JP6917519B2 - Method for measuring the specific surface area of conductive materials - Google Patents

Method for measuring the specific surface area of conductive materials Download PDF

Info

Publication number
JP6917519B2
JP6917519B2 JP2020506203A JP2020506203A JP6917519B2 JP 6917519 B2 JP6917519 B2 JP 6917519B2 JP 2020506203 A JP2020506203 A JP 2020506203A JP 2020506203 A JP2020506203 A JP 2020506203A JP 6917519 B2 JP6917519 B2 JP 6917519B2
Authority
JP
Japan
Prior art keywords
surface area
specific surface
capacitance
conductive material
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020506203A
Other languages
Japanese (ja)
Other versions
JP2020529608A (en
Inventor
ビョングク・リュ
Original Assignee
エルジー・ケム・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ケム・リミテッド filed Critical エルジー・ケム・リミテッド
Priority claimed from PCT/KR2019/008190 external-priority patent/WO2020009491A1/en
Publication of JP2020529608A publication Critical patent/JP2020529608A/en
Application granted granted Critical
Publication of JP6917519B2 publication Critical patent/JP6917519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/026Dielectric impedance spectroscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/227Sensors changing capacitance upon adsorption or absorption of fluid components, e.g. electrolyte-insulator-semiconductor sensors, MOS capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本出願は、2018年7月6日付韓国特許出願第10−2018−0078977号及び2019年7月3日付韓国特許出願第10−2019−0080218号に基づく優先権の利益を主張し、当該韓国特許出願の文献に開示されている全ての内容を本明細書の一部として含む。 This application claims the priority benefit under Korean Patent Application No. 10-2018-0078977 dated July 6, 2018 and Korean Patent Application No. 10-2019-0080218 dated July 3, 2019. All content disclosed in the literature of the application is included as part of this specification.

本発明は、電気化学インピーダンス分光法を利用した伝導性物質の比表面積測定方法に関する。 The present invention relates to a method for measuring the specific surface area of a conductive substance using electrochemical impedance spectroscopy.

一般に、物質の比表面積を測定する方法としては、BET測定装置を使ってヘリウム、窒素などのような不活性ガスを低温で物質に吸着させる方法が広く用いられている。 Generally, as a method for measuring the specific surface area of a substance, a method of adsorbing an inert gas such as helium or nitrogen to the substance at a low temperature using a BET measuring device is widely used.

このような比表面積測定方法で用いられるBET測定装置は、大体真空ポンプ、ガス開閉スイッチ、計算用コンピューター、ヒーター及び液体窒素タンクなどで構成され、物質を測定する時、高い真空と吸着用高純度不活性ガスが必ず必要である。また、前記BET測定装置は、複雑な構造で重くて大きいため、一般的に固定して使用しなければならず、少量の不活性ガスの吸着と脱着を解釈して物質の比表面積を計算するので測定過程が複雑であり、計算用コンピューターを使わなければならない。 The BET measuring device used in such a specific surface area measuring method is generally composed of a vacuum pump, a gas open / close switch, a calculation computer, a heater, a liquid nitrogen tank, etc., and has a high vacuum and a high purity for adsorption when measuring a substance. Inert gas is absolutely necessary. Further, since the BET measuring device has a complicated structure and is heavy and large, it must be generally fixed and used, and the specific surface area of the substance is calculated by interpreting the adsorption and desorption of a small amount of inert gas. Therefore, the measurement process is complicated and a computer for calculation must be used.

一方、物質の比表面積を測定する別の方法として、低温で高純度の窒素ガスを通過させながら吸着される窒素ガスの量を測定して物質の比表面積で取る方法が利用されている。しかし、このような方法は、窒素ガスを運ぶための別の気体が必要で、窒素ガスの量を感知することができる特別な装置を要する。さらに、前記方法は物質全体に窒素ガスが吸着された量を計算することが容易ではないため、多量の測定物質を使用しない場合は、大きな誤差が発生する問題点がある。 On the other hand, as another method for measuring the specific surface area of a substance, a method of measuring the amount of nitrogen gas adsorbed while passing high-purity nitrogen gas at a low temperature and taking the specific surface area of the substance is used. However, such a method requires another gas to carry the nitrogen gas and requires a special device capable of sensing the amount of nitrogen gas. Further, since it is not easy to calculate the amount of nitrogen gas adsorbed on the whole substance by the above method, there is a problem that a large error occurs when a large amount of the measurement substance is not used.

特に、微細気孔を有する物質の比表面積測定が要求されるにもかかわらず、測定機器が高価で、測定するのに7時間以上の多くの時間が必要となるので、測定を必要とする物質の中で一部を選別して測定しなければならなかった。また、比表面積測定器機が高価であるため、実験的にBET測定装置を作って使用したりしたが、ガラスで作られて真空状態を維持するために真空ポンプとつながっていて移動することが容易ではないので、現場で速く測定しなければならない物質に対して積極的に対処できない短所がある。 In particular, although the specific surface area of a substance having fine pores is required to be measured, the measuring device is expensive and it takes a lot of time of 7 hours or more to measure. Some of them had to be selected and measured. In addition, since the specific surface area measuring device is expensive, we experimentally made and used a BET measuring device, but it is made of glass and is easily connected to a vacuum pump to maintain a vacuum state. Therefore, there is a disadvantage that it is not possible to actively deal with substances that must be measured quickly in the field.

韓国公開特許第10−2017−0009472号Korean Published Patent No. 10-2017-0009472

上述したように、物質の比表面積測定のために使用されるBET測定装置は高価な装置であり、測定時間が長くかかり、多量の試料を要する問題がある。 As described above, the BET measuring device used for measuring the specific surface area of a substance is an expensive device, has a problem that the measuring time is long and a large amount of sample is required.

ここで、前記問題点を解決するために、本発明は電気化学インピーダンス分光法を利用して簡単な方法で伝導性物質の比表面積を測定する方法を提供することを目的とする。 Here, in order to solve the above problems, it is an object of the present invention to provide a method for measuring the specific surface area of a conductive substance by a simple method using electrochemical impedance spectroscopy.

前記目的を達成するために、
本発明は、(1)電気二重層を有する伝導性物質に分路(shunt)抵抗を形成する添加剤を追加する段階と、
(2)電気化学インピーダンス分光法(Electrochemical impedance spectroscopy、EIS)を利用して前記伝導性物質の電気二重層の静電容量(capacitance)を測定する段階と、
(3)前記静電容量から伝導性物質の比表面積を算出する段階とを含む伝導性物質の比表面積測定方法を提供する。
To achieve the above objectives
The present invention comprises (1) the step of adding an additive that forms a shunt resistor to a conductive material having an electric double layer.
(2) A step of measuring the capacitance of the electric double layer of the conductive substance using electrochemical impedance spectroscopy (EIS), and a step of measuring the capacitance of the electric double layer of the conductive substance.
(3) Provided is a method for measuring the specific surface area of a conductive substance, which includes a step of calculating the specific surface area of the conductive substance from the capacitance.

また、本発明は、(1)電気二重層を有する伝導性物質に分路(shunt)抵抗を形成する添加剤を追加する追加モジュール;
(2)電気化学インピーダンス分光法(Electrochemical impedance spectroscopy、EIS)を利用して前記伝導性物質の電気二重層の静電容量(capacitance)を測定する測定モジュール;及び
(3)前記静電容量から伝導性物質の比表面積を算出する計算モジュール;を含む伝導性物質の比表面積測定システムを提供する。
The present invention also comprises (1) an additional module that adds an additive that forms a shunt resistor to a conductive material having an electric double layer;
(2) A measurement module that measures the capacitance of the electric double layer of the conductive material using electrochemical impedance spectroscopy (EIS); and (3) conduction from the capacitance. Provided is a calculation module for calculating the specific surface area of a sex substance; a specific surface area measurement system for a conductive substance including.

本発明の伝導性物質の比表面積測定方法は、電気化学インピーダンス分光法を利用して簡単な方法で伝導性物質の比表面積を測定することができる。
また、本発明の伝導性物質の比表面積測定方法は、測定時に要する試料が少量であり、水分がある環境でも測定可能であるという長所を有している。
In the method for measuring the specific surface area of a conductive substance of the present invention, the specific surface area of a conductive substance can be measured by a simple method using electrochemical impedance spectroscopy.
Further, the method for measuring the specific surface area of a conductive substance of the present invention has an advantage that a small amount of sample is required for measurement and the measurement can be performed even in an environment with water.

実施例1の電気化学インピーダンス回路図である。It is an electrochemical impedance circuit diagram of Example 1. FIG. 実施例1の電気化学インピーダンスの結果グラフである。It is a result graph of the electrochemical impedance of Example 1. 比較例1の電気化学インピーダンスの結果グラフである。It is a result graph of the electrochemical impedance of Comparative Example 1.

以下、本発明をより詳しく説明する。
一般に、BET測定装置を利用して物質の比表面積を測定する。しかし、前記BET測定装置は高価で、比表面積測定に数時間以上多くの時間が必要となり、測定時に多量の試料を必要とする問題がある。また、BET測定装置で電極表面にある電気二重層の静電容量(double layer capacitance)を予測する場合、実際値と非常に大きな誤差を示す問題がある。
Hereinafter, the present invention will be described in more detail.
Generally, a BET measuring device is used to measure the specific surface area of a substance. However, the BET measuring device is expensive, requires a lot of time for measuring the specific surface area of several hours or more, and has a problem that a large amount of sample is required at the time of measurement. Further, when predicting the capacitance of the electric double layer on the electrode surface by the BET measuring device, there is a problem that an error showing a very large error from the actual value is shown.

一方、電気化学インピーダンス分光法(Electrochemical impedance spectroscopy、EIS)は、周波数が異なる微細な交流信号をセルに与えてインピーダンスを計測する方法である。電気化学界面での色々な現象は、周波数によってそれぞれ異に反応し、振幅と位相の変化を起こすので、物質の静電容量、抵抗及び腐食電位などを測定することができ、これを通じて電気化学的挙動をモニタリングすることができる。 On the other hand, electrochemical impedance spectroscopy (EIS) is a method of measuring impedance by giving a fine AC signal having a different frequency to a cell. Various phenomena at the electrochemical interface react differently depending on the frequency, causing changes in amplitude and phase, so that the capacitance, resistance, corrosion potential, etc. of a substance can be measured, and through this, electrochemical. Behavior can be monitored.

伝導性物質の静電容量は、前記電気化学インピーダンス分光法以外にサイクリックボルタンメトリ(cyclic voltammetry、CV)または充・放電でも得られるが、前記の方法はIRドロップ(IR drop)または気体発生などでノイズ(noise)が生成されて静電容量の誤差が大きく、多量の試料が必要な問題がある。しかし、前記電気化学インピーダンス分光法は、前記問題点を最小化することができる。 The capacitance of the conductive material can be obtained by cyclic voltammetry (CV) or charge / discharge in addition to the electrochemical impedance spectroscopy, but the method is IR drop (IR drop) or gas generation. There is a problem that noise is generated due to such factors, the capacitance error is large, and a large amount of sample is required. However, the electrochemical impedance spectroscopy can minimize the problem.

一般に、電解質と反応しない伝導性物質は電気二重層(double layer)を有し、前記伝導性物質の電気二重層の静電容量は伝導性物質の比表面積と比例する。 Generally, a conductive substance that does not react with an electrolyte has an electric double layer, and the capacitance of the electric double layer of the conductive substance is proportional to the specific surface area of the conductive substance.

よって、本発明では電気化学インピーダンス分光法を利用して伝導性物質の電気二重層の静電容量を分離して測定した後、これによって伝導性物質の比表面積を測定する方法を提供しようとし、前記方法は少量の試料を使用して、誤差が少ない効果を有することができる。 Therefore, the present invention attempts to provide a method for measuring the specific surface area of a conductive substance after separating and measuring the capacitance of the electric double layer of the conductive substance by using electrochemical impedance spectroscopy. The method can have a low error effect by using a small amount of sample.

したがって、本発明は伝導性物質の比表面積測定方法に係り、より具体的に、
(1)電気二重層を有する伝導性物質に分路(shunt)抵抗を形成する添加剤を追加する段階;
(2)電気化学インピーダンス分光法(Electrochemical impedance spectroscopy、EIS)を利用して前記伝導性物質の電気二重層の静電容量(capacitance)を測定する段階;及び
(3)前記静電容量から伝導性物質の比表面積を算出する段階;を含む、伝導性物質の比表面積測定方法に関する。
Therefore, the present invention relates to a method for measuring the specific surface area of a conductive substance, and more specifically,
(1) A step of adding an additive that forms a shunt resistor to a conductive material having an electric double layer;
(2) A step of measuring the capacitance of the electric double layer of the conductive material using Electrochemical impedance spectroscopy (EIS); and (3) Conductivity from the capacitance. The present invention relates to a method for measuring the specific surface area of a conductive substance, which comprises the step of calculating the specific surface area of the substance.

前記(1)段階は、電気二重層を有する伝導性物質に分路(shunt)抵抗を形成する添加剤を追加する段階である。 The step (1) is a step of adding an additive that forms a shunt resistance to the conductive material having an electric double layer.

本発明において、前記伝導性物質は電解質と反応しない物質で、一般的に電解質と反応しない伝導性物質は電気二重層を有するので、本発明の伝導性物質は電気二重層を有する物質であってもよい。 In the present invention, the conductive substance is a substance that does not react with the electrolyte, and generally the conductive substance that does not react with the electrolyte has an electric double layer. Therefore, the conductive substance of the present invention is a substance having an electric double layer. May be good.

本発明において、前記電気二重層を有する伝導性物質は、抵抗が存在しながら伝導性を有する物質であれば、その種類を特に限定せず、具体的に、例えば炭素ナノチューブ(CNT)、グラファイト、カーボンエアロゲル、ポリアクリロニトリル(PAN)、炭素ナノ纎維(CNF)、活性化炭素ナノ纎維(ACNF)、気相成長炭素纎維(VGCF)及びグラフェンなどの多孔性炭素材であってもよい。
前記添加剤は、前記電気二重層を有する伝導性物質の分路(shunt)抵抗を形成する物質で、前記伝導性物質と電解質間の抵抗を減少させる物質である。
In the present invention, the conductive substance having the electric double layer is not particularly limited as long as it is a substance having conductivity while having resistance, and specifically, for example, carbon nanotube (CNT), graphite, and the like. It may be a porous carbon material such as carbon airgel, polyacrylonitrile (PAN), carbon nanographite (CNF), activated carbon nanographite (ACNF), vapor-grown carbon fiber (VGCF) and graphene.
The additive is a substance that forms a shunt resistance of the conductive substance having the electric double layer, and is a substance that reduces the resistance between the conductive substance and the electrolyte.

一般に、電気二重層を有する伝導性物質の電気二重層の静電容量は、電気化学インピーダンス分光法で測定することがとても難しい。よって、本発明では電気化学インピーダンス分光法で前記伝導性物質の電気二重層の静電容量を測定するために前記添加剤を使用して電気化学インピーダンス分光法で前記伝導性物質の電気二重層の静電容量を測定しようとした。 In general, the capacitance of an electric double layer of a conductive material having an electric double layer is very difficult to measure by electrochemical impedance spectroscopy. Therefore, in the present invention, in order to measure the capacitance of the electric double layer of the conductive substance by electrochemical impedance spectroscopy, the additive is used and the electric double layer of the conductive substance is subjected to electrochemical impedance spectroscopy. I tried to measure the capacitance.

前記添加剤は、電解質のイオンと可逆反応が可能な物質であれば、その種類を特に限定しないが、具体的に、例えばLiMnO、MnO、LiMn、LiFePO、Li(NiCoMn)O、RuO、SnO、CoO、NiO、IrO、Mn、Co、NiCo、V、TiO、MoO及びFeからなる群から選択される1種以上を含むことができる。 The additive, if capable of ions and reversible reaction of the electrolyte material is not particularly limited in its kind, specifically, for example LiMnO 2, MnO 2, LiMn 2 O 4, LiFePO 4, Li (Ni x Co y Mn z) O 2, RuO 2, SnO 2, CoO, NiO, IrO 2, Mn 3 O 4, Co 3 O 4, NiCo 2 O 4, V 2 O 5, TiO 2, MoO 3 and Fe 2 O It can include one or more selected from the group consisting of three.

前記可逆反応は、電解質にあるイオンと添加剤が酸化−還元反応またはインターカレーション(intercalation)する反応を意味する。 The reversible reaction means a reaction in which ions in an electrolyte and an additive are oxidized-reduced or intercalated.

したがって、前記添加剤は電解質のイオンと酸化−還元反応またはインターカレーション反応ができる物質であり、例えば、前記MnOは酸化−還元(redox)反応を利用したものであり、前記LiMnはインターカレーション(intercalation)反応を利用したものである。 Therefore, the additive is a substance capable of an oxidation-reduction reaction or an intercalation reaction with ions of an electrolyte. For example, the MnO 2 utilizes an oxidation-reduction (redox) reaction, and the LiMn 2 O 4 Utilizes an intercalation reaction.

前記添加剤の静電容量は、電気二重層を有する伝導性物質の静電容量より大きくて反応速度が相対的に遅い。そのため、伝導性物質の電気二重層が形成される時間帯域と前記添加剤の疑似容量(pseudocapacitance)が形成される時間帯域が違うので、前記添加剤の疑似容量(pseudocapacitance)は伝導性物質の測定に影響を与えず、分路抵抗(shunt resistance)だけで作用するようになる。 The capacitance of the additive is larger than the capacitance of the conductive substance having an electric double layer, and the reaction rate is relatively slow. Therefore, since the time zone in which the electric double layer of the conductive substance is formed and the time zone in which the pseudo-capacity of the additive is formed are different, the pseudo-capacity of the additive is measured for the conductive substance. It does not affect the shunt resistance and acts only by the shunt resistance.

電気化学インピーダンス分光法において、RC回路の場合、伝導性物質と電解質が直接反応しないため抵抗が非常に大きく、静電容量が非常に小さいためワールブルグ素子(Warburg element)に隠されて静電容量の検出が不可能である。しかし、本発明では伝導性物質に前記添加剤を追加することで抵抗を減少させることができるのでワールブルグ素子と分離が可能であり、伝導性物質の電気二重層の静電容量を測定することができる。 In electrochemical impedance spectroscopy, in the case of an RC circuit, the resistance is very large because the conductive substance and the electrolyte do not react directly, and the capacitance is very small, so it is hidden by the Warburg element and the capacitance is Cannot be detected. However, in the present invention, the resistance can be reduced by adding the additive to the conductive substance, so that it can be separated from the Warburg element, and the capacitance of the electric double layer of the conductive substance can be measured. can.

より具体的に、電気化学インピーダンス分光法で伝導性物質の電気信号度及び電気二重層は、形成及び消滅を繰り返しながら一般的なキャパシタ(capacitor)のように変位電流(displacement current)で信号が伝達される。しかし、電気二重層の形成速度が速すぎて高い周波数のみに反応し、この時、測定システム上、高い周波数帯域ではノイズが多く、ワールブルグ素子(Warburg element)が相対的に大きくて測定がまともに行われない。よって、分路抵抗を形成させる添加剤を追加して分路抵抗を形成すれば、伝導性物質の電気二重層形成時間が遅くなってナイキスト線図(Nyquist plot)で半円が表れるようになるし、伝導性物質の電気二重層の静電容量を測定することができる。 More specifically, in electrochemical impedance spectroscopy, the electrical signal degree and electric double layer of a conductive material are repeatedly formed and extinguished, and signals are transmitted by a displacement current (displacement current) like a general capacitor. Will be done. However, the formation speed of the electric double layer is too fast and it reacts only to high frequencies. At this time, there is a lot of noise in the high frequency band on the measurement system, and the Warburg element is relatively large and the measurement is decent. Not done. Therefore, if an additive that forms a shunt resistance is added to form the shunt resistance, the time for forming the electric double layer of the conductive material is delayed, and a semicircle appears in the Nyquist plot. Then, the capacitance of the electric double layer of the conductive material can be measured.

また、電気化学インピーダンス分光法を利用して電気二重層を有する伝導性物質の比表面積測定時に必要な前記伝導性物質は1μg以上である。 Further, the amount of the conductive substance required for measuring the specific surface area of the conductive substance having an electric double layer by using electrochemical impedance spectroscopy is 1 μg or more.

物質の比表面積を測定するためには、一般的にBET測定装置を利用する。前記BET測定装置は、物質の比表面積を測定するために約100mg以上を要する。しかし、本発明では、電気二重層を有する伝導性物質の比表面積を測定するために1μg以上の含量のみを必要とするので、少量でも電気二重層を有する伝導性物質の比表面積を測定することができる長所を有する。 In order to measure the specific surface area of a substance, a BET measuring device is generally used. The BET measuring device requires about 100 mg or more to measure the specific surface area of a substance. However, in the present invention, since only a content of 1 μg or more is required to measure the specific surface area of the conductive substance having the electric double layer, the specific surface area of the conductive substance having the electric double layer should be measured even in a small amount. Has the advantage of being able to.

また、前記添加剤は、電気二重層を有する伝導性物質の総重量部に対して1ないし20重量部で含まれ、好ましくは5ないし15重量部で含まれる。 Further, the additive is contained in an amount of 1 to 20 parts by weight, preferably 5 to 15 parts by weight, based on the total weight part of the conductive substance having an electric double layer.

前記添加剤が1重量部未満で含まれると添加剤の反応性が低下され、電解質の拡散(diffusion)が悪くなってワールブルグ素子が強く表れることがあるし、20重量部を超えて含まれると、添加剤の含量が多すぎて伝導性物質の構造体形成または電気二重層形成を妨げて伝導性物質の電気二重層の静電容量を測定しがたい問題がある。 If the additive is contained in an amount of less than 1 part by weight, the reactivity of the additive is lowered, the diffusion of the electrolyte is deteriorated, and the Warburg element may appear strongly. If the additive is contained in an amount of more than 20 parts by weight. There is a problem that it is difficult to measure the capacitance of the electric double layer of the conductive material because the content of the additive is too large to prevent the formation of the structure or the electric double layer of the conductive material.

また、前記添加剤は通常伝導性物質より密度が高いので、前記含量範囲に含まれるとしても、実際に大面的に及ぼす影響が微々たるものであり、添加剤の上に生じる電気二重層は、すぐ消滅されて分路としての役目をする。よって、添加剤自体の電気二重層が弱く形成されて添加剤の比表面積計算に最小化されるので、伝導性物質の電気二重層の静電容量測定の誤差を縮めることができる。 Further, since the additive usually has a higher density than the conductive substance, even if it is included in the content range, the effect on the actual surface is insignificant, and the electric double layer generated on the additive is formed. , It disappears immediately and acts as a branch. Therefore, the electric double layer of the additive itself is weakly formed and minimized in the calculation of the specific surface area of the additive, so that the error in the capacitance measurement of the electric double layer of the conductive substance can be reduced.

前記(2)段階は、電気化学インピーダンス分光法(Electrochemical impedance spectroscopy、EIS)を利用して前記伝導性物質の電気二重層の静電容量(capacitance)を測定する段階である。 The step (2) is a step of measuring the capacitance of the electric double layer of the conductive substance by using electrochemical impedance spectroscopy (EIS).

前記伝導性物質は、電気化学インピーダンス分光法を測定する時に電気二重層が形成され、前記電気二重層は伝導性物質の表面を覆っているので、電気二重層の静電容量から伝導性物質の比表面積を測定することができる。
前記電気化学インピーダンス分光法は、インピーダンスの振幅と位相を複素数平面に表し、これをナイキスト線図(Nyquist plot)と言う。前記ナイキスト線図は、半円と45゜角度の直線で表れ、円径は界面で電子が電解質と伝導性物質間の界面を通過する移動速度と係る電荷移動抵抗(charge transfer resistance)で、45゜角度の直線は拡散による物質移動を表すワールブルグインピーダンス(Zw)を意味する。
Since an electric double layer is formed in the conductive material when measuring electrochemical impedance spectroscopy, and the electric double layer covers the surface of the conductive material, the capacitance of the electric double layer is used to determine the conductive material. The specific surface area can be measured.
In the electrochemical impedance spectroscopy, the amplitude and phase of impedance are represented by a complex number plane, which is called a Nyquist plot. The Nyquist diagram is represented by a straight line with a semicircle and a 45 ° angle, and the diameter of the circle is the charge transfer resistance related to the movement speed of electrons passing through the interface between the electrolyte and the conductive substance at the interface. The straight line at the angle means the Warburg impedance (Zw), which represents the movement of matter due to diffusion.

前記(1)段階は、電気二重層を有する伝導性物質に添加剤を追加したことで、前記添加剤がワールブルグ素子によって覆われた前記半円を小さくして、伝導性物質の電気二重層の静電容量を測定できるようにする。 In step (1), by adding an additive to the conductive substance having the electric double layer, the semicircle in which the additive is covered by the Warburg element is made smaller, and the electric double layer of the conductive substance is formed. Allows measurement of capacitance.

前記電気化学インピーダンス分光法を利用した伝導性物質の電気二重層の静電容量測定は、前記(1)段階で準備した試料(伝導性物質及び添加剤)を作用電極(working electrode)とし、電解質を含む3電極電気化学的セルを構成して伝導性物質の電気二重層の静電容量を測定することができる。 In the electrostatic capacity measurement of the electric double layer of a conductive substance using the electrochemical impedance spectroscopy, the sample (conductive substance and additive) prepared in the step (1) above is used as a working electrode, and an electrolyte is used. A three-electrode electrochemical cell containing the above can be configured to measure the capacitance of the electric double layer of a conductive material.

前記電解質は、3電極電気化学的セルに利用されるものであれば、その種類を特に限定しない。
したがって、本発明の伝導性物質の比表面積測定方法は、水分がある環境でも測定可能な長所を有している。
The type of the electrolyte is not particularly limited as long as it is used for a three-electrode electrochemical cell.
Therefore, the method for measuring the specific surface area of a conductive substance of the present invention has an advantage that it can be measured even in a watery environment.

また、前記電気化学インピーダンス分光法を利用した伝導性物質の電気二重層の静電容量の測定は、BET方法より多孔性伝導性物質を測定するのに誤差が少ない長所を有している。 Further, the measurement of the capacitance of the electric double layer of the conductive substance using the electrochemical impedance spectroscopy has an advantage that there is less error in measuring the porous conductive substance than the BET method.

前記(3)段階は、前記(2)段階で測定された伝導性物質の電気二重層の静電容量から伝導性物質の比表面積を算出する段階である。
伝導性物質の電気二重層の静電容量は比表面積に比例し、これは下記数式1または数式2によって算出されることができる。
The step (3) is a step of calculating the specific surface area of the conductive substance from the capacitance of the electric double layer of the conductive substance measured in the step (2).
The capacitance of the electric double layer of a conductive material is proportional to the specific surface area, which can be calculated by Equation 1 or Equation 2 below.

Figure 0006917519
Figure 0006917519

C:伝導性物質の電気二重層の静電容量(capacitance)
A:伝導性物質の比表面積(area)
ε: 誘電率(permittivity)
d:伝導性物質の電気二重層の厚さ(distance)
C: Capacitance of the electric double layer of a conductive material
A: Specific surface area (area) of conductive material
ε: Permittivity
d: Thickness of the electric double layer of the conductive material (distance)

Figure 0006917519
Figure 0006917519

SSA:伝導性物質の質量当たり比表面積(Specific Surface Area)
C:伝導性物質の電気二重層の静電容量
:同一測定条件でレファレンス伝導性物質の比表面積対比静電容量
m:伝導性物質の質量
SSA: Specific Surface Area of Conductive Material
C: Capacitance of the electric double layer of the conductive material C 0 : Specific surface area relative capacitance of the reference conductive material under the same measurement conditions m: Mass of the conductive material

したがって、前記数式1または数式2を通じて伝導性物質の比表面積を算出することができる。
前記数式2のCは、本発明と同一な測定条件で伝導性物質の比表面積対比静電容量を測定した値であって、レファレンス(reference)の役目をする。
Therefore, the specific surface area of the conductive substance can be calculated through the above formula 1 or formula 2.
C 0 of the above formula 2 is a value obtained by measuring the specific surface area relative capacitance of the conductive substance under the same measurement conditions as in the present invention, and serves as a reference.

上述したように、本発明は伝導性物質と電解質の間の抵抗を減少させる添加剤を使用して試料を準備した後、電気化学インピーダンス分光法で前記伝導性物質の電気二重層の静電容量を求め、これによって伝導性物質の比表面積を算出することができる。すなわち、本発明は簡単な方法で伝導性物質の比表面積を測定することができるし、測定する時に必要な試料の量が少なくて、測定時間が短い効果などを有することができる。
また、本発明は前記で詳察してみた伝導性物質の比表面積測定方法を利用した伝導性物質の比表面積測定システムに関する。
As mentioned above, the present invention prepares a sample with an additive that reduces the resistance between the conductive material and the electrolyte, and then uses electrochemical impedance spectroscopy to determine the capacitance of the electric double layer of the conductive material. With this, the specific surface area of the conductive substance can be calculated. That is, the present invention can measure the specific surface area of the conductive substance by a simple method, and can have the effect that the amount of the sample required for the measurement is small and the measurement time is short.
The present invention also relates to a system for measuring the specific surface area of a conductive substance using the method for measuring the specific surface area of a conductive substance, which has been described in detail above.

具体的に、(1)電気二重層を有する伝導性物質に分路(shunt)抵抗を形成する添加剤を追加する追加モジュール;
(2)電気化学インピーダンス分光法(Electrochemical impedance spectroscopy、EIS)を利用して前記伝導性物質の電気二重層の静電容量(capacitance)を測定する測定モジュール;及び
(3)前記静電容量から伝導性物質の比表面積を算出する計算モジュール;を含む伝導性物質の比表面積測定システムに関する。
Specifically, (1) an additional module that adds an additive that forms a shunt resistor to a conductive material having an electric double layer;
(2) A measuring module that measures the capacitance of the electric double layer of the conductive material using Electrochemical impedance spectroscopy (EIS); and (3) Conduction from the capacitance. A calculation module for calculating the specific surface area of a sex substance; relating to a specific surface area measurement system for a conductive substance including.

前記(1)段階の電気二重層を有する伝導性物質は上述したものと同一である。
また、前記添加剤は、前記電気二重層を有する伝導性物質の分路(shunt)抵抗を形成する物質で、前記伝導性物質と電解質間の抵抗を減少させる物質である。
The conductive substance having the electric double layer of the step (1) is the same as that described above.
Further, the additive is a substance that forms a shunt resistance of the conductive substance having the electric double layer, and is a substance that reduces the resistance between the conductive substance and the electrolyte.

電解質のイオンと可逆反応が可能な物質であれば、その種類を特に限定しないが、具体的に、例えばLiMnO、MnO、LiMn、LiFePO、Li(NiCoMn)O、RuO、SnO、V、CoO、NiO、IrO、Mn、Co、NiCo、TiO、MoO及びFeからなる群から選択される1種以上を含むことができる。 If capable ions reversible reaction of the electrolyte material is not particularly limited in its kind, specifically, for example LiMnO 2, MnO 2, LiMn 2 O 4, LiFePO 4, Li (Ni x Co y Mn z) From the group consisting of O 2 , RuO 2 , SnO 2 , V 2 O 5 , CoO, NiO, IrO 2 , Mn 3 O 4 , Co 3 O 4 , NiCo 2 O 4 , TiO 2 , MoO 3 and Fe 2 O 3. It can include one or more selected species.

前記可逆反応は、電解質にあるイオンと添加剤が酸化−還元反応またはインターカレーション(intercalation)する反応を意味する。 The reversible reaction means a reaction in which ions in an electrolyte and an additive are oxidized-reduced or intercalated.

よって、前記添加剤は、電解質のイオンと酸化−還元反応またはインターカレーション反応ができる物質であり、例えば、前記MnOは酸化−還元(redox)反応を利用したものであり、前記LiMnはインターカレーション(intercalation)反応を利用したものである。 Therefore, the additive is a substance capable of an oxidation-reduction reaction or an intercalation reaction with ions of an electrolyte. For example, the MnO 2 utilizes an oxidation-reduction (redox) reaction, and the LiMn 2 O No. 4 utilizes an intercalation reaction.

また、伝導性物質の比表面積測定システムで前記伝導性物質を測定するために1μg以上の伝導性物質が必要である。 Further, in order to measure the conductive substance with the specific surface area measuring system for the conductive substance, 1 μg or more of the conductive substance is required.

前記添加剤は、電気二重層を有する伝導性物質の総重量部に対して1ないし20重量部で含まれ、好ましくは5ないし15重量部で含まれる。 The additive is contained in an amount of 1 to 20 parts by weight, preferably 5 to 15 parts by weight, based on the total weight part of the conductive substance having an electric double layer.

前記添加剤が1重量部未満で含まれると添加剤の反応性が低下され、電解質の拡散(diffusion)が悪くなってワールブルグ素子が強く表れることがあるし、20重量部を超えて含まれると、添加剤の含量が多すぎて伝導性物質の構造体形成または電気二重層形成を妨げて、伝導性物質の電気二重層の静電容量を測定しがたい問題がある。 If the additive is contained in an amount of less than 1 part by weight, the reactivity of the additive is lowered, the diffusion of the electrolyte is deteriorated, and the Warburg element may appear strongly. If the additive is contained in an amount of more than 20 parts by weight. There is a problem that it is difficult to measure the capacitance of the electric double layer of the conductive material because the content of the additive is too large to prevent the formation of the structure or the electric double layer of the conductive material.

前記(3)段階の計算モジュールで前記静電容量から伝導性物質の比表面積の算出は、下記数式3または数式4によって算出されることができる。 The calculation of the specific surface area of the conductive substance from the capacitance in the calculation module of the step (3) can be calculated by the following formula 3 or formula 4.

Figure 0006917519
Figure 0006917519

C:伝導性物質の電気二重層の静電容量(capacitance)
A:伝導性物質の比表面積(area)
ε: 誘電率(permittivity)
d:伝導性物質の電気二重層の厚さ(distance)
C: Capacitance of the electric double layer of a conductive material
A: Specific surface area (area) of conductive material
ε: Permittivity
d: Thickness of the electric double layer of the conductive material (distance)

Figure 0006917519
Figure 0006917519

SSA:伝導性物質の質量当たり比表面積(Specific Surface Area)
C:伝導性物質の電気二重層の静電容量
: 同一測定条件でレファレンス伝導性物質の比表面積対比静電容量
m:伝導性物質の質量
SSA: Specific Surface Area of Conductive Material
C: Capacitance of the electric double layer of the conductive material C 0 : Capacitance relative to the specific surface area of the reference conductive material under the same measurement conditions m: Mass of the conductive material

したがって、前記数式3または数式4を通じて伝導性物質の比表面積を算出することができる。
前記数式4のCは、本発明と同一な測定条件で伝導性物質の比表面積対比静電容量を測定した値であって、レファレンス(reference)の役目をする。
Therefore, the specific surface area of the conductive substance can be calculated through the formula 3 or the formula 4.
C 0 of the above formula 4 is a value obtained by measuring the specific surface area relative capacitance of the conductive substance under the same measurement conditions as in the present invention, and serves as a reference.

本明細書で記載したモジュール(module)と言う用語は、特定機能や動作を処理する一つの単位を意味し、これはハードウェアやソフトウェア、またはハードウェア及びソフトウェアの結合で具現することができる。 The term module described herein means a unit that processes a particular function or operation, which can be embodied in hardware or software, or a combination of hardware and software.

以下、本発明を具体的に説明するために実施例を挙げて詳細に説明する。しかし、本発明による実施例は幾つか異なる形態で変形されてもよく、本発明の範囲が以下で述べる実施例に限定されるもので解釈されてはならない。本発明の実施例は、当業界で平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。 Hereinafter, in order to specifically explain the present invention, examples will be given and described in detail. However, the examples according to the invention may be modified in several different forms and should not be construed as limiting the scope of the invention to the examples described below. The embodiments of the present invention are provided to more fully explain the present invention to those with average knowledge in the art.

<伝導性物質の比表面積測定>
実施例1
カーボンブラック180μgに添加剤としてLiMnを10μg添加して試料を準備し、前記試料を作用電極(working electrode)として3電極電気化学的セルを構成して電気化学インピーダンス分光法を行った。前記電気化学インピーダンス分光法はPCとつながったポテンショスタット(potentiostat)で行った。
<Measurement of specific surface area of conductive material>
Example 1
A sample was prepared by adding 10 μg of LiMn 2 O 4 as an additive to 180 μg of carbon black, and a three-electrode electrochemical cell was constructed using the sample as a working electrode to perform electrochemical impedance spectroscopy. The electrochemical impedance spectroscopy was performed with a potentiostat connected to a PC.

電気化学的セルで基準電極(reference electrode)には飽和カロメル電極(Saturated calomel electrode(SCE))が使用され、対極(counter electrode)にはPtワイヤが使用された。 In the electrochemical cell, a saturated calomel electrode (SCE) was used as the reference electrode, and a Pt wire was used as the counter electrode.

電気化学インピーダンス分光法は、電解質で2M 硝酸リチウム(Lithium Nitrate(aqueous))を使用し、1V biasで10kHzないし0.1Hzで測定した。ランドル回路(Randle Circuit)に擬似容量(pseudocapacitance)を意味するCを回路の端にもう一つ追加した形態で使用した(図1)。 The electrochemical impedance spectroscopy was measured at 10 kHz to 0.1 Hz at 1 V vias using 2 M lithium nitrate (aqueous) as the electrolyte. Another C, which means pseudocapacity, was added to the Randle circuit at the end of the circuit (Fig. 1).

前記電気化学インピーダンス分光法から前記カーボンブラックの電気二重層の静電容量が5.111e−5Fで測定された。前記静電容量を上述した数式1に代入した結果、伝導性物質であるカーボンブラックの比表面積は100.96m/gと測定された(図2)。 From the electrochemical impedance spectroscopy, the capacitance of the carbon black electric double layer was measured at 5.11e-5F. As a result of substituting the capacitance into the above-mentioned formula 1, the specific surface area of carbon black, which is a conductive substance, was measured to be 100.96 m 2 / g (FIG. 2).

比較例1
添加剤を使用しないことを除いて、前記実施例1と同様に実施してインピーダンススペクトルを得た(図3)。
比較例1は、添加剤を使用しないので、伝導性物質であるカーボンブラックの静電容量が全く測定されず、そのためカーボンブラックの比表面積を求めることができなかった。
Comparative Example 1
An impedance spectrum was obtained in the same manner as in Example 1 except that no additive was used (FIG. 3).
In Comparative Example 1, since no additive was used, the capacitance of carbon black, which is a conductive substance, was not measured at all, and therefore the specific surface area of carbon black could not be determined.

Claims (10)

(1)電気二重層を有する伝導性物質に分路(shunt)抵抗を形成する添加剤を追加する段階と、
(2)電気化学インピーダンス分光法(Electrochemical impedance spectroscopy、EIS)を利用して前記伝導性物質の電気二重層の静電容量(capacitance)を測定する段階と、
(3)前記静電容量から伝導性物質の比表面積を算出する段階とを含み、
前記静電容量から伝導性物質の比表面積算出は、下記数式1または数式2によって算出されることを特徴とする伝導性物質の比表面積測定方法。
Figure 0006917519

C:伝導性物質の電気二重層の静電容量(capacitance)
A:伝導性物質の比表面積(area)
ε:誘電率(permittivity)
d:伝導性物質の電気二重層の厚さ(distance)
Figure 0006917519

SSA:伝導性物質の質量当たり比表面積(Specific Surface Area)
C:伝導性物質の電気二重層の静電容量
:同一測定条件でレファレンス伝導性物質の比表面積対比静電容量
m:伝導性物質の質量
(1) A step of adding an additive that forms a shunt resistor to a conductive material having an electric double layer, and
(2) A step of measuring the capacitance of the electric double layer of the conductive substance using electrochemical impedance spectroscopy (EIS), and a step of measuring the capacitance of the electric double layer of the conductive substance.
(3) looking contains a calculating a specific surface area of the conductive material from said capacitance,
A method for measuring the specific surface area of a conductive substance, which comprises calculating the specific surface area of a conductive substance from the capacitance by the following mathematical formula 1 or 2.
Figure 0006917519

C: Capacitance of the electric double layer of a conductive material
A: Specific surface area (area) of conductive material
ε: Permittivity
d: Thickness of the electric double layer of the conductive material (distance)
Figure 0006917519

SSA: Specific Surface Area of Conductive Material
C: Capacitance of the electric double layer of conductive material
C 0 : Specific surface area relative capacitance of reference conductive material under the same measurement conditions
m: Mass of conductive material
前記添加剤は、電解質のイオンと可逆反応する物質であることを特徴とする請求項1に記載の伝導性物質の比表面積測定方法。 The method for measuring the specific surface area of a conductive substance according to claim 1, wherein the additive is a substance that reversibly reacts with ions of an electrolyte. 前記添加剤は、電解質のイオンと酸化−還元反応またはインターカレーション反応をする物質であることを特徴とする請求項2に記載の伝導性物質の比表面積測定方法。 The method for measuring the specific surface area of a conductive substance according to claim 2, wherein the additive is a substance that undergoes an oxidation-reduction reaction or an intercalation reaction with ions of an electrolyte. 前記伝導性物質は1μg以上であることを特徴とする請求項1から3のいずれか一項に記載の伝導性物質の比表面積測定方法。 The method for measuring the specific surface area of a conductive substance according to any one of claims 1 to 3, wherein the conductive substance weighs 1 μg or more. 前記添加剤は、伝導性物質の総重量部に対して1ないし20重量部で含まれることを特徴とする請求項1から4のいずれか一項に記載の伝導性物質の比表面積測定方法。 The method for measuring the specific surface area of a conductive substance according to any one of claims 1 to 4, wherein the additive is contained in an amount of 1 to 20 parts by weight based on the total weight part of the conductive substance. (1)電気二重層を有する伝導性物質に分路(shunt)抵抗を形成する添加剤を追加する追加モジュール;
(2)電気化学インピーダンス分光法(Electrochemical impedance spectroscopy、EIS)を利用して前記伝導性物質の電気二重層の静電容量(capacitance)を測定する測定モジュール;及び
(3)前記静電容量から伝導性物質の比表面積を算出する計算モジュール;を含み、
前記計算モジュールで前記静電容量から伝導性物質の比表面積算出は、下記数式3または数式4によって算出されることを特徴とする伝導性物質の比表面積測定システム。
Figure 0006917519

C:伝導性物質の電気二重層の静電容量(capacitance)
A:伝導性物質の比表面積(area)
ε: 誘電率(permittivity)
d:伝導性物質の電気二重層の厚さ(distance)
Figure 0006917519

SSA:伝導性物質の質量当たり比表面積(Specific Surface Area)
C:伝導性物質の電気二重層の静電容量
:同一測定条件でレファレンス伝導性物質の比表面積対比静電容量
m:伝導性物質の質量
(1) An additional module that adds an additive that forms a shunt resistor to a conductive material having an electric double layer;
(2) A measuring module that measures the capacitance of the electric double layer of the conductive material using electrochemical impedance spectroscopy (EIS); and (3) Conduction from the capacitance. look including the; calculation module for calculating a specific surface area of sexual material
A system for measuring the specific surface area of a conductive substance, which is calculated by the following mathematical formula 3 or 4 in the calculation module to calculate the specific surface area of the conductive substance from the capacitance.
Figure 0006917519

C: Capacitance of the electric double layer of a conductive material
A: Specific surface area (area) of conductive material
ε: Permittivity
d: Thickness of the electric double layer of the conductive material (distance)
Figure 0006917519

SSA: Specific Surface Area of Conductive Material
C: Capacitance of the electric double layer of conductive material
C 0 : Specific surface area relative capacitance of reference conductive material under the same measurement conditions
m: Mass of conductive material
前記添加剤は、電解質のイオンと可逆反応する物質であることを特徴とする請求項に記載の伝導性物質の比表面積測定システム。 The specific surface area measurement system for a conductive substance according to claim 6 , wherein the additive is a substance that reversibly reacts with ions of an electrolyte. 前記添加剤は、電解質のイオンと酸化−還元反応またはインターカレーション反応をする物質であることを特徴とする請求項に記載の伝導性物質の比表面積測定システム。 The specific surface area measurement system for a conductive substance according to claim 7 , wherein the additive is a substance that undergoes an oxidation-reduction reaction or an intercalation reaction with ions of an electrolyte. 前記伝導性物質は1μg以上であることを特徴とする請求項からのいずれか一項に記載の伝導性物質の比表面積測定システム。 The specific surface area measurement system for a conductive substance according to any one of claims 6 to 8 , wherein the conductive substance weighs 1 μg or more. 前記添加剤は、伝導性物質の総重量部に対して1ないし20重量部で含まれることを特徴とする請求項からのいずれか一項に記載の伝導性物質の比表面積測定システム。 The specific surface area measuring system for a conductive substance according to any one of claims 6 to 9 , wherein the additive is contained in an amount of 1 to 20 parts by weight based on the total weight part of the conductive substance.
JP2020506203A 2018-07-06 2019-07-04 Method for measuring the specific surface area of conductive materials Active JP6917519B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2018-0078977 2018-07-06
KR20180078977 2018-07-06
KR10-2019-0080218 2019-07-03
KR1020190080218A KR20200005466A (en) 2018-07-06 2019-07-03 Surface area measurement method of conductive materials
PCT/KR2019/008190 WO2020009491A1 (en) 2018-07-06 2019-07-04 Measurement method for specific surface area of conductive material

Publications (2)

Publication Number Publication Date
JP2020529608A JP2020529608A (en) 2020-10-08
JP6917519B2 true JP6917519B2 (en) 2021-08-11

Family

ID=69156981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020506203A Active JP6917519B2 (en) 2018-07-06 2019-07-04 Method for measuring the specific surface area of conductive materials

Country Status (5)

Country Link
US (1) US11293854B2 (en)
EP (1) EP3654026B1 (en)
JP (1) JP6917519B2 (en)
KR (1) KR20200005466A (en)
CN (1) CN111051865B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102365086B1 (en) * 2018-12-03 2022-02-18 주식회사 엘지에너지솔루션 Non-destructive method for measuring active area of active material

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100210652B1 (en) 1996-12-13 1999-07-15 최수현 Method and apparatus for measuring specific surface area in porous material sample
JPH10239716A (en) * 1996-12-24 1998-09-11 Nippon Oil Co Ltd Counter electrode for electrochromic element, and electrochromic element
JP2002151366A (en) 2000-11-10 2002-05-24 Toyota Motor Corp Method for inspecting electric double-layer capacitor
JP2002184458A (en) 2000-12-11 2002-06-28 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2002260634A (en) 2001-02-28 2002-09-13 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP4578711B2 (en) * 2001-03-30 2010-11-10 株式会社クラレ Cell for measuring electrical properties of activated carbon, measuring device, and electrical property evaluation method
JP2005310836A (en) * 2004-04-16 2005-11-04 Kaneka Corp Electrode for electrochemical element and manufacturing method thereof
WO2006016660A1 (en) 2004-08-12 2006-02-16 Herzog Japan Co., Ltd. Molding device for sample for measuring specific surface area of powder
JP2006133221A (en) 2004-10-06 2006-05-25 Denki Kagaku Kogyo Kk Method of measuring specific surface area
US7088115B1 (en) 2004-12-16 2006-08-08 Battelle Energy Alliance, Llc Electrochemical impedance spectroscopy system and methods for determining spatial locations of defects
JP4760203B2 (en) 2005-08-05 2011-08-31 Tdk株式会社 Electric double layer capacitor
CN102097211B (en) * 2005-10-11 2013-10-16 昭和电工株式会社 Electricity collection body for electric double layer capacitor and manufacturing method thereof, and coating agent for the manufacturing
EP2009654A4 (en) 2006-04-14 2017-02-22 Cataler Corporation Method for producing carbon material for electrochemical device electrode
CN101710087B (en) * 2009-11-06 2012-10-24 东南大学 Micron-nano-sized single particle impedance spectroscopy measurement chip and measuring method
KR101166222B1 (en) 2010-02-26 2012-07-16 서울대학교산학협력단 Method and apparatus for measuring a biofilm based on a double layer capacitance
JP2012023196A (en) 2010-07-14 2012-02-02 Yokohama Rubber Co Ltd:The Conductive polymer/porous carbon material complex
US8692564B2 (en) * 2011-02-04 2014-04-08 General Electric Company System and method for use in determining the thickness of a layer of interest in a multi-layer structure
KR101291310B1 (en) 2011-03-22 2013-07-30 서울대학교산학협력단 Detecting method of microbe using aluminum oxide membrane attached to metal electrode
KR20140066567A (en) * 2012-11-23 2014-06-02 주식회사 엘지화학 Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP2015049175A (en) 2013-09-03 2015-03-16 住友電気工業株式会社 Method of measuring surface area of metallic porous body and method of manufacturing metallic porous body
KR102037718B1 (en) 2015-07-17 2019-10-29 주식회사 엘지화학 Negative Electrode for Lithium Secondary Battery of Improved Low-Temperature Property and Lithium Secondary Battery Comprising the Same
CN106442649B (en) * 2016-09-23 2019-03-01 桂林电子科技大学 A method of 1,5- dewatered grape sugar alcohol is detected based on EIS structure electrochemical biosensor
JP2018092978A (en) * 2016-11-30 2018-06-14 マツダ株式会社 Electric double layer capacitor
CN107677712A (en) 2017-09-14 2018-02-09 合肥国轩高科动力能源有限公司 A kind of method of testing of lithium ion battery electrochemical impedance spectrum
CN108051479A (en) 2017-11-04 2018-05-18 山西长征动力科技有限公司 It is a kind of to analyze the detection method for applying carbon foil interfacial conductive performance

Also Published As

Publication number Publication date
JP2020529608A (en) 2020-10-08
EP3654026B1 (en) 2024-03-06
KR20200005466A (en) 2020-01-15
CN111051865B (en) 2022-08-05
US20210164887A1 (en) 2021-06-03
EP3654026A1 (en) 2020-05-20
EP3654026A4 (en) 2020-12-02
CN111051865A (en) 2020-04-21
US11293854B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
Laschuk et al. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry
Mousavi et al. Poly (3, 4-ethylenedioxythiophene)(PEDOT) doped with carbon nanotubes as ion-to-electron transducer in polymer membrane-based potassium ion-selective electrodes
Ruch et al. On the use of activated carbon as a quasi-reference electrode in non-aqueous electrolyte solutions
Manjakkal et al. Sensing mechanism of RuO2–SnO2 thick film pH sensors studied by potentiometric method and electrochemical impedance spectroscopy
Yoon et al. Electrochemical impedance spectroscopic investigation of sodium ion diffusion in MnO2 using a constant phase element active in desired frequency ranges
Liang et al. A simple approach for fabricating solid-contact ion-selective electrodes using nanomaterials as transducers
Ngo et al. NiMn 2 O 4 spinel binary nanostructure decorated on three-dimensional reduced graphene oxide hydrogel for bifunctional materials in non-enzymatic glucose sensor
Rowley-Neale et al. Mass-producible 2D-MoSe 2 bulk modified screen-printed electrodes provide significant electrocatalytic performances towards the hydrogen evolution reaction
Majdi et al. A study of the electrocatalytic oxidation of aspirin on a nickel hydroxide-modified nickel electrode
Ye et al. Using sp2-C dominant porous carbon sub-micrometer spheres as solid transducers in ion-selective electrodes
Mališić et al. Exploration of MnO2/carbon composites and their application to simultaneous electroanalytical determination of Pb (II) and Cd (II)
Yi et al. A highly sensitive nonenzymatic glucose sensor based on nickel oxide–carbon nanotube hybrid nanobelts
Khorami et al. Ammonia sensing properties of (SnO 2–ZnO)/polypyrrole coaxial nanocables
Jiang et al. Ordered mesoporous carbon sphere-based solid-contact ion-selective electrodes
Raut et al. Effect of porosity variation on the electrochemical behavior of vertically aligned multi-walled carbon nanotubes
Wang et al. Electrochemical characters of hymecromone at the graphene modified electrode and its analytical application
JP6917519B2 (en) Method for measuring the specific surface area of conductive materials
Caetano et al. Electroanalytical application of a screen-printed electrode modified by dodecanethiol-stabilized platinum nanoparticles for dapsone determination
Wang et al. Defective vs high-quality graphene for solid-contact ion-selective electrodes: Effects of capacitance and hydrophobicity
Wan et al. Bucky-gel coated glassy carbon electrodes, for voltammetric detection of femtomolar leveled lead ions
Ratynski et al. A New Technique for In Situ Determination of the Active Surface Area Changes of Li–Ion Battery Electrodes
Cardenas-Riojas et al. Evaluation of an electrochemical sensor based on gold nanoparticles supported on carbon nanofibers for detection of tartrazine dye
Li et al. An integrated all-solid-state screen-printed potentiometric sensor based on a three-dimensional self-assembled graphene aerogel
Xu et al. Conductive metal organic framework for ion-selective membrane-free solid-contact potentiometric Cu2+ sensing
Lee et al. Kinetics of double-layer charging/discharging of the activated carbon fiber cloth electrode: effects of pore length distribution and solution resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R150 Certificate of patent or registration of utility model

Ref document number: 6917519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350