JP6911426B2 - Grinding simulation equipment and method - Google Patents

Grinding simulation equipment and method Download PDF

Info

Publication number
JP6911426B2
JP6911426B2 JP2017054848A JP2017054848A JP6911426B2 JP 6911426 B2 JP6911426 B2 JP 6911426B2 JP 2017054848 A JP2017054848 A JP 2017054848A JP 2017054848 A JP2017054848 A JP 2017054848A JP 6911426 B2 JP6911426 B2 JP 6911426B2
Authority
JP
Japan
Prior art keywords
grinding
workpiece
depth
calculated
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017054848A
Other languages
Japanese (ja)
Other versions
JP2018153907A (en
Inventor
明 齋藤
明 齋藤
徹 小野▲崎▼
徹 小野▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2017054848A priority Critical patent/JP6911426B2/en
Publication of JP2018153907A publication Critical patent/JP2018153907A/en
Application granted granted Critical
Publication of JP6911426B2 publication Critical patent/JP6911426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、研削加工シミュレーション装置及び方法に関するものである。 The present invention relates to a grinding process simulation apparatus and method.

研削加工は、例えば、高速に回転する砥石車と、回転する工作物とを接触させて行われる。このような研削加工おいては、砥石車と工作物の摩擦等により熱エネルギが発生する。そして、この熱エネルギによって工作物の温度は上昇する。この結果、工作物に研削焼けが生じ、研削加工後の工作物(製品)に研削焼けが残ってしまう虞がある。 The grinding process is performed, for example, by bringing a grindstone wheel that rotates at high speed into contact with a rotating workpiece. In such grinding, heat energy is generated due to friction between the grindstone and the workpiece. Then, the temperature of the workpiece rises due to this thermal energy. As a result, grinding burn may occur on the workpiece, and grinding burn may remain on the workpiece (product) after the grinding process.

そこで、特許文献1では、全研削熱エネルギ、分配割合、及び、工作物の深さに基づいて、工作物の各深さにおける温度を算出し、算出した工作物の各深さの温度に基づいて、研削焼け深さを算出する。これにより、研削焼けを残さない研削加工条件を決定できる。 Therefore, in Patent Document 1, the temperature at each depth of the workpiece is calculated based on the total grinding heat energy, the distribution ratio, and the depth of the workpiece, and based on the calculated temperature at each depth of the workpiece. To calculate the grinding burn depth. As a result, it is possible to determine the grinding processing conditions that do not leave grinding burn.

特許第5262049号公報Japanese Patent No. 5262049

特許文献1では、現研削加工による研削焼け深さを算出しており、現研削加工より前に行われる前研削加工による研削焼け深さを考慮したものとなっていない。よって、研削加工における工作物の研削焼け深さをより正確に算出できる研削加工シミュレーションが望まれている。 In Patent Document 1, the grinding burn depth by the current grinding process is calculated, and the grinding burn depth by the pre-grinding process performed before the current grinding process is not taken into consideration. Therefore, there is a demand for a grinding process simulation that can more accurately calculate the grinding burn depth of a workpiece in the grinding process.

本発明は、このような事情に鑑みてなされたものであり、研削加工における工作物の研削焼け深さを、より正確に算出できる研削加工シミュレーション装置及び方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a grinding processing simulation apparatus and method capable of more accurately calculating the grinding burn depth of a workpiece in grinding processing.

本手段に係る研削加工シミュレーション装置は、回転駆動される砥石車と回転駆動される工作物とを相対移動させて、前記工作物の周面に前記砥石車の周面を接触させ、前記工作物の周面を研削する研削加工において、前記工作物の研削状態をシミュレーションする研削加工シミュレーション装置であって、前記砥石車と前記工作物との相対移動方向における前記砥石車と前記工作物との相対位置、前記砥石車の形状、及び、前記工作物の形状に基づいて、前記砥石車による前記工作物の除去量を算出する除去量算出部と、算出した前記除去量に基づいて、前記研削加工における研削抵抗を算出する研削抵抗算出部と、算出した前記研削抵抗、及び、研削点における前記工作物に対する前記砥石車の相対速度に基づいて、研削熱エネルギを算出する熱エネルギ算出部と、を備える。 The grinding processing simulation device according to this means relatively moves the rotationally driven grind wheel and the rotationally driven workpiece to bring the peripheral surface of the grind wheel into contact with the peripheral surface of the workpiece, and the workpiece. It is a grinding process simulation device that simulates the grinding state of the workpiece in the grinding process for grinding the peripheral surface of the workpiece, and is a relative of the grind wheel and the workpiece in a relative movement direction between the grind wheel and the workpiece. The removal amount calculation unit that calculates the removal amount of the work piece by the grindstone based on the position, the shape of the grind wheel, and the shape of the work piece, and the grinding process based on the calculated removal amount. The grinding resistance calculation unit that calculates the grinding resistance in the above, the calculated grinding resistance, and the thermal energy calculation unit that calculates the grinding heat energy based on the relative speed of the grinding wheel with respect to the workpiece at the grinding point. Be prepared.

さらに、算出した前記研削熱エネルギ、前記工作物と前記砥石車との接触弧長、及び、前記工作物の加工深さに基づいて、前記工作物の加工深さにおける温度を算出し、算出した前記工作物の加工深さの温度に基づいて、前記工作物の研削焼け深さを算出する研削焼け深さ算出部と、ある加工点を現在研削している場合、前記工作物の1回転前における同一の前記加工点の研削(以下、前研削という)において算出した前記研削焼け深さ、及び、前記加工点の現在の研削(以下、現研削という)において算出した前記除去量に基づいて、前記現研削における研削焼け残り深さを算出し、算出した前記現研削における研削焼け残り深さ、及び、前記現研削において算出した前記研削焼け深さに基づいて、前記現研削における新研削焼け深さを算出する新研削焼け深さ算出部と、を備える。 Further, based on the calculated grinding heat energy, the contact arc length between the workpiece and the grindstone, and the machining depth of the workpiece, the temperature at the machining depth of the workpiece was calculated and calculated. A grinding burn depth calculation unit that calculates the grinding burn depth of the workpiece based on the temperature of the machining depth of the workpiece, and one rotation before the workpiece when a certain machining point is currently being ground. Based on the grinding burn depth calculated in the grinding of the same machining point (hereinafter referred to as pre-grinding ) and the removal amount calculated in the current grinding of the machining point (hereinafter referred to as current grinding). The new grinding burn depth in the current grinding is calculated based on the calculated grinding burn depth in the current grinding and the calculated grinding burn depth in the current grinding and the grinding burn depth calculated in the current grinding. It is equipped with a new grinding burn depth calculation unit that calculates the value.

この研削加工シミュレーション装置では、前研削において算出した研削焼け深さ、及び、現研削において算出した除去量に基づいて、現研削における研削焼け残り深さを算出する。そして、算出した現研削における研削焼け残り深さ、及び、現研削において算出した研削焼け深さに基づいて、現研削における新研削焼け深さを算出する。これにより、前研削における研削焼けが現研削で除去しきれずに残っている場合であっても、現研削における研削焼け残り深さを考慮して現研削における新たな研削焼け深さを算出するので、研削加工における工作物の研削焼け深さを、より正確に算出できる。 In this grinding processing simulation apparatus, the grinding burn depth in the current grinding is calculated based on the grinding burn depth calculated in the pre-grinding and the removal amount calculated in the current grinding. Then, the new grinding burn depth in the current grinding is calculated based on the calculated remaining grinding burn depth in the current grinding and the grinding burn depth calculated in the current grinding. As a result, even if the grinding burn in the pre-grinding cannot be completely removed by the current grinding and remains, the new grinding burn depth in the current grinding is calculated in consideration of the grinding burn-out depth in the current grinding. , The grinding burn depth of the workpiece in the grinding process can be calculated more accurately.

本手段に係る研削加工シミュレーション方法は、回転駆動される砥石車と回転駆動される工作物とを相対移動させて、前記工作物の周面に前記砥石車の周面を接触させ、前記工作物の周面を研削する研削加工において、前記工作物の研削状態をシミュレーションする研削加工シミュレーション方法であって、前記砥石車と前記工作物との相対移動方向における前記砥石車と前記工作物との相対位置、前記砥石車の形状、及び、前記工作物の形状に基づいて、前記砥石車による前記工作物の除去量を算出する除去量算出工程と、算出した前記除去量に基づいて、前記研削加工における研削抵抗を算出する研削抵抗算出工程と、を備える。 In the grinding processing simulation method according to this means, the rotationally driven grindstone and the rotationally driven workpiece are relatively moved to bring the peripheral surface of the grindstone into contact with the peripheral surface of the workpiece, and the workpiece is said to be in contact with the peripheral surface of the grindstone. This is a grinding process simulation method that simulates the grinding state of the workpiece in the grinding process that grinds the peripheral surface of the work piece, and is a method of simulating the grinding state of the work piece. The removal amount calculation step of calculating the removal amount of the work piece by the grindstone based on the position, the shape of the grindstone, and the shape of the work piece, and the grinding process based on the calculated removal amount. It is provided with a grinding resistance calculation step for calculating the grinding resistance in the above.

さらに、算出した前記研削抵抗、及び、研削点における前記工作物に対する前記砥石車の相対速度に基づいて、研削熱エネルギを算出する熱エネルギ算出工程と、算出した前記研削熱エネルギ、前記工作物と前記砥石車との接触弧長、及び、前記工作物の加工深さに基づいて、前記工作物の加工深さにおける温度を算出する温度算出工程と、算出した前記工作物の加工深さの温度に基づいて、ある加工点を現在研削している場合、前記工作物の1回転前における同一の前記加工点の研削(以下、前研削という)における前記工作物の研削焼け深さを算出し、算出した前研削における前記研削焼け深さ、及び、前記加工点の現在の研削(以下、現研削という)において算出した前記除去量に基づいて、前記現研削における研削焼け残り深さを算出し、算出した前記現研削における研削焼け残り深さ、及び、前記現研削において算出した前記研削焼け深さに基づいて、前記現研削における新研削焼け深さを算出する新研削焼け深さ算出工程と、を備える。これにより、上述の研削加工シミュレーション装置の効果と同様の効果が得られる。 Further, a thermal energy calculation step of calculating the grinding heat energy based on the calculated grinding resistance and the relative speed of the grindstone with respect to the workpiece at the grinding point, and the calculated grinding thermal energy and the workpiece. A temperature calculation step of calculating the temperature at the machining depth of the workpiece based on the contact arc length with the grindstone and the machining depth of the workpiece, and the calculated machining depth of the workpiece. When a certain machining point is currently ground based on the above, the grinding burn depth of the workpiece in the grinding of the same machining point (hereinafter referred to as pre-grinding ) one rotation before the workpiece is calculated. Based on the calculated grinding burn depth in the pre-grinding and the removal amount calculated in the current grinding (hereinafter referred to as the current grinding) at the machining point, the grinding burn depth in the current grinding is calculated. A new grinding burn depth calculation step for calculating the new grinding burn depth in the current grinding based on the calculated remaining grinding burn depth in the current grinding and the grinding burn depth calculated in the current grinding. To be equipped. As a result, the same effect as the effect of the above-mentioned grinding process simulation device can be obtained.

本実施形態の研削加工シミュレーション装置及び研削装置を示す図である。It is a figure which shows the grinding processing simulation apparatus and grinding apparatus of this embodiment. 研削加工シミュレーション装置のブロック構成図である。It is a block block diagram of a grinding processing simulation apparatus. 研削焼け深さ算出のシミュレーション方法を示すフローチャートである。It is a flowchart which shows the simulation method of the grinding burn depth calculation. びびり判定のシミュレーション方法を示すフローチャートである。It is a flowchart which shows the simulation method of chatter determination. 砥石車と工作物を示す模式図である。It is a schematic diagram which shows a grindstone and a work piece. 線分で表された工作物と砥石車の外縁線を示す図である。It is a figure which shows the outer edge line of a work piece and a grindstone represented by a line segment. 研削加工における研削点の微視的模式図である。It is a microscopic schematic diagram of a grinding point in a grinding process. シミュレーションした工作物の最高温度と工作物の表面からの深さとの関係を示す図である。It is a figure which shows the relationship between the maximum temperature of the simulated geographic feature and the depth from the surface of the geographic feature. 現研削の研削焼け残りが研削焼けよりも大きく、研削焼け残りの再硬化層が研削焼けの再硬化層よりも大きいときの新研削焼けを示す図である。It is a figure which shows the new grinding burn when the grinding burn residue of the present grinding is larger than the grinding burn, and the re-hardening layer of the grinding burn remains is larger than the re-hardening layer of the grinding burn. 現研削の研削焼け残りが研削焼けよりも大きく、研削焼け残りの再硬化層が研削焼けの再硬化層よりも小さいときの新研削焼けを示す図である。It is a figure which shows the new grinding burn when the grinding burn residue of the present grinding is larger than the grinding burn, and the re-hardening layer of the grinding burn remains is smaller than the re-hardening layer of the grinding burn. 現研削の研削焼け残りが研削焼けよりも小さく、研削焼け残りの再硬化層が研削焼けの再硬化層よりも小さいときの新研削焼けを示す図である。It is a figure which shows the new grinding burn when the grinding burn residue of the present grinding is smaller than the grinding burn, and the re-hardening layer of the grinding burn remains is smaller than the re-hardening layer of the grinding burn. 現研削の研削焼け残りが研削焼けよりも小さく、研削焼け残りの再硬化層が研削焼けの再硬化層よりも小さいときの新研削焼けを示す図である。It is a figure which shows the new grinding burn when the grinding burn residue of the present grinding is smaller than the grinding burn, and the re-hardening layer of the grinding burn remains is smaller than the re-hardening layer of the grinding burn. 現研削の除去量が前研削の研削焼けより小さく、前研削の研削焼けの再硬化層がよりも大きいときの現研削の研削焼け残りを示す図である。It is a figure which shows the grinding residue of the present grinding when the removal amount of the present grinding is smaller than the grinding burn of a pre-grind, and the re-hardening layer of the grinding burn of a pre-grind is larger. 現研削の除去量が前研削の研削焼けより大きいときの図である。It is a figure when the removal amount of the current grinding is larger than the grinding burn of the pre-grinding. 現研削の新研削焼けを工作物に重畳させたときの表示例を示す図である。It is a figure which shows the display example at the time of superimposing the new grinding burn of the present grinding on the workpiece. びびりを工作物に重畳させたときの表示例を示す図である。It is a figure which shows the display example when chatter is superposed on the workpiece.

(1.研削加工シミュレーション装置及び研削装置の構成)
本実施形態の研削加工シミュレーション装置及び研削装置について、図面を参照して説明する。図1に示すように、研削加工シミュレーション装置1は、研削装置2とは別個の装置であり、図示点線で示すように、制御装置24と通信可能に接続されている。なお、研削加工シミュレーション装置1は、制御装置24に内蔵されていてもよい。また、研削加工シミュレーション装置1は、PLC(Programmable Logic Controller)やCNC(Computer Numerical Control)装置などの組み込みシステムとすることもでき、パーソナルコンピュータやサーバなどとすることもできる。
(1. Configuration of grinding processing simulation device and grinding device)
The grinding process simulation device and the grinding device of the present embodiment will be described with reference to the drawings. As shown in FIG. 1, the grinding process simulation device 1 is a device separate from the grinding device 2, and is communicably connected to the control device 24 as shown by the dotted line in the drawing. The grinding process simulation device 1 may be built in the control device 24. Further, the grinding processing simulation device 1 can be an embedded system such as a PLC (Programmable Logic Controller) or a CNC (Computer Numerical Control) device, or can be a personal computer or a server.

研削装置2は、砥石車21と、砥石台22と、主軸台23と、制御装置24とを備える。なお、図示しないが、研削装置2には、研削点P周辺をクーラントにより冷却する冷却装置が備えられる。研削装置2は、主軸台23により回転駆動される工作物Wの周面に、砥石台22により回転駆動される砥石車21の周面を接触させて、工作物Wの周面を研削する研削加工を行う。 The grinding device 2 includes a grindstone wheel 21, a grindstone base 22, a spindle base 23, and a control device 24. Although not shown, the grinding device 2 is provided with a cooling device that cools the periphery of the grinding point P with coolant. The grinding device 2 grinds the peripheral surface of the workpiece W by bringing the peripheral surface of the grindstone 21 rotationally driven by the grindstone 22 into contact with the peripheral surface of the workpiece W rotationally driven by the spindle 23. Perform processing.

砥石車21は、大量の砥粒により円盤状に形成され、砥石台22に砥石軸線Cg回りに回転可能に支持される。砥石台22は、制御装置24からの指令により、砥石車21を砥石軸線Cg回りに回転させる。また、砥石台22は、制御装置24からの指令により砥石車21をその砥石軸線Cg方向及び送り方向(X軸線方向)に移動させる。なお、砥石台22に対し主軸台23を送り方向(X軸線方向)に移動させるようにしてもよい。 The grindstone wheel 21 is formed in a disk shape by a large amount of abrasive grains, and is rotatably supported by the grindstone base 22 around the grindstone axis Cg. The grindstone stand 22 rotates the grindstone wheel 21 around the grindstone axis Cg in response to a command from the control device 24. Further, the grindstone base 22 moves the grindstone wheel 21 in the Cg direction and the feed direction (X-axis direction) of the grindstone wheel 21 according to a command from the control device 24. The spindle base 23 may be moved in the feed direction (X-axis direction) with respect to the grindstone base 22.

主軸台23は、円柱状の工作物Wを主軸線Cw回りに回転可能に支持し、制御装置24からの指令により工作物Wを主軸線Cw回りに回転させる。制御装置24は、砥石台22及び主軸台23に指令し、砥石車21と工作物Wとの相対位置や砥石車21及び工作物Wの各回転速度を制御する。なお、工作物Wがカム形状や偏心形状の場合には、制御装置24は、工作物Wの回転角制御も行う。 The headstock 23 rotatably supports the columnar workpiece W around the spindle Cw, and rotates the workpiece W around the spindle Cw according to a command from the control device 24. The control device 24 commands the grindstone base 22 and the headstock 23 to control the relative position between the grindstone 21 and the workpiece W and the rotation speeds of the grindstone 21 and the workpiece W. When the workpiece W has a cam shape or an eccentric shape, the control device 24 also controls the rotation angle of the workpiece W.

図2に示すように、研削加工シミュレーション装置1は、工作物形状記憶部101と、砥石形状記憶部102と、指令値記憶部103と、相対位置算出部104と、除去量算出部105と、工作物形状変更部106と、研削抵抗算出部107と、剛性記憶部108と、変位量算出部109と、相対位置補正部110と、加工条件記憶部111と、熱エネルギ算出部112と、分配割合算出部113と、研削焼け深さ算出部114と、新研削焼け深さ算出部115と、びびり判定部116と、表示制御部117と、表示装置118とを備える。 As shown in FIG. 2, the grinding process simulation device 1 includes a workpiece shape storage unit 101, a grindstone shape storage unit 102, a command value storage unit 103, a relative position calculation unit 104, and a removal amount calculation unit 105. The workpiece shape changing unit 106, the grinding resistance calculation unit 107, the rigidity storage unit 108, the displacement amount calculation unit 109, the relative position correction unit 110, the machining condition storage unit 111, and the thermal energy calculation unit 112 are distributed. It includes a ratio calculation unit 113, a grinding burn depth calculation unit 114, a new grinding burn depth calculation unit 115, a chatter determination unit 116, a display control unit 117, and a display device 118.

工作物形状記憶部101には、工作物Wの周面形状が記憶される。つまり、シミュレーション開始直前にあっては、研削加工されていない状態の工作物Wの周面形状が記憶される。例えば、工作物径から分かる円形状が記憶される。砥石形状記憶部102には、砥石車21の周面形状が記憶される。例えば、研削加工開始直前の砥石径から分かる円形状が記憶される。 The peripheral surface shape of the workpiece W is stored in the workpiece shape storage unit 101. That is, immediately before the start of the simulation, the peripheral surface shape of the workpiece W in the unground state is stored. For example, a circular shape that can be seen from the diameter of the workpiece is stored. The grindstone shape storage unit 102 stores the peripheral surface shape of the grindstone wheel 21. For example, a circular shape that can be seen from the diameter of the grindstone immediately before the start of grinding is stored.

指令値記憶部103には、研削加工における研削装置2に対する指令値が記憶される。指令値とは、図1に示すように、ある時間における工作物Wの主軸線Cw(回転中心(軸心))と砥石車21の砥石軸線Cg(回転中心(軸心))とのX軸線方向の離間距離を指令する値であるX軸値と、ある時間における工作物Wの回転角を指令する値であるC軸値(C=ωt)である。なお、ωは、工作物Wの角速度である。指令値は、加工条件記憶部111に記憶される工作物回転数、砥石車回転数、及び、砥石車21の送り量(送り速度)等の研削加工条件に基づいて算出される。 The command value storage unit 103 stores the command value for the grinding device 2 in the grinding process. As shown in FIG. 1, the command value is the X-axis line between the main axis Cw (rotation center (axis center)) of the workpiece W and the grindstone axis Cg (rotation center (axis center)) of the grindstone 21 at a certain time. The X-axis value is a value that commands the separation distance in the direction, and the C-axis value (C = ωt) is a value that commands the rotation angle of the workpiece W at a certain time. Note that ω is the angular velocity of the geographic feature W. The command value is calculated based on grinding conditions such as the number of rotations of the workpiece, the number of rotations of the grindstone, and the feed amount (feed speed) of the grindstone 21 stored in the machining condition storage unit 111.

相対位置算出部104は、指令値記憶部103に記憶される指令値に基づいて、工作物Wの回転中心Cwと砥石車21の回転中心CgとのX軸線方向の離間距離を算出する。つまり、X軸離間距離Xは、式(1)に示すように算出される。 The relative position calculation unit 104 calculates the distance between the rotation center Cw of the workpiece W and the rotation center Cg of the grindstone 21 in the X-axis direction based on the command value stored in the command value storage unit 103. That is, the X-axis separation distance X is calculated as shown in the equation (1).

Figure 0006911426
Xoは加工開始位置におけるX軸値であり、Vxは砥石車送り速度であり、Aiは偏心などに起因する振動片振幅であり、Nは考慮する最大次数であり、fは振動周波数である。
Figure 0006911426
Xo is the X-axis value at the machining start position, Vx is the grindstone feed rate, Ai is the amplitude of the vibrating piece due to eccentricity or the like, N is the maximum order to be considered, and f is the vibration frequency.

式(1)において、第3項を除いた値は、時間tにおける指令値(X軸値)に相当する。そして、式(1)の第3項は、砥石車21又は工作物Wの偏心等による周期的な振動を考慮するために加えられている。後述するが、相対位置算出部104は、相対位置補正部110によって式(1)にさらに変位量Xnが加減算され、X軸離間距離を算出する。 In the formula (1), the value excluding the third term corresponds to the command value (X-axis value) at time t. The third term of the equation (1) is added in order to consider the periodic vibration due to the eccentricity of the grindstone 21 or the workpiece W. As will be described later, the relative position calculation unit 104 further adds or subtracts the displacement amount Xn to the equation (1) by the relative position correction unit 110 to calculate the X-axis separation distance.

除去量算出部105は、工作物形状記憶部101に記憶される工作物Wの周面形状、砥石形状記憶部102に記憶される砥石車21の周面形状、及び、相対位置算出部104で算出されるX軸離間距離に基づいて、砥石車21による工作物Wの除去量を算出する。除去量は、図5に示すように、砥石車21と工作物Wとが干渉する部分(図5の斜線部分)の体積である。 The removal amount calculation unit 105 is a peripheral surface shape of the workpiece W stored in the geographic feature storage unit 101, a peripheral surface shape of the grindstone 21 stored in the grindstone shape storage unit 102, and a relative position calculation unit 104. The amount of the workpiece W removed by the grindstone 21 is calculated based on the calculated X-axis separation distance. As shown in FIG. 5, the removal amount is the volume of the portion (hatched portion in FIG. 5) where the grindstone 21 and the workpiece W interfere with each other.

除去量算出部105は、当該除去量を演算処理によって幾何学的に算出している。すなわち、図6に示すように、工作物形状記憶部101には、工作物Wの回転中心Cwを原点Oとした極座標上において、工作物Wを複数の線分群で形状認識している。つまり、工作物形状記憶部101には、工作物Wを等角(α)分割した周縁上の分割点(図示白色点)と工作物Wの回転中心Cw(原点O)とを結ぶ複数の線分群を、工作物Wの周面形状として記憶している。そして、分割点(図示白色点)を砥石車21による工作物Wの除去前の線分の端点として認識する。 The removal amount calculation unit 105 geometrically calculates the removal amount by arithmetic processing. That is, as shown in FIG. 6, the work shape storage unit 101 recognizes the shape of the work W by a plurality of line segment groups on polar coordinates with the rotation center Cw of the work W as the origin O. That is, the workpiece shape storage unit 101 has a plurality of lines connecting the division point (white point in the figure) on the peripheral edge of the workpiece W divided by the equiangular angle (α) and the rotation center Cw (origin O) of the workpiece W. The group is stored as the peripheral surface shape of the work W. Then, the dividing point (white point in the figure) is recognized as the end point of the line segment before the work W is removed by the grindstone 21.

そして、除去量算出部105は、X軸離間距離と砥石車21の周面形状から、工作物Wの線分と砥石車21の外縁線21Aとの交点(図示黒色点)を決定し、交点(図示黒色点)を砥石車21による工作物Wの除去後の線分の端点として認識する。そして、除去量算出部105は、除去前の端点のうち隣り合う端点a1、a2と原点Oとからなる三角形△Oa1a2の面積から、端点a1,a2をもつ線分の除去後の端点b1,b2と原点Oとからなる三角形△Ob1b2の面積を引く。 Then, the removal amount calculation unit 105 determines an intersection (black point in the figure) between the line segment of the workpiece W and the outer edge line 21A of the grindstone 21 from the X-axis separation distance and the peripheral surface shape of the grindstone 21. (The black point in the figure) is recognized as the end point of the line segment after the work piece W is removed by the grindstone 21. Then, the removal amount calculation unit 105 determines the end points b1 and b2 after removal of the line segment having the end points a1 and a2 from the area of the triangle ΔOa1a2 composed of the adjacent end points a1 and a2 and the origin O among the end points before removal. The area of the triangle ΔOb1b2 consisting of the origin O and the origin O is subtracted.

そして、除去量算出部105は、当該面積の差分を各線分で積算し、その積算値に工作物Wの厚みを掛けて除去量を算出する。上記演算は、三角形の面積(辺×辺×sinα)を利用することで負荷を小さく高速に行うことができる。そして角度αを小さくすることでより正確に計算することができる。ただし、四角形a1a2b1b2を直接求めてもよい。 Then, the removal amount calculation unit 105 integrates the difference in the area for each line segment, and multiplies the integrated value by the thickness of the workpiece W to calculate the removal amount. The above calculation can be performed at high speed with a small load by using the area of the triangle (side x side x sinα). Then, by reducing the angle α, the calculation can be performed more accurately. However, the quadrangle a1a2b1b2 may be directly obtained.

工作物形状変更部106は、除去量算出部105で算出する除去量に基づいて、工作物形状記憶部101に記憶される工作物Wの周面形状を変更する。つまり、工作物形状記憶部101に記憶される工作物Wの周面形状を、除去後の形状に更新する。すなわち、工作物形状変更部106は、除去量算出部105で算出した除去量の部分が全て研削加工により削り取られたと仮定して、削り取られた後の工作物Wの周面形状を更新する。 The work shape changing unit 106 changes the peripheral surface shape of the work W stored in the work shape storage unit 101 based on the removal amount calculated by the removal amount calculation unit 105. That is, the peripheral surface shape of the work piece W stored in the work piece shape storage unit 101 is updated to the shape after removal. That is, the workpiece shape changing unit 106 updates the peripheral surface shape of the workpiece W after being scraped, assuming that all the parts of the removal amount calculated by the removal amount calculation unit 105 have been scraped off by grinding.

この工作物形状の更新は、次の除去量算出に反映される。つまり、図5の斜線部分には、研削加工開始直後(t1)の除去量が模式的に示されているが、次の瞬間t1+Δtにおける除去量は、除去後(斜線部分を除いた)の工作物形状に基づいて算出される。 This update of the geographic shape will be reflected in the next removal amount calculation. That is, the shaded portion in FIG. 5 schematically shows the removal amount immediately after the start of grinding (t1), but the removal amount at the next moment t1 + Δt is the work after removal (excluding the shaded portion). Calculated based on the shape of the object.

研削抵抗算出部107は、除去量算出部105で算出した除去量に基づいて、研削加工におけるX軸線方向の研削抵抗Fnを算出する。まず、研削抵抗算出部107は、除去量に基づいて単位時間当たりの除去量Jを算出する。そして、単位時間当たりの除去量Jと、工作物Wの材料及び砥石車21の周面の状態に基づいて決定されるX軸線方向の研削特性kcとを乗算して、X軸線方向の研削抵抗Fnを算出する(Fn=kc・J)。ここで、X軸線方向の研削特性kcは、実験や解析などにより予め記憶しておく。 The grinding resistance calculation unit 107 calculates the grinding resistance Fn in the X-axis direction in the grinding process based on the removal amount calculated by the removal amount calculation unit 105. First, the grinding resistance calculation unit 107 calculates the removal amount J per unit time based on the removal amount. Then, the removal amount J per unit time is multiplied by the grinding characteristic kc in the X-axis direction determined based on the material of the workpiece W and the state of the peripheral surface of the grindstone 21, and the grinding resistance in the X-axis direction is multiplied. Calculate Fn (Fn = kc · J). Here, the grinding characteristic kc in the X-axis direction is stored in advance by experiments, analyzes, or the like.

なお、単位時間当たりの除去量Jは、研削能率ともいわれる。研削特性kcは、単位時間当たりの除去量Jが大きくなるほどX軸線方向の研削抵抗Fnが大きくなるような、ほぼ線形の関係を有する。そして、この研削特性kcは、例えば、砥石車21が摩耗した場合には、両者の関係が変化する。具体的には、砥石車21が摩耗した場合には、単位時間当たりの除去量Jに対して、X軸線方向の研削抵抗Fnが大きくなるように変化する。 The removal amount J per unit time is also referred to as grinding efficiency. The grinding characteristics kc have a substantially linear relationship such that the grinding resistance Fn in the X-axis direction increases as the removal amount J per unit time increases. The relationship between the grinding characteristics kc changes when the grindstone 21 is worn, for example. Specifically, when the grindstone 21 is worn, the grinding resistance Fn in the X-axis direction changes with respect to the removal amount J per unit time.

剛性記憶部108は、工作物剛性及び砥石車剛性を記憶している。工作物剛性は、研削装置2の主軸台23に支持された状態の工作物Wに対して、X軸線方向の力を与えた場合における工作物WのX軸線方向の変位量に応じたものである。例えば、工作物剛性は、当該工作物WのX軸線方向の変位量の逆数である。この工作物剛性は、実測によって予め算出される。例えば、工作物Wを主軸台23に取り付け、工作物WのX軸線方向の一方側に測定器(加速度計)を配置し、X軸線方向の他方側から工作物Wをハンマリングすることにより工作物剛性を求めることができる。 The rigidity storage unit 108 stores the rigidity of the workpiece and the rigidity of the grindstone. The work piece rigidity corresponds to the amount of displacement of the work piece W in the X-axis direction when a force in the X-axis direction is applied to the work piece W in a state of being supported by the headstock 23 of the grinding device 2. be. For example, the work piece rigidity is the reciprocal of the displacement amount of the work piece W in the X-axis direction. This workpiece rigidity is calculated in advance by actual measurement. For example, the work W is attached to the headstock 23, a measuring instrument (acceleration meter) is placed on one side of the work W in the X-axis direction, and the work W is hammered from the other side in the X-axis direction. The object rigidity can be obtained.

そして、実測を基に、工作物剛性を伝達関数f1として表現することができる。つまり、剛性記憶部108は、工作物剛性を伝達関数f1として記憶する。なお、研削装置2にレスト(ワークレスト)が備わっている場合、上記実測は、工作物Wがさらにレストにより支持された状態で行うとよい。工作物Wがレストにより支持されている場合には、工作物Wに対してX軸線方向の力を与えた場合における工作物WのX軸線方向の変位量は小さくなる。つまり、工作物Wがレストにより支持されている場合には、工作物剛性が大きくなる。 Then, based on the actual measurement, the rigidity of the workpiece can be expressed as a transfer function f1. That is, the rigidity storage unit 108 stores the rigidity of the workpiece as a transfer function f1. When the grinding device 2 is provided with a rest (work rest), the actual measurement may be performed in a state where the workpiece W is further supported by the rest. When the work W is supported by the rest, the amount of displacement of the work W in the X-axis direction when a force in the X-axis direction is applied to the work W becomes small. That is, when the work W is supported by the rest, the work rigidity increases.

また、砥石車剛性は、研削装置2の砥石台22に支持された状態の砥石車21に対して、X軸線方向の力を与えた場合における砥石車21のX軸線方向の変位量に応じたものである。例えば、砥石車剛性は、当該砥石車21のX軸線方向の変位量の逆数である。砥石車剛性は、上記同様の実測に基づいて、伝達関数f2として表現される。従って、剛性記憶部108は、砥石車剛性を伝達関数f2として記憶する。 Further, the rigidity of the grindstone corresponds to the amount of displacement of the grindstone 21 in the X-axis direction when a force in the X-axis direction is applied to the grindstone 21 in a state of being supported by the grindstone base 22 of the grinding device 2. It is a thing. For example, the rigidity of the grindstone is the reciprocal of the amount of displacement of the grindstone 21 in the X-axis direction. The rigidity of the grindstone is expressed as a transfer function f2 based on the same actual measurement as described above. Therefore, the rigidity storage unit 108 stores the rigidity of the grindstone as a transfer function f2.

なお、砥石車剛性の実測において、砥石車剛性は、砥石車21を砥石台22から外した状態で、砥石台22の砥石軸をハンマリングすることにより求めてもよい。これにより、砥石車21の周面を損傷させることなく、砥石車剛性として近似できる。 In the actual measurement of the grindstone wheel rigidity, the grindstone wheel rigidity may be obtained by hammering the grindstone shaft of the grindstone stand 22 with the grindstone wheel 21 removed from the grindstone base 22. As a result, the rigidity of the grindstone can be approximated without damaging the peripheral surface of the grindstone 21.

変位量算出部109は、研削抵抗Fnに起因して砥石車21と工作物WとがX軸線方向に相対変位する変位量Xnを、剛性記憶部108に記憶される工作物剛性及び砥石車剛性に基づいて算出する。変位は、剛性と抵抗から求めることができる。従って、変位量Xnは、研削抵抗Fnと、工作物剛性(伝達関数f1)と、砥石車剛性(伝達関数f2)とから算出することができる。 The displacement amount calculation unit 109 stores the displacement amount Xn in which the grindstone 21 and the workpiece W are displaced relative to each other in the X-axis direction due to the grinding resistance Fn, and the workpiece rigidity and the grindstone rigidity stored in the rigidity storage unit 108. Calculate based on. Displacement can be determined from rigidity and resistance. Therefore, the displacement amount Xn can be calculated from the grinding resistance Fn, the rigidity of the workpiece (transfer function f1), and the rigidity of the grindstone (transfer function f2).

例えば、工作物変位量X1は、X1=Fn/f1で求まり、砥石変位量X2は、X2=Fn/f2で求まる。なお、一般に、砥石車剛性は工作物剛性に比べて非常に高いため、砥石車剛性を考慮せずに変位量Xnを求めてもよい。ただし、上記のように、砥石車剛性を考慮した方が、より高精度に変位量Xnを算出できる。 For example, the workpiece displacement amount X1 can be obtained by X1 = Fn / f1, and the grindstone displacement amount X2 can be obtained by X2 = Fn / f2. In general, the rigidity of the grindstone is much higher than the rigidity of the workpiece, so the displacement amount Xn may be obtained without considering the rigidity of the grindstone. However, as described above, the displacement amount Xn can be calculated with higher accuracy by considering the rigidity of the grindstone.

相対位置補正部110は、変位量算出部109で算出した変位量Xnに基づいて、相対位置算出部104におけるX軸離間距離を補正する。つまり、相対位置補正部110は、式(1)にさらに変位量Xnを加える。そして、相対位置算出部104は、相対位置補正部110により変位量Xnが加えられた式(1)を用いて、次の瞬間t1+ΔtにおけるX軸離間距離を算出する。X軸離間距離は、式(1)だけでは研削抵抗Fnに起因する変位量Xnが考慮されていないが、相対位置補正部110が式(1)に変位量Xnを加えることにより、変位量Xnを考慮した値に補正される。 The relative position correction unit 110 corrects the X-axis separation distance in the relative position calculation unit 104 based on the displacement amount Xn calculated by the displacement amount calculation unit 109. That is, the relative position correction unit 110 further adds the displacement amount Xn to the equation (1). Then, the relative position calculation unit 104 calculates the X-axis separation distance at the next moment t1 + Δt by using the equation (1) in which the displacement amount Xn is added by the relative position correction unit 110. The displacement amount Xn due to the grinding resistance Fn is not taken into consideration in the X-axis separation distance only in the equation (1), but the displacement amount Xn is obtained by adding the displacement amount Xn to the equation (1) by the relative position correction unit 110. Is corrected to a value that takes into account.

熱エネルギ算出部112は、式(2)に示すように、研削点Pにおける工作物Wに対する砥石車21の相対速度と、研削抵抗算出部107で算出した接線方向(Z軸線方向)の研削抵抗Ftとを乗算し、研削加工による全研削熱エネルギQを算出する。ここで、Vは研削点Pにおける砥石車21の周速度であり、vは研削点Pにおける工作物Wの周速度である。周速度は、径と回転数に基づいて算出できる。なお、式(2)は、アップカットの場合であり、ダウンカットの場合、相対速度は(V−v)となる。 As shown in the equation (2), the thermal energy calculation unit 112 has the relative speed of the grindstone 21 with respect to the workpiece W at the grinding point P and the grinding resistance in the tangential direction (Z-axis direction) calculated by the grinding resistance calculation unit 107. Multiply by Ft to calculate the total grinding thermal energy Q by grinding. Here, V is the peripheral speed of the grindstone 21 at the grinding point P, and v is the peripheral speed of the workpiece W at the grinding point P. The peripheral speed can be calculated based on the diameter and the number of revolutions. The equation (2) is for an upcut, and in the case of a downcut, the relative velocity is (Vv).

Figure 0006911426
Figure 0006911426

研削抵抗Ftは、作業者等が入力(設定)する値であってもよく、又は演算により算出される値であってもよい。本実施形態では、指令値から予め演算された研削抵抗Ftをデータベースとして備えている。そして、入力された指令値から、データベースを用いて研削抵抗Ftを算出する。 The grinding resistance Ft may be a value input (set) by an operator or the like, or may be a value calculated by calculation. In this embodiment, the grinding resistance Ft calculated in advance from the command value is provided as a database. Then, the grinding resistance Ft is calculated from the input command value using the database.

ここで、図7に示すように、研削加工を微視的に見ると、研削加工により発生する研削熱エネルギは、せん断面Waにおける塑性変形、すくい面Wbにおける砥粒21aと切粉Wpの摩擦、及び、逃げ面Wcにおける砥粒21aと工作物Wの摩擦により生じるといえる。つまり、熱エネルギ算出部112は、せん断面Wa、すくい面Wb、及び、逃げ面Wcで発生する研削熱エネルギの合計である全研削熱エネルギQを算出している。 Here, as shown in FIG. 7, when the grinding process is viewed microscopically, the grinding heat energy generated by the grinding process is plastic deformation on the shear surface Wa and friction between the abrasive grains 21a and the chips Wp on the rake surface Wb. It can be said that this is caused by the friction between the abrasive grains 21a and the workpiece W on the flank Wc. That is, the thermal energy calculation unit 112 calculates the total grinding thermal energy Q, which is the total of the grinding thermal energy generated on the shear surface Wa, the rake surface Wb, and the flank surface Wc.

分配割合算出部113は、熱エネルギ算出部112で算出した全研削熱エネルギQのうち、工作物Wが受ける熱エネルギの分配割合Rwを算出する。図7に示すように、せん断面Waで発生する研削熱エネルギは工作物Wと切粉Wpに分配され、すくい面Wbで発生する研削熱エネルギは砥粒21aと切粉Wpに分配され、逃げ面Wcで発生する研削熱エネルギは工作物Wと砥粒21aに分配される。従って、工作物Wは、すくい面Wbを除いて、せん断面Wa及び逃げ面Wcから、熱エネルギを分配される。 The distribution ratio calculation unit 113 calculates the distribution ratio Rw of the thermal energy received by the workpiece W out of the total grinding thermal energy Q calculated by the thermal energy calculation unit 112. As shown in FIG. 7, the grinding heat energy generated on the sheared surface Wa is distributed to the workpiece W and the chips Wp, and the grinding heat energy generated on the rake face Wb is distributed to the abrasive grains 21a and the chips Wp and escapes. The grinding heat energy generated on the surface Wc is distributed to the workpiece W and the abrasive grains 21a. Therefore, the workpiece W distributes thermal energy from the shear surface Wa and the flank surface Wc except for the rake face Wb.

そこで、工作物Wが受ける熱エネルギの分配割合Rwは、式(3)に示すように、せん断面Waにおける研削熱エネルギのうち工作物Wが受ける熱エネルギの分配割合Rwaと、逃げ面Wcにおける研削熱エネルギのうち工作物Wが受ける熱エネルギの分配割合Rwcとを用いて表すことができる。 Therefore, as shown in the equation (3), the distribution ratio Rw of the thermal energy received by the workpiece W is the distribution ratio Rwa of the thermal energy received by the workpiece W among the grinding heat energy on the shear surface Wa and the flank surface Wc. It can be expressed using the distribution ratio Rwc of the thermal energy received by the workpiece W among the grinding thermal energy.

Figure 0006911426
ここで、Ftcは切粉Wpにおける接線抵抗であり、Fncは切粉Wpにおける法線抵抗であり、βは砥粒すくい角であり、φはせん断角であり、Ftslは逃げ面Wcにおける接線抵抗であり、Fnslは、逃げ面Wcにおける法線抵抗である。図7では、Ft=Ftc+Ftsl、Fn=Fnc+Fnslとなる。
Figure 0006911426
Here, Ftc is the tangential resistance at the chip Wp, Fnc is the normal resistance at the chip Wp, β is the abrasive grain rake angle, φ is the shear angle, and Ftsl is the tangential resistance at the flank Wc. And Fnsl is the normal resistance at the flank Wc. In FIG. 7, Ft = Ftc + Ftsl and Fn = Fnc + Fnsl.

fa(Ftc,Fnc,β,φ)は、せん断面Waにおいて生じる、相対速度(V+v)に対する抵抗成分を表す関数である。つまり、fa(Ftc,Fnc,β,φ)は、せん断面Waにおける研削熱エネルギ(せん断速度×せん断抵抗)を、相対速度(V+v)と抵抗成分との乗算で表したときの当該抵抗成分を表す関数である。 fa (Ftc, Fnc, β, φ) is a function representing the resistance component to the relative velocity (V + v) generated in the shear plane Wa. That is, fa (Ftc, Fnc, β, φ) is the resistance component when the grinding heat energy (shear velocity × shear resistance) on the shear surface Wa is expressed by multiplying the relative velocity (V + v) and the resistance component. It is a function to represent.

せん断抵抗及びせん断速度は、切粉Wpにおける接線抵抗Ftc、切粉Wpにおける法線抵抗Fnc、砥粒すくい角β、及び、せん断角φを用いて表すことができる。分配割合算出部113は、式(3)により、分配割合Rwを算出する。なお、分配割合Rwa及びRwcは、Jaegerの移動熱源の理論(J.C.Jaeger:Proceedings of Royal Society of New South Wales,vol.76,(1942)203)を用いて式(4)、(5)で表すことができる。 The shear resistance and the shear rate can be expressed using the tangential resistance Ftc in the chips Wp, the normal resistance Fnc in the chips Wp, the abrasive grain rake angle β, and the shear angle φ. The distribution ratio calculation unit 113 calculates the distribution ratio Rw by the equation (3). The distribution ratios Rwa and Rwc are expressed by equations (4) and (5) using Jaeger's theory of transfer heat source (JC Jaeger: Proceedings of Royal Society of New South Wales, vol.76, (1942) 203). be able to.

Figure 0006911426
Figure 0006911426

Figure 0006911426
ここで、gは最大砥粒切り込み深さであり、fa(β,φ)は、「せん断速度」に対する「相対速度(V+v)のせん断面Wa法線方向成分」の割合を表す関数であり、kwは工作物Wの熱伝導率であり、lgは逃げ面Wcの長さであり、kgは砥粒21aの熱伝導率である。なお、砥粒すくい角β、せん断角φ、及び、逃げ面Wcの長さlgなどは、砥石車21表面の観測結果等に基づいて見積もられた値を用いている。
Figure 0006911426
Here, g m is the maximum abrasive grain cutting depth, and fa (β, φ) is a function representing the ratio of the “shear surface Wa normal direction component of the relative speed (V + v)” to the “shear speed”. , Kw is the thermal conductivity of the workpiece W, lg is the length of the flank Wc, and kg is the thermal conductivity of the abrasive grains 21a. The abrasive grain rake angle β, the shear angle φ, and the length lg of the flank surface Wc are estimated values based on the observation results of the surface of the grindstone wheel 21 and the like.

研削焼け深さ算出部114は、まず、熱エネルギ算出部112で算出した全研削熱エネルギQ及び分配割合算出部113で算出した分配割合Rwに基づいて、工作物Wの温度を算出する。すなわち、全研削熱エネルギQと分配割合Rwとを乗算することにより、研削加工により工作物Wが受ける全熱エネルギ(Rw×Q)を求めることができる。 The grinding burn depth calculation unit 114 first calculates the temperature of the workpiece W based on the total grinding heat energy Q calculated by the thermal energy calculation unit 112 and the distribution ratio Rw calculated by the distribution ratio calculation unit 113. That is, by multiplying the total thermal energy Q and the distribution ratio Rw, the total thermal energy (Rw × Q) received by the workpiece W by the grinding process can be obtained.

そして、式(6)に示すように、この全熱エネルギ(Rw×Q)から、工作物Wに対する熱流束q(単位接触面積当たりの熱エネルギ)が求まる。lcは接触弧長であり、bは工作物Wの幅(主軸方向の長さ)である。 Then, as shown in the equation (6), the heat flux q w (heat energy per unit contact area) with respect to the workpiece W can be obtained from this total thermal energy (Rw × Q). lc is the contact arc length, and b is the width of the workpiece W (the length in the spindle direction).

Figure 0006911426
Figure 0006911426

ここで、上記移動熱源の理論を用いると、式(7)に示すように、工作物Wの位置(X,Z)における温度θw(X,Z)を求めることができる。なお、座標Xは、工作物Wの研削点Pと、工作物Wの中心点とを通る直線上の位置を示している。つまり、座標Xは、工作物Wの表面からの深さを示している。また、座標Zは、工作物Wの研削点Pの接線上の位置を示している。 Here, using the theory of the mobile heat source, the temperature θw (X, Z) at the position (X, Z) of the workpiece W can be obtained as shown in the equation (7). The coordinates X indicate a position on a straight line passing through the grinding point P of the workpiece W and the center point of the workpiece W. That is, the coordinates X indicate the depth of the workpiece W from the surface. Further, the coordinate Z indicates the position on the tangent line of the grinding point P of the workpiece W.

Figure 0006911426
ここで、Koは第2種0次の修正ベッセル関数であり、erfは誤差関数であり、erfcは補誤差関数である。
Figure 0006911426
Here, Ko is a second-order 0th-order modified Bessel function, erf is an error function, and erfc is a complementary error function.

式(7)の第一項では、工作物Wが受ける全熱エネルギによる工作物Wの各位置における上昇温度を算出している。式(7)の第二項では、クーラントの冷却効果により低下する工作物Wの各位置における低下温度を算出している。式(7)の第三項、すなわち、θwo(X,Z)は、工作物Wの各位置における初期温度である。 In the first term of the equation (7), the rising temperature at each position of the work W due to the total heat energy received by the work W is calculated. In the second term of the formula (7), the decrease temperature at each position of the workpiece W, which decreases due to the cooling effect of the coolant, is calculated. The third term of the equation (7), that is, θwo (X, Z) is the initial temperature at each position of the workpiece W.

なお、工作物温度の理論設定においては、高温、微小である研削点温度が瞬時に周囲に伝導されて巨視的温度分布を形成すると考え、接触弧内の温度分布として検討している。また、X、Z、L、及び、対流熱伝達係数Hは、式(8)に示すように、無次元量である。なお、hは、クーラントの対流熱伝達係数である。 In the theoretical setting of the geographic feature temperature, it is considered that the high temperature and the minute grinding point temperature are instantly conducted to the surroundings to form a macroscopic temperature distribution, and the temperature distribution in the contact arc is examined. Further, X, Z, L, and the convection heat transfer coefficient H are dimensionless quantities as shown in the equation (8). Note that h is the convection heat transfer coefficient of the coolant.

Figure 0006911426
Figure 0006911426

このように、研削焼け深さ算出部114は、式(7)により、まず、工作物Wの各位置(X,Z)における温度θw(X,Z)を算出する。これにより、工作物Wの温度分布が算出される。そして、算出した温度θw(X,Z)に基づいて、工作物Wの各深さにおける最高温度θw,max(X)を算出する。 In this way, the grinding burn depth calculation unit 114 first calculates the temperature θw (X, Z) at each position (X, Z) of the workpiece W by the equation (7). As a result, the temperature distribution of the workpiece W is calculated. Then, based on the calculated temperature θw (X, Z), the maximum temperature θw, max (X) at each depth of the workpiece W is calculated.

工作物Wの深さXにおける温度θw(X)は、工作物Wの周方向において均一とは限らない。そこで、各深さにおける最高温度θw,max(X)を求める。ここで、上記最高温度算出結果は、一例として、図8に示すようになる。図8は、研削焼け深さ算出部114において算出された工作物Wの最高温度と工作物Wの表面からの深さの関係を示す図である。縦軸が最高温度であり、横軸が工作物表面からの深さである。 The temperature θw (X) at the depth X of the workpiece W is not always uniform in the circumferential direction of the workpiece W. Therefore, the maximum temperatures θw and max (X) at each depth are obtained. Here, the above-mentioned maximum temperature calculation result is shown in FIG. 8 as an example. FIG. 8 is a diagram showing the relationship between the maximum temperature of the workpiece W calculated by the grinding burn depth calculation unit 114 and the depth from the surface of the workpiece W. The vertical axis is the maximum temperature, and the horizontal axis is the depth from the surface of the workpiece.

ここで、研削焼け深さ算出部114には、工作物Wの金属組織特性に基づいて研削焼けを判定するための第一、第二温度しきい値θ1、θ2が設定される。第一温度しきい値θ1は、研削焼けのうち「焼き戻し(軟化層)」を判定する温度に設定される。第二温度しきい値θ2は、研削焼けのうち「再焼入れ(再硬化層(白層))」を判定する温度に設定される。 Here, the grinding burn depth calculation unit 114 is set with the first and second temperature thresholds θ1 and θ2 for determining the grinding burn based on the metallographic properties of the workpiece W. The first temperature threshold value θ1 is set to a temperature at which “tempering (softening layer)” of grinding burn is determined. The second temperature threshold value θ2 is set to a temperature at which “re-quenching (re-hardened layer (white layer))” of the grinding burn is determined.

研削焼け深さ算出部114は、第一温度しきい値θ1より大きく第二温度しきい値θ2(>θ1)より小さい最高温度θw,max(X)を示す工作物Wの表面からの深さXのうち、最も深い工作物Wの表面からの深さX1を算出する。つまり、ここで求められる工作物Wの表面からの深さX1は、式(9)に示す条件を満たす最大のXである。 The grinding burn depth calculation unit 114 is the depth from the surface of the workpiece W showing the maximum temperatures θw and max (X) larger than the first temperature threshold value θ1 and smaller than the second temperature threshold value θ2 (> θ1). Of X, the depth X1 from the surface of the deepest workpiece W is calculated. That is, the depth X1 from the surface of the workpiece W obtained here is the maximum X that satisfies the condition shown in the equation (9).

次に、研削焼け深さ算出部114は、第二温度しきい値θ2より大きい最高温度θw,max(X)を示す工作物Wの表面からの深さXのうち、最も深い工作物Wの表面からの深さX2を算出する。つまり、ここで求められる工作物Wの表面からの深さX2は、式(10)に示す条件を満たす最大のXである。 Next, the grinding burn depth calculation unit 114 determines the deepest depth X from the surface of the workpiece W showing the maximum temperatures θw and max (X) larger than the second temperature threshold value θ2. The depth X2 from the surface is calculated. That is, the depth X2 from the surface of the workpiece W obtained here is the maximum X that satisfies the condition shown in the equation (10).

Figure 0006911426
Figure 0006911426

Figure 0006911426
Figure 0006911426

新研削焼け深さ算出部115は、研削焼け深さ算出部114で算出した前研削における研削焼け深さ、及び、除去量算出部105で算出した現研削における除去量に基づいて、現研削における研削焼け残り深さを算出する。そして、算出した現研削における研削焼け残り深さ、及び、研削焼け深さ算出部114で算出した現研削における研削焼け深さに基づいて、現研削における新研削焼け深さを算出する。 The new grinding burn depth calculation unit 115 performs the current grinding based on the grinding burn depth in the pre-grind calculated by the grinding burn depth calculation unit 114 and the removal amount in the current grinding calculated by the removal amount calculation unit 105. Calculate the unburned depth of grinding. Then, the new grinding burn depth in the current grinding is calculated based on the calculated remaining grinding burn depth in the current grinding and the grinding burn depth in the current grinding calculated by the grinding burn depth calculation unit 114.

前研削とは、ある加工点を現在研削している場合、例えば工作物Wの1回転前における同一の加工点の研削のことである。例えば、図9Aに示すように、現研削における研削焼け残り深さ(d8−d1)は、前研削における研削焼け深さ(d8)と現研削における除去量(工作物Wの表面からの深さに換算した値(d1))との差で表される。 Pre-grinding is, for example, grinding of the same machining point before one rotation of the workpiece W when a certain machining point is currently ground. For example, as shown in FIG. 9A, the residual grinding burn depth (d8-d1) in the current grinding is the grinding burn depth (d8) in the pre-grinding and the removal amount (depth from the surface of the workpiece W) in the current grinding. It is represented by the difference from the value (d1) converted to.

ここで、現研削における新研削焼けは、現研削における研削焼け残りの部分に、現研削における研削焼けが重畳されて生じる。発明者は、この現研削における新研削焼け深さが、現研削における研削焼け残り深さと、現研削における研削焼け深さに大きく関わることを見い出した。 Here, the new grinding burn in the current grinding occurs by superimposing the grinding burn in the current grinding on the remaining portion of the grinding burn in the current grinding. The inventor has found that the new grinding burn depth in the current grinding is greatly related to the grinding burn depth in the current grinding and the grinding burn depth in the current grinding.

すなわち、前研削における研削焼け深さが、現研削における除去量よりも大きいか小さいか、さらに前研削における研削焼け深さのうち再硬化層(白層)の深さが、現研削における除去量よりも大きいか否かによって、現研削における研削焼け残り深さが変化する。 That is, whether the grinding burn depth in the pre-grinding is larger or smaller than the removal amount in the current grinding, and the depth of the re-hardened layer (white layer) in the grinding burn depth in the pre-grinding is the removal amount in the current grinding. The unburned depth of grinding in the current grinding changes depending on whether or not it is larger than.

そして、現研削における研削焼け深さが、現研削における研削焼け残り深さよりも大きいか小さいか、また、現研削における研削焼け深さのうち再硬化層(白層)の深さが、現研削における研削焼け残り深さのうち再硬化層(白層)の深さよりも大きいか小さいかによって、現研削における新研削焼け深さが変化する。 Then, whether the grinding burn depth in the current grinding is larger or smaller than the grinding burn depth in the current grinding, and the depth of the re-hardened layer (white layer) in the grinding burn depth in the current grinding is the current grinding. The new grinding burn depth in the current grinding changes depending on whether it is larger or smaller than the depth of the re-hardened layer (white layer) among the grinding burn depths in the above.

例えば、図9A−図9Dは、前研削における研削焼け深さ(d8)が、現研削における除去量(d1)よりも大きく、さらに前研削における研削焼け深さのうち再硬化層(白層)の深さ(d3)が、現研削における除去量(d1)よりも大きい場合である。 For example, in FIGS. 9A-9D, the grinding burn depth (d8) in the pre-grinding is larger than the removal amount (d1) in the current grinding, and the re-hardened layer (white layer) in the grinding burn depth in the pre-grinding. Depth (d3) is larger than the removal amount (d1) in the current grinding.

そして、図9Aは、現研削における研削焼け深さ(d7−d1)が、現研削における研削焼け残り深さ(d8−d1)よりも小さく、且つ、現研削における研削焼け深さ(d7−d1)のうち再硬化層(白層)の深さ(d2−d1)が、現研削における研削焼け残り深さ(d8−d1)のうち再硬化層(白層)の深さ(d3−d1)よりも小さい場合である。 In FIG. 9A, the grinding burn depth (d7-d1) in the current grinding is smaller than the grinding burn depth (d8-d1) in the current grinding, and the grinding burn depth (d7-d1) in the current grinding is shown. ), The depth of the re-cured layer (white layer) (d2-d1) is the depth of the re-cured layer (white layer) (d3-d1) of the unburned depth (d8-d1) in the current grinding. If it is smaller than.

この場合、現研削における新研削焼け深さ(d8−d1)のうち再硬化層(白層)の深さ(d2−d1)は、現研削における研削焼け深さ(d7−d1)のうち再硬化層(白層)の深さ(d2−d1)に依存して同一となる。そして、現研削における新研削焼け深さ(d8−d1)のうち軟化層の深さ(d8−d2)は、現研削における研削焼け残り深さ(d8−d1)のうち軟化層の深さ(d8−d3)、及び、現研削における研削焼け深さ(d7−d1)のうち軟化層の深さ(d7−d2)に依存して決まる。 In this case, the depth (d2-d1) of the re-hardened layer (white layer) in the new grinding burn depth (d8-d1) in the current grinding is the re-grinding burn depth (d7-d1) in the current grinding. It becomes the same depending on the depth (d2-d1) of the cured layer (white layer). The depth of the softened layer (d8-d2) in the new grinding burn depth (d8-d1) in the current grinding is the depth of the softened layer (d8-d1) in the remaining grinding burn depth (d8-d1) in the current grinding. It is determined depending on the depth of the softened layer (d7-d2) among the d8-d3) and the grinding burn depth (d7-d1) in the current grinding.

また、図9Bは、現研削における研削焼け深さ(d6−d1)が、現研削における研削焼け残り深さ(d8−d1)よりも小さく、且つ、現研削における研削焼け深さ(d6−d1)のうち再硬化層(白層)の深さ(d5−d1)が、現研削における研削焼け残り深さ(d8−d1)のうち再硬化層(白層)の深さ(d3−d1)よりも大きい場合である。 Further, in FIG. 9B, the grinding burn depth (d6-d1) in the current grinding is smaller than the grinding burn depth (d8-d1) in the current grinding, and the grinding burn depth (d6-d1) in the current grinding is shown. ), The depth of the re-cured layer (white layer) (d5-d1) is the depth of the re-cured layer (white layer) (d3-d1) of the unburned depth (d8-d1) in the current grinding. If it is larger than.

この場合、現研削における新研削焼け深さ(d8−d1)のうち再硬化層(白層)の深さ(d5−d1)は、現研削における研削焼け深さ(d6−d1)のうち再硬化層(白層)の深さ(d5−d1)に依存して同一となる。そして、現研削における新研削焼け深さ(d8−d1)のうち軟化層の深さ(d8−d5)は、現研削における研削焼け残り深さのうち軟化層の深さ(d8−d3)、及び、現研削における研削焼け深さ(d6−d1)のうち軟化層の深さ(d6−d5)に依存して決まる。 In this case, the depth (d5-d1) of the re-hardened layer (white layer) in the new grinding burn depth (d8-d1) in the current grinding is the re-grinding burn depth (d6-d1) in the current grinding. It becomes the same depending on the depth (d5-d1) of the cured layer (white layer). The depth of the softened layer (d8-d5) in the new grinding burn depth (d8-d1) in the current grinding is the depth of the softened layer (d8-d3) in the remaining grinding burn depth in the current grinding. It is also determined depending on the depth of the softened layer (d6-d5) of the grinding burn depth (d6-d1) in the current grinding.

また、図9Cは、現研削における研削焼け深さ(d9−d1)が、現研削における研削焼け残り深さ(d8−d1)よりも大きく、且つ、現研削における研削焼け深さ(d9−d1)のうち再硬化層(白層)の深さ(d4−d1)が、現研削における研削焼け残り深さ(d8−d1)のうち再硬化層(白層)の深さ(d3−d1)よりも大きい場合である。 Further, in FIG. 9C, the grinding burn depth (d9-d1) in the current grinding is larger than the grinding burn depth (d8-d1) in the current grinding, and the grinding burn depth (d9-d1) in the current grinding is shown. ), The depth of the re-cured layer (white layer) (d4-d1) is the depth of the re-cured layer (white layer) (d3-d1) of the unburned depth (d8-d1) in the current grinding. If it is larger than.

この場合、現研削における新研削焼け深さ(d9−d1)のうち再硬化層(白層)の深さ(d4−d1)は、現研削における研削焼け深さ(d9−d1)のうち再硬化層(白層)の深さ(d4−d1)に依存して同一となる。そして、現研削における新研削焼け深さ(d9−d1)のうち軟化層の深さ(d9−d4)は、現研削における研削焼け深さ(d9−d1)のうち軟化層の深さ(d9−d4)に依存して同一となる。 In this case, the depth (d4-d1) of the re-hardened layer (white layer) in the new grinding burn depth (d9-d1) in the current grinding is the re-grinding burn depth (d9-d1) in the current grinding. It becomes the same depending on the depth (d4-d1) of the cured layer (white layer). The depth of the softened layer (d9-d4) in the new grinding burn depth (d9-d1) in the current grinding is the depth of the softened layer (d9) in the grinding burn depth (d9-d1) in the current grinding. It becomes the same depending on −d4).

また、図9Dは、現研削における研削焼け深さ(d9−d1)が、現研削における研削焼け残り深さ(d8−d1)よりも大きく、且つ、現研削における研削焼け深さ(d9−d1)のうち再硬化層(白層)の深さ(d2−d1)が、現研削における研削焼け残り深さ(d8−d1)のうち再硬化層(白層)の深さ(d3−d1)よりも小さい場合である。 Further, in FIG. 9D, the grinding burn depth (d9-d1) in the current grinding is larger than the grinding burn depth (d8-d1) in the current grinding, and the grinding burn depth (d9-d1) in the current grinding is shown. ), The depth of the re-cured layer (white layer) (d2-d1) is the depth of the re-cured layer (white layer) (d3-d1) of the unburned depth (d8-d1) in the current grinding. If it is smaller than.

この場合、現研削における新研削焼け深さ(d9−d1)のうち再硬化層(白層)の深さ(d2−d1)は、現研削における研削焼け深さ(d9−d1)のうち再硬化層(白層)の深さ(d2−d1)に依存して同一となる。そして、現研削における新研削焼け深さ(d9−d1)のうち軟化層の深さ(d9−d2)は、現研削における研削焼け深さ(d9−d1)のうち軟化層の深さ(d9−d2)に依存して同一となる。 In this case, the depth (d2-d1) of the re-hardened layer (white layer) in the new grinding burn depth (d9-d1) in the current grinding is the re-grinding burn depth (d9-d1) in the current grinding. It becomes the same depending on the depth (d2-d1) of the cured layer (white layer). The depth of the softened layer (d9-d2) in the new grinding burn depth (d9-d1) in the current grinding is the depth of the softened layer (d9) in the grinding burn depth (d9-d1) in the current grinding. It becomes the same depending on −d2).

なお、図10Aに示すように、前研削における研削焼け深さ(d8)が、現研削における除去量(d1)よりも大きく、さらに前研削における研削焼け深さのうち再硬化層(白層)の深さ(d3)が、現研削における除去量(d10)よりも小さい場合は、前研削における研削焼けのうち再硬化層(白層)が除去されて軟化層のみが残る。また、図10Bに示すように、前研削における研削焼け深さ(d8)が、現研削における除去量(d1)よりも小さい場合は、前研削における研削焼けが全て除去される。 As shown in FIG. 10A, the grinding burn depth (d8) in the pre-grinding is larger than the removal amount (d1) in the current grinding, and the re-hardened layer (white layer) in the grinding burn depth in the pre-grinding. When the depth (d3) is smaller than the removal amount (d10) in the current grinding, the re-hardened layer (white layer) is removed from the grinding burn in the pre-grinding, and only the softened layer remains. Further, as shown in FIG. 10B, when the grinding burn depth (d8) in the pre-grinding is smaller than the removal amount (d1) in the current grinding, all the grinding burn in the pre-grinding is removed.

びびり判定部116は、工作物形状記憶部101に記憶される変更後の工作物Wの周面形状(加工形状)に基づいて、びびりの有無を判定する。びびり判定部116には、研削加工により得ようとする工作物Wの周面形状、すなわち、作業者等が意図する理想の工作物Wの周面形状(理想形状)が記憶される。びびり判定部116は、加工形状と理想形状とを比較することで、加工形状における研削加工面の面粗さが分かる。 The chatter determination unit 116 determines the presence or absence of chatter based on the peripheral surface shape (processed shape) of the changed workpiece W stored in the workpiece shape storage unit 101. The chatter determination unit 116 stores the peripheral surface shape of the workpiece W to be obtained by grinding, that is, the peripheral surface shape (ideal shape) of the ideal workpiece W intended by the operator or the like. The chatter determination unit 116 can find out the surface roughness of the ground surface in the machined shape by comparing the machined shape with the ideal shape.

びびり判定部116は、加工形状と理想形状とが一致しない場合、びびりが有ると判定する。判定は、工作物Wの1回転(1周期)毎に行ってもよく、加工途中のあるタイミング、あるいは、最終形状(研削加工後の形状)で行ってもよい。びびり判定部116は、びびりが有ると判定した場合、さらに、びびり量を算出する。びびり量は、加工形状における研削加工面の面粗さから算出できる。びびり量は、周面全体におけるびびりの数、又は、びびりの突出長(径方向外方への突出量)で表すことができる。本実施形態では、びびりの最高突出長をびびり量として算出している。 The chatter determination unit 116 determines that there is chatter when the processed shape and the ideal shape do not match. The determination may be made every one rotation (one cycle) of the workpiece W, at a certain timing during machining, or at the final shape (shape after grinding). When the chatter determination unit 116 determines that there is chatter, the chatter determination unit 116 further calculates the chatter amount. The amount of chatter can be calculated from the surface roughness of the ground surface in the machined shape. The amount of chatter can be expressed by the number of chatters on the entire peripheral surface or the protrusion length of chatter (the amount of protrusion outward in the radial direction). In the present embodiment, the maximum protrusion length of chatter is calculated as the chatter amount.

表示制御部117は、新研削焼け深さ算出部115で算出した新研削焼け深さを表示装置118に表示する。また、びびり判定部116で算出したびびり量を表示装置118に表示する。例えば図11及び図12に示すように、表示装置118には、工作物Wの周面形状が、工作物Wを等角(α)分割した周縁上の分割点(図示黒色点)と工作物Wの回転中心Cw(原点O)とを結ぶ複数の線分群で表されている。なお、本例では、工作物Wの一部を表示した場合であるが、工作物W全体を表示するようにしてもよい。 The display control unit 117 displays the new grinding burn depth calculated by the new grinding burn depth calculation unit 115 on the display device 118. Further, the chatter amount calculated by the chatter determination unit 116 is displayed on the display device 118. For example, as shown in FIGS. 11 and 12, in the display device 118, the peripheral surface shape of the work W is a division point (black point in the figure) on the peripheral edge of the work W divided by an equiangular angle (α) and the work. It is represented by a plurality of line segment groups connecting the rotation center Cw (origin O) of W. In this example, a part of the workpiece W is displayed, but the entire workpiece W may be displayed.

図11に示すように、表示制御部117は、工作物Wの周面形状に新研削焼け深さを重畳して表示する。すなわち、周縁上の分割点(図示黒色点)と図示白色点との間が再硬化層(白層)Taを示し、図示白色点と図示灰色点との間が軟化層Tbを示す。表示制御部117は、研削加工工程における任意の時点の新研削焼け深さを表示できる。また、図12に示すように、表示制御部117は、工作物Wの周面形状にびびり量Sを重畳して表示する。 As shown in FIG. 11, the display control unit 117 superimposes and displays the new grinding burn depth on the peripheral surface shape of the workpiece W. That is, the rehardened layer (white layer) Ta is shown between the dividing point (black point in the figure) and the white point in the figure on the peripheral edge, and the softened layer Tb is shown between the white point in the figure and the gray point in the figure. The display control unit 117 can display the new grinding burn depth at an arbitrary time point in the grinding process. Further, as shown in FIG. 12, the display control unit 117 superimposes the chatter amount S on the peripheral surface shape of the workpiece W and displays it.

(2.研削加工シミュレーション装置の動作)
次に、研削加工シミュレーション装置1による研削焼けシミュレーション動作について図を参照して説明する。除去量算出部105は、工作物形状記憶部101に記憶される工作物Wの周面形状、砥石形状記憶部102に記憶される砥石車21の周面形状、及び、相対位置算出部104で算出されるX軸離間距離に基づいて、砥石車21による工作物Wの除去量を算出する(図3のステップS1、除去量算出工程)。
(2. Operation of grinding simulation equipment)
Next, the grinding burn simulation operation by the grinding processing simulation device 1 will be described with reference to the drawings. The removal amount calculation unit 105 is a peripheral surface shape of the workpiece W stored in the geographic shape storage unit 101, a peripheral surface shape of the grindstone 21 stored in the grindstone shape storage unit 102, and a relative position calculation unit 104. Based on the calculated X-axis separation distance, the removal amount of the workpiece W by the grindstone 21 is calculated (step S1 in FIG. 3, removal amount calculation step).

そして、研削抵抗算出部107は、除去量算出部105で算出した除去量に基づいて、研削加工におけるX軸線方向の研削抵抗Fnを算出する(図3のステップS2、研削抵抗算出工程)。熱エネルギ算出部112は、研削点Pにおける工作物Wに対する砥石車21の相対速度と、研削抵抗算出部107で算出した研削抵抗Fnとを乗算し、研削加工による全研削熱エネルギQを算出する(図3のステップS3、熱エネルギ算出工程)。 Then, the grinding resistance calculation unit 107 calculates the grinding resistance Fn in the X-axis direction in the grinding process based on the removal amount calculated by the removal amount calculation unit 105 (step S2 in FIG. 3, the grinding resistance calculation step). The thermal energy calculation unit 112 calculates the total grinding heat energy Q by grinding by multiplying the relative speed of the grindstone 21 with respect to the workpiece W at the grinding point P by the grinding resistance Fn calculated by the grinding resistance calculation unit 107. (Step S3 of FIG. 3, thermal energy calculation step).

そして、研削焼け深さ算出部114は、熱エネルギ算出部112で算出した研削熱エネルギ、工作物Wと砥石車21との接触弧長lc、及び、工作物Wの深さに基づいて、工作物Wの表面からの深さにおける温度を算出する(図3のステップS4、温度算出工程)。そして、研削焼け深さ算出部114は、算出した工作物Wの表面からの深さの温度に基づいて、工作物Wの研削焼け深さを算出するが、先ず、前研削における研削焼け深さを算出し、この前研削における研削焼け深さ、及び、現研削において除去量算出部105で算出した除去量に基づいて、現研削における研削焼け残り深さを算出する(図3のステップS5、新研削焼け深さ算出工程)。 Then, the grinding burn depth calculation unit 114 works based on the grinding thermal energy calculated by the thermal energy calculation unit 112, the contact arc length lc between the workpiece W and the grindstone 21, and the depth of the workpiece W. The temperature at the depth from the surface of the object W is calculated (step S4 in FIG. 3, temperature calculation step). Then, the grinding burn depth calculation unit 114 calculates the grinding burn depth of the workpiece W based on the calculated temperature of the depth from the surface of the workpiece W. First, the grinding burn depth in the pre-grinding Is calculated, and the grinding burn depth in the current grinding is calculated based on the grinding burn depth in the pre-grinding and the removal amount calculated by the removal amount calculation unit 105 in the current grinding (step S5 in FIG. 3, New grinding burn depth calculation process).

そして、現研削における工作物Wの研削焼け深さを算出し(図3のステップS6、新研削焼け深さ算出工程)、算出した現研削における研削焼け残り深さ、及び、算出した現研削における研削焼け深さに基づいて、現研削における新研削焼け深さを算出する(図3のステップS7、新研削焼け深さ算出工程)。 Then, the grinding burn depth of the workpiece W in the current grinding is calculated (step S6 in FIG. 3, the new grinding burn depth calculation step), and the calculated remaining grinding burn depth in the current grinding and the calculated current grinding Based on the grinding burn depth, the new grinding burn depth in the current grinding is calculated (step S7 in FIG. 3, the new grinding burn depth calculation step).

そして、研削加工が終了したか否かを判断し(図3のステップS8)、研削加工が終了していない場合はステップS1に戻って上述の処理を繰り返す。一方、ステップS8において、研削加工が終了した場合は、表示制御部117は、表示装置118に新研削焼け深さを表示し(図3のステップS9)、全ての処理を終了する。 Then, it is determined whether or not the grinding process is completed (step S8 in FIG. 3), and if the grinding process is not completed, the process returns to step S1 and the above process is repeated. On the other hand, when the grinding process is completed in step S8, the display control unit 117 displays the new grinding burn depth on the display device 118 (step S9 in FIG. 3), and ends all the processes.

次に、研削加工シミュレーション装置1によるびびりシミュレーション動作について図を参照して説明する。除去量算出部105は、工作物形状記憶部101に記憶される工作物Wの周面形状、砥石形状記憶部102に記憶される砥石車21の周面形状、及び、相対位置算出部104で算出されるX軸離間距離に基づいて、砥石車21による工作物Wの除去量を算出する(図4のステップS11)。 Next, the chatter simulation operation by the grinding process simulation device 1 will be described with reference to the drawings. The removal amount calculation unit 105 is a peripheral surface shape of the workpiece W stored in the geographic feature storage unit 101, a peripheral surface shape of the grindstone 21 stored in the grindstone shape storage unit 102, and a relative position calculation unit 104. Based on the calculated X-axis separation distance, the amount of the workpiece W removed by the grindstone 21 is calculated (step S11 in FIG. 4).

工作物形状変更部106は、砥石車21の位置を補正したために、算出した除去量に基づいて工作物の形状を変更するか否かを判断し(図4のステップS12)、工作物の形状を変更しない場合は、研削抵抗算出部107は、除去量算出部105で算出した除去量に基づいて、研削加工におけるX軸線方向の研削抵抗Fnを算出する(図4のステップS13)。 Since the position of the grindstone 21 is corrected, the workpiece shape changing unit 106 determines whether or not to change the shape of the workpiece based on the calculated removal amount (step S12 in FIG. 4), and determines whether or not to change the shape of the workpiece (step S12 in FIG. 4). When is not changed, the grinding resistance calculation unit 107 calculates the grinding resistance Fn in the X-axis direction in the grinding process based on the removal amount calculated by the removal amount calculation unit 105 (step S13 in FIG. 4).

そして、変位量算出部109は、研削抵抗算出部107で算出した研削抵抗に起因して、砥石車21と工作物Wとが相対移動方向に相対変位する変位量Xnを算出する(図4のステップS14)。相対位置補正部110は、変位量算出部109で算出した変位量Xnに基づいて、相対位置算出部104におけるX軸離間距離を補正する(図4のステップS15)。 Then, the displacement amount calculation unit 109 calculates the displacement amount Xn in which the grindstone 21 and the workpiece W are relatively displaced in the relative movement direction due to the grinding resistance calculated by the grinding resistance calculation unit 107 (FIG. 4). Step S14). The relative position correction unit 110 corrects the X-axis separation distance in the relative position calculation unit 104 based on the displacement amount Xn calculated by the displacement amount calculation unit 109 (step S15 in FIG. 4).

そして、ステップS11に戻って、除去量算出部105は、工作物形状記憶部101に記憶される工作物Wの周面形状、砥石形状記憶部102に記憶される砥石車21の周面形状、及び、補正したX軸離間距離に基づいて、砥石車21による工作物Wの除去量を算出する。 Then, returning to step S11, the removal amount calculation unit 105 determines the peripheral surface shape of the workpiece W stored in the geographic shape storage unit 101 and the peripheral surface shape of the grindstone 21 stored in the grindstone shape storage unit 102. Then, the amount of the workpiece W removed by the grindstone 21 is calculated based on the corrected X-axis separation distance.

工作物形状変更部106は、砥石車21の位置を補正したために、算出した除去量に基づいて工作物Wの形状を変更し(図4のステップS12)、びびり判定部116は、変更した工作物Wの形状に基づいて、びびりの有無を判定、すなわち工作物Wの真円度は規格内であるか否かを判断する(図4のステップS16)。ここで、真円度とは、円形形体を2つの同心の幾何学的円で挟んだときの同心二円の間隙が最小となる場合における2つの円の半径差をいう。 Since the work shape changing unit 106 corrected the position of the grindstone 21, the shape of the work W was changed based on the calculated removal amount (step S12 in FIG. 4), and the chatter determination unit 116 changed the work. Based on the shape of the object W, it is determined whether or not there is chatter, that is, whether or not the roundness of the workpiece W is within the standard (step S16 in FIG. 4). Here, the roundness refers to the difference in radius between two circles when the gap between the two concentric circles is minimized when the circular body is sandwiched between two concentric geometric circles.

びびり判定部116は、びびりが無いと判断した場合は、ステップS11に戻って上述の処理を繰り返す。一方、ステップS16において、びびり判定部116は、びびりが有ると判断した場合は、周波数分析を工作物Wの形状に対し行い、当該形状の周期的変化からびびりの有無を判定する(周波数ピーク有無)。すなわち、工作物Wの形状に対しFFT(高速フーリエ変換)などの周波数分析を行い(図4のステップS17)、山数(次数)と振幅との関係を求める。そして、表示制御部117は、表示装置118に山数(次数)と振幅との関係を表示する(図4のステップS18)。 When the chatter determination unit 116 determines that there is no chatter, the chatter determination unit 116 returns to step S11 and repeats the above-mentioned process. On the other hand, in step S16, when the chatter determination unit 116 determines that there is chatter, it performs frequency analysis on the shape of the workpiece W and determines the presence or absence of chatter from the periodic change of the shape (presence or absence of frequency peak). ). That is, frequency analysis such as FFT (Fast Fourier Transform) is performed on the shape of the workpiece W (step S17 in FIG. 4), and the relationship between the number of peaks (order) and the amplitude is obtained. Then, the display control unit 117 displays the relationship between the number of peaks (order) and the amplitude on the display device 118 (step S18 in FIG. 4).

びびり判定部116は、山数(次数)の指定の有無を判断し(図4のステップS19)、山数(次数)の指定が無いと判断した場合はステップS21に進み、山数(次数)の指定が有ると判断した場合は、表示制御部117は、表示装置118に指定山数(指定次数)の主軸回転毎の振幅を表示する(図4のステップS20)。そして、研削加工が終了したか否かを判断し(図4のステップS21)、研削加工が終了していない場合はステップS11に戻って上述の処理を繰り返す。一方、ステップS21において、研削加工が終了した場合は、全ての処理を終了する。 The chatter determination unit 116 determines whether or not the number of peaks (order) is specified (step S19 in FIG. 4), and if it is determined that the number of peaks (order) is not specified, the process proceeds to step S21 and the number of peaks (order) is specified. When it is determined that is specified, the display control unit 117 displays the amplitude of each spindle rotation of the specified number of peaks (designated order) on the display device 118 (step S20 in FIG. 4). Then, it is determined whether or not the grinding process is completed (step S21 in FIG. 4), and if the grinding process is not completed, the process returns to step S11 and the above process is repeated. On the other hand, when the grinding process is completed in step S21, all the processes are completed.

また、制御装置24に接続されているネットワーク(無線や有線LANなど)経由で、研削加工シミュレーション装置1の送受信部119は、研削装置2の加工条件(工作物Wの回転数、砥石車21の回転数、砥石車21の送り量(送り速度))などやセンサ(工作物Wや砥石車21の回転駆動用モータの電流や電圧や温度(赤外線センサを含む)や振動(歪センサや振動検出センサやAEセンサなど)など)の情報を受信してシミュレーションを行い、その結果(研削焼けにならない、びびりが無い)から加工条件情報などを研削装置2に送信して、この加工条件で加工することで、工作物Wの研削焼け、びびりが発生しない加工が可能となる。 Further, via a network (wireless, wired LAN, etc.) connected to the control device 24, the transmission / reception unit 119 of the grinding processing simulation device 1 determines the processing conditions of the grinding device 2 (the number of rotations of the workpiece W, the grindstone 21). Rotation speed, feed amount (feed speed) of the grindstone 21, sensors (current, voltage, temperature (including infrared sensor) and vibration (distortion sensor and vibration detection) of the rotary drive motor of the workpiece W and the grindstone 21 (Sensor, AE sensor, etc.)) is received and a simulation is performed, and from the result (no grinding burn, no chatter), machining condition information etc. is transmitted to the grinding device 2 and machining is performed under these machining conditions. As a result, it is possible to perform processing without grinding and burning of the workpiece W and chattering.

(3.実施形態の効果)
本実施形態の研削加工シミュレーション装置1は、回転駆動される砥石車21と回転駆動される工作物Wとを相対移動させて、工作物Wの周面に砥石車21の周面を接触させ、工作物Wの周面を研削する研削加工において、工作物Wの研削状態のシミュレーションを行う研削加工シミュレーション装置1であって、砥石車21と工作物Wとの相対移動方向における砥石車21と工作物Wとの相対位置、砥石車21の形状、及び、工作物Wの形状に基づいて、砥石車21による工作物Wの除去量を算出する除去量算出部105と、算出した除去量に基づいて、研削加工における研削抵抗を算出する研削抵抗算出部107と、を備える。
(3. Effect of the embodiment)
In the grinding processing simulation device 1 of the present embodiment, the rotationally driven grindstone 21 and the rotationally driven workpiece W are relatively moved so that the peripheral surface of the grindstone 21 is brought into contact with the peripheral surface of the workpiece W. In the grinding process for grinding the peripheral surface of the workpiece W, the grinding process simulation device 1 that simulates the grinding state of the workpiece W, and works with the grindstone 21 in the relative movement direction between the grindstone 21 and the workpiece W. Based on the removal amount calculation unit 105 that calculates the removal amount of the workpiece W by the grindstone 21 based on the relative position with the object W, the shape of the grindstone 21, and the shape of the workpiece W, and the calculated removal amount. The grinding resistance calculation unit 107 for calculating the grinding resistance in the grinding process is provided.

さらに、算出した研削抵抗、及び、研削点における工作物Wに対する砥石車21の相対速度に基づいて、研削熱エネルギを算出する熱エネルギ算出部112と、算出した研削熱エネルギ、工作物Wと砥石車21との接触弧長、及び、工作物Wの加工深さに基づいて、工作物Wの加工深さにおける温度を算出し、算出した工作物Wの加工深さの温度に基づいて、工作物Wの研削焼け深さを算出する研削焼け深さ算出部114と、前研削において算出した研削焼け深さ、及び、現研削において算出した除去量に基づいて、現研削における研削焼け残り深さを算出し、算出した現研削における研削焼け残り深さ、及び、現研削において算出した研削焼け深さに基づいて、現研削における新研削焼け深さを算出する新研削焼け深さ算出部115と、を備える。 Further, the thermal energy calculation unit 112 that calculates the grinding heat energy based on the calculated grinding resistance and the relative speed of the grindstone 21 with respect to the workpiece W at the grinding point, and the calculated grinding heat energy, the workpiece W and the grindstone. The temperature at the machining depth of the workpiece W is calculated based on the contact arc length with the vehicle 21 and the machining depth of the workpiece W, and the machining is performed based on the calculated machining depth temperature of the workpiece W. Grinding burn depth in the current grinding based on the grinding burn depth calculation unit 114 that calculates the grinding burn depth of the object W, the grinding burn depth calculated in the pre-grinding, and the removal amount calculated in the current grinding. With the new grinding burn depth calculation unit 115, which calculates the new grinding burn depth in the current grinding based on the calculated remaining grinding burn depth in the current grinding and the grinding burn depth calculated in the current grinding. , Equipped with.

この研削加工シミュレーション装置1では、前研削において算出した研削焼け深さ、及び、現研削において算出した除去量に基づいて、現研削における研削焼け残り深さを算出する。そして、算出した現研削における研削焼け残り深さ、及び、現研削において算出した研削焼け深さに基づいて、現研削における新研削焼け深さを算出する。これにより、前研削における研削焼けが現研削で除去しきれずに残っている場合であっても、現研削における研削焼け残り深さを考慮して現研削における新たな研削焼け深さを算出するので、研削加工における工作物Wの研削焼け深さを、より正確に算出できる。また、工作物Wの1回転毎の研削焼けを算出しているので、加工状態がより正確に把握できる。 In this grinding processing simulation apparatus 1, the grinding burn depth in the current grinding is calculated based on the grinding burn depth calculated in the pre-grinding and the removal amount calculated in the current grinding. Then, the new grinding burn depth in the current grinding is calculated based on the calculated remaining grinding burn depth in the current grinding and the grinding burn depth calculated in the current grinding. As a result, even if the grinding burn in the pre-grinding cannot be completely removed by the current grinding and remains, the new grinding burn depth in the current grinding is calculated in consideration of the grinding burn-out depth in the current grinding. , The grinding burn depth of the workpiece W in the grinding process can be calculated more accurately. Further, since the grinding burn for each rotation of the workpiece W is calculated, the machining state can be grasped more accurately.

また、新研削焼け深さ算出部115は、工作物Wの研削加工の開始から終了まで算出処理を継続するので、研削加工中における研削焼けの状況を把握できる(工作物Wの研削加工の開始から終了までの任意の加工点)。
また、除去量算出部105は、工作物Wの周面形状を、工作物Wを分割した周縁上の分割点と工作物Wの軸心とを結ぶ複数の線分群で表し、各線分と砥石車21の外縁線との交点、及び、砥石車21の相対移動方向における砥石車21の軸心と工作物Wの軸心との離間距離に基づいて、除去量を算出するので、除去量を容易に算出できる。
Further, since the new grinding burn depth calculation unit 115 continues the calculation process from the start to the end of the grinding process of the workpiece W, it is possible to grasp the state of the grinding burn during the grinding process (start of the grinding process of the workpiece W). Any machining point from to the end).
Further, the removal amount calculation unit 105 represents the peripheral surface shape of the workpiece W by a plurality of line segment groups connecting the division points on the peripheral edge of the workpiece W and the axial center of the workpiece W, and each line segment and the grindstone. Since the removal amount is calculated based on the intersection with the outer edge of the car 21 and the distance between the axis of the grindstone 21 and the axis of the workpiece W in the relative movement direction of the grindstone 21, the removal amount is calculated. It can be calculated easily.

また、新研削焼け深さ算出部115は、現研削における研削焼け残り深さ、及び、現研削における研削焼け深さにおいて再硬化層及び軟化層の各深さをそれぞれ把握し、現研削における研削焼け深さにおいて再硬化層の深さを優先して、新研削焼け深さにおける再硬化層及び軟化層の各深さを把握するので、研削加工条件をより高精度に変更可能となる。 Further, the new grinding burn depth calculation unit 115 grasps each depth of the regrinded layer and the softened layer in the grinding burn depth in the current grinding and the grinding burn depth in the current grinding, respectively, and grinds in the current grinding. Since the depth of the re-hardened layer is prioritized in the burn depth and the depths of the re-hardened layer and the softened layer in the new grinding burn depth are grasped, the grinding processing conditions can be changed with higher accuracy.

また、研削加工シミュレーション装置1は、算出した除去量に基づいて、工作物Wの形状を変更する工作物形状変更部106、を備えるので、新研削焼け深さの算出精度をより高めることができる。 Further, since the grinding process simulation device 1 includes a workpiece shape changing portion 106 that changes the shape of the workpiece W based on the calculated removal amount, the calculation accuracy of the new grinding burn depth can be further improved. ..

また、研削加工シミュレーション装置1は、算出した研削抵抗に起因して砥石車21と工作物Wとが相対移動方向に相対変位する変位量を算出する変位量算出部109と、算出した変位量に基づいて、次研削における砥石車21と工作物Wとの相対位置を補正する相対位置補正部110と、変更した工作物Wの形状に基づいて、びびりの有無を判定するびびり判定部116と、を備えるので、びびりの有無を研削加工前に把握でき、生産効率を向上できる。また、研削焼けとびびりの加工状態を同時にシミュレーションできるので、一度に、研削焼けとびびりに対して最適な加工条件を得ることができる。 Further, the grinding processing simulation device 1 uses the displacement amount calculation unit 109 for calculating the displacement amount in which the grindstone 21 and the workpiece W are relatively displaced in the relative movement direction due to the calculated grinding resistance, and the calculated displacement amount. Based on this, a relative position correction unit 110 that corrects the relative position between the grindstone 21 and the workpiece W in the next grinding, and a chatter determination unit 116 that determines the presence or absence of chatter based on the changed shape of the workpiece W. Therefore, the presence or absence of chatter can be grasped before grinding, and the production efficiency can be improved. Further, since the machining state of grinding burn and chatter can be simulated at the same time, the optimum machining conditions for grinding burn and chatter can be obtained at one time.

また、研削加工シミュレーション装置1は、シミュレーションを行うために、研削装置2から加工条件情報を受信し、シミュレーションの結果に基づいて、研削装置2へ加工条件を送信する送受信部119を備える。この加工条件で加工することで、工作物Wの研削焼け、びびりが発生しない加工が可能となる。 Further, the grinding processing simulation device 1 includes a transmission / reception unit 119 that receives processing condition information from the grinding device 2 and transmits the processing conditions to the grinding device 2 based on the result of the simulation in order to perform the simulation. By processing under these processing conditions, it is possible to perform processing that does not cause grinding burn or chattering of the workpiece W.

本実施形態の研削加工シミュレーション方法は、回転駆動される砥石車21と回転駆動される工作物Wとを相対移動させて、工作物Wの周面に砥石車21の周面を接触させ、工作物Wの周面を研削する研削加工において、工作物Wの研削状態をシミュレーションする研削加工シミュレーション方法であって、砥石車21と工作物Wとの相対移動方向における砥石車21と工作物Wとの相対位置、砥石車21の形状、及び、工作物Wの形状に基づいて、砥石車21による工作物Wの除去量を算出する除去量算出工程と、算出した除去量に基づいて、研削加工における研削抵抗を算出する研削抵抗算出工程と、を備える。 In the grinding processing simulation method of the present embodiment, the rotationally driven grindstone 21 and the rotationally driven workpiece W are relatively moved, and the peripheral surface of the grindstone 21 is brought into contact with the peripheral surface of the workpiece W for machining. In the grinding process for grinding the peripheral surface of the object W, this is a grinding process simulation method that simulates the grinding state of the workpiece W, and the grindstone 21 and the workpiece W in the relative movement direction between the grindstone 21 and the workpiece W The removal amount calculation step for calculating the removal amount of the workpiece W by the grindstone 21 based on the relative position of the grindstone 21, the shape of the grindstone 21, and the shape of the workpiece W, and the grinding process based on the calculated removal amount. It is provided with a grinding resistance calculation step for calculating the grinding resistance in the above.

さらに、算出した研削抵抗、及び、研削点における工作物Wに対する砥石車21の相対速度に基づいて、研削熱エネルギを算出する熱エネルギ算出工程と、算出した研削熱エネルギ、工作物Wと砥石車21との接触弧長、及び、工作物Wの加工深さに基づいて、工作物Wの加工深さにおける温度を算出する温度算出工程と、算出した工作物Wの加工深さの温度に基づいて、前研削における工作物Wの研削焼け深さを算出し、算出した前研削における研削焼け深さ、及び、現研削において算出した除去量に基づいて、現研削における研削焼け残り深さを算出し、算出した現研削における研削焼け残り深さ、及び、現研削において算出した研削焼け深さに基づいて、現研削における新研削焼け深さを算出する新研削焼け深さ算出工程と、を備える。これにより、上述の研削加工シミュレーション装置1の効果と同様の効果が得られる。 Further, a thermal energy calculation step for calculating the grinding heat energy based on the calculated grinding resistance and the relative speed of the grindstone 21 with respect to the workpiece W at the grinding point, and the calculated grinding thermal energy, the workpiece W and the grindstone. Based on the temperature calculation process for calculating the temperature at the machining depth of the workpiece W based on the contact arc length with 21 and the machining depth of the workpiece W, and the calculated machining depth temperature of the workpiece W. Then, the grinding burn depth of the workpiece W in the pre-grinding is calculated, and the grinding burn depth in the current grinding is calculated based on the calculated grinding burn depth in the pre-grinding and the removal amount calculated in the current grinding. It is provided with a new grinding burn depth calculation step for calculating the new grinding burn depth in the current grinding based on the calculated remaining grinding burn depth in the current grinding and the grinding burn depth calculated in the current grinding. .. As a result, the same effect as that of the above-mentioned grinding process simulation device 1 can be obtained.

1:研削加工シミュレーション装置、101:工作物形状記憶部、102:砥石形状記憶部、103:指令値記憶部、104:相対位置算出部、105:除去量算出部、106:工作物形状変更部、107:研削抵抗算出部、108:剛性記憶部、109:変位量算出部、110:相対位置補正部、111:加工条件記憶部、112:熱エネルギ算出部、113:分配割合算出部、114:研削焼け深さ算出部、115:新研削焼け深さ算出部、116:びびり判定部、117:表示制御部、118:表示装置、119:送受信部、2:研削装置、21:砥石車、22:砥石台、23:主軸台、24:制御装置、W:工作物、P:研削点 1: Grinding simulation device, 101: Work shape storage unit, 102: Grindstone shape storage unit, 103: Command value storage unit, 104: Relative position calculation unit, 105: Removal amount calculation unit, 106: Work shape change unit , 107: Grinding resistance calculation unit, 108: Rigidity storage unit, 109: Displacement amount calculation unit, 110: Relative position correction unit, 111: Machining condition storage unit, 112: Thermal energy calculation unit, 113: Distribution ratio calculation unit, 114 : Grinding burn depth calculation unit, 115: New grinding burn depth calculation unit, 116: Chatter judgment unit, 117: Display control unit, 118: Display device, 119: Transmission / reception unit 2: Grinding device, 21: Grindstone, 22: Grindstone stand, 23: Headstock, 24: Control device, W: Work piece, P: Grinding point

Claims (8)

回転駆動される砥石車と回転駆動される工作物とを相対移動させて、前記工作物の周面に前記砥石車の周面を接触させ、前記工作物の周面を研削する研削加工において、前記工作物の研削状態のシミュレーションを行う研削加工シミュレーション装置であって、
前記砥石車と前記工作物との相対移動方向における前記砥石車と前記工作物との相対位置、前記砥石車の形状、及び、前記工作物の形状に基づいて、前記砥石車による前記工作物の除去量を算出する除去量算出部と、
算出した前記除去量に基づいて、前記研削加工における研削抵抗を算出する研削抵抗算出部と、
算出した前記研削抵抗、及び、研削点における前記工作物に対する前記砥石車の相対速度に基づいて、研削熱エネルギを算出する熱エネルギ算出部と、
算出した前記研削熱エネルギ、前記工作物と前記砥石車との接触弧長、及び、前記工作物の加工深さに基づいて、前記工作物の加工深さにおける温度を算出し、算出した前記工作物の加工深さの温度に基づいて、前記工作物の研削焼け深さを算出する研削焼け深さ算出部と、
ある加工点を現在研削している場合、前記工作物の1回転前における同一の前記加工点の研削(以下、前研削という)において算出した前記研削焼け深さ、及び、前記加工点の現在の研削(以下、現研削という)において算出した前記除去量に基づいて、前記現研削における研削焼け残り深さを算出し、算出した前記現研削における研削焼け残り深さ、及び、前記現研削において算出した前記研削焼け深さに基づいて、前記現研削における新研削焼け深さを算出する新研削焼け深さ算出部と、
を備える、研削加工シミュレーション装置。
In a grinding process in which a rotationally driven grindstone and a rotationally driven workpiece are relatively moved to bring the peripheral surface of the grindstone into contact with the peripheral surface of the workpiece, and the peripheral surface of the workpiece is ground. A grinding process simulation device that simulates the grinding state of the workpiece.
Based on the relative position of the grindstone and the workpiece in the relative movement direction of the grindstone and the workpiece, the shape of the grindstone, and the shape of the workpiece, the workpiece by the grindstone. A removal amount calculation unit that calculates the removal amount, and
A grinding resistance calculation unit that calculates the grinding resistance in the grinding process based on the calculated removal amount, and a grinding resistance calculation unit.
A thermal energy calculation unit that calculates the grinding thermal energy based on the calculated grinding resistance and the relative speed of the grindstone with respect to the workpiece at the grinding point.
Based on the calculated thermal energy of grinding, the contact arc length between the workpiece and the grindstone, and the machining depth of the workpiece, the temperature at the machining depth of the workpiece was calculated and calculated. A grinding burn depth calculation unit that calculates the grinding burn depth of the workpiece based on the temperature of the machining depth of the object,
When a certain machining point is currently being ground, the grinding burn depth calculated in grinding the same machining point one rotation before the workpiece (hereinafter referred to as pre-grinding ) and the current machining point of the machining point Based on the removal amount calculated in the grinding (hereinafter referred to as the current grinding ) , the residual grinding burn depth in the current grinding is calculated, and the calculated residual grinding burn depth in the current grinding and the calculation in the current grinding are calculated. A new grinding burn depth calculation unit that calculates the new grinding burn depth in the current grinding based on the grinding burn depth
A grinding machine simulation device.
前記新研削焼け深さ算出部は、前記工作物の研削加工の開始から終了まで算出処理を継続する、請求項1に記載の研削加工シミュレーション装置。 The grinding process simulation device according to claim 1, wherein the new grinding burn depth calculation unit continues the calculation process from the start to the end of the grinding process of the workpiece. 前記除去量算出部は、前記工作物の周面形状を、前記工作物を分割した周縁上の分割点と前記工作物の軸心とを結ぶ複数の線分群で表し、各前記線分と前記砥石車の外縁線との交点、及び、前記砥石車の相対移動方向における前記砥石車の軸心と前記工作物の軸心との離間距離に基づいて、前記除去量を算出する、請求項1又は2に記載の研削加工シミュレーション装置。 The removal amount calculation unit represents the peripheral surface shape of the workpiece by a plurality of line segment groups connecting the division points on the peripheral edge of the workpiece and the axial center of the workpiece, and each of the line segments and the said. The removal amount is calculated based on the intersection with the outer edge line of the grindstone and the distance between the axis of the grindstone and the axis of the workpiece in the relative movement direction of the grindstone. Or the grinding process simulation apparatus according to 2. 前記新研削焼け深さ算出部は、前記現研削における前記研削焼け残り深さ、及び、前記現研削における前記研削焼け深さにおいて再硬化層及び軟化層の各深さをそれぞれ把握し、前記現研削における前記研削焼け深さにおいて前記再硬化層の深さに基づいて、前記新研削焼け深さにおける前記再硬化層を把握し、前記現研削における少なくとも前記研削焼け深さにおいて前記軟化層の深さに基づいて、前記新研削焼け深さにおける前記軟化層の深さを把握する、請求項1−3の何れか一項に記載の研削加工シミュレーション装置。 The new grinding burn depth calculation unit grasps each depth of the re-hardened layer and the softened layer at the grinding burn depth in the current grinding and the grinding burn depth in the current grinding, respectively, and the current grinding burn depth calculation unit. Based on the depth of the rehardened layer at the grinding burn depth in grinding, the rehardened layer at the new grinding burn depth is grasped, and the depth of the softened layer at least at the grinding burn depth in the current grinding. The grinding processing simulation apparatus according to any one of claims 1-3, which grasps the depth of the softened layer at the new grinding burn depth based on the above. 前記研削加工シミュレーション装置は、
算出した前記除去量に基づいて、前記工作物の形状を変更する工作物形状変更部、
を備える、請求項1−4の何れか一項に記載の研削加工シミュレーション装置。
The grinding processing simulation device is
A work shape changing unit that changes the shape of the work based on the calculated removal amount.
The grinding processing simulation apparatus according to any one of claims 1-4.
前記研削加工シミュレーション装置は、
算出した前記研削抵抗に起因して前記砥石車と前記工作物とが前記相対移動方向に相対変位する変位量を算出する変位量算出部と、
算出した前記変位量に基づいて、次研削における前記砥石車と前記工作物との相対位置を補正する相対位置補正部と、
変更した前記工作物の形状に基づいて、びびりの有無を判定するびびり判定部と、
を備える、請求項5に記載の研削加工シミュレーション装置。
The grinding processing simulation device is
A displacement amount calculation unit that calculates a displacement amount in which the grindstone wheel and the workpiece are displaced relative to each other in the relative movement direction due to the calculated grinding resistance.
A relative position correction unit that corrects the relative position between the grindstone and the workpiece in the next grinding based on the calculated displacement amount.
A chatter determination unit that determines the presence or absence of chatter based on the changed shape of the workpiece,
The grinding processing simulation apparatus according to claim 5.
前記研削加工シミュレーション装置は、
前記シミュレーションを行うために、研削装置から加工条件情報を受信し、前記シミュレーションの結果に基づいて、前記研削装置へ加工条件を送信する送受信部を備える、請求項1−6の何れか一項に記載の研削加工シミュレーション装置。
The grinding processing simulation device is
The invention according to any one of claims 1 to 6, further comprising a transmission / reception unit that receives machining condition information from the grinding apparatus and transmits the machining conditions to the grinding apparatus based on the result of the simulation in order to perform the simulation. The grinding process simulation device described.
回転駆動される砥石車と回転駆動される工作物とを相対移動させて、前記工作物の周面に前記砥石車の周面を接触させ、前記工作物の周面を研削する研削加工において、前記工作物の研削状態をシミュレーションする研削加工シミュレーション方法であって、
前記砥石車と前記工作物との相対移動方向における前記砥石車と前記工作物との相対位置、前記砥石車の形状、及び、前記工作物の形状に基づいて、前記砥石車による前記工作物の除去量を算出する除去量算出工程と、
算出した前記除去量に基づいて、前記研削加工における研削抵抗を算出する研削抵抗算出工程と、
算出した前記研削抵抗、及び、研削点における前記工作物に対する前記砥石車の相対速度に基づいて、研削熱エネルギを算出する熱エネルギ算出工程と、
算出した前記研削熱エネルギ、前記工作物と前記砥石車との接触弧長、及び、前記工作物の加工深さに基づいて、前記工作物の加工深さにおける温度を算出する温度算出工程と、
算出した前記工作物の加工深さの温度に基づいて、ある加工点を現在研削している場合、前記工作物の1回転前における同一の前記加工点の研削(以下、前研削という)における前記工作物の研削焼け深さを算出し、算出した前研削における前記研削焼け深さ、及び、前記加工点の現在の研削(以下、現研削という)において算出した前記除去量に基づいて、前記現研削における研削焼け残り深さを算出し、算出した前記現研削における研削焼け残り深さ、及び、前記現研削において算出した前記研削焼け深さに基づいて、前記現研削における新研削焼け深さを算出する新研削焼け深さ算出工程と、
を備える、研削加工シミュレーション方法。
In a grinding process in which a rotationally driven grindstone and a rotationally driven workpiece are relatively moved to bring the peripheral surface of the grindstone into contact with the peripheral surface of the workpiece, and the peripheral surface of the workpiece is ground. This is a grinding process simulation method that simulates the grinding state of the workpiece.
Based on the relative position of the grindstone and the workpiece in the relative movement direction of the grindstone and the workpiece, the shape of the grindstone, and the shape of the workpiece, the workpiece by the grindstone. The removal amount calculation process for calculating the removal amount and
A grinding resistance calculation step of calculating the grinding resistance in the grinding process based on the calculated removal amount, and a grinding resistance calculation step.
A thermal energy calculation step of calculating the grinding thermal energy based on the calculated grinding resistance and the relative speed of the grindstone with respect to the workpiece at the grinding point.
A temperature calculation step of calculating the temperature at the machining depth of the workpiece based on the calculated grinding heat energy, the contact arc length between the workpiece and the grindstone, and the machining depth of the workpiece.
When a certain machining point is currently being ground based on the calculated machining depth temperature of the workpiece, the above-mentioned in grinding of the same machining point (hereinafter referred to as pre-grinding ) one rotation before the workpiece. The current grinding burn depth of the workpiece is calculated, and based on the calculated grinding burn depth in the pre-grinding and the removal amount calculated in the current grinding of the machining point (hereinafter referred to as the current grinding). The new grinding burn depth in the current grinding is calculated based on the calculated grinding burn depth in the current grinding and the grinding burn depth calculated in the current grinding. New grinding burn depth calculation process to be calculated and
A grinding process simulation method.
JP2017054848A 2017-03-21 2017-03-21 Grinding simulation equipment and method Active JP6911426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017054848A JP6911426B2 (en) 2017-03-21 2017-03-21 Grinding simulation equipment and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017054848A JP6911426B2 (en) 2017-03-21 2017-03-21 Grinding simulation equipment and method

Publications (2)

Publication Number Publication Date
JP2018153907A JP2018153907A (en) 2018-10-04
JP6911426B2 true JP6911426B2 (en) 2021-07-28

Family

ID=63717661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017054848A Active JP6911426B2 (en) 2017-03-21 2017-03-21 Grinding simulation equipment and method

Country Status (1)

Country Link
JP (1) JP6911426B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7215312B2 (en) * 2019-04-22 2023-01-31 株式会社ジェイテクト Cyber-physical system processing system
JP7239106B2 (en) * 2019-04-22 2023-03-14 株式会社ジェイテクト Cyber-physical production system type production system
JP7412695B2 (en) 2019-10-03 2024-01-15 慶應義塾 Machine tools, numerical control devices and vibration suppression methods

Also Published As

Publication number Publication date
JP2018153907A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
Tönshoff et al. Process monitoring in grinding
JP6911426B2 (en) Grinding simulation equipment and method
JP6862764B2 (en) Grinding device and method of manufacturing rolling bearings using it
US11597056B2 (en) Apparatus and method for assisting grinding machine
JP5272569B2 (en) Chatter simulation apparatus and chatter simulation method
JP2020069600A (en) Machine tool
CN106457503B (en) Method for grinding a workpiece and method for determining process parameters
Hou et al. Applications of high-efficiency abrasive process with CBN grinding wheel
JP5821613B2 (en) Grinding abnormality monitoring method and grinding abnormality monitoring apparatus
JP2020069599A (en) Support device of machine tool and machine tool system
Krajnik et al. Simulation of workpiece forming and centre displacement in plunge centreless grinding
Chi et al. Optimization of internal plunge grinding using collaboration of the air-grinding and the material removal model based on the power signal
CN111716251B (en) Method for optimizing finishing process of precision bearing grinding diamond roller
JP2017132000A (en) Manufacturing system and manufacturing method
JP2016129927A (en) Method for compensating temperature-induced deviations in grinding machine, and machine corresponding to said method
JP2015208812A (en) Grinding processing device and method
JP7172636B2 (en) Machine tool maintenance support device and machine tool system
JP7451949B2 (en) Machining quality prediction system
JP7215312B2 (en) Cyber-physical system processing system
JP2012168742A (en) Machining center provided with grindstone wear correction function
JP2021171833A (en) Surface roughness estimation system
Tang et al. Research on constant grinding depth model for cam grinding
JP6163916B2 (en) Wheel wear measurement method
JP2021171871A (en) Chattering detection system
Wang et al. Fewer-axis grinding methodology with simultaneously guaranteeing surface accuracy and grinding force for large optical SiC mirror

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6911426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150