JP6916840B2 - Information communication system and information communication device - Google Patents

Information communication system and information communication device Download PDF

Info

Publication number
JP6916840B2
JP6916840B2 JP2019118178A JP2019118178A JP6916840B2 JP 6916840 B2 JP6916840 B2 JP 6916840B2 JP 2019118178 A JP2019118178 A JP 2019118178A JP 2019118178 A JP2019118178 A JP 2019118178A JP 6916840 B2 JP6916840 B2 JP 6916840B2
Authority
JP
Japan
Prior art keywords
information
time
transmission
clock
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019118178A
Other languages
Japanese (ja)
Other versions
JP2021005773A (en
Inventor
蒔田 憲和
憲和 蒔田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2019118178A priority Critical patent/JP6916840B2/en
Publication of JP2021005773A publication Critical patent/JP2021005773A/en
Application granted granted Critical
Publication of JP6916840B2 publication Critical patent/JP6916840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Small-Scale Networks (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

本発明は、複数の情報通信装置を含み、情報通信装置間を通信により同期する情報通信システム及び情報通信装置に関する。 The present invention relates to an information communication system and an information communication device that include a plurality of information communication devices and synchronizes the information communication devices by communication.

複数の情報通信装置間の一般的な時刻同期方法として、例えば、非特許文献1のIEEE1588 Precision Time Protocol(PTP)が知られている。非特許文献1では、基準時刻を持つマスター装置と、マスター装置の時刻に時刻同期するスレーブ装置とが定義され、マスター装置とスレーブ装置との間で定期的に時刻同期用パケットを交換することでスレーブ装置の時刻を補正する。 As a general time synchronization method between a plurality of information communication devices, for example, the IEEE1588 Precision Time Protocol (PTP) of Non-Patent Document 1 is known. Non-Patent Document 1 defines a master device having a reference time and a slave device that synchronizes the time with the time of the master device, and by periodically exchanging time synchronization packets between the master device and the slave device. Correct the time of the slave device.

具体的には、マスター装置からスレーブ装置に送信されるパケットのマスター装置の時刻とスレーブ装置の受信時刻、並びにスレーブ装置からマスター装置に送信されるパケットのスレーブ装置の送信時刻とマスター装置の受信時刻を用いて、スレーブ装置においてマスター装置とスレーブ装置との時差である時刻オフセットを推定して補正する。 Specifically, the time of the master device and the reception time of the slave device of the packet transmitted from the master device to the slave device, and the transmission time of the slave device and the reception time of the master device of the packet transmitted from the slave device to the master device. Is used to estimate and correct the time offset, which is the time difference between the master device and the slave device, in the slave device.

“IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems.”IEEE Standard 1588−2008."IEEE Standard for a Precision Clock Synchronization Protocol for Networked Mechanism and Control Systems." IEEE Standard 1588-2008.

しかし、IEEE 1588(PTP)では、マスター装置とスレーブ装置のクロック間の周波数偏差により、高精度の同期ができない場合があった。すなわち、マスター装置とスレーブ装置は、装置の動作の源振となるクロックを独立にそれぞれ有している。各クロックの公称周波数が同じでも、マスター装置のクロックとスレーブ装置のクロックは個体差があるため、実際には周波数が異なり、クロック間で周波数偏差が存在し得る。そのため、マスター装置とスレーブ装置では時の刻み方が異なることにより、時間の流れ方が異なっている。 However, in IEEE 1588 (PTP), high-precision synchronization may not be possible due to the frequency deviation between the clocks of the master device and the slave device. That is, each of the master device and the slave device independently has a clock that is a source of operation of the device. Even if the nominal frequency of each clock is the same, since the clock of the master device and the clock of the slave device have individual differences, the frequencies are actually different, and there may be a frequency deviation between the clocks. Therefore, the time flow differs between the master device and the slave device because the time ticks are different.

上記のIEEE1588 PTPシステムでは、各装置で時間の流れ方が微妙に異なっているにも関わらず、スレーブ装置がマスター装置から送信されたマスター装置の時刻をそのまま用いて時刻同期しようとしているため、マスター装置とスレーブ装置の同期タイミングにズレが発生し、高精度の同期ができなかった。 In the above IEEE1588 PTP system, the slave device tries to synchronize the time using the time of the master device transmitted from the master device as it is, even though the time flow is slightly different in each device. The synchronization timing of the device and the slave device was out of sync, and high-precision synchronization could not be performed.

本発明は、上記のような課題を解決するためになされたものであり、マスター装置とスレーブ装置とを高精度に同期させることのできる情報通信システム及び情報通信装置を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an information communication system and an information communication device capable of synchronizing a master device and a slave device with high accuracy.

本発明の情報通信システムは、情報通信によりマスター装置に対して前記スレーブ装置が同期を図る情報通信システムであって、前記マスター装置及び前記スレーブ装置は、情報を送信する送信器と、情報を受信する受信器と、所定の周波数により発振し、装置内の各部の動作タイミングを与えるクロックと、前記クロックを源振として刻時する時計と、を有し、前記スレーブ装置は、前記マスター装置と前記スレーブ装置との間で伝送する情報の伝搬時間を算出する伝搬時間算出部と、前記伝搬時間に基づいて、前記マスター装置と前記スレーブ装置との間の時差を算出する時差算出部と、前記時差に基づいて、同期制御する同期制御部と、を備え、前記マスター装置が前記スレーブ装置に情報を送信して当該情報を前記スレーブ装置が受信し、前記スレーブ装置が前記マスター装置に別の情報を送信して当該別の情報を前記マスター装置が受信し、前記マスター装置における前記情報の送信から前記別の情報の受信までの送受信間隔をΔt、前記スレーブ装置における前記情報の受信から前記別の情報の送信までの受送信間隔をΔt、前記マスター装置の前記クロックの周波数をf、前記スレーブ装置のクロックの周波数をfとし、横軸が周波数、縦軸が時間である2次元平面におけるベクトルA、ベクトルBを(f、Δt、(f、Δtとしたとき、前記伝搬時間算出部は、前記2次元平面上で張られる前記ベクトルAと前記ベクトルBとで成す三角形の波数領域の面積を、前記マスター装置の前記クロックの周波数で除することにより前記伝搬時間を算出すること、を特徴とする。 The information communication system of the present invention is an information communication system in which the slave device synchronizes with the master device by information communication, and the master device and the slave device receive information with a transmitter for transmitting information. The slave device includes the master device and the clock, which oscillates at a predetermined frequency and gives an operation timing of each part in the device, and a clock that ticks from the clock as a source vibration. A propagation time calculation unit that calculates the propagation time of information transmitted to and from the slave device, a time difference calculation unit that calculates the time difference between the master device and the slave device based on the propagation time, and the time difference. The master device transmits information to the slave device, the slave device receives the information, and the slave device sends other information to the master device. Submit and receives the specific information is the master device, the transmission of the information in the master device and receives distance Delta] t m to the reception of the specific information, from the reception of the information in the slave device of the further receiving and transmitting interval Delta] t s to the transmission of information, the frequency f m of the clock of the master device, the frequency of the clock of the slave device and f s, the horizontal axis indicates the frequency, the two-dimensional plane and the vertical axis represents the time vector a, vector B (f s, Δt s) T in, (f m, Δt m) when is T, the propagation time calculation unit, the said vector a spanned over the two-dimensional plane vector B The propagation time is calculated by dividing the area of the wave number region of the triangle formed by the above by the frequency of the clock of the master device.

本発明の情報通信装置は、他の情報通信装置と情報通信により同期を図る情報通信装置であって、情報を送信する送信器と、情報を受信する受信器と、所定の周波数により発振し、装置内の各部の動作タイミングを与えるクロックと、前記クロックを源振として刻時する時計と、を有し、前記他の情報通信装置との間で伝送する情報の伝搬時間を算出する伝搬時間算出部と、前記伝搬時間に基づいて、前記他の情報通信装置との間の時差を算出する時差算出部と、前記時差に基づいて、前記他の情報通信装置との同期を制御する同期制御部と、を備え、前記他の情報通信装置から送信された情報を受信し、前記他の情報通信装置に別の情報を送信し、前記他の情報通信装置における前記情報の送信から前記別の情報の受信までの送受信間隔をΔt、前記情報通信装置における前記情報の受信から前記別の情報の送信までの受送信間隔をΔt、前記他の情報通信装置のクロックの周波数をf、前記情報通信装置のクロックの周波数をfとし、横軸が周波数、縦軸が時間である2次元平面におけるベクトルA、ベクトルBを(f、Δt、(f、Δtとしたとき、前記伝搬時間算出部は、前記2次元平面上で張られる前記ベクトルAと前記ベクトルBとで成す三角形の波数領域の面積を、前記他の情報通信装置のクロックの周波数で除することにより前記伝搬時間を算出すること、を特徴とする。 The information communication device of the present invention is an information communication device that synchronizes with other information communication devices by information communication, and oscillates at a predetermined frequency with a transmitter for transmitting information and a receiver for receiving information. Propagation time calculation that has a clock that gives the operation timing of each part in the device and a clock that ticks from the clock as a source, and calculates the propagation time of information transmitted to and from the other information communication device. A time difference calculation unit that calculates the time difference between the unit and the other information and communication device based on the propagation time, and a synchronization control unit that controls synchronization with the other information and communication device based on the time difference. And, the information transmitted from the other information communication device is received, another information is transmitted to the other information communication device, and the other information is transmitted from the transmission of the information in the other information communication device. the reception interval Delta] t m up to the reception, the information reception and transmission interval Delta] t s from the reception of the information in the communication apparatus until the transmission of the further information, the frequency of the clock of another information communication apparatus f m, the the frequency of the clock information communication apparatus as f s, the horizontal axis indicates the frequency, the vector and the vertical axis in the two-dimensional plane is a time a, the vector B (f s, Δt s) T, (f m, Δt m) T Then, the propagation time calculation unit divides the area of the wave number region of the triangle formed by the vector A and the vector B stretched on the two-dimensional plane by the frequency of the clock of the other information communication device. This is characterized in that the propagation time is calculated.

本発明によれば、マスター装置とスレーブ装置とを高精度に同期することのできる情報通信システム及び情報通信装置を得ることができる。 According to the present invention, it is possible to obtain an information communication system and an information communication device capable of synchronizing a master device and a slave device with high accuracy.

実施形態に係る情報通信システムの模式図である。It is a schematic diagram of the information communication system which concerns on embodiment. 実施形態に係る情報通信システムを構成する情報通信装置の機能ブロック図である。It is a functional block diagram of the information communication apparatus which constitutes the information communication system which concerns on embodiment. 実施形態に係る制御部の機能ブロック図である。It is a functional block diagram of the control part which concerns on embodiment. クロックのパルス数をカウントするための通信の態様を示す図である。It is a figure which shows the mode of communication for counting the number of pulses of a clock. 実施形態に係る情報通信システムの同期するための通信の態様を示す図である。It is a figure which shows the mode of communication for synchronization of the information communication system which concerns on embodiment. マスター装置の送受信間隔とスレーブ装置の受送信間隔を横軸が周波数、縦軸が時間の2次元平面上に表した図である。It is the figure which represented the transmission / reception interval of a master device and the transmission / reception interval of a slave device on a two-dimensional plane in which the horizontal axis represents frequency and the vertical axis represents time. 実施形態に係る情報通信システムの同期するための別の通信の態様を示す図である。It is a figure which shows the mode of another communication for synchronization of the information communication system which concerns on embodiment. マスター装置の送受信間隔Δt、スレーブ装置の受送信間隔Δtを、観測時間ベクトル(f、Δt、(f、Δtとして、周波数・時間平面上に表した図である。Reception interval Delta] t m of the master device, the reception and transmission interval Delta] t s of the slave device, the observation time vector (f, Δt m) T, (f, Δt s) as T, a diagram representing the frequency-time plane. クロックドメインが異なる場合について説明するための図である。It is a figure for demonstrating the case where the clock domain is different. 伝搬時間tds、時差t0sを説明するための図である。It is a figure for demonstrating the propagation time t ds , time difference t 0 s. 伝搬時間tdm、時差t0mを説明するための図である。It is a figure for demonstrating the propagation time t dm and time difference t 0 m. 実施形態に係る情報通信システムの動作フローチャートの一例である。This is an example of an operation flowchart of the information communication system according to the embodiment.

以下、実施形態に係る情報通信システム及び情報通信装置について、図1〜図12を用いて説明する。 Hereinafter, the information communication system and the information communication device according to the embodiment will be described with reference to FIGS. 1 to 12.

[1.実施形態]
[1−1.構成]
図1は、実施形態に係る情報通信システムの模式図である。図2は、実施形態に係る情報通信システムを構成する情報通信装置の機能ブロック図である。
[1. Embodiment]
[1-1. Constitution]
FIG. 1 is a schematic diagram of an information communication system according to an embodiment. FIG. 2 is a functional block diagram of an information communication device constituting the information communication system according to the embodiment.

本実施形態に係る情報通信システム100は、複数の情報通信装置1からなり、各装置1が情報通信により同期を図る。マスター装置となる情報通信装置1に対し、スレーブ装置となる情報通信装置1が同期する。マスター装置とは、情報通信システム100において他の情報通信装置1と同期される対象となる情報通信装置1である。スレーブ装置とは、情報通信システム100においてマスター装置である他の情報通信装置1に対して同期する情報通信装置1である。マスター装置からスレーブ装置への同期を図るための同期情報の送受信を介してスレーブ装置がマスター装置に同期する。 The information communication system 100 according to the present embodiment is composed of a plurality of information communication devices 1, and each device 1 synchronizes by information communication. The information communication device 1 serving as the slave device synchronizes with the information communication device 1 serving as the master device. The master device is an information communication device 1 to be synchronized with another information communication device 1 in the information communication system 100. The slave device is an information communication device 1 that synchronizes with another information communication device 1 that is a master device in the information communication system 100. The slave device synchronizes with the master device through transmission / reception of synchronization information for synchronizing from the master device to the slave device.

以下では、マスター装置となる情報通信装置1をマスター装置1aとし、スレーブ装置となる情報通信装置1をスレーブ装置1bとする。 In the following, the information communication device 1 serving as the master device will be referred to as the master device 1a, and the information communication device 1 serving as the slave device will be referred to as the slave device 1b.

マスター装置1aとスレーブ装置1bは、有線又は無線で情報を通信する。無線の通信としては、無線LAN、Bluetooth(登録商標)を用いることができる。ここでは、情報通信装置1は、無線で情報を送信及び受信することで同期を図る例を説明する。 The master device 1a and the slave device 1b communicate information by wire or wirelessly. As wireless communication, wireless LAN and Bluetooth (registered trademark) can be used. Here, an example in which the information communication device 1 synchronizes by transmitting and receiving information wirelessly will be described.

(情報通信装置)
情報通信装置1は、コンピュータを含み構成されており、プログラムをHDDやSSD等に記憶しており、CPUで処理することにより、後述する制御部において必要な演算を行う。
(Information and communication equipment)
The information communication device 1 includes a computer, stores a program in an HDD, an SSD, or the like, and processes the information and communication device 1 by a CPU to perform necessary calculations in a control unit described later.

具体的には、情報通信装置1は、通信部10、クロック20、時計30、カウンタ40、記憶部50、外部インターフェイス60、制御部70を有する。例えば、各部10〜70は、ハードウェアとして構成される。制御部70はソフトウェアとして構成しても良い。制御部70のどの部分をソフトウェアとして構成するかは適宜設計変更可能である。 Specifically, the information communication device 1 includes a communication unit 10, a clock 20, a clock 30, a counter 40, a storage unit 50, an external interface 60, and a control unit 70. For example, each part 10 to 70 is configured as hardware. The control unit 70 may be configured as software. It is possible to appropriately change the design of which part of the control unit 70 is configured as software.

通信部10は、他の情報通信装置1との間で情報を送受信する。通信部10は、送信器11、受信器12、送信タイミング検出部13、受信タイミング検出部14を有する。 The communication unit 10 transmits / receives information to / from another information / communication device 1. The communication unit 10 includes a transmitter 11, a receiver 12, a transmission timing detection unit 13, and a reception timing detection unit 14.

送信器11は、入力された情報を送信する機器である。具体的には、送信器11は、情報を最小構成要素に時系列に分解の上、当該情報を外部へ送信する。情報のパケット長(通信情報量)は任意であり、通信毎に異なっていても良い。 The transmitter 11 is a device that transmits the input information. Specifically, the transmitter 11 decomposes the information into the minimum components in time series and transmits the information to the outside. The packet length (communication information amount) of information is arbitrary and may be different for each communication.

受信器12は、外部から情報を受信する機器である。具体的には、受信器12は、装置1外部から受信した、最小構成要素に時系列に分解された情報を再構成し、装置1内の他の構成へ出力する。 The receiver 12 is a device that receives information from the outside. Specifically, the receiver 12 reconstructs the information received from the outside of the device 1 and decomposed into the minimum components in time series, and outputs the information to other configurations in the device 1.

なお、図2に示すように、送信器11及び受信器12にそれぞれアンテナを設けても良いし、切り替えスイッチを設けて1本のアンテナを共有しても良い。送信器11と受信器12は、何れか一方が動作している間は他方は動作させないようにしても良いし、双方を同時に動作させても良い。 As shown in FIG. 2, antennas may be provided in the transmitter 11 and the receiver 12, respectively, or a changeover switch may be provided to share one antenna. The transmitter 11 and the receiver 12 may not operate the other while one of them is operating, or both may be operated at the same time.

送信タイミング検出部13は、送信器11により送信される情報の所定情報要素位置の送信タイミングを検出する。この送信タイミングは、後述のクロック20のクロック周期(換言すれば、クロック20の発振するパルスの周期)をベースとして検出される。つまり、送信タイミングは、クロック周期の整数倍に基づいて表現される。 The transmission timing detection unit 13 detects the transmission timing of the predetermined information element position of the information transmitted by the transmitter 11. This transmission timing is detected based on the clock period of the clock 20 described later (in other words, the period of the oscillating pulse of the clock 20). That is, the transmission timing is expressed based on an integral multiple of the clock period.

また、送信タイミング検出部13は、その検出結果を装置1内の他の構成へ出力する。ここにいう情報とは、例えばパケットであり、この場合、所定情報要素位置とは、ビット位置である。例えば、送信タイミング検出部13は、情報が8個の最小構成要素に時系列に分解される場合、3番目の情報要素位置(ビット位置)が送信されるタイミングを検出し、3番目の情報要素位置(ビット位置)が送信されたタイミングを外部へ出力する。 Further, the transmission timing detection unit 13 outputs the detection result to another configuration in the device 1. The information referred to here is, for example, a packet, and in this case, the predetermined information element position is a bit position. For example, when the information is decomposed into eight minimum components in time series, the transmission timing detection unit 13 detects the timing at which the third information element position (bit position) is transmitted, and detects the third information element. The timing at which the position (bit position) is transmitted is output to the outside.

受信タイミング検出部14は、受信器12により受信される情報の所定情報要素位置の受信タイミングを検出する。この受信タイミングは、後述のクロック20のクロック周期(換言すれば、クロック20の発振するパルスの周期)をベースとして検出される。つまり、受信タイミングは、クロック周期の整数倍として表現される。 The reception timing detection unit 14 detects the reception timing of the predetermined information element position of the information received by the receiver 12. This reception timing is detected based on the clock period of the clock 20 described later (in other words, the period of the oscillating pulse of the clock 20). That is, the reception timing is expressed as an integral multiple of the clock period.

また、受信タイミング検出部14は、その検出結果を装置1内の他の構成へ出力する。例えば、受信タイミング検出部14は、情報が8個の最小構成要素に時系列に分解される場合、3番目の情報要素位置(ビット位置)が受信されるタイミングを検出し、3番目の情報要素位置(ビット位置)が受信されたタイミングを外部へ出力する。 Further, the reception timing detection unit 14 outputs the detection result to another configuration in the device 1. For example, when the information is decomposed into eight minimum components in time series, the reception timing detection unit 14 detects the timing at which the third information element position (bit position) is received, and detects the third information element. The timing at which the position (bit position) is received is output to the outside.

なお、上記の送信タイミング及び受信タイミングの例では、何れも同じ最小構成要素の位置を検出することとしたが、例えば、送信機となる情報通信装置1の送信タイミング検出部13は5番目の要素を検出し、受信機となる情報通信装置1の受信タイミング検出部14は8番目の要素を検出するなど、送受信する装置1間において各タイミング検出で所定関係(例えば間隔(ここでは3つ))を保つのであれば、必ずしも同じ位置を検出しなくても良い。 In the above examples of transmission timing and reception timing, the positions of the same minimum components are both detected, but for example, the transmission timing detection unit 13 of the information communication device 1 serving as the transmitter is the fifth element. The reception timing detection unit 14 of the information communication device 1 serving as the receiver detects the eighth element, and has a predetermined relationship (for example, intervals (here, three)) in each timing detection between the transmission / reception devices 1. It is not always necessary to detect the same position as long as the above is maintained.

クロック20は、所定の周波数を発振し、装置1各部の動作タイミングを与えるための信号を出力する。これにより、装置1内の各部は、クロック20に同期して動作する。このクロック20は、固有の有限な発振周波数許容偏差を有する。つまり、クロック20は、所定の発振周波数(例えば10MHz)に対する誤差(例えば20ppm)を有する。クロック20としては、例えば、水晶振動子などの周波数固定の発振器を用いることができる。 The clock 20 oscillates a predetermined frequency and outputs a signal for giving an operation timing of each part of the device 1. As a result, each part in the device 1 operates in synchronization with the clock 20. The clock 20 has an inherent finite oscillation frequency tolerance. That is, the clock 20 has an error (for example, 20 ppm) with respect to a predetermined oscillation frequency (for example, 10 MHz). As the clock 20, for example, an oscillator having a fixed frequency such as a crystal oscillator can be used.

クロック20は、マスター装置1aとスレーブ装置1bとで公称周波数が同じでも、実際には個体差が存在する。すなわち、マスター装置1aとスレーブ装置1bのクロック20の周波数間には周波数偏差が存在する。 Even if the clock 20 has the same nominal frequency between the master device 1a and the slave device 1b, there are actually individual differences. That is, there is a frequency deviation between the frequencies of the clock 20 of the master device 1a and the slave device 1b.

時計30は、クロック20の出力信号を源振として刻時し、相対的な時刻を出力する。時計30の相対的な時刻の出力は、例えば外部からの要求に応じて行う。 The clock 30 ticks the output signal of the clock 20 as a source vibration and outputs a relative time. The relative time output of the clock 30 is performed, for example, in response to an external request.

カウンタ40は、クロック20が発振するパルスの数(以下、パルス数という。)をカウントする。 The counter 40 counts the number of pulses oscillated by the clock 20 (hereinafter, referred to as the number of pulses).

記憶部50は、HDD、SSD、メモリ、レジスタなどの記録媒体である。記憶部50は、制御部70で演算を行うのに必要な情報が記憶され又は記憶する。後述の送信タイミング又は受信タイミングに対応する時計30の時刻は、CPU又はソフトウェアを介さず、ハードウェアのみのアクセスで保持できる記録媒体に保持すると良い。ソフトウェアに起因するジッターを排除できるからである。なお、送受信タイミングと時刻との対応付けにおいてソフトウェアのジッターを受けないことが重要であり、送受信タイミングと時刻とが対応付けられた後は、低速なアクセス領域に記憶されても良い。ここでは、記憶部50としてのメモリは、任意の情報を入出力し、当該情報を指定された記憶領域へ記憶する。情報の記憶は、外部からの記憶要求により行われるが、その際に記憶する情報と記憶領域が入力される。情報の参照は、外部からの参照要求により行われるが、その際に参照情報の記憶領域が入力され、その入力により指定された記憶領域の情報を出力する。情報の記憶の保持は、本装置の動作中のみであっても、動作停止時も含めて永続的であっても良い。 The storage unit 50 is a recording medium such as an HDD, SSD, memory, or register. The storage unit 50 stores or stores information necessary for the control unit 70 to perform an operation. The time of the clock 30 corresponding to the transmission timing or the reception timing described later may be held in a recording medium that can be held only by accessing the hardware without using the CPU or software. This is because jitter caused by software can be eliminated. It is important not to receive software jitter in associating the transmission / reception timing with the time, and after the transmission / reception timing and the time are associated with each other, the transmission / reception timing and the time may be stored in a low-speed access area. Here, the memory as the storage unit 50 inputs and outputs arbitrary information and stores the information in the designated storage area. Information is stored by a storage request from the outside, and the information to be stored and the storage area are input at that time. The information is referenced by a reference request from the outside, and at that time, the storage area of the reference information is input, and the information of the storage area specified by the input is output. The storage of information may be retained only during the operation of the present device or may be permanent including when the operation is stopped.

外部インターフェイス60(以下、外部I/F60ともいう。)は、本装置1内部と外部を接続し、任意の情報を入出力する。情報としては、例えば送受信データや時計30の時刻である。外部I/F60は、例えば、記憶部50に記憶させる情報を外部から取得する。また、外部I/F60は、受信タイミング検出部14により検出した受信タイミングから送信タイミング検出部13が検出する送信タイミングまでの時間を外部から取得し、当該時間を後述するスケジューラ75で用いてもよい。 The external interface 60 (hereinafter, also referred to as an external I / F60) connects the inside and the outside of the apparatus 1 and inputs / outputs arbitrary information. The information includes, for example, transmission / reception data and the time of the clock 30. The external I / F 60 acquires, for example, information to be stored in the storage unit 50 from the outside. Further, the external I / F 60 may acquire the time from the reception timing detected by the reception timing detection unit 14 to the transmission timing detected by the transmission timing detection unit 13 from the outside, and use the time in the scheduler 75 described later. ..

図3は、制御部70の機能ブロック図である。制御部70は、本装置1各部の動作全般を制御する。制御部70は、マスター装置1aとスレーブ装置1bとで共通する構成と異なる構成がある。マスター装置1aにはスレーブ装置1b特有の構成は不要であり、また、スレーブ装置1bには、マスター装置1a特有の構成は不要である。但し、1つの情報通信装置1でマスター装置1aとしての機能とスレーブ装置1bとしての機能の両方を有していても良い。例えば、2つの情報通信装置1間でマスター装置1aとしての立場、スレーブ装置1bとしての立場が逆転しても良い。また、1つの情報通信装置1が他の情報通信装置1との関係ではマスター装置1aとして機能し、別の情報通信装置1(マスター装置1a)との関係ではスレーブ装置1bとして機能しても良い。 FIG. 3 is a functional block diagram of the control unit 70. The control unit 70 controls the overall operation of each unit of the present device 1. The control unit 70 has a configuration different from the configuration common to the master device 1a and the slave device 1b. The master device 1a does not need a configuration peculiar to the slave device 1b, and the slave device 1b does not need a configuration peculiar to the master device 1a. However, one information communication device 1 may have both a function as a master device 1a and a function as a slave device 1b. For example, the position as the master device 1a and the position as the slave device 1b may be reversed between the two information communication devices 1. Further, one information communication device 1 may function as a master device 1a in relation to another information communication device 1, and may function as a slave device 1b in relation to another information communication device 1 (master device 1a). ..

(マスター装置の制御部)
マスター装置1aの制御部70は、主制御部71、送受信データI/F72、通信制御部73、時刻記録部74、スケジューラ75、カウンタ制御部76、カウント数送信制御部77を有する。
(Control unit of master device)
The control unit 70 of the master device 1a includes a main control unit 71, transmission / reception data I / F 72, communication control unit 73, time recording unit 74, scheduler 75, counter control unit 76, and count transmission control unit 77.

主制御部71は、制御部70内の各部と連携されており、制御部70内の各部の動作を統制する。送受信データI/F72は、記憶部50や外部I/F70の情報を装置1外部へ送受信可能な形式にする。また、送受信データI/F72は、装置1外部から受信した情報を制御部70及び記憶部50に適した形式にする。 The main control unit 71 is linked with each unit in the control unit 70, and controls the operation of each unit in the control unit 70. The transmission / reception data I / F72 is in a format in which the information of the storage unit 50 and the external I / F70 can be transmitted / received to the outside of the device 1. Further, the transmission / reception data I / F 72 formats the information received from the outside of the device 1 into a format suitable for the control unit 70 and the storage unit 50.

通信制御部73は、通信部10の動作を統制する。通信制御部73は、通信部10と制御部70との間で送受信情報の入出力をする。 The communication control unit 73 controls the operation of the communication unit 10. The communication control unit 73 inputs / outputs transmission / reception information between the communication unit 10 and the control unit 70.

時刻記録部74は、送信タイミング検出部13により送信された情報の所定情報要素位置の送信タイミングと、当該送信タイミングにおける時計30の時刻とを対応付けて、メモリに記憶させる。この対応付けは、例えば、時刻記録部74が、送信タイミング検出部13から、送信された情報の所定情報要素位置の送信タイミングが検出された旨の信号を受けて、時計30の時刻を参照し、当該時刻と送信タイミングとを対応付ける。 The time recording unit 74 stores the transmission timing of the predetermined information element position of the information transmitted by the transmission timing detection unit 13 in the memory in association with the time of the clock 30 at the transmission timing. In this association, for example, the time recording unit 74 receives a signal from the transmission timing detection unit 13 that the transmission timing of the predetermined information element position of the transmitted information is detected, and refers to the time of the clock 30. , Correspond the time with the transmission timing.

また、時刻記録部74は、送信タイミングに対応する時刻を、当該送信する情報に載せる時刻付加部でもある。時刻記録部74は、送信と同様に、受信タイミング検出部14により受信された情報の所定要素位置の受信タイミングと、当該受信タイミングにおける時計30の時刻とを対応付けて、メモリに記憶させる。また、時刻記録部74は、受信タイミングに対応する時刻を、情報に載せて送信器11に送信させる。 Further, the time recording unit 74 is also a time addition unit that puts the time corresponding to the transmission timing on the information to be transmitted. Similar to the transmission, the time recording unit 74 stores the reception timing of the predetermined element position of the information received by the reception timing detection unit 14 in the memory in association with the time of the clock 30 at the reception timing. Further, the time recording unit 74 puts the time corresponding to the reception timing on the information and causes the transmitter 11 to transmit the time.

このように、本実施形態において、「時刻」は、情報の所定情報要素位置の検出された送信タイミング又は受信タイミングに対応する時計30の時刻をいい、「時間」は、当該時刻の差分をいう。 As described above, in the present embodiment, the "time" refers to the time of the clock 30 corresponding to the detected transmission timing or reception timing of the predetermined information element position of the information, and the "time" refers to the difference between the times. ..

スケジューラ75は、予め設定されたスケジュールで送信器11に情報を送信させる。例えば、スケジューラ75は、一定間隔で同期情報を送信器11に送信させる。当該一定間隔は、例えば、1秒である。スケジューラ75は、情報を受信してから送信するまでのスケジュールを管理する。すなわち、スケジューラ75は、予め設定された受送信間隔で情報を送信する。スケジューラ75は、外部I/F60を介して、情報の送信間隔又は受送信間隔を変更しても良い。 The scheduler 75 causes the transmitter 11 to transmit information on a preset schedule. For example, the scheduler 75 causes the transmitter 11 to transmit synchronization information at regular intervals. The fixed interval is, for example, 1 second. The scheduler 75 manages a schedule from receiving information to transmitting it. That is, the scheduler 75 transmits information at preset transmission / reception intervals. The scheduler 75 may change the information transmission interval or the information transmission / reception interval via the external I / F60.

カウンタ制御部76は、カウンタ40にクロック20のパルス数をカウントさせる。具体的には、図4に示すように、マスター装置1aは、送信間隔ΔTで同期情報をスレーブ装置1bに少なくとも2回送信する。その際、カウンタ40は、カウンタ制御部76により制御されて、マスター装置1aからスレーブ装置1bへの同期情報の送信間隔ΔTにおけるクロック20のパルス数をカウントする。この送信間隔ΔTは、例えば、1秒である。 The counter control unit 76 causes the counter 40 to count the number of pulses of the clock 20. Specifically, as shown in FIG. 4, the master device 1a transmits synchronization information to the slave device 1b at least twice at a transmission interval ΔT m. At that time, the counter 40 is controlled by the counter control unit 76 to count the number of pulses of the clock 20 at the transmission interval ΔT m of the synchronization information from the master device 1a to the slave device 1b. The transmission interval ΔT m is, for example, 1 second.

カウント数送信制御部77は、カウンタ40及びカウンタ制御部76によりカウントされたパルス数を送信器11にスレーブ装置1bへ送信させる。カウント数送信制御部77は、例えば、情報にパルス数を載せて送信器11に送信させる。 The count number transmission control unit 77 causes the transmitter 11 to transmit the number of pulses counted by the counter 40 and the counter control unit 76 to the slave device 1b. The count number transmission control unit 77, for example, puts the number of pulses on the information and causes the transmitter 11 to transmit the information.

(スレーブ装置の制御部)
スレーブ装置1bの制御部70は、主制御部71、送受信データI/F72、通信制御部73、時刻記録部74、スケジューラ75、同期要求部80、カウンタ制御部81、周波数取得部82、送受信間隔演算部83、受送信間隔演算部84、面積算出部85、伝搬時間算出部86、時差算出部87、同期制御部88を有する。各部71〜75については、マスター装置1aの各部71〜75と同じであるので、説明は省略する。
(Control unit of slave device)
The control unit 70 of the slave device 1b includes a main control unit 71, transmission / reception data I / F 72, communication control unit 73, time recording unit 74, scheduler 75, synchronization request unit 80, counter control unit 81, frequency acquisition unit 82, transmission / reception interval. It has a calculation unit 83, a transmission / reception interval calculation unit 84, an area calculation unit 85, a propagation time calculation unit 86, a time difference calculation unit 87, and a synchronization control unit 88. Since each part 71 to 75 is the same as each part 71 to 75 of the master device 1a, the description thereof will be omitted.

同期要求部80は、マスター装置1aに同期するための情報を要求する信号を、送信器11に送信させる。マスター装置1aに同期するための情報とは、送信間隔ΔTにおけるパルス数、送受信間隔ΔTを演算するためのマスター装置1aの同期情報の送信時刻、受送信間隔Δtを演算するためのマスター装置1aの別の同期情報の受信時刻である。 The synchronization request unit 80 causes the transmitter 11 to transmit a signal requesting information for synchronization with the master device 1a. The information for synchronizing to the master device 1a, the number of pulses in the transmission interval [Delta] T m, the transmission time of the synchronization information of the master device 1a for calculating the reception interval [Delta] T m, a master for calculating the reception and transmission interval Delta] t s It is the reception time of another synchronization information of the device 1a.

カウンタ制御部81は、カウンタ40によりクロック20のパルス数をカウントさせる。具体的には、カウンタ40は、カウンタ制御部81により制御されて、マスター装置1aからスレーブ装置1bに送信された同期情報の受信間隔ΔTにおけるクロック20のパルス数をカウントする。この受信間隔ΔTは、送信間隔ΔTに対応する時間間隔である。 The counter control unit 81 causes the counter 40 to count the number of pulses of the clock 20. Specifically, the counter 40 is controlled by the counter control unit 81 counts the number of pulses of the clock 20 in the receiving interval [Delta] T s of the synchronization information transmitted from the master device 1a to the slave device 1b. The reception interval ΔT s is a time interval corresponding to the transmission interval ΔT m.

周波数取得部82は、送信間隔ΔTにおけるクロック20のパルス数と、受信間隔ΔTにおけるクロック20のパルス数とから、周波数f、fを取得する。送信間隔ΔTでのクロック20のパルス数は、マスター装置1aでの1秒におけるマスター装置1aのクロック20のパルス数とすると、当該パルス数はマスター装置1aのクロック20のクロック周波数fそのものである。また、受信間隔ΔTは、送信間隔ΔTに対応する時間間隔であるので、受信間隔ΔTでのクロック20のパルス数は、スレーブ装置1bのクロック20のクロック周波数fそのものである。 The frequency acquisition unit 82 acquires frequencies f m and f s from the number of pulses of the clock 20 at the transmission interval ΔT m and the number of pulses of the clock 20 at the reception interval ΔT s . The number of pulses of the transmission interval [Delta] T m at clock 20, when the number of pulses of the master device 1a of the clock 20 in one second at the master device 1a, the number of the pulses intended that the clock frequency f m of the clock 20 of the master device 1a be. The reception interval [Delta] T s is because the time interval corresponding to the transmission interval [Delta] T m, the pulse number of the clock 20 in the reception interval [Delta] T S are those that clock frequency f s of a clock 20 of the slave device 1b.

周波数取得部82は、送信間隔ΔTが1秒以外であっても、1秒当たりのパルス数に換算しても良い。例えば、送信間隔ΔTが10m秒である場合、マスター装置1aのクロック20のパルス数を100倍したものが周波数fであり、スレーブ装置1bのクロック20のパルス数を100倍したものが周波数fである。 The frequency acquisition unit 82 may convert the transmission interval ΔT m into the number of pulses per second even if the transmission interval ΔT m is other than 1 second. For example, if the transmission interval [Delta] T m is 10m seconds, is the frequency f m which the number of pulses was 100 times that of the master device 1a of clock 20, frequency multiplied by 100. The number of pulses of the clock 20 of the slave device 1b f s .

図5は、実施形態に係る情報通信システムの同期するための通信の態様を示す図である。送受信間隔演算部83は、マスター装置1aが同期情報をスレーブ装置1bに送信してから、スレーブ装置1bから送信された同期情報を受信するまでの送受信間隔Δtを演算する。具体的には、送受信間隔演算部83は、スレーブ装置1bから受信した同期情報の受信時刻と、マスター装置1aがスレーブ装置1bに送信した同期情報の送信時刻との差分を演算する。当該送信時刻及び当該受信時刻は、マスター装置1aから送信された情報に載せられている時刻である。なお、この送信時刻は、マスター装置1aの時刻付加部として機能する時刻記録部75が情報に付加したものである。 FIG. 5 is a diagram showing a mode of communication for synchronizing the information communication system according to the embodiment. The transmission / reception interval calculation unit 83 calculates the transmission / reception interval Δt m from the transmission of the synchronization information to the slave device 1b by the master device 1a to the reception of the synchronization information transmitted from the slave device 1b. Specifically, the transmission / reception interval calculation unit 83 calculates the difference between the reception time of the synchronization information received from the slave device 1b and the transmission time of the synchronization information transmitted by the master device 1a to the slave device 1b. The transmission time and the reception time are times listed in the information transmitted from the master device 1a. The transmission time is added to the information by the time recording unit 75 that functions as the time adding unit of the master device 1a.

図5に示すように、受送信間隔演算部84は、マスター装置1aから同期情報を受信して、マスター装置1aに同期情報を送信するまでの受送信間隔Δtを演算する。具体的には、受送信間隔演算部84は、マスター装置1aへの同期情報の送信時刻と、マスター装置1aからの同期情報の受信時刻との差分により受送信間隔Δtを求める。受送信間隔演算部80は、当該送信時刻及び当該受信時刻を、記憶部50又は時刻記録部74から取得する。 As shown in FIG. 5, reception and transmission interval computing unit 84 receives the synchronization information from the master device 1a, calculates the reception and transmission interval Delta] t s until transmits the synchronization information to the master device 1a. Specifically, receiving and transmitting interval calculating unit 84 obtains the transmission time of the synchronization information to the master device 1a, the reception and transmission interval Delta] t s by the difference between the reception time of the synchronization information from the master device 1a. The reception / transmission interval calculation unit 80 acquires the transmission time and the reception time from the storage unit 50 or the time recording unit 74.

図6は、マスター装置1aの送受信間隔とスレーブ装置1bの受送信間隔を横軸が周波数、縦軸が時間の2次元平面上に表した図である。図6に示すように、面積算出部85は、横軸が周波数、縦軸が時間である2次元平面上で張られるベクトルA(=(f、Δt)とベクトルB(=(f、ΔT)とで成す三角形の波数領域Sの面積aを算出する。fは、マスター装置1aのクロック20のクロック周波数であり、fは、スレーブ装置1bのクロック20のクロック周波数である。 FIG. 6 is a diagram showing the transmission / reception interval of the master device 1a and the transmission / reception interval of the slave device 1b on a two-dimensional plane in which the horizontal axis is frequency and the vertical axis is time. As shown in FIG. 6, the area calculation unit 85, the vector A (= (f s, Δt s) T) where the horizontal axis is frequency and the vertical axis is stretched on the two-dimensional plane is a time vector B (= ( The area a of the wave number region S of the triangle formed by f m , ΔT m ) T) is calculated. f m is the clock frequency of the clock 20 of the master device 1a, and f s is the clock frequency of the clock 20 of the slave device 1b.

面積算出部85は、送受信間隔演算部83により求められた送受信間隔Δt、受送信間隔演算部84により求めた受送信間隔Δt、周波数取得部82により得た周波数f、fを取得し、面積aを算出する。本実施形態では、面積算出部85は、波数領域の面積aを、ベクトルAとベクトルBの外積の大きさを2で除することにより算出する。 Area calculation unit 85, acquires reception interval Delta] t m obtained by the transmitting and receiving intervals calculation unit 83, receiving and transmitting reception and transmission interval Delta] t s obtained by the distance calculation unit 84, a frequency f m was obtained by the frequency acquisition unit 82, a f s Then, the area a is calculated. In the present embodiment, the area calculation unit 85 calculates the area a of the wave number region by dividing the size of the outer product of the vector A and the vector B by 2.

伝搬時間算出部86は、マスター装置1aとスレーブ装置1bとの間で伝送する情報の伝搬時間を算出する。本実施形態では、伝搬時間算出部86は、ベクトルAとベクトルBとで成す三角形の波数領域の面積aを、マスター装置1aのクロック20の周波数fで除することにより伝搬時間を算出する。その際、伝搬時間算出部86は、当該面積a、周波数fを面積算出部85から取得する。 The propagation time calculation unit 86 calculates the propagation time of the information transmitted between the master device 1a and the slave device 1b. In the present embodiment, the propagation time calculation unit 86 calculates the propagation time divided by the frequency f m of the area a wavenumber region of a triangle formed by the vectors A and B, the master device 1a of the clock 20. At that time, the propagation time calculation unit 86 obtains the area a, the frequency f m from the area calculation unit 85.

時差算出部87は、伝搬時間算出部86により求めた伝搬時間に基づいて、マスター装置1aとスレーブ装置1bとの間の時差を算出する。具体的には、時差算出部87は、伝搬時間と受送信間隔Δtとを加算することで時差を算出する。ここでの時差は、図5に示すように、マスター装置1aの送信タイミングからスレーブ装置1bの送信タイミングまでの間隔である。 The time difference calculation unit 87 calculates the time difference between the master device 1a and the slave device 1b based on the propagation time obtained by the propagation time calculation unit 86. Specifically, the time difference calculating portion 87 calculates the time difference by adding a propagation time between reception and transmission interval Delta] t s. As shown in FIG. 5, the time difference here is the interval from the transmission timing of the master device 1a to the transmission timing of the slave device 1b.

同期制御部88は、時差算出部87により求めた時差に基づいて、同期制御する。具体的には、同期制御部88は、当該時差に基づいて、スレーブ装置1bの時計30の刻時する値を補正する。例えば、同期制御部88は、時計30自体を制御して刻時を補正しても良い。或いは、同期制御部88は、時計30が時刻を出力する際に時差分を補正した時刻を出力するように時計30を制御しても良い。このように同期制御部88は、時差に基づいて時計30の刻時、又は時計30が出力する時刻を補正し、時差がマスター装置1aとスレーブ装置1bの送信タイミングのズレで定義しているので、時差の制御は、送信タイミングの制御と同義である。 The synchronization control unit 88 performs synchronous control based on the time difference obtained by the time difference calculation unit 87. Specifically, the synchronization control unit 88 corrects the ticking value of the clock 30 of the slave device 1b based on the time difference. For example, the synchronization control unit 88 may control the clock 30 itself to correct the time. Alternatively, the synchronization control unit 88 may control the clock 30 so that when the clock 30 outputs the time, the time difference is corrected to output the time. In this way, the synchronization control unit 88 corrects the time of the clock 30 or the time output by the clock 30 based on the time difference, and the time difference is defined by the difference in transmission timing between the master device 1a and the slave device 1b. , Time difference control is synonymous with transmission timing control.

[1−2.作用]
上記の構成を有する情報通信システム100の作用について、図4〜図11を用いて説明する。
[1-2. Action]
The operation of the information communication system 100 having the above configuration will be described with reference to FIGS. 4 to 11.

[1−2−1.伝搬時間、時差の定式化]
図5に示すように、マスター装置1aがスレーブ装置1bに情報を送信し、伝搬時間を経て当該情報をスレーブ装置1bが受信し、当該受信をしてからマスター装置1aに別の情報を送信し、同じ伝搬時間を経てマスター装置1aで受信する状況を考え、伝搬時間と時差を定式化する。なお、ここでのマスター装置1aが送信する情報、及び、スレーブ装置1bが送信する別の情報とは、同期するためにタイミングを計る目的のものであり、当該情報にはマスター装置1aの当該情報の送信時刻が載せられていても良いが、当該情報及び当該別の情報の中身は任意である。
[1-2-1. Formulation of propagation time and time difference]
As shown in FIG. 5, the master device 1a transmits information to the slave device 1b, the slave device 1b receives the information after a propagation time, and after the reception, another information is transmitted to the master device 1a. Considering the situation where the master device 1a receives the information after the same propagation time, the propagation time and the time difference are formulated. The information transmitted by the master device 1a and another information transmitted by the slave device 1b are for the purpose of timing for synchronization, and the information includes the information of the master device 1a. The transmission time of the information may be included, but the content of the information and the other information is arbitrary.

(1)単一クロックドメインの場合
まず、情報通信システム100においてクロックドメインが単一である場合、すなわち、マスター装置1aのクロック20のクロック周波数と、スレーブ装置1bのクロック20のクロック周波数が同一の周波数fである場合、各装置1a、1bで観測された時刻、演算された時間は、他方の装置1a、1bでもそのまま用いることができる。
(1) In the case of a single clock domain First, when the information communication system 100 has a single clock domain, that is, the clock frequency of the clock 20 of the master device 1a and the clock frequency of the clock 20 of the slave device 1b are the same. In the case of the frequency f, the time observed by each of the devices 1a and 1b and the calculated time can be used as they are in the other devices 1a and 1b.

図5に示すように、マスター装置1aからスレーブ装置1bへの伝搬時間tと、スレーブ装置1bからマスター装置1aへの伝搬時間tとが同じであるとすると、伝搬時間tは、式(1)の通り求めることができる。
=(Δt−Δt)/2 …(1)
As shown in FIG. 5, a propagation time t d to the slave device 1b from the master device 1a, when the propagation time t d from the slave device 1b to the master device 1a are the same, the propagation time t d has the formula It can be obtained as in (1).
t d = (Δt m − Δt s ) / 2… (1)

また、上記の通り、クロック20間の時差tは、マスター装置1aの送信タイミングからスレーブ装置1bの送信タイミングまでの間隔である。この時差tは、図5より、式(2)が成立する。
=Δt−t=Δt+t …(2)
Further, as described above, the time difference t 0 between the clocks 20 is the interval from the transmission timing of the master device 1a to the transmission timing of the slave device 1b. For this time difference t 0 , the equation (2) is established from FIG.
t 0 = Δt m −t d = Δt s + t d … (2)

よって、クロック20間の時差tは、式(1)を用いて、式(3)の通り求めることができる。
=(Δt+Δt)/2 …(3)
Therefore, the time difference t 0 between the clocks 20 can be obtained according to the equation (3) using the equation (1).
t 0 = (Δt m + Δt s ) / 2 ... (3)

なお、図7に示すように、スレーブ装置1bがマスター装置1aからの情報受信を待たずに、別の情報をマスター装置1aへ送信する場合、スレーブ装置1bにおける受信から送信までの間隔Δtは負数となるが、スレーブ装置1bがマスター装置1aからの情報受信を待って別の情報をマスター装置1aへ送信する場合と同様に、式(1)及び式(3)が成立する。 As shown in FIG. 7, without the slave device 1b is waiting for the information received from the master device 1a, when transmitting other information to the master device 1a, spacing Delta] t s to transmission from reception in the slave device 1b Although it is a negative number, the equations (1) and (3) are established as in the case where the slave device 1b waits for the information reception from the master device 1a and transmits another information to the master device 1a.

ここで、クロック周波数fのクロック20に基づいて観測された時間は、横軸がクロック周波数、縦軸が物理的なタイミングに対応する観測された時間における2次元平面(以下、周波数・時間平面ともいう。)上のベクトルとして表現することができる。このベクトルを観測時間ベクトルと称する。観測時間ベクトルは、例えば、(f、Δt)と表すことができる。記号は、ベクトルの転置を表す。図8は、マスター装置1aの送受信間隔ΔT、スレーブ装置1bの受送信間隔Δtを、観測時間ベクトル(f、Δt、(f、Δtとして、周波数・時間平面上に表した図である。 Here, the time observed based on the clock 20 of the clock frequency f has a two-dimensional plane (hereinafter, both frequency and time plane) in the observed time corresponding to the clock frequency on the horizontal axis and the physical timing on the vertical axis. It can be expressed as the above vector. This vector is called an observation time vector. The observation time vector can be expressed as, for example, (f, Δt) T. The symbol T represents the transpose of the vector. 8, transmission and reception interval [Delta] T m of the master device 1a, the reception and transmission interval Delta] t s of the slave device 1b, the observation time vector (f, Δt m) T, (f, Δt s) as T, on the frequency-time plane It is a representation figure.

ここで、この2つの観測ベクトルで張られる三角形の領域Sに着目する。領域Sの三角形の底辺が、周波数fを表す直線上に乗る辺であるとすると、底辺の長さ(Δt−Δt)は、式(1)又は式(2)より、2tであるから、領域Sの面積aは、式(4)の通り表すことができる。
a=f×(Δt−Δt)/2=f×t …(4)
Here, we focus on the triangular region S spanned by these two observation vectors. Assuming that the base of the triangle of the region S is a side that rides on a straight line representing the frequency f, the length of the base (Δt m − Δt s ) is 2 t d from the equation (1) or the equation (2). Therefore, the area a of the region S can be expressed as in the equation (4).
a = f × (Δt m − Δt s ) / 2 = f × t d … (4)

したがって、伝搬時間tは、式(4)より、式(5)の通り表すことができる。
=a/f …(5)
Therefore, the propagation time t d can be expressed by the equation (5) from the equation (4).
t d = a / f ... (5)

周波数と時間の積は波数を表すため、領域Sを波数領域と称し、その面積aは周波数・時間積と称することができる。 Since the product of frequency and time represents the wave number, the region S can be referred to as the wave number region, and the area a can be referred to as the frequency / time product.

また、波数領域Sの底辺の中点は、Δt+(Δt−Δt)/2=(Δt+Δt)/2であるから、式(2)又は式(3)により、クロック20間の時差tそのものである。また、波数領域Sの底辺の長さは2tであるから、時差tは、式(6)の通り表すことができる。
=Δt+t=Δt−t …(6)
Further, since the midpoint of the base of the wave frequency domain S is Δt s + (Δt m − Δt s ) / 2 = (Δt m + Δt s ) / 2, the clock 20 is according to the equation (2) or (3). The time difference between them is t 0 itself. Further, since the length of the base of the wave number region S is 2 t d , the time difference t 0 can be expressed as in the equation (6).
t 0 = Δt s + t d = Δt m −t d … (6)

このように、周波数・時間平面上で波数領域Sを用いて幾何学的手法により、伝搬時間tと時差tを求めることができる。 In this way, the propagation time t d and the time difference t 0 can be obtained by a geometric method using the wave number region S on the frequency / time plane.

(2)複数のクロックドメインの場合
情報通信システム100においてクロックドメインが複数である場合、すなわち、マスター装置1aのクロック20のクロック周波数fと、スレーブ装置1bのクロック20のクロック周波数fが異なる場合、一方の装置1a、1bでの時間は、他方の装置1b、1aでの演算にそのまま用いることができない。
(2) In the case of a plurality of clock domains When there are a plurality of clock domains in the information communication system 100, that is, the clock frequency f m of the clock 20 of the master device 1a and the clock frequency f s of the clock 20 of the slave device 1b are different. In this case, the time in one device 1a and 1b cannot be used as it is for the calculation in the other device 1b and 1a.

例えば、図9に示すように、周波数および時間は線形であるため、周波数・時間平面上の2次元ベクトルを用いて、クロックドメイン間の観測時間を線形に対応付けることができる。すなわち、周波数fにおける観測時間taをベクトル(f、taで表すとすれば、taに対応する周波数fにおける観測時間taは、(f、taでの延長上にあるベクトルの(f、taの要素であるtaとして求めることができる。同様に、周波数fにおける観測時間tbをベクトル(f、tbで表すとすれば、tbに対応する周波数fにおける観測時間tbは、(f、tbでの延長上にあるベクトルの(f、tbの要素であるtbとして求めることができる。 For example, as shown in FIG. 9, since the frequency and time are linear, the observation time between clock domains can be linearly associated with each other by using a two-dimensional vector on the frequency / time plane. That is, the vector observation time ta m at frequency f m (f m, ta m ) if represented by T, the observation time ta s at a frequency f s which corresponds to ta m is, (f m, ta m) in T (f s, ta s) of a vector that is on the extension can be obtained as ta s is an element of T. Similarly, if the observation time tb m at frequency f m vector (f m, tb m) and expressed by T, the observation time tb s at a frequency f s which corresponds to tb m, (f m, tb m) T (f s, tb s) of a vector that is on the extension of the at can be obtained as tb s is an element of T.

よって、周波数fにおいて観測された間隔(tb−ta)に対応する物理的なタイミング間隔は、周波数fにおいては間隔(tb−ta)として観測される。つまり、物理的に共通の時間間隔でも、周波数が異なることにより、図9に示すように、マスター装置1aで観測された間隔(tb−ta)と、スレーブ装置1bで観測された間隔(tb−ta)とが異なるため、一方の装置1a、1bでの時間は、他方の装置1b、1aでの演算にそのまま用いることができない。そのため、周波数f、fの何れか一方の影響を除去する必要がある。 Therefore, the physical timing interval corresponding to the interval (tb m − ta m ) observed at the frequency f m is observed as the interval (tb s − ta s ) at the frequency f s. In other words, a physically common time interval, by having different frequencies, as shown in FIG. 9, the observed interval master device 1a (tb m -ta m), observed interval slave device 1b ( Since it is different from tb s −ta s ), the time in one device 1a and 1b cannot be used as it is for the calculation in the other device 1b and 1a. Therefore, it is necessary to remove the influence of either the frequency f m or f s.

ここで、式(5)より、波数領域Sの面積aを周波数で除することで伝搬時間が得られる。所望のクロックドメイン(周波数)上でのみ演算できるように、他方のクロックドメイン(周波数)、つまり影響を除去したい方のクロックドメイン(周波数)で波数領域Sの面積aを除することで、所望のクロックドメインでの伝搬時間及び時差を求めることができる。面積aが所望のクロックドメイン上での時間も除去したい方のクロックドメイン上の時間も含むものであり、影響を除去したい方のクロックドメインの周波数で面積aを除することで、所望のクロックドメインの影響のみが残るからである。 Here, from the equation (5), the propagation time can be obtained by dividing the area a of the wave number region S by the frequency. By dividing the area a of the wave frequency domain S by the other clock domain (frequency), that is, the clock domain (frequency) from which the influence is desired to be removed, the desired clock domain (frequency) can be calculated so that the calculation can be performed only on the desired clock domain (frequency). The propagation time and time difference in the clock domain can be obtained. The area a includes the time on the desired clock domain and the time on the clock domain to be removed, and the desired clock domain is obtained by dividing the area a by the frequency of the clock domain to which the influence is to be removed. This is because only the influence of is left.

具体的に、クロックドメインf上での伝搬時間tds、時差t0sを求めたい場合、図10に示すように、観測時間ベクトル(f、Δtを底辺とした波数領域Sが形成する三角形の頂点(f、Δt)を、この底辺と平行に移動することにより、周波数・時間積を維持したまま、クロックドメインf上の点(f、Δtsm)へ変換する。この変換は、頂点(f、Δt)を当該底辺と平行に移動するだけであるので、高さが保たれているため、波数領域Sの面積を一定に保つ等面積変換である。これにより、変換後の波数領域Sの三角形の一辺が、クロックドメインf上に乗る。当該一辺を当該三角形の底辺とすると、この底辺の長さは、クロックドメインf上で観測される伝搬時間tdsの2倍に等しい。換言すると、変換後の波数領域Sの三角形の面積は、aであるので、底辺の長さをxとすると、式(7)が成り立つ。
a=(1/2)×f×x …(7)
Specifically, the propagation time t ds on clock domain f s, if you want to find the time difference t 0 s, as shown in FIG. 10, the observation time vector (f m, Δt m) wavenumber region S was bottom of T is apex of the formed triangle (f s, Δt s), and by moving in parallel with the base, while maintaining the frequency-time product, converted on the clock domain f m point (f m, Delta] t sm) to .. This conversion is the vertex (f s, Δt s) since the only movement parallel to the base, the height is maintained, and so the area conversion to keep the area of the wave number region S constant. Thus, one side of the triangle wave number region S after the conversion, ride on the clock domain f m. Assuming that one side is the base of the triangle, the length of this base is equal to twice the propagation time t ds observed on the clock domain f s. In other words, the area of the triangle in the wavenumber domain S after conversion is a, so if the length of the base is x, the equation (7) holds.
a = (1/2) × f m × x ... (7)

式(7)より、式(8)が成り立つ。
x=2×(a/f) …(8)
From equation (7), equation (8) holds.
x = 2 × (a / f m )… (8)

この式(8)のa/fは、式(5)と同様に、伝搬時間である。ここで、このa/fは、波数領域Sの面積aを、所望のクロックドメインfではないクロックドメインf、つまり、影響を除去したい方のクロックドメインfで除した値であるので、伝搬時間は、クロックドメインf上での伝搬時間tdsである。 The a / f m of the equation (8) is the propagation time as in the equation (5). Here, the a / f m is the area a wavenumber region S, the desired clock domain f not s clock domain f m, in other words, since it is divided by the clock domain f m of the person who wants to remove the effects , The propagation time is the propagation time t ds on the clock domain f s .

したがって、伝搬時間tdsは、式(9)により求めることができる。
ds=a/f …(9)
Therefore, the propagation time t ds can be obtained by the equation (9).
t ds = a / f m ... (9)

実際、変換後の波数領域Sの三角形の当該底辺を、ベクトルBに沿ってクロックドメインf上に平行移動したときの長さが、2tdsであるので、x=2tdsである。すなわち、クロックドメインf上で観測された時間Δtに対応するクロックドメインf上で観測される時間Δtmsは、図10において、観測時間ベクトル(f、Δtms(以下、ベクトルBともいう。)で表される。ベクトルAとベクトルBとで張られる三角形(図10の点O、P、Qで結ばれる三角形)のクロックドメインf上の底辺yは、図8と同様に考えると、2tdsである。この底辺yは、図10の線分PPと線分QQは平行であるので、底辺xと等しい。よって、底辺x=2tdsであることが分かる。 In fact, the base of the triangle wave number region S after conversion, the length of time that has moved in parallel on the clock domain f s along a vector B, since it is 2t ds, is x = 2t ds. That is, the time Delta] t ms observed on clock domain f s which corresponds to the clock domain f m on the observed time Delta] t m, at 10, the observation time vector (f s, Δt ms) T ( hereinafter, the vector It is also represented by B s). The base y on the clock domain f s of the triangle spanned by the vector A and the vector B s (the triangle connected by the points O, P s , and Q in FIG. 10) is 2 t ds in the same manner as in FIG. .. This base y is equal to the base x because the line segment PP s and the line segment QQ m in FIG. 10 are parallel to each other. Therefore, it can be seen that the base x = 2t ds.

また、クロックドメインf上での時差t0sは、図8と同様に考えると、底辺yの中点であるから、式(10)により求めることができる。
0s=Δt+tds …(10)
Further, the time difference t 0s on the clock domain f s can be obtained by the equation (10) because it is the midpoint of the base y when considered in the same manner as in FIG.
t 0s = Δt s + t ds … (10)

なお、クロックドメインf上での伝搬時間tdm、時差t0mを求めたい場合、図11に示すように、観測時間ベクトル(f、Δtを底辺とした波数領域Sが形成する三角形の頂点(f、Δt)を、この底辺と平行に移動することにより、周波数・時間積を維持したまま、クロックドメインf上の点(f、Δtms)へ変換する。この変換は、頂点(f、Δt)を当該底辺と平行に移動するだけであるので、高さが保たれているため、波数領域Sの面積を一定に保つ等面積変換である。これにより、変換後の波数領域Sの三角形の一辺が、クロックドメインf上に乗る。当該一辺を当該三角形の底辺とすると、この底辺の長さは、クロックドメインf上で観測される伝搬時間tdmの2倍に等しい。換言すると、変換後の波数領域Sの三角形の面積は、aであるので、底辺の長さをxとすると、式(11)が成り立つ。
a=(1/2)×f×x …(11)
Incidentally, the propagation time on the clock domain f m t dm, if you want to find the time difference t 0 m, as shown in FIG. 11, the observation time vector (f s, Δt s) wavenumber region S was base T-form apex of the triangle (f m, Δt m) and by moving parallel to the base, while maintaining the frequency-time product, converting the clock domain f s on the point (f s, Delta] t ms) to. This conversion is the vertex (f m, Δt m) since the only movement parallel to the base, the height is maintained, and so the area conversion to keep the area of the wave number region S constant. Thus, one side of the triangle wave number region S after the conversion, ride on the clock domain f s. When the side and bottom side of the triangle, the length of the base is equal to twice the propagation time t dm observed on clock domain f m. In other words, since the area of the triangle in the wavenumber domain S after conversion is a, the equation (11) holds, where x is the length of the base.
a = (1/2) × f s × x… (11)

式(11)より、式(12)が成り立つ。
x=2×(a/f) …(12)
From equation (11), equation (12) holds.
x = 2 × (a / f s )… (12)

この式(12)のa/fは、式(5)と同様に、伝搬時間である。ここで、このa/fは、波数領域Sの面積aを、所望のクロックfではないクロックドメインf、つまり、影響を除去したい方のクロックドメインfで除した値であるので、伝搬時間は、クロックドメインf上での伝搬時間tdmである。 The a / f s of the equation (12) is the propagation time as in the equation (5). Here, the a / f s is the area a wavenumber region S, the desired clock f m is not a clock domain f s, that is, because it is divided by the impact at the clock domain f s of those who want to remove, propagation time is the propagation time t dm on the clock domain f m.

したがって、伝搬時間tdmは、式(13)により求めることができる。
dm=a/f …(13)
Therefore, the propagation time t dm can be obtained by the equation (13).
t dm = a / f s ... (13)

実際、変換後の波数領域Sの三角形の当該底辺を、ベクトルAに沿ってクロックドメインf上に平行移動したときの長さが、2tdmであるので、x=2tdmである。すなわち、クロックドメインf上で観測された時間Δtに対応するクロックドメインf上で観測される時間Δtsmは、図11において、観測時間ベクトル(f、Δtsm(以下、ベクトルAともいう。)で表される。ベクトルAとベクトルBとで張られる三角形(図11の点O、P、Qで結ばれる三角形)のクロックドメインf上の底辺yは、図8と同様に考えると、2tdmである。この底辺yは、図11の線分PPと線分QQは平行であるので、底辺xと等しい。よって、底辺x=2tdmであることが分かる。 In fact, the base of the triangle wave number region S after conversion, the length of time that has moved in parallel on the clock domain f m along the vector A, because it is 2t dm, is x = 2t dm. That is, the time Delta] t sm observed on clock domain f m corresponding to the clock domain f s on the observed time Delta] t s, at 11, the observation time vector (f m, Δt sm) T ( hereinafter, the vector also referred to as a m.) represented by. Bottom y on the clock domain f m of the triangle (O point of FIG. 11, P, triangles are connected by Q m) spanned by the vectors A m and the vector B, when considered in the same manner as FIG. 8, is 2t dm .. This base y is equal to the base x because the line segment PP s and the line segment QQ m in FIG. 11 are parallel to each other. Therefore, it can be seen that the base x = 2t dm.

また、クロックドメインf上での時差t0mは、図8と同様に考えると、底辺yの中点であるから、式(14)により求めることができる。
0m=Δt−tdm …(14)
Further, the time difference t 0 m on the clock domain fm is the midpoint of the base y when considered in the same manner as in FIG. 8, and can be obtained by the equation (14).
t 0 m = Δt m −t dm … (14)

上記のように、伝搬時間tds、tdmは、波数領域Sの面積aにより表されることが分かった。この面積aは、ベクトルAとベクトルBの外積の大きさを2で除して求めることができるから、伝搬時間tds、tdmは、式(15)、(16)の通り求めることができる。 As described above, it was found that the propagation times t ds and t dm are represented by the area a of the wave number region S. Since this area a can be obtained by dividing the magnitude of the outer product of the vector A and the vector B by 2, the propagation times t ds and t dm can be obtained according to the equations (15) and (16). ..

ds=|(f、Δt×(f、ΔT|/(2×f) …(15)
dm=|(f、Δt×(f、ΔT|/(2×f) …(16)
t ds = | (f s, Δt s) T × (f m, ΔT m) T | / (2 × f m) ... (15)
t dm = | (f s, Δt s) T × (f m, ΔT m) T | / (2 × f s) ... (16)

[1−2−2.周波数f、f、送受信間隔Δt、受送信間隔Δtについて]
上記の通り、伝搬時間tds、tdmは、波数領域の面積a、周波数f、fに依存し、面積aは、周波数f、f、送受信間隔Δt、受送信間隔Δtに依存する。そのため、伝搬時間を求めるには、これらの値を求める必要がある。
[1-2-2. Frequency f m , f s , transmission / reception interval Δt m , transmission / reception interval Δ t s ]
As described above, the propagation time t ds, t dm, the area of the wave number region a, the frequency f m, depending on the f s, the area a is, the frequency f m, f s, reception interval Delta] t m, reception and transmission interval Delta] t s Depends on. Therefore, it is necessary to obtain these values in order to obtain the propagation time.

(1)送受信間隔Δt、受送信間隔Δt
送受信間隔Δtは、送受信間隔演算部83により求められる。すなわち、送受信間隔演算部83は、図5に示すように、スレーブ装置1bからの同期情報の受信時刻と、マスター装置1aからスレーブ装置1bへの別の同期情報の送信時刻との差分を演算することにより送受信間隔Δtを求める。
(1) Transmission / reception interval Δt m , transmission / reception interval Δt s
The transmission / reception interval Δt m is obtained by the transmission / reception interval calculation unit 83. That is, as shown in FIG. 5, the transmission / reception interval calculation unit 83 calculates the difference between the reception time of the synchronization information from the slave device 1b and the transmission time of another synchronization information from the master device 1a to the slave device 1b. By doing so, the transmission / reception interval Δt m is obtained.

受送信間隔Δtは、受送信間隔演算部84により求められる。すなわち、受送信間隔演算部84は、図5に示すように、スレーブ装置1bからマスター装置1aへの同期情報の送信時刻と、マスター装置1aからの別の同期情報の受信時刻との差分を演算することにより受送信間隔Δtを求める。 Receiving and transmitting interval Delta] t s is determined by the reception and transmission interval computing unit 84. That is, as shown in FIG. 5, the transmission / reception interval calculation unit 84 calculates the difference between the transmission time of the synchronization information from the slave device 1b to the master device 1a and the reception time of another synchronization information from the master device 1a. Request receiving and transmitting interval Delta] t s by.

(2)周波数f、f
周波数f、fは、カウンタ40及び周波数取得部82により求められる。すなわち、図4に示すように、マスター装置1aは、送信間隔ΔTで同期情報をスレーブ装置1bに少なくとも2回送信する。その際、マスター装置1aのカウンタ40は、当該送信間隔ΔTにおけるマスター装置1aのクロック20のパルス数pをカウントする。この送信間隔ΔTを1秒とすると、当該パルス数pは周波数fそのものである。或いは、送信間隔ΔTを1秒以外の時間としても、1秒当たりのパルス数に換算すれば良い。すなわち、p:ΔT=f:1より、周波数fは、f=p/ΔTにより求めることができる。つまり、パルス数p、送信間隔ΔTは、観測可能な量であるので、周波数取得部82が、パルス数pを取得することで周波数fを得ることができる。
(2) frequency f m, f s
The frequencies f m and f s are obtained by the counter 40 and the frequency acquisition unit 82. That is, as shown in FIG. 4, the master device 1a transmits at least twice synchronization information to the slave device 1b in the transmission interval [Delta] T m. At that time, the counter 40 of the master device 1a counts the number of pulses p m of the clock 20 of the master device 1a in the transmission interval [Delta] T m. When this transmission interval [Delta] T m and 1 second, the number of pulses p m is one that frequency f m. Alternatively, even if the transmission interval ΔT m is set to a time other than 1 second, it may be converted into the number of pulses per second. That, p m: ΔT m = f m: from 1, the frequency f m can be determined by f m = p m / ΔT m . In other words, the number of pulses p m, the transmission interval [Delta] T m, because it is observable quantities, can be frequency acquisition unit 82 to obtain a frequency f m by obtaining the number of pulses p m.

また、図4に示すように、マスター装置1aにより2回同期情報が送信されると、スレーブ装置1bは、同期情報を2回受信する。その際、スレーブ装置1bのカウンタ40は、当該受信間隔ΔTにおけるスレーブ装置1bのクロック20のパルス数pをカウントする。この受信間隔ΔTは、送信間隔ΔTに対応する時間間隔であり、パルス数pは周波数fである。或いは、送信間隔ΔTが1秒以外の時間であったとしても、1秒当たりのパルス数に変換すれば良い。すなわち、p:ΔT=f:1より、周波数fは、f=p/ΔTにより求めることができる。つまり、パルス数p、受信間隔ΔTは、観測可能な量であるので、周波数取得部82が、パルス数pを取得することで周波数fを得ることができる。 Further, as shown in FIG. 4, when the master device 1a transmits the synchronization information twice, the slave device 1b receives the synchronization information twice. At that time, the counter 40 of the slave device 1b counts the number of pulses p s clock 20 of slave device 1b in the reception interval [Delta] T s. The reception interval ΔT s is a time interval corresponding to the transmission interval ΔT m , and the number of pulses ps is the frequency f s . Alternatively, even if the transmission interval ΔT m is a time other than 1 second, it may be converted into the number of pulses per second. That is, from p s : ΔT s = f s : 1, the frequency f s can be obtained by f s = p s / ΔT s. That is, since the pulse number p s and the reception interval ΔT s are observable quantities, the frequency acquisition unit 82 can obtain the frequency f s by acquiring the pulse number p s.

なお、ここでのマスター装置1aが送信する同期情報は、周波数fm、fsを求めるために送信される情報であり、その中身は任意である。 The synchronization information transmitted by the master device 1a here is information transmitted to obtain frequencies fm and fs, and the contents thereof are arbitrary.

[1−3.動作]
本実施形態の情報通信システム100の動作について、図12を用いて説明する。図12は、情報通信システム100の動作フローチャートの一例である。
[1-3. motion]
The operation of the information communication system 100 of the present embodiment will be described with reference to FIG. FIG. 12 is an example of an operation flowchart of the information communication system 100.

図12に示すように、まず、スレーブ装置1bが、同期要求部80により、マスター装置1aとの同期を要求する信号(以下、同期要求信号ともいう。)をマスター装置1aに送信する(ステップS01:同期要求)。 As shown in FIG. 12, first, the slave device 1b transmits a signal requesting synchronization with the master device 1a (hereinafter, also referred to as a synchronization request signal) to the master device 1a by the synchronization request unit 80 (step S01). : Sync request).

マスター装置1aが同期要求信号を受信すると、マスター装置1aは、スレーブ装置1bに2つの同期情報を送信し、カウンタ40及びカウンタ制御部76により、当該同期情報の送信間隔ΔTにおけるクロック20のパルス数pをカウントし、このパルス数pを送信器11を介してスレーブ装置1bに送信する(ステップS02:パルス数pのカウント及び送信)。このパルス数pは、スレーブ装置1bの周波数取得部82が取得する。 When the master device 1a receives the synchronization request signal, the master device 1a transmits two synchronization information to the slave device 1b, and the counter 40 and the counter control unit 76 pulse the clock 20 at the transmission interval ΔT m of the synchronization information. a count p m, and transmits the number of pulses p m to the slave device 1b through the transmitter 11 (step S02: counting and transmission of the pulse number p m). The pulse number p m, the frequency acquisition unit 82 of the slave device 1b obtains.

スレーブ装置1bは、マスター装置1aからの2つの同期情報を受信し、カウンタ40及びカウンタ制御部81により、当該同期情報の受信間隔ΔTにおけるクロック20のパルス数pをカウントする(ステップS03:パルス数pのカウント)。このパルス数pは、周波数取得部82が取得する。なお、ここでは、送信間隔ΔTを1秒とする。すなわち、パルス数p、pは、周波数f、fであるため、周波数取得部82は、パルス数p、pの取得により周波数f、fを得る。 The slave device 1b receives two synchronization information from the master device 1a, the counter 40 and counter control unit 81 counts the number of pulses p s clock 20 in reception intervals [Delta] T s of the synchronization information (step S03: count the number of pulses p s). The number of pulses p s, the frequency acquisition unit 82 acquires. Here, the transmission interval ΔT m is set to 1 second. That is, since the pulse numbers p m and p s are the frequencies f m and f s , the frequency acquisition unit 82 obtains the frequencies f m and f s by acquiring the pulse numbers p m and p s .

次に、マスター装置1aとスレーブ装置1bとの間で同期情報の送受信を行い、送受信間隔Δt及び受送信間隔Δtを演算する(ステップS04:送受信間隔Δt、受送信間隔Δtの演算)。 Then, send and receive synchronization information between the master device 1a and the slave device 1b, and calculates a reception interval Delta] t m and reception and transmission interval Delta] t s (Step S04: transmission and reception intervals Delta] t m, calculation of reception and transmission interval Delta] t s ).

具体的には、図5に示すように、マスター装置1aは、同期情報をスレーブ装置1bに送信する。その際、時刻記録部74により、同期情報の送信タイミングに対応する送信時刻tm1を同期情報に載せておく。スレーブ装置1bは当該同期情報を受信し、当該同期情報に載せられた送信時刻tm1を送受信間隔演算部83が取得する。また、当該同期情報の受信時刻ts1を受送信間隔演算部84が取得する。 Specifically, as shown in FIG. 5, the master device 1a transmits synchronization information to the slave device 1b. At that time, the time recording unit 74 puts the transmission time t m1 corresponding to the transmission timing of the synchronization information on the synchronization information. The slave device 1b receives the synchronization information, and the transmission / reception interval calculation unit 83 acquires the transmission time t m1 included in the synchronization information. Further, the reception / transmission interval calculation unit 84 acquires the reception time t s1 of the synchronization information.

スレーブ装置1bは、同期情報の受信後、別の同期情報をマスター装置1aに送信する。その際の送信時刻ts2を受送信間隔演算部84が取得する。マスター装置1aは、当該別の同期情報を受信し、その受信時刻tm2をスレーブ装置1bに送信する。これにより、送受信間隔演算部83が当該受信時刻tm2を取得する。 After receiving the synchronization information, the slave device 1b transmits another synchronization information to the master device 1a. The transmission / reception interval calculation unit 84 acquires the transmission time t s2 at that time. The master device 1a receives the other synchronization information and transmits the reception time t m2 to the slave device 1b. As a result, the transmission / reception interval calculation unit 83 acquires the reception time t m2.

そして、送受信間隔演算部83は、別の同期情報の受信時刻tm2と、同期情報の送信時刻tm1との差分を演算することで送受信間隔Δtを得る。受送信間隔演算部84は、別の同期情報の送信時刻ts2と、同期情報の受信時刻ts1との差分を演算することで受送信間隔Δtを得る。 The transmitting and receiving interval calculating unit 83 obtains the reception time t m @ 2 of another synchronization information, the reception interval Delta] t m by calculating a difference between the transmission time t m1 synchronization information. Receiving and transmitting interval calculating unit 84 obtains the sending time t s2 of another synchronization information, the receiving and transmitting interval Delta] t s by calculating the difference between the reception time t s1 the synchronization information.

次に、面積算出部85は、送受信間隔Δt、受送信間隔Δt、周波数f、fから、波数領域の面積aを算出する(ステップS05:波数領域の面積の算出)。伝搬時間算出部86は、面積算出部85により算出した面積aを周波数fで除することにより伝搬時間tdmを算出する(ステップS06:伝搬時間の算出)。時差算出部87は、受送信間隔Δtと伝搬時間算出部86により算出した伝搬時間tdsとを加算することで時差t0sを算出する(ステップS07:時差の算出)。そして、同期制御部88は、時差算出部87により算出した時差t0sに基づいて、スレーブ装置1bの時計30の時刻を補正し、マスター装置1aと同期する(ステップS08:同期)。例えば、時差t0s>0であれば、同期制御部88は、スレーブ装置1bの時計30が出力する時刻から時差t0sを差し引いた時刻をスレーブ装置1bの時刻とする。 Then, the area calculation section 85, transmission and reception interval Delta] t m, reception and transmission interval Delta] t s, the frequency f m, from f s, and calculates the area a wavenumber region (Step S05: Calculation of the area of the wave number region). Propagation time calculation unit 86 calculates the propagation time t dm by dividing the area a calculated by the area calculation section 85 at the frequency f m (Step S06: Calculation of the propagation time). Time difference calculating portion 87 calculates the time difference t 0 s by adding a propagation time t ds calculated by the propagation time calculating unit 86 and the reception and transmission interval Delta] t s (Step S07: Calculation of time difference). Then, the synchronization control unit 88 corrects the time of the clock 30 of the slave device 1b based on the time difference t 0s calculated by the time difference calculation unit 87, and synchronizes with the master device 1a (step S08: synchronization). For example, if the time difference t 0s > 0, the synchronization control unit 88 sets the time obtained by subtracting the time difference t 0s from the time output by the clock 30 of the slave device 1b as the time of the slave device 1b.

[1−4.効果]
(1)本実施形態の情報通信システム100は、情報通信によりマスター装置1aに対してスレーブ装置1bが同期を図る情報通信システムであって、マスター装置1a及びスレーブ装置1bは、情報を送信する送信器11と、情報を受信する受信器12と、所定の周波数により発振し、装置内の各部の動作タイミングを与えるクロック20と、クロック20を源振として刻時する時計30と、を有し、スレーブ装置1bは、マスター装置1aとスレーブ装置1bとの間で伝送する情報の伝搬時間tdsを算出する伝搬時間算出部86と、伝搬時間tdsに基づいて、マスター装置1aとスレーブ装置1bとの間の時差t0sを算出する時差算出部87と、時差t0sに基づいて、同期制御する同期制御部88と、を備え、マスター装置1aがスレーブ装置1bに情報を送信して当該情報をスレーブ装置1bが受信し、スレーブ装置1bがマスター装置1aに別の情報を送信して当該別の情報をマスター装置1aが受信し、マスター装置1aにおける情報の送信から別の情報の受信までの送受信間隔をΔt、スレーブ装置1bにおける情報の受信から別の情報の送信までの受送信間隔をΔt、マスター装置1aのクロックの周波数をf、スレーブ装置1bのクロックの周波数をfとし、横軸が周波数、縦軸が時間である2次元平面におけるベクトルA、ベクトルBを(f、Δt、(f、Δtとしたとき、伝搬時間算出部86は、2次元平面上で張られるベクトルAとベクトルBとで成す三角形の波数領域Sの面積aを、マスター装置1aのクロックの周波数fで除することにより伝搬時間tdsを算出するようにした。
[1-4. effect]
(1) The information communication system 100 of the present embodiment is an information communication system in which the slave device 1b synchronizes with the master device 1a by information communication, and the master device 1a and the slave device 1b transmit information. It has a device 11, a receiver 12 for receiving information, a clock 20 that oscillates at a predetermined frequency and gives operation timing of each part in the device, and a clock 30 that ticks from the clock 20 as a source. The slave device 1b includes a propagation time calculation unit 86 that calculates the propagation time t ds of the information transmitted between the master device 1a and the slave device 1b, and the master device 1a and the slave device 1b based on the propagation time t ds. A time difference calculation unit 87 that calculates the time difference t 0s between the two, and a synchronization control unit 88 that performs synchronous control based on the time difference t 0s are provided, and the master device 1a transmits information to the slave device 1b to transmit the information. The slave device 1b receives, the slave device 1b transmits another information to the master device 1a, the master device 1a receives the other information, and the transmission / reception from the transmission of the information in the master device 1a to the reception of another information. the interval Delta] t m, receiving and transmitting interval Delta] t s from the reception of information in the slave device 1b to the transmission of other information, the master device 1a frequency f m of the clock, the frequency of the clock of the slave device 1b and f s, the horizontal axis is frequency, the vector and the vertical axis in the two-dimensional plane is a time a, the vector B (f s, Δt s) T, (f m, Δt m) when T, the propagation time calculating section 86, 2 the area a wavenumber region S of the triangle formed by the vectors a and B mapped by the dimension plane, and to calculate the propagation time t ds by dividing the clock frequency f m of the master device 1a.

これにより、マスター装置1aとスレーブ装置1bのクロック周波数が異なっていても高精度に同期することができる。すなわち、クロック周波数が異なっているので、何れかのクロック周波数を基準にして時間を計る必要がある。例えば、比較例として例示すると、スレーブ装置1bのクロック周波数fを基準としたい場合、マスター装置1aにおける時刻又は時間をスレーブ装置1bにおける時刻又は時間に換算する必要がある。マスター装置1aの時間Δtに対応するスレーブ装置1bでの時間をΔtmsとすると、換算式は、Δtms=r×Δtとなる。ここで、rは、周波数比、つまり、マスター装置1aのクロック周波数fに対するスレーブ装置1bのクロック周波数fであり(r=f/f)、周波数比rを求める必要がある。 As a result, even if the clock frequencies of the master device 1a and the slave device 1b are different, synchronization can be performed with high accuracy. That is, since the clock frequencies are different, it is necessary to measure the time with reference to one of the clock frequencies. For example, it illustrated as a comparative example, if you want a reference clock frequency f s of the slave device 1b, it is necessary to convert the time or time in the master device 1a in time or time in the slave device 1b. When the time slave device 1b corresponding to the time Delta] t m of the master device 1a to Delta] t ms, conversion formula becomes Δt ms = r × Δt m. Here, r is the frequency ratio, i.e., a clock frequency f s of the slave device 1b with respect to the clock frequency f m of the master device 1a (r = f s / f m), it is necessary to obtain the frequency ratio r.

これに対し、本実施形態では、上記の通り、等面積変換により、面積aを影響を除去したい方のクロック周波数で割ることで、所望のクロック周波数を基準とした伝搬時間を求めることができるという知見が得られている。つまり、等面積変換により、時間自体の換算式(周波数比)を求めなくても、直接的に所望のクロック周波数を基準とした伝搬時間を得ることができる。そのため、演算回数を抑えることができる。その結果、演算の際に発生する丸め誤差の発生も抑えることができ、高精度の同期に繋げることができる。例えば、上記の比較例の場合、(1)周波数比rを求める、(2)時間換算によりΔtmsを求める、(3)伝搬時間tds(=(Δtms−Δt)/2)を求める、の3ステップ必要であるが、本実施形態によれば、(I)面積aを求める、(II)伝搬時間tds(=a/f)を求める、の2ステップで済む。 On the other hand, in the present embodiment, as described above, the propagation time based on the desired clock frequency can be obtained by dividing the area a by the clock frequency for which the influence is to be removed by equal area conversion. Knowledge has been obtained. That is, by equal area conversion, it is possible to directly obtain the propagation time based on the desired clock frequency without obtaining the conversion formula (frequency ratio) of the time itself. Therefore, the number of operations can be suppressed. As a result, the occurrence of rounding error that occurs during calculation can be suppressed, and high-precision synchronization can be achieved. For example, in the case of the above comparative example, (1) the frequency ratio r is obtained, (2) Δ t ms is obtained by time conversion, and (3) the propagation time t ds (= (Δ t ms − Δ t s ) / 2) is obtained. , However, according to the present embodiment, only two steps of (I) finding the area a and (II) finding the propagation time t ds (= a / f m ) are sufficient.

(2)スレーブ装置1bは、波数領域Sの面積aを、ベクトルAとベクトルBの外積の大きさを2で除することにより算出する面積算出部85を有するようにした。これにより、面積aを簡便に求めることができる。 (2) The slave device 1b has an area calculation unit 85 that calculates the area a of the wave number region S by dividing the size of the outer product of the vector A and the vector B by 2. As a result, the area a can be easily obtained.

(3)マスター装置1aは、自身のクロック20が発振するパルス数をカウントするカウンタ40を有し、送信器11が、スレーブ装置1bに情報を少なくとも2回送信し、カウンタ40が、スレーブ装置1bへの情報の送信間隔におけるパルス数をカウントし、送信器11が、カウンタ40によりカウントしたパルス数をスレーブ装置1bに送信し、スレーブ装置1bは、自身のクロック20が発振するパルス数をカウントするカウンタ40と、周波数f、fを取得する周波数取得部82と、を有し、受信器12が、マスター装置1aからの情報を少なくとも2回受信し、カウンタ40が、マスター装置1aからの情報の受信間隔におけるパルス数をカウントし、受信器12が、マスター装置1aからマスター装置1aのパルス数を受信し、周波数取得部82は、マスター装置1aのパルス数とスレーブ装置1bのパルス数とから周波数f、fを得るようにした。これにより、各装置1a、1bのクロック周波数f、fを求めることができる。 (3) The master device 1a has a counter 40 that counts the number of pulses oscillated by its own clock 20, the transmitter 11 transmits information to the slave device 1b at least twice, and the counter 40 causes the slave device 1b. The number of pulses in the transmission interval of information to is counted, the transmitter 11 transmits the number of pulses counted by the counter 40 to the slave device 1b, and the slave device 1b counts the number of pulses oscillated by its own clock 20. It has a counter 40 and a frequency acquisition unit 82 for acquiring frequencies f m and f s , the receiver 12 receives the information from the master device 1a at least twice, and the counter 40 receives the information from the master device 1a. The receiver 12 counts the number of pulses in the information reception interval, the receiver 12 receives the number of pulses of the master device 1a from the master device 1a, and the frequency acquisition unit 82 sets the number of pulses of the master device 1a and the number of pulses of the slave device 1b. The frequencies f m and f s were obtained from. Thereby, the clock frequencies f m and f s of each device 1a and 1b can be obtained.

(4)マスター装置1aが、スレーブ装置1bに情報を送信し、当該情報をスレーブ装置1bが受信し、スレーブ装置1bが、別の情報をマスター装置1aに送信し、当該別の情報をマスター装置1aが受信し、マスター装置1aは、情報の送信時刻及び別の情報の受信時刻をスレーブ装置1bに送信し、スレーブ装置1bは、情報の送信時刻と別の情報の受信時刻とから、情報の送受信間隔Δtを演算する送受信間隔演算部83と、情報の受信時刻と別の情報の送信時刻とから、別の情報の受送信間隔Δtを演算する受送信間隔演算部84と、を有するようにした。 (4) The master device 1a transmits information to the slave device 1b, the slave device 1b receives the information, the slave device 1b transmits another information to the master device 1a, and the other information is transmitted to the master device. 1a receives, the master device 1a transmits the transmission time of information and the reception time of another information to the slave device 1b, and the slave device 1b receives information from the transmission time of information and the reception time of another information. It has a transmission / reception interval calculation unit 83 that calculates a transmission / reception interval Δt m, and a transmission / reception interval calculation unit 84 that calculates a transmission / reception interval Δt S of another information from a reception time of information and a transmission time of another information. I did.

これにより、スレーブ装置1bに波数領域Sの面積を求める情報の演算が集約されるので、マスター装置1aの負担を軽減することができる。特に、マスター装置1aが多くのスレーブ装置1bと同期される程、負担を軽減することができる。 As a result, the calculation of the information for obtaining the area of the wave number region S is integrated in the slave device 1b, so that the burden on the master device 1a can be reduced. In particular, the burden can be reduced so that the master device 1a is synchronized with many slave devices 1b.

[2.他の実施形態]
本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。
[2. Other embodiments]
The present invention is not limited to the above-described embodiment as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof. In addition, various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, some components may be removed from all the components shown in the embodiments.

例えば、上記実施形態では、各装置1a、1bは、時刻記録部74が送信タイミングに対応する時刻(送信時刻)を、当該送信する情報に載せて当該情報を送信したが、別の情報に載せて送信するようにしても良い。送信時刻が同期相手の装置1a、1bに伝達できれば良いからである。 For example, in the above-described embodiment, in each of the devices 1a and 1b, the time recording unit 74 puts the time (transmission time) corresponding to the transmission timing on the information to be transmitted and transmits the information, but puts the information on another information. You may send it. This is because it is sufficient if the transmission time can be transmitted to the devices 1a and 1b of the synchronization partner.

100 情報通信システム
1 情報通信装置
1a マスター装置
1b スレーブ装置
10 通信部
11 送信器
12 受信器
13 送信タイミング検出部
14 受信タイミング検出部
20 クロック
30 時計
40 カウンタ
50 記憶部
60 外部インターフェイス
70 制御部
71 主制御部
72 送受信データI/F
73 通信制御部
74 時刻記録部
75 スケジューラ
76 カウンタ制御部
77 カウント数送信制御部
80 同期要求部
81 カウンタ制御部
82 周波数取得部
83 送受信間隔演算部
84 受送信間隔演算部
85 面積算出部
86 伝搬時間算出部
87 時差算出部
88 同期制御部
100 Information communication system 1 Information communication device 1a Master device 1b Slave device 10 Communication unit 11 Transmitter 12 Receiver 13 Transmission timing detection unit 14 Reception timing detection unit 20 Clock 30 Clock 40 Counter 50 Storage unit 60 External interface 70 Control unit 71 Main Control unit 72 Transmission / reception data I / F
73 Communication control unit 74 Time recording unit 75 Scheduler 76 Counter control unit 77 Count transmission control unit 80 Synchronization request unit 81 Counter control unit 82 Frequency acquisition unit 83 Transmission / reception interval calculation unit 84 Transmission / reception interval calculation unit 85 Area calculation unit 86 Propagation time Calculation unit 87 Time difference calculation unit 88 Synchronous control unit

Claims (8)

情報通信によりマスター装置に対して前記スレーブ装置が同期を図る情報通信システムであって、
前記マスター装置及び前記スレーブ装置は、
情報を送信する送信器と、
情報を受信する受信器と、
所定の周波数により発振し、装置内の各部の動作タイミングを与えるクロックと、
前記クロックを源振として刻時する時計と、
を有し、
前記スレーブ装置は、
前記マスター装置と前記スレーブ装置との間で伝送する情報の伝搬時間を算出する伝搬時間算出部と、
前記伝搬時間に基づいて、前記マスター装置と前記スレーブ装置との間の時差を算出する時差算出部と、
前記時差に基づいて、同期制御する同期制御部と、
を備え、
前記マスター装置が前記スレーブ装置に情報を送信して当該情報を前記スレーブ装置が受信し、
前記スレーブ装置が前記マスター装置に別の情報を送信して当該別の情報を前記マスター装置が受信し、
前記マスター装置における前記情報の送信から前記別の情報の受信までの送受信間隔をΔt、前記スレーブ装置における前記情報の受信から前記別の情報の送信までの受送信間隔をΔt、前記マスター装置の前記クロックの周波数をf、前記スレーブ装置のクロックの周波数をfとし、横軸が周波数、縦軸が時間である2次元平面におけるベクトルA、ベクトルBを(f、Δt、(f、Δtとしたとき、
前記伝搬時間算出部は、
前記2次元平面上で張られる前記ベクトルAと前記ベクトルBとで成す三角形の波数領域の面積を、前記マスター装置の前記クロックの周波数で除することにより前記伝搬時間を算出すること、
を特徴とする情報通信システム。
An information communication system in which the slave device synchronizes with the master device by information communication.
The master device and the slave device
Transmitters that send information and
The receiver that receives the information and
A clock that oscillates at a predetermined frequency and gives the operation timing of each part in the device,
A clock that ticks from the clock as a source
Have,
The slave device is
A propagation time calculation unit that calculates the propagation time of information transmitted between the master device and the slave device,
A time difference calculation unit that calculates the time difference between the master device and the slave device based on the propagation time.
A synchronous control unit that performs synchronous control based on the time difference,
With
The master device transmits information to the slave device, and the slave device receives the information.
The slave device transmits another information to the master device, and the master device receives the other information.
The transmission and reception interval Delta] t m to the reception of the specific information from the transmission of the information in the master device, the Delta] t s the reception and transmission interval from the reception of the information in the slave device to the transmission of the specific information, the master device frequency f m of the clock of the slave clock frequency and f s of the apparatus, the horizontal axis indicates the frequency, the vector and the vertical axis in the two-dimensional plane is a time a, the vector B (f s, Δt s) T , when the (f m, Δt m) T ,
The propagation time calculation unit
The propagation time is calculated by dividing the area of the wave number region of the triangle formed by the vector A and the vector B stretched on the two-dimensional plane by the frequency of the clock of the master device.
An information communication system characterized by.
前記スレーブ装置は、
前記波数領域の面積を、前記ベクトルAと前記ベクトルBの外積の大きさを2で除することにより算出する面積算出部を有すること、
を特徴とする請求項1記載の情報通信システム。
The slave device is
Having an area calculation unit that calculates the area of the wave number region by dividing the size of the outer product of the vector A and the vector B by 2.
The information communication system according to claim 1.
前記マスター装置は、
自身の前記クロックが発振するパルス数をカウントするカウンタを有し、
前記送信器が、前記スレーブ装置に情報を少なくとも2回送信し、
前記カウンタが、前記スレーブ装置への前記情報の送信間隔における前記パルス数をカウントし、
前記送信器が、前記カウンタによりカウントした前記パルス数を前記スレーブ装置に送信し、
前記スレーブ装置は、
自身の前記クロックが発振するパルス数をカウントするカウンタと、
前記周波数f、fを取得する周波数取得部と、
を有し、
前記受信器が、前記マスター装置からの前記情報を少なくとも2回受信し、
前記カウンタが、前記マスター装置からの前記情報の受信間隔における前記パルス数をカウントし、
前記受信器が、前記マスター装置から前記マスター装置の前記パルス数を受信し、
前記周波数取得部は、前記マスター装置の前記パルス数と前記スレーブ装置の前記パルス数とから前記周波数f、fを得ること、
を特徴とする請求項1又は2記載の情報通信システム。
The master device is
It has a counter that counts the number of pulses that its own clock oscillates.
The transmitter transmits information to the slave device at least twice.
The counter counts the number of pulses in the transmission interval of the information to the slave device.
The transmitter transmits the number of pulses counted by the counter to the slave device.
The slave device is
A counter that counts the number of pulses that the clock oscillates
A frequency acquisition unit that acquires the frequencies f m and f s,
Have,
The receiver receives the information from the master device at least twice.
The counter counts the number of pulses in the reception interval of the information from the master device.
The receiver receives the number of pulses of the master device from the master device,
The frequency acquisition unit, the frequency f m from said number of pulses of the pulse number and the slave device of the master device, to obtain the f s,
The information communication system according to claim 1 or 2.
前記マスター装置が、前記スレーブ装置に情報を送信し、当該情報を前記スレーブ装置が受信し、前記スレーブ装置が、別の情報を前記マスター装置に送信し、当該別の情報を前記マスター装置が受信し、
前記マスター装置は、前記情報の送信時刻及び前記別の情報の受信時刻を前記スレーブ装置に送信し、
前記スレーブ装置は、
前記情報の送信時刻と前記別の情報の受信時刻とから、前記情報の送受信間隔を演算する送受信間隔演算部と、
前記情報の受信時刻と前記別の情報の送信時刻とから、前記別の情報の受送信間隔を演算する受送信間隔演算部と、
を有すること、
を特徴とする請求項1〜3の何れかに記載の情報通信システム。
The master device transmits information to the slave device, the slave device receives the information, the slave device transmits another information to the master device, and the master device receives the other information. death,
The master device transmits the transmission time of the information and the reception time of the other information to the slave device.
The slave device is
A transmission / reception interval calculation unit that calculates the transmission / reception interval of the information from the transmission time of the information and the reception time of the other information.
A transmission / reception interval calculation unit that calculates the transmission / reception interval of the other information from the reception time of the information and the transmission time of the other information.
To have
The information communication system according to any one of claims 1 to 3.
他の情報通信装置と情報通信により同期を図る情報通信装置であって、
情報を送信する送信器と、
情報を受信する受信器と、
所定の周波数により発振し、装置内の各部の動作タイミングを与えるクロックと、
前記クロックを源振として刻時する時計と、
を有し、
前記他の情報通信装置との間で伝送する情報の伝搬時間を算出する伝搬時間算出部と、
前記伝搬時間に基づいて、前記他の情報通信装置との間の時差を算出する時差算出部と、
前記時差に基づいて、前記他の情報通信装置との同期を制御する同期制御部と、
を備え、
前記他の情報通信装置から送信された情報を受信し、
前記他の情報通信装置に別の情報を送信し、
前記他の情報通信装置における前記情報の送信から前記別の情報の受信までの送受信間隔をΔt、前記情報通信装置における前記情報の受信から前記別の情報の送信までの受送信間隔をΔt、前記他の情報通信装置のクロックの周波数をf、前記情報通信装置のクロックの周波数をfとし、横軸が周波数、縦軸が時間である2次元平面におけるベクトルA、ベクトルBを(f、Δt、(f、Δtとしたとき、
前記伝搬時間算出部は、
前記2次元平面上で張られる前記ベクトルAと前記ベクトルBとで成す三角形の波数領域の面積を、前記他の情報通信装置のクロックの周波数で除することにより前記伝搬時間を算出すること、
を特徴とする情報通信装置。
An information communication device that synchronizes with other information communication devices by information communication.
Transmitters that send information and
The receiver that receives the information and
A clock that oscillates at a predetermined frequency and gives the operation timing of each part in the device,
A clock that ticks from the clock as a source
Have,
A propagation time calculation unit that calculates the propagation time of information to be transmitted to and from the other information communication device, and a propagation time calculation unit.
A time difference calculation unit that calculates the time difference between the other information and communication devices based on the propagation time, and a time difference calculation unit.
A synchronization control unit that controls synchronization with the other information communication device based on the time difference,
With
Receiving the information transmitted from the other information communication device,
Send another information to the other information communication device,
The reception interval Delta] t m to the reception of the specific information from the transmission of the information in the another information communication apparatus, the reception and transmission interval from the reception of the information in the information communication apparatus to the transmission of the further information Delta] t s the other frequency f m of the clock of the information communication apparatus, wherein the frequency of the clock information communication apparatus as f s, the horizontal axis indicates the frequency, the vector and the vertical axis in the two-dimensional plane is a time a, the vector B ( f s, Δt s) T, when the (f m, Δt m) T ,
The propagation time calculation unit
To calculate the propagation time by dividing the area of the wave number region of the triangle formed by the vector A and the vector B stretched on the two-dimensional plane by the frequency of the clock of the other information communication device.
An information communication device characterized by.
前記波数領域の面積を、前記ベクトルAと前記ベクトルBの外積の大きさを2で除することにより算出する面積算出部を有すること、
を特徴とする請求項5記載の情報通信装置。
Having an area calculation unit that calculates the area of the wave number region by dividing the size of the outer product of the vector A and the vector B by 2.
5. The information communication device according to claim 5.
前記クロックが発振するパルス数をカウントするカウンタと、
前記周波数f、fを取得する周波数取得部と、
を有し、
前記受信器が、前記他の情報通信装置からの情報を2回受信し、
前記カウンタが、前記他の情報通信装置からの情報の受信間隔における前記パルス数をカウントし、
前記受信器が、前記他の情報通信装置から前記受信間隔に対応する情報の送信間隔での前記パルス数を受信し、
前記周波数取得部は、前記他の情報通信装置の前記パルス数と前記情報通信装置の前記パルス数とから前記周波数f、fを得ること、
を特徴とする請求項5又は6記載の情報通信装置。
A counter that counts the number of pulses that the clock oscillates,
A frequency acquisition unit that acquires the frequencies f m and f s,
Have,
The receiver receives the information from the other information communication device twice,
The counter counts the number of pulses in the reception interval of information from the other information communication device.
The receiver receives the number of pulses from the other information communication device at the transmission interval of information corresponding to the reception interval.
The frequency acquisition unit, the frequency f m from said number of pulses of the pulse number and the information communication device of the other information communication apparatus, to obtain the f s,
The information communication device according to claim 5 or 6.
前記他の情報通信装置が送信した情報を受信し、
別の情報を前記他の情報通信装置に送信し、
前記情報の送信時刻及び前記別の情報の受信時刻を受信し、
前記情報の送信時刻と前記別の情報の受信時刻とから、前記情報の送受信間隔を演算する送受信間隔演算部と、
前記情報の受信時刻と前記別の情報の送信時刻とから、前記別の情報の受送信間隔を演算する受送信間隔演算部と、
を有すること、
を特徴とする請求項5〜7の何れかに記載の情報通信装置。
Upon receiving the information transmitted by the other information communication device,
Another information is transmitted to the other information communication device,
Upon receiving the transmission time of the information and the reception time of the other information,
A transmission / reception interval calculation unit that calculates the transmission / reception interval of the information from the transmission time of the information and the reception time of the other information.
A transmission / reception interval calculation unit that calculates the transmission / reception interval of the other information from the reception time of the information and the transmission time of the other information.
To have
The information communication device according to any one of claims 5 to 7.
JP2019118178A 2019-06-26 2019-06-26 Information communication system and information communication device Active JP6916840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019118178A JP6916840B2 (en) 2019-06-26 2019-06-26 Information communication system and information communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019118178A JP6916840B2 (en) 2019-06-26 2019-06-26 Information communication system and information communication device

Publications (2)

Publication Number Publication Date
JP2021005773A JP2021005773A (en) 2021-01-14
JP6916840B2 true JP6916840B2 (en) 2021-08-11

Family

ID=74097267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019118178A Active JP6916840B2 (en) 2019-06-26 2019-06-26 Information communication system and information communication device

Country Status (1)

Country Link
JP (1) JP6916840B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102961A (en) * 1999-09-29 2001-04-13 Denso Corp Spread spectrum receiver
CA2514886A1 (en) * 2003-03-31 2004-10-14 Matsushita Electric Industrial Co., Ltd. Frequency synchronization apparatus and frequency synchronization method
EP1988676B1 (en) * 2007-05-03 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) Determining a frequency error in a receiver of an wireless ofdm communications system
US20150092796A1 (en) * 2013-10-02 2015-04-02 Khalifa University of Science, Technology, and Research Method and devices for time and frequency synchronization

Also Published As

Publication number Publication date
JP2021005773A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
JP5080202B2 (en) Time synchronization processing system, time information distribution device, time synchronization processing device, time information distribution program, and time synchronization processing program
US10863469B2 (en) System and method for accurate timestamping of virtual reality controller data
JP5911584B2 (en) Correction parameter calculation apparatus and system, correction parameter calculation method, and computer program
CN102013970B (en) Clock synchronization method and device thereof as well as base station clock device
JP6192995B2 (en) COMMUNICATION DEVICE, COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND COMPUTER PROGRAM
WO2018006686A1 (en) Method, apparatus and device for optimizing time synchronization between communication network devices
US9301267B2 (en) Radio over Ethernet
JP2016507193A (en) Frequency offset correction for WiFi ranging
US11965971B2 (en) Systems for timestamping events on edge devices
KR20120036374A (en) High-precision synchronisation method and system
US11252687B2 (en) Remote signal synchronization
JP2014202734A (en) Slave unit, master slave system, and time synchronization method
EP2465311A1 (en) Time synchronization in wireless networks
CN113645686A (en) Wireless self-organizing network time synchronization method with motion compensation
JP6916840B2 (en) Information communication system and information communication device
JP2012195840A (en) Communication apparatus and communication control method
US20090213008A1 (en) Multiple RF receiver and locating method using the same
JP2018006913A (en) Information communication system and information communication equipment
CN101867431A (en) Network clock synchronization method
JP6845522B2 (en) Information communication system, information communication device
JP2017175309A (en) Communication system
JP7161505B2 (en) Information communication system and information communication device
EP4160948A1 (en) Determining a skew between a master clock and a local clock
JP2020053737A (en) Information communication system
US11968638B2 (en) Providing a clock value to a client device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210716

R150 Certificate of patent or registration of utility model

Ref document number: 6916840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150