光器
242:レーザー発振器
243:アッテネータ
245:ポリゴンミラー
246:反転器
246b:駆動モータ
246c:イメージローテーションプリズム
26:撮像手段
40:X方向移動手段
41:Y方向移動手段
2: Laser processing device 6: Holding means 8: Moving means 10: Wafer 12: Scheduled division line 14: Device 24: Laser beam irradiation means 241: Condenser 242: Laser oscillator 243: Attenuator 245: Polygon mirror 246: Inverter 246b : Drive motor 246c: Image rotation prism 26: Imaging means 40: X-direction moving means 41: Y-direction moving means

Claims (1)

レーザー加工装置であって、
被加工物を保持する保持手段と、該保持手段に保持された被加工物にレーザー光線を照射するレーザー光線照射手段と、該保持手段と該レーザー光線照射手段とをX方向に相対的に加工送りするX方向移動手段と、該保持手段と該レーザー光線照射手段とを該X方向と直交するY方向に相対的に加工送りするY方向移動手段と、を少なくとも含み、
該レーザー光線照射手段は、レーザー光線を発振するレーザー発振器と、該レーザー発振器が発振したレーザー光線を所定の分散角度で分散しX方向にスキャンするポリゴンミラーと、X方向にスキャンされたレーザー光線を該保持手段に保持された被加工物に集光する集光器と、該ポリゴンミラーと該集光器との間に配設されレーザー光線のスキャン方向を反転させる反転器と、から少なくとも構成され
該反転器は、イメージローテーションプリズムと、該分散角度の中央を回転軸として該イメージローテーションプリズムを90度回転させる駆動部と、該ポリゴンミラーと該イメージローテーションプリズムとの間に配設され該分散角度で分散されたレーザー光線を平行光に修正する第一のリレーレンズと、該イメージローテーションプリズムと該集光器との間に配設され該イメージローテーションプリズムを通過した平行光を該分散角度に戻す第二のリレーレンズと、から少なくとも構成され、
該保持手段に保持された被加工物にレーザー光線を照射して往路で加工する際と、復路で加工する際とで、該イメージローテーションプリズムを90度回転させてレーザー光線のスキャン方向を反転させるレーザー加工装置。
It is a laser processing device
X that holds the workpiece, the laser beam irradiating means that irradiates the workpiece held by the holding means with a laser beam, and the holding means and the laser beam irradiating means that are relatively processed and fed in the X direction. At least a directional moving means and a Y-direction moving means for processing and feeding the holding means and the laser beam irradiating means in the Y direction orthogonal to the X direction are included.
The laser beam irradiating means uses a laser oscillator that oscillates a laser beam, a polygon mirror that disperses the laser beam oscillated by the laser oscillator at a predetermined dispersion angle and scans it in the X direction, and a laser beam scanned in the X direction as the holding means. It is composed of at least a concentrator that condenses on the held workpiece and a reversing device that is arranged between the polygon mirror and the concentrator and reverses the scanning direction of the laser beam .
The reversing device is arranged between an image rotation prism, a drive unit that rotates the image rotation prism by 90 degrees with the center of the dispersion angle as a rotation axis, and the polygon mirror and the image rotation prism, and the dispersion angle. A first relay lens that corrects the laser beam dispersed in the above to parallel light, and a second relay lens that is arranged between the image rotation prism and the condenser and returns the parallel light that has passed through the image rotation prism to the dispersion angle. Consists of at least two relay lenses,
And time of processing in the forward by irradiating a laser beam to the workpiece held by the holding means, a laser in the case of processing the return path, Ru rotate the image rotation prism 90 ° by inverting the scanning direction of the laser beam Processing equipment.
JP2017026033A 2017-02-15 2017-02-15 Laser processing equipment Active JP6917727B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017026033A JP6917727B2 (en) 2017-02-15 2017-02-15 Laser processing equipment
TW107100872A TWI744460B (en) 2017-02-15 2018-01-10 Laser processing device
KR1020180015066A KR102310753B1 (en) 2017-02-15 2018-02-07 Laser machining apparatus
CN201810127358.9A CN108436287B (en) 2017-02-15 2018-02-08 Laser processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017026033A JP6917727B2 (en) 2017-02-15 2017-02-15 Laser processing equipment

Publications (2)

Publication Number Publication Date
JP2018130739A JP2018130739A (en) 2018-08-23
JP6917727B2 true JP6917727B2 (en) 2021-08-11

Family

ID=63191880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017026033A Active JP6917727B2 (en) 2017-02-15 2017-02-15 Laser processing equipment

Country Status (4)

Country Link
JP (1) JP6917727B2 (en)
KR (1) KR102310753B1 (en)
CN (1) CN108436287B (en)
TW (1) TWI744460B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109894739B (en) * 2019-03-04 2024-04-09 无锡蓝智自动化科技有限公司 Full-automatic laser marking device for engine cylinder ring
JP2022065693A (en) * 2020-10-16 2022-04-28 国立大学法人信州大学 Optical unit, laser processing equipment, laser processing method and three-dimensional processing equipment

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457422A (en) * 1967-02-21 1969-07-22 Ibm Optical system adapted for rotation of an image to be scanned with reference to a scanning path
US5166820A (en) * 1990-03-13 1992-11-24 Citizen Watch Co., Ltd. Light beam scanning apparatus
JP2992075B2 (en) * 1990-11-30 1999-12-20 シチズン時計株式会社 Light beam scanning device
JPH04255819A (en) * 1991-02-07 1992-09-10 Citizen Watch Co Ltd Light beam scanning device
JP3118324B2 (en) * 1992-07-07 2000-12-18 日本電産コパル株式会社 Multi-pattern optical scanning device
JP2005064231A (en) 2003-08-12 2005-03-10 Disco Abrasive Syst Ltd Dividing method of plate-shaped article
JP4253708B2 (en) * 2004-04-28 2009-04-15 株式会社ブイ・テクノロジー Exposure equipment
JP4204514B2 (en) 2004-05-19 2009-01-07 日信工業株式会社 Processing equipment
CN101009519B (en) * 2007-01-25 2010-09-01 中国科学院上海微系统与信息技术研究所 A monitoring instrument for diffraction grating light signal with dual channel structure
JP2011025279A (en) * 2009-07-24 2011-02-10 Disco Abrasive Syst Ltd Optical system and laser machining device
JP5897825B2 (en) * 2011-06-20 2016-03-30 株式会社日立情報通信エンジニアリング Laser irradiation apparatus and laser irradiation method
CN102950385A (en) * 2012-11-16 2013-03-06 中科中涵激光设备(福建)股份有限公司 System and method for processing micro conical bore by rotation of laser beam
JP6189178B2 (en) 2013-10-29 2017-08-30 株式会社ディスコ Laser processing equipment
JP6367048B2 (en) * 2014-08-28 2018-08-01 株式会社ディスコ Laser processing equipment
JP2016068149A (en) * 2014-10-02 2016-05-09 株式会社ディスコ Laser processing device
CN204679710U (en) * 2015-06-12 2015-09-30 湖北久之洋红外系统股份有限公司 High definition Penetrating Continuous Zoom Optical despin mechanism
CN204964029U (en) * 2015-10-10 2016-01-13 铁岭铁光仪器仪表有限责任公司 Two CCD color comparison temperature measurement systems of integral type

Also Published As

Publication number Publication date
CN108436287B (en) 2021-11-30
CN108436287A (en) 2018-08-24
TW201831254A (en) 2018-09-01
TWI744460B (en) 2021-11-01
KR20180094481A (en) 2018-08-23
JP2018130739A (en) 2018-08-23
KR102310753B1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
KR102091292B1 (en) Laser machining apparatus
JP4459530B2 (en) Laser processing equipment
KR102692294B1 (en) Laser processing device and laser processing method
TWI519370B (en) Laser processing device
JP5395411B2 (en) Wafer laser processing method
CN102205467B (en) Laser processing apparatus
KR20160040097A (en) Laser machining apparatus
WO2020090896A1 (en) Laser machining device
KR102232092B1 (en) Processing method of a wafer
JP6917727B2 (en) Laser processing equipment
TWI645928B (en) Laser processing apparatus and laser processing method using the laser processing apparatus
JPH0795538B2 (en) Laser annealing device
TWM488644U (en) Light source transformation mechanism of laser mirror
JP2016105178A (en) Glass substrate processing device using laser beam
JP2005262219A (en) Laser beam machining apparatus and laser beam drawing method
KR20170062385A (en) Wafer machining method and machining apparatus
JP4040896B2 (en) Laser processing method and laser processing apparatus
JP6625928B2 (en) Laser processing equipment
JP2016096241A (en) Laser oscillation mechanism
KR102697700B1 (en) Laser processing device
TWI825210B (en) Laser processing equipment
JP5519426B2 (en) Laser processing equipment
JP7122559B2 (en) LASER PROCESSING METHOD AND LASER PROCESSING APPARATUS
JP2022182530A (en) Laser processing device
JP2022183748A (en) Laser processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210720

R150 Certificate of patent or registration of utility model

Ref document number: 6917727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250