JP6910317B2 - Delayed fracture evaluation method for metallic materials - Google Patents

Delayed fracture evaluation method for metallic materials Download PDF

Info

Publication number
JP6910317B2
JP6910317B2 JP2018062825A JP2018062825A JP6910317B2 JP 6910317 B2 JP6910317 B2 JP 6910317B2 JP 2018062825 A JP2018062825 A JP 2018062825A JP 2018062825 A JP2018062825 A JP 2018062825A JP 6910317 B2 JP6910317 B2 JP 6910317B2
Authority
JP
Japan
Prior art keywords
load
test piece
test
delayed fracture
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018062825A
Other languages
Japanese (ja)
Other versions
JP2019174282A (en
Inventor
誠 河盛
誠 河盛
漆原 亘
亘 漆原
努 柿本
努 柿本
宗親 谷
宗親 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Toyota Motor Corp
Original Assignee
Kobe Steel Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Toyota Motor Corp filed Critical Kobe Steel Ltd
Priority to JP2018062825A priority Critical patent/JP6910317B2/en
Publication of JP2019174282A publication Critical patent/JP2019174282A/en
Application granted granted Critical
Publication of JP6910317B2 publication Critical patent/JP6910317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、自動車、輸送機械等の各種産業機械に用いられる金属材料が大気及び風雨、あるいは海塩、道路の融雪剤などによって腐食を受ける環境に曝された場合に、ある程度の時間の経過後に割れが生じる現象である遅れ破壊を、簡便かつ迅速、高感度に評価する方法に関する。 According to the present invention, when a metal material used in various industrial machines such as automobiles and transportation machines is exposed to an environment where it is corroded by air, wind and rain, sea salt, a snow melting agent on a road, etc., after a certain period of time has passed. The present invention relates to a method for easily, quickly and highly sensitively evaluating delayed fracture, which is a phenomenon in which cracks occur.

近年、地球環境問題の観点から自動車の低燃費化が求められており、その解決法の一つとして車体重量の軽量化が進められている。この軽量化を実現する方法として、例えば自動車の足回りに使用するボルトにも高強度化による小型化が求められている。また、高強度化のため高強度鋼を用いる場合、使用中に鋼材の腐食に伴って水素が発生し、鋼中に侵入することによって発生する遅れ破壊を防止することが求められている。自動車の足回り用ボルトでは、ボディ骨格に用いられる高強度鋼板とは異なり、自動車の走行中に大気及び風雨だけでなく、冬季に道路の凍結防止のため散布される凍結防止剤(CaClなど)等により非常に厳しい腐食環境に曝されることが知られている。 In recent years, from the viewpoint of global environmental problems, it has been required to reduce the fuel consumption of automobiles, and as one of the solutions, the weight of the vehicle body has been reduced. As a method for achieving this weight reduction, for example, bolts used for undercarriage of automobiles are also required to be miniaturized by increasing their strength. Further, when high-strength steel is used for high strength, it is required to prevent delayed fracture caused by the invasion of hydrogen into the steel due to the generation of hydrogen due to the corrosion of the steel material during use. Unlike high-strength steel plates used for body skeletons, automobile suspension bolts are sprayed with antifreeze agents (CaCl 2, etc.) to prevent freezing of roads in winter as well as the atmosphere and wind and rain while driving. ) Etc. are known to be exposed to a very severe corrosive environment.

長期間の暴露試験で破断した破面を観察すると、脆弱化しやすい粒界が破断する、いわゆる粒界破面が破断起点の周囲の広い面積に認められる。これは、腐食ピット底などの応力集中部に水素が集積して初期亀裂が発生した後一旦停止し、その後、亀裂先端近傍に水素が再度集積することで水素脆化が引き起こされて、再度亀裂が進展するといったプロセスが繰り返される、粒界亀裂進展モードによって破断に至るためである。上記プロセスでは、長期間かけて亀裂が進展するため、水素脆化が関与する領域が広くなり、粒界破面率(粒界破面を呈した面積/破面の全面積)が高くなる傾向がある。 When observing the fracture surface broken by a long-term exposure test, a so-called grain boundary fracture surface, in which the fragile grain boundaries are fractured, is observed in a wide area around the fracture starting point. This is because hydrogen is accumulated in the stress concentration part such as the bottom of the corrosion pit and an initial crack is generated, and then it stops temporarily. Then, hydrogen is re-accumulated near the crack tip to cause hydrogen embrittlement and crack again. This is because the breakage occurs due to the intergranular crack growth mode in which the process of progressing is repeated. In the above process, since cracks develop over a long period of time, the region where hydrogen embrittlement is involved becomes wider, and the grain boundary fracture surface ratio (area exhibiting grain boundary fracture surface / total area of fracture surface) tends to increase. There is.

従来から鋼材の遅れ破壊の評価は、実際の使用環境下での長期間の暴露試験により行われているが、多大な試験期間と労力とを必要とするため、試験期間を短縮した加速試験方法が種々提案されている。 Conventionally, the evaluation of delayed fracture of steel materials has been carried out by long-term exposure tests under actual usage environments, but since it requires a large amount of test period and labor, an accelerated test method that shortens the test period. Have been proposed in various ways.

例えば、非特許文献1では、低歪速度で応力を負荷して試験片を強制破断させて、遅れ破壊を迅速に評価する、低歪速度引張試験(SSRT:Slow Strain Rate Technique)が提案されている。この試験では、試験片を微量の拡散性水素によって脆化させて、強制的に破断させるため、試験環境によらず迅速な評価が原理的に可能である。 For example, Non-Patent Document 1 proposes a low strain rate tensile test (SSRT: Slow Straight Rate Tensile) in which a test piece is forcibly fractured by applying stress at a low strain rate to quickly evaluate delayed fracture. There is. In this test, the test piece is embrittled with a small amount of diffusible hydrogen and forcibly broken, so that rapid evaluation is possible in principle regardless of the test environment.

また、特許文献1には、実環境に晒された場合の遅れ破壊特性の評価と同等の結果が得られ、かつ短時間で評価可能な遅れ破壊評価方法が開示されている。特許文献1に係る遅れ破壊評価方法では、濃度を定めた試験溶液に試験片を浸漬し、試験片に一定の荷重を負荷して破断荷重を測定する定荷重試験を行う。 Further, Patent Document 1 discloses a delayed fracture evaluation method that can obtain the same result as the evaluation of delayed fracture characteristics when exposed to a real environment and can be evaluated in a short time. In the delayed fracture evaluation method according to Patent Document 1, a test piece is immersed in a test solution having a defined concentration, a constant load is applied to the test piece, and a constant load test is performed to measure a breaking load.

また、特許文献2には、メッキのような微量水素侵入下での鋼材の遅れ破壊性を評価できる破壊性評価方法が開示されている。特許文献2に係る破壊性評価方法では、円周状の切欠を有する棒状鋼材を疲労させ、疲労破壊するまでの回数を求めることにより、鋼材の遅れ破壊性を評価するに当たり、棒状鋼材に静的な曲げ荷重を一定時間加え、次いで、曲げ疲労させて破断させる。 Further, Patent Document 2 discloses a fracture property evaluation method capable of evaluating the delayed fracture property of a steel material under the invasion of a trace amount of hydrogen such as plating. In the fracture fracture evaluation method according to Patent Document 2, the delayed fracture property of the steel material is statically evaluated by determining the number of times until the rod-shaped steel material having a circumferential notch is fatigued and fractured by fatigue. A flexible bending load is applied for a certain period of time, and then bending fatigue is applied to break the fracture.

特許第5467026号公報Japanese Patent No. 5467026 特開平11−30577号公報Japanese Unexamined Patent Publication No. 11-30577

漆原亘・高知琢哉著、「SSRT法による高強度鋼の遅れ破壊評価」R&D神戸製鋼技報、Vol.61,No.1,2011年,p.47〜51Wataru Urushihara and Takuya Kochi, "Evaluation of Delayed Fracture of High-Strength Steel by SSRT Method", R & D Kobe Steel Technical Report, Vol. 61, No. 1,2011, p. 47-51

しかしながら、遅れ破壊評価に係る加速試験方法では、実環境下での遅れ破壊挙動を再現できることが求められるが、従来の加速試験方法では、実環境下での遅れ破壊挙動の特徴である高い粒界破面率を再現できない場合があった。 However, in the accelerated fracture evaluation method related to the delayed fracture evaluation, it is required to be able to reproduce the delayed fracture behavior in the actual environment, but in the conventional accelerated test method, the high grain boundary, which is a feature of the delayed fracture behavior in the actual environment, is required. In some cases, the fracture surface ratio could not be reproduced.

非特許文献1に記載されている低歪速度引張試験では、動的歪により徐々に応力を負荷する応力加速型の試験であるため、水素脆化によって初期亀裂が発生した後、亀裂進展が急速に進む。このため、破損モードが実環境下における一般的なモードである粒界亀裂進展モードと異なり、高い粒界破面率を再現できない場合があった。 Since the low strain rate tensile test described in Non-Patent Document 1 is a stress acceleration type test in which stress is gradually applied by dynamic strain, crack growth is rapid after initial cracks are generated by hydrogen embrittlement. Proceed to. Therefore, unlike the grain boundary crack growth mode, which is a general mode in the actual environment, the breakage mode may not be able to reproduce a high grain boundary fracture surface ratio.

また、特許文献1に記載されている定荷重試験では、初期亀裂発生に伴う試験断面積の低下によって応力が加速度的に増加するため、低歪速度引張試験と同様に亀裂進展が急速に進行する。そのため、割れ起点となる表面のみが脆化するため、粒界破面率が小さくなり、実態破面を再現できない場合があった。また、特許文献1に記載されている定荷重試験では、評価に長時間を有し、実環境下で侵入するような微量な水素量では試験片が破断に至らないので水素脆化による危険度が判断し難い問題もあった。 Further, in the constant load test described in Patent Document 1, since the stress increases at an accelerating rate due to the decrease in the test cross-sectional area due to the occurrence of the initial crack, the crack growth progresses rapidly as in the low strain rate tensile test. .. Therefore, since only the surface serving as the crack starting point becomes embrittlement, the grain boundary fracture surface ratio becomes small, and the actual fracture surface may not be reproduced in some cases. Further, in the constant load test described in Patent Document 1, the evaluation takes a long time, and the test piece does not break even with a small amount of hydrogen that invades in the actual environment, so that the risk due to hydrogen embrittlement is high. There was also a problem that was difficult to judge.

また、特許文献2に記載されている定変位試験では、切欠などの応力集中箇所のみに水素が濃化し、曲げ疲労させて破断させるときには亀裂進展が急速に進行する。そのため、定荷重試験と同様に、割れ起点となる表面のみが脆化するため、粒界破面率が小さくなり、実態破面を再現できない場合があった。 Further, in the constant displacement test described in Patent Document 2, hydrogen is concentrated only in the stress concentration portion such as a notch, and crack growth progresses rapidly when bending fatigue occurs and fracture occurs. Therefore, as in the constant load test, only the surface that is the starting point of cracking becomes embrittlement, so that the grain boundary fracture surface ratio becomes small and the actual fracture surface cannot be reproduced in some cases.

すなわち、従来の加速試験方法では、破損モードが実環境下における一般的なモードである粒界亀裂進展モードと異なるため、粒界破面は少なく、擬へき開破面及び急進延性破面が支配的であった。例えば実環境下にて20%を超える粒界破面率となる鋼材においても、水素導入下での定荷重方法及び低歪速度引張試験などの従来加速試験では粒界破面率が20%未満にとどまっていた。 That is, in the conventional acceleration test method, since the fracture mode is different from the grain boundary crack propagation mode, which is a general mode in the actual environment, the grain boundary fracture surface is small, and the pseudo-cleavage fracture surface and the rapid ductile fracture surface are dominant. Met. For example, even for a steel material having a grain boundary fracture surface ratio of more than 20% in an actual environment, the grain boundary fracture surface ratio is less than 20% in conventional accelerated tests such as a constant load method under hydrogen introduction and a low strain rate tensile test. I was staying at.

本発明はこのような状況を鑑み、実環境下において一般的にみられる粒界亀裂進展モードを短時間で再現でき、亀裂発生及び亀裂進展を含む遅れ破壊を適切かつ迅速に判定することができる評価方法を提供することを目的とする。 In view of such a situation, the present invention can reproduce the grain boundary crack growth mode generally observed in a real environment in a short time, and can appropriately and quickly determine delayed fracture including crack generation and crack growth. The purpose is to provide an evaluation method.

本発明の態様1は、
金属材料の試験片に水素を導入する水素導入工程と、
水素が導入された上記試験片に引張速度が10μm/min以下の低歪速度で荷重を加える第1工程と、最大荷重に到達後、当該最大荷重の0.1〜10%の範囲内で予め設定した値の荷重低下が発生したときに除荷する第2工程と、をこの順に含む荷重付与工程を1回以上行う繰り返し荷重付与工程と、
上記繰り返し荷重付与工程の後に、低歪速度で上記試験片を破断させる破断工程と、を含み、
上記荷重付与工程における最大応力と上記破断工程における最大応力とに基づいて耐遅れ破壊性を評価する、金属材料の遅れ破壊評価法である。
Aspect 1 of the present invention is
A hydrogen introduction process that introduces hydrogen into a test piece of a metal material,
The first step of applying a load to the test piece into which hydrogen is introduced at a low strain rate of 10 μm / min or less, and after reaching the maximum load, in advance within the range of 0.1 to 10% of the maximum load. A second step of unloading when a load drop of a set value occurs, a repeated load applying step of performing a load applying process including the set values in this order at least once, and a repeated load applying process.
After the repetitive load applying step, a breaking step of breaking the test piece at a low strain rate is included.
This is a delayed fracture evaluation method for a metal material, which evaluates the delayed fracture resistance based on the maximum stress in the load applying process and the maximum stress in the breaking process.

本発明の態様2は、繰り返し荷重付与回数が1回目の上記荷重付与工程における最大応力と、当該最大応力から上記破断工程における最大応力への変化率と、に基づいて耐遅れ破壊性を評価する、態様1に記載の遅れ破壊評価法である。 In aspect 2 of the present invention, the delayed fracture resistance is evaluated based on the maximum stress in the load applying step of the first repeated loading and the rate of change from the maximum stress to the maximum stress in the breaking step. , The delayed fracture evaluation method according to the first aspect.

本発明の態様3は、
金属材料の試験片に水素を導入する水素導入工程と、
水素が導入された上記試験片に引張速度が10μm/min以下の低歪速度で荷重を加える第1工程と、最大荷重に到達後、当該最大荷重の0.1〜10%の範囲内で予め設定した値の荷重低下が発生したときに除荷する第2工程と、をこの順に含む荷重付与工程を2回以上行う繰り返し荷重付与工程と、
上記繰り返し荷重付与工程の後に、低歪速度で上記試験片を破断させる破断工程と、を含み、
最大応力が予め設定した応力値以下となる上記荷重付与工程の繰り返し荷重付与回数に基づいて耐遅れ破壊性を評価する、金属材料の遅れ破壊評価法である。
Aspect 3 of the present invention
A hydrogen introduction process that introduces hydrogen into a test piece of a metal material,
The first step of applying a load to the test piece into which hydrogen is introduced at a low strain rate of 10 μm / min or less, and after reaching the maximum load, in advance within the range of 0.1 to 10% of the maximum load. A second step of unloading when a load drop of a set value occurs, a repeated load applying step of performing a load applying process including the set values in this order two or more times, and a repeated load applying process.
After the repetitive load applying step, a breaking step of breaking the test piece at a low strain rate is included.
This is a delayed fracture evaluation method for a metal material, which evaluates the delayed fracture resistance based on the number of times of repeated load application in the load application step in which the maximum stress is equal to or less than a preset stress value.

本発明の態様4は、
上記金属材料は、鋼材である、態様1〜3のいずれかに記載の遅れ破壊評価法である。
Aspect 4 of the present invention
The metal material is a steel material, which is the delayed fracture evaluation method according to any one of aspects 1 to 3.

本発明の態様5は、
上記試験片には応力集中係数が10以下である切欠が付与されている、態様1〜4のいずれかに記載の遅れ破壊評価法である。
Aspect 5 of the present invention
The delayed fracture evaluation method according to any one of aspects 1 to 4, wherein the test piece is provided with a notch having a stress concentration coefficient of 10 or less.

実環境下において一般的にみられる粒界亀裂進展モードを短時間で再現でき、亀裂発生及び亀裂進展を含む遅れ破壊を適切かつ迅速に判定することができる。 The grain boundary crack growth mode generally observed in a real environment can be reproduced in a short time, and delayed fracture including crack generation and crack growth can be appropriately and quickly determined.

従来の遅れ破壊評価法と本発明の遅れ破壊評価法を説明するための模式図。The schematic diagram for demonstrating the conventional delayed fracture evaluation method and the delayed fracture evaluation method of this invention. 実施例に係る試験片の形状を示す模式図。The schematic diagram which shows the shape of the test piece which concerns on Example. 実施例に係る繰り返し荷重付与回数と粒界破面率との関係を示す図。The figure which shows the relationship between the number of times of repeated load, and the grain boundary fracture surface ratio which concerns on Example. 実施例に係る繰り返し荷重付与工程における最大応力の変化を示す図。The figure which shows the change of the maximum stress in the repeated load application process which concerns on Example.

本発明者らは、上記した課題を解決するため、実環境下において一般的にみられる粒界亀裂進展モードを短時間で再現できる遅れ破壊の評価方法について、鋭意研究を行った。荷重が一定である定荷重試験、及び荷重が増加する低歪速度引張試験といった従来の加速試験方法では、水素脆化により初期亀裂が応力集中部で発生すると、試験片断面積が減少するため、応力が顕著に高くなり、亀裂が急速に進展して破断に至る。その結果、初期亀裂が生じた領域のみが粒界破面を形成し、その他の領域は水素濃化が起きていないためディンプル破面及び/又は擬へき開破面となるため、実態とは異なる破面形態になったと発明者らは推察した。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research on a method for evaluating delayed fracture that can reproduce the grain boundary crack growth mode generally observed in a real environment in a short time. In conventional accelerated test methods such as a constant load test in which the load is constant and a low strain rate tensile test in which the load increases, when initial cracks occur in the stress concentration area due to hydrogen brittleness, the cross-sectional area of the test piece decreases, so stress Is significantly higher, and the crack grows rapidly, leading to breakage. As a result, only the region where the initial crack occurred forms the grain boundary fracture surface, and the other regions become dimple fracture surfaces and / or pseudo-cleavage fracture surfaces because hydrogen enrichment does not occur, which is different from the actual situation. The inventors speculated that it became a surface form.

一方、実環境下では、長期間の曝露により初期亀裂が発生したとしても定荷重試験及び低歪速度引張試験のように初期亀裂に伴う顕著な応力増加による早期破断が発生せず、長期間かけて亀裂進展が進行し、破断に至る。従来方法では、亀裂進展と停止を繰り返すような実態プロセスを伴わない方法であり、実態の粒界破面を再現できておらず、実態に即した評価法とはいえないものであった。 On the other hand, in an actual environment, even if an initial crack occurs due to long-term exposure, early fracture due to a remarkable increase in stress due to the initial crack does not occur as in the constant load test and low strain rate tensile test, and it takes a long time. The crack grows and breaks. The conventional method is a method that does not involve an actual process that repeats crack growth and stoppage, and cannot reproduce the actual grain boundary fracture surface, and cannot be said to be an evaluation method that is in line with the actual situation.

そこで、本発明者らは、実環境下における亀裂進展と停止に対応した繰り返し荷重を金属材料に付与することにより、従来の加速試験方法では実現が困難であった高い粒界破面率を再現できることを見出した。具体的には、本発明では、水素が導入された試験片に引張速度が10μm/min以下の低歪速度で荷重を加えることにより亀裂を進展させる。続いて、最大荷重に到達後、当該最大荷重の0.1〜10%の範囲内で予め設定した値の荷重低下が発生したときに除荷することにより亀裂進展を停止させる。以上の工程を繰り返すことにより、本発明では、実環境下における亀裂進展と停止に対応した繰り返し荷重を金属材料に付与することができる。
以下に本発明の遅れ破壊評価法について詳細に説明する。
Therefore, the present inventors reproduce a high grain boundary fracture surface ratio, which was difficult to realize by the conventional accelerated test method, by applying a repetitive load corresponding to crack growth and stoppage in the actual environment to the metal material. I found out what I could do. Specifically, in the present invention, a crack is developed by applying a load to a test piece into which hydrogen has been introduced at a low strain rate of 10 μm / min or less. Subsequently, after reaching the maximum load, when a load drop of a preset value occurs within the range of 0.1 to 10% of the maximum load, the load is removed to stop the crack growth. By repeating the above steps, in the present invention, it is possible to apply a repetitive load corresponding to crack growth and stop in the actual environment to the metal material.
The delayed fracture evaluation method of the present invention will be described in detail below.

1.遅れ破壊試験方法
まず、本発明に係る遅れ破壊試験方法について説明する。本発明に係る遅れ破壊試験方法は、水素導入工程と、繰り返し荷重付与工程と、破断工程と、を含む。
1. 1. Delayed Fracture Test Method First, the delayed fracture test method according to the present invention will be described. The delayed fracture test method according to the present invention includes a hydrogen introduction step, a repeated load applying step, and a breaking step.

上記各工程について説明する前に、まず本発明で用いられる試験片について説明する。試験片は、金属材料で形成されている。金属材料は、主に鋼材である。しかし、金属材料は、これに限定されず、遅れ破壊現象が生じ得る例えばAl等の他の金属材料であってもよい。なお、以下では、説明を簡略化するため、金属材料は鋼材であるとして説明する。
試験片の形状は、板状、棒状、ボルト形状、などいずれの形状でもよい。また、試験片は、切欠が付与されていてもされていなくてもよいが、ボルトのねじ部への応力集中を模擬する場合、切欠を付与する方が好ましい。また、試験片に切欠を付与する場合には、下記式(1)で表される応力集中係数Ktが小さすぎると切欠での応力集中が起きにくく、試験片のR部及び平滑部などの目的とする応力集中箇所での割れを再現することができず、再現性が悪くなるため、応力集中係数Ktは1以上にする。一方、応力集中係数Ktが大きすぎる場合は局所的に応力が集中しすぎて安定した割れの発生が生じないこと、また切欠形状が鋭利になりすぎて加工が困難になるため、応力集中係数Ktは10以下、好ましくは8以下とする。

応力集中係数Kt=σmsx / σo ・・・(1)
ただし、σmsx:切欠き底部に発生する最大応力,σo:最小断面部での平均(公称)応力である。
Before explaining each of the above steps, first, the test piece used in the present invention will be described. The test piece is made of a metal material. The metal material is mainly steel. However, the metal material is not limited to this, and may be another metal material such as Al, which can cause a delayed fracture phenomenon. In the following, for the sake of brevity, the metal material will be described as a steel material.
The shape of the test piece may be any shape such as a plate shape, a rod shape, and a bolt shape. Further, the test piece may or may not have a notch, but it is preferable to provide a notch when simulating stress concentration on the threaded portion of the bolt. Further, when a notch is given to the test piece, if the stress concentration coefficient Kt represented by the following formula (1) is too small, stress concentration in the notch is unlikely to occur, and the purpose of the R portion and the smooth portion of the test piece, etc. Since it is not possible to reproduce the crack at the stress concentration point and the reproducibility is deteriorated, the stress concentration coefficient Kt is set to 1 or more. On the other hand, if the stress concentration coefficient Kt is too large, the stress is locally concentrated too much and stable cracks do not occur, and the notch shape becomes too sharp to make machining difficult. Therefore, the stress concentration coefficient Kt Is 10 or less, preferably 8 or less.

Stress concentration coefficient Kt = σmsx / σo ・ ・ ・ (1)
However, σmsx: maximum stress generated at the bottom of the notch, σo: average (nominal) stress at the minimum cross section.

[水素導入工程]
本発明に係る遅れ破壊試験方法は、まず金属材料の試験片に水素を導入する。試験片に水素を導入する方法は、陰極チャージ法などの電気化学的方法、塩酸などを用いる酸浸漬法、腐食反応による鋼中への水素導入など、試験目的に応じた水素チャージ法を選択すればよい。これらの水素チャージ法の中でも特に陰極チャージなどの電気化学的方法を用いて、電解液の種類及び濃度、付与する電流密度を制御することによって所望の水素量を鋼中に導入することが好ましい。特に陰極チャージ法により水素を導入する方法では、遅れ破壊が発生した後の破面で水素発生反応が生じるため溶液による腐食が抑制され、後に破面の状況を評価する場合に好適である。一方、塩酸などの酸浸漬、腐食反応による鋼中への水素導入などの方法では、遅れ破壊が発生した後の破面でも腐食反応が生じ得るため、後に破面の状況を評価する場合に観察し難いといった問題が生じ得る。
[Hydrogen introduction process]
In the delayed fracture test method according to the present invention, hydrogen is first introduced into a test piece of a metal material. For the method of introducing hydrogen into the test piece, select a hydrogen charging method according to the test purpose, such as an electrochemical method such as a cathode charging method, an acid immersion method using hydrochloric acid, or hydrogen introduction into steel by a corrosion reaction. Just do it. Among these hydrogen charging methods, it is preferable to introduce a desired amount of hydrogen into the steel by controlling the type and concentration of the electrolytic solution and the applied current density by using an electrochemical method such as cathode charging. In particular, the method of introducing hydrogen by the cathode charge method is suitable for evaluating the condition of the fracture surface after the corrosion by the solution is suppressed because the hydrogen generation reaction occurs on the fracture surface after the delayed fracture occurs. On the other hand, in methods such as acid immersion such as hydrochloric acid and introduction of hydrogen into steel by a corrosion reaction, a corrosion reaction may occur even on the fracture surface after delayed fracture occurs, so this is observed when evaluating the condition of the fracture surface later. Problems such as difficulty can occur.

陰極チャージ法を採用する場合、陰極チャージに用いる電解溶液のpHは中性の8程度から3程度が好ましい。電解溶液の例としては、鋼中への水素侵入の触媒作用のあるチオシアン酸塩(チオシアン酸カリウム、チオシアン酸アンモニウムなど)の水溶液が挙げられる。この水溶液のpHは約6程度である。酸性の溶液を用いる場合は、この水溶液に硫酸を添加して上記pHの範囲に調整すればよいが、pHが3を下回ると鋼材の腐食が促進されるため、試験片に切欠きが付与されている場合、切欠き形状に変化が生じ得るため注意が必要となる。また、導入される水素量が高くなるため、実態の水素量と乖離し、実態から乖離した試験法となってしまう。中性の溶液を用いる場合は上記水溶液をそのまま使用すればよい。電解溶液におけるチオシアン酸塩の濃度が高すぎると試験片に腐食による溶出を生じさせる可能性があるため、1M以下とするのが好ましい。また、電解溶液の電解性を向上させるためにNaClなどを添加してもよい。 When the cathode charging method is adopted, the pH of the electrolytic solution used for the cathode charging is preferably about 8 to 3 which is neutral. Examples of electrolytic solutions include aqueous solutions of thiocyanate (potassium thiocyanate, ammonium thiocyanate, etc.) that catalyze hydrogen invasion into steel. The pH of this aqueous solution is about 6. When using an acidic solution, sulfuric acid may be added to this aqueous solution to adjust the pH to the above range. However, if the pH is lower than 3, corrosion of the steel material is promoted, so that a notch is provided in the test piece. If so, care must be taken because the shape of the notch may change. In addition, since the amount of hydrogen introduced is high, the test method deviates from the actual amount of hydrogen, resulting in a deviating test method. When a neutral solution is used, the above aqueous solution may be used as it is. If the concentration of thiocyanate in the electrolytic solution is too high, the test piece may be eluted due to corrosion, so the concentration is preferably 1 M or less. Further, NaCl or the like may be added in order to improve the conductivity of the electrolytic solution.

陰極チャージする定電流の電流密度は、0.01mA/cm以上10mA/cm未満とすることが好ましい。電流密度が0.01mA/cmを下回った場合は、鋼中へ導入される水素量が少ないために評価に多大な時間を要する場合がある。また電流密度が10mA/cmを超えた場合には鋼中へ一度に大量の水素が導入されること、また水素導入量にバラツキが生じるため、評価結果にバラツキを生じさせる場合がある。 Current density constant current cathodic charging is preferably set to 0.01 mA / cm 2 or more 10 mA / cm less than 2. When the current density is less than 0.01 mA / cm 2 , it may take a long time for evaluation because the amount of hydrogen introduced into the steel is small. Further, when the current density exceeds 10 mA / cm 2 , a large amount of hydrogen is introduced into the steel at one time, and the amount of hydrogen introduced varies, so that the evaluation result may vary.

陰極チャージの方法は、前述の電解質を含む水溶液中に試験片と対極とを配置し、試験片に負の電流を付与すればよい。電流の制御はポテンショスタットなどを用いればよい。 In the method of cathode charging, the test piece and the counter electrode may be arranged in the above-mentioned aqueous solution containing an electrolyte, and a negative current may be applied to the test piece. A potentiostat or the like may be used to control the current.

陰極チャージ又は酸浸漬を行った試験片に試験中に連続して水素チャージを行わない場合、試験片に導入した水素が逃散しないようにめっき処理をすることが好ましい。めっき膜の種類は、例えばZnめっき、Cdめっきなど水素拡散係数が低く緻密で孔のない構造を有するめっきを選択することが好ましい。ここで、Cdめっきは人体に有害なこと、および環境負荷が大きいため、取り扱いが簡便で環境負荷も小さいZnめっきを選択することが好ましい。めっき方法は、導入した水素が試験片から飛散するのを極力防止しつつ、均一で緻密なめっき膜を形成させる必要があるため、可能な限り短時間で行うことが好ましい。なお、めっき方法は、めっき膜厚などを制御しやすく、また不要な水素侵入を抑制することができるため電気めっき法が好ましい。 When the test piece subjected to the cathode charge or the acid immersion is not continuously charged with hydrogen during the test, it is preferable to perform a plating treatment so that the hydrogen introduced into the test piece does not escape. As the type of plating film, it is preferable to select plating having a dense and pore-free structure having a low hydrogen diffusion coefficient, such as Zn plating and Cd plating. Here, since Cd plating is harmful to the human body and has a large environmental load, it is preferable to select Zn plating which is easy to handle and has a small environmental load. The plating method is preferably performed in the shortest possible time because it is necessary to form a uniform and dense plating film while preventing the introduced hydrogen from scattering from the test piece as much as possible. The plating method is preferably an electroplating method because it is easy to control the plating film thickness and the like and unnecessary hydrogen intrusion can be suppressed.

[繰り返し荷重付与工程]
水素導入工程に続いて繰り返し荷重付与工程を行う。前述したように、従来の定荷重試験、定変位試験及び低歪速度引張試験では、切欠などの応力集中箇所のみに水素が濃化するため、水素脆化に関与する領域が局所に限定され、実環境に近い水素量では高い粒界破面率を得ることができない場合があった。本発明者らは、実環境に近い水素量で高い粒界破面率を得るための方法を検討した結果、以下に詳細を説明する繰り返し荷重付与工程が有効であることを見出した。
[Repeat load application process]
Following the hydrogen introduction step, a repeated load applying step is performed. As described above, in the conventional constant load test, constant displacement test, and low strain rate tensile test, hydrogen is concentrated only in the stress concentration points such as notches, so that the region involved in hydrogen embrittlement is locally limited. In some cases, a high grain boundary fracture surface ratio could not be obtained with a hydrogen content close to that of the actual environment. As a result of investigating a method for obtaining a high grain boundary fracture surface ratio with a hydrogen amount close to that of the actual environment, the present inventors have found that the repeated loading process described in detail below is effective.

図1は、従来の遅れ破壊評価法と本発明の遅れ破壊評価法を説明するための模式図である。図1に示すように、本発明の遅れ破壊評価法は、従来の低歪速度引張試験と同様に低歪速度で荷重増加させていくが、初期亀裂発生に伴う荷重低下を検知したときに除荷し、これを所定回数繰り返して初期亀裂の進展及び停止を促し、最後に、破断に至る低歪速度引張試験を行うものである。 FIG. 1 is a schematic diagram for explaining a conventional delayed fracture evaluation method and a delayed fracture evaluation method of the present invention. As shown in FIG. 1, the delayed fracture evaluation method of the present invention increases the load at a low strain rate as in the conventional low strain rate tensile test, but removes it when a load decrease due to the occurrence of an initial crack is detected. It is loaded and repeated a predetermined number of times to promote the growth and stop of the initial crack, and finally, a low strain rate tensile test leading to fracture is performed.

従来の低歪速度引張試験は、除荷せずに破断に至るまで試験片の変位を増加させるため、水素濃化する切欠などの応力集中部のみで粒界破面が形成され、他はディンプル又は擬へき開破面になるため粒界破面率は小さくなる。一方、本発明の遅れ破壊評価法は、亀裂発生した後にそのまま破断させずに除荷する工程を加えるため、再度亀裂先端に水素濃化する時間が設けられ、亀裂先端で水素脆化が引き起こされて、再度亀裂進展するといったプロセスが繰り返され、その後に破断に至る。このプロセスは、実環境の水素脆化プロセスを模擬するものであり、亀裂先端近傍での水素濃化が繰り返されるため、水素脆化が関与する領域が広くなり、粒界破面率が高くなる。 In the conventional low strain rate tensile test, since the displacement of the test piece is increased until fracture without unloading, the grain boundary fracture surface is formed only in the stress concentration part such as the notch that concentrates hydrogen, and the others are dimples. Alternatively, since it becomes a pseudo-cleavage fracture surface, the grain boundary fracture surface ratio becomes small. On the other hand, in the delayed fracture evaluation method of the present invention, since a step of unloading without breaking after the crack is generated is added, a time for hydrogen enrichment is provided at the crack tip again, and hydrogen embrittlement is caused at the crack tip. Then, the process of crack growth is repeated, and then fracture occurs. This process simulates the hydrogen embrittlement process in the real environment, and since hydrogen enrichment is repeated near the crack tip, the region where hydrogen embrittlement is involved becomes wider and the grain boundary fracture surface ratio becomes higher. ..

次に、繰り返し荷重付与工程について具体的に説明する。当該工程では低歪み速度に設定する必要があるため、試験装置は、歪み速度を低速に制御可能な低歪速度引張試験機を用いるのがよい。なお、従来技術の定荷重試験でしばしば用いられる重り及びてこによる応力付与機構を持つ定荷重試験機では、歪み速度及び振幅応力を制御することが困難なため、可能な限り低歪速度引張試験機を用いるのが好ましい。 Next, the repetitive load applying process will be specifically described. Since it is necessary to set a low strain rate in the process, it is preferable to use a low strain rate tensile tester capable of controlling the strain rate at a low speed. Since it is difficult to control the strain rate and the amplitude stress in a constant load tester having a stress applying mechanism using a weight and a lever, which is often used in a constant load test of the prior art, the strain rate tensile tester is as low as possible. Is preferably used.

繰り返し荷重付与工程では、水素が導入された試験片に引張速度が10μm/min以下の低歪速度で荷重を加える工程(以下、「第1工程」という場合がある)と、最大荷重に到達後、最大荷重の0.1〜10%の範囲内で予め設定した値の荷重低下が発生したときに除荷する工程(以下、「第2工程」という場合がある)と、をこの順に含む荷重付与工程を1回以上行う。 In the repetitive load application step, a load is applied to the test piece into which hydrogen is introduced at a low strain rate of 10 μm / min or less (hereinafter, may be referred to as “first step”), and after the maximum load is reached. , A load that includes, in this order, a step of unloading when a load drop of a preset value occurs within the range of 0.1 to 10% of the maximum load (hereinafter, may be referred to as "second step"). Perform the giving process at least once.

(第1工程)
繰り返し荷重付与工程では、まず水素が導入された試験片に引張速度が10μm/min以下の低歪速度で荷重を加える第1工程を行う。引張速度は、水素脆化を効果的に発現させるために、耐遅れ破壊性を評価する金属材料の水素拡散に近い速度で荷重を付与するように試験機のクロスヘッドを動かすことが重要である。具体的には、引張速度は10μm/min以下とする。10μm/minを超える引張速度で試験を行うと、水素脆化を効果的に発現させることができずに、遅れ破壊感受性が低下する。引張速度の下限は、特に限定されないが、引張速度が低すぎると評価に時間を要するため、0.1μm/minにすることが好ましい。
(First step)
In the repetitive load applying step, first, the first step of applying a load to the test piece into which hydrogen is introduced at a low strain rate of 10 μm / min or less is performed. For the tensile speed, in order to effectively develop hydrogen embrittlement, it is important to move the crosshead of the testing machine so that the load is applied at a speed close to the hydrogen diffusion of the metal material for which the delayed fracture resistance is evaluated. .. Specifically, the tensile speed is 10 μm / min or less. When the test is carried out at a tensile rate exceeding 10 μm / min, hydrogen embrittlement cannot be effectively expressed and the delayed fracture susceptibility is lowered. The lower limit of the tensile speed is not particularly limited, but if the tensile speed is too low, it takes time for evaluation, so it is preferably 0.1 μm / min.

(第2工程)
第1工程に続いて、最大荷重に到達後、最大荷重の0.1〜10%の範囲内で予め設定した値の荷重低下が発生したときに除荷する第2工程を行う。除荷は、0MPaの荷重まで除荷することが好ましい。しかし、これに限定されず、亀裂の進展を停止できるのであれば、0MPaを超える荷重(例えば、10MPa)まで除荷してもよい。また、除荷は、初期亀裂発生に伴う荷重低下が見られた後に実施することが重要である。荷重低下前に除荷した場合は、初期亀裂が発生していないため、本発明で狙いとする初期亀裂の進展及び停止を繰り返すことができず、粒界破面率は低くなる。そのため、荷重低下が見られた後に除荷を実施することが必要である。
(Second step)
Following the first step, after reaching the maximum load, a second step of unloading is performed when a load decrease of a preset value occurs within the range of 0.1 to 10% of the maximum load. For unloading, it is preferable to unload up to a load of 0 MPa. However, the load is not limited to this, and if the growth of cracks can be stopped, the load may be removed up to a load exceeding 0 MPa (for example, 10 MPa). In addition, it is important to carry out unloading after the load has decreased due to the occurrence of initial cracks. When the load is removed before the load is reduced, the initial cracks are not generated, so that the initial cracks that are aimed at in the present invention cannot be repeatedly grown and stopped, and the grain boundary fracture surface ratio becomes low. Therefore, it is necessary to carry out unloading after the load is reduced.

具体的には、最大荷重に到達後、最大荷重の0.1〜10%の範囲内で予め設定した値の荷重低下が発生したときに除荷する。荷重低下が小さすぎる状態で除荷した場合、亀裂進展距離が短いため、高い粒界破面率を得るためには、繰り返し回数を多くする必要があり、評価に時間を要するため加速試験には不適である。一方、荷重低下が大きすぎる状態で除荷した場合、初期亀裂が破断に至るまで進展してしまい、通常の低歪速度引張試験と同様になるため、高い粒界破面率を得ることができない。そのため、最大荷重に到達後、最大荷重の0.1〜10%の範囲内で予め設定した値の荷重低下が発生したときに除荷する。なお、後述する繰り返し荷重付与回数がn回目(n:正数)の荷重付与工程における最大荷重とは、n回目の荷重付与工程における時間−荷重曲線から得られる最大荷重を意味する。 Specifically, after reaching the maximum load, the load is removed when a load decrease of a preset value occurs within the range of 0.1 to 10% of the maximum load. When unloading is performed when the load drop is too small, the crack growth distance is short, so it is necessary to increase the number of repetitions in order to obtain a high grain boundary fracture surface ratio, and it takes time for evaluation. Not suitable. On the other hand, if the load is removed when the load is reduced too much, the initial cracks will grow until fracture, which is the same as a normal low strain rate tensile test, so that a high grain boundary fracture surface ratio cannot be obtained. .. Therefore, after reaching the maximum load, the load is removed when a load decrease of a preset value occurs within the range of 0.1 to 10% of the maximum load. The maximum load in the load application step in which the number of times of repeated load application is nth (n: positive number), which will be described later, means the maximum load obtained from the time-load curve in the nth load application process.

また、最大荷重の0.1〜10%の範囲内で予め設定した値(以下、「荷重低下度合い」という場合がある)は、最大荷重の0.1〜10%の範囲内であれば特に限定されないが、後述する繰り返し荷重付与回数を2回以上とする場合、各々の荷重付与工程において荷重低下度合いは一定にすることが好ましい。なお、荷重低下度合いは、評価する試験片間では同じにする。これは、荷重付与が与える亀裂進展への影響を、評価する試験片毎に一定にすることで、試験片間の評価条件を同じにするためである。 Further, the preset value within the range of 0.1 to 10% of the maximum load (hereinafter, may be referred to as "load reduction degree") is particularly limited to the range of 0.1 to 10% of the maximum load. Although not limited, when the number of times of repeated load application described later is two or more, it is preferable that the degree of load reduction is constant in each load application step. The degree of load reduction shall be the same between the test pieces to be evaluated. This is because the effect of load application on crack growth is made constant for each test piece to be evaluated, so that the evaluation conditions between the test pieces are the same.

繰り返し荷重付与工程では、以上説明した第1工程及び第2工程をこの順に含む荷重付与工程を1回以上繰り返し行う(以下、この繰り返し回数を「繰り返し荷重付与回数」という)。本実施形態では、繰り返し荷重付与回数がn回(n:正数)の繰り返し荷重付与工程とは、荷重付与工程(第1工程〜第2工程)をn回行うことを意味する。繰り返し荷重付与工程を行わない場合、つまり従来の遅れ破壊評価法では、実環境下において一般的にみられる粒界亀裂進展モードを再現できないため、高い粒界破面率を得ることができない虞がある。繰り返し荷重付与回数を何回にするかは、所望の粒界破面率を得られるように適宜設定する。繰り返し荷重付与回数の上限は特に限定されないが、繰り返し荷重付与回数が多すぎる場合、評価に長時間を要してしまうため、加速試験には不適である。そのため、繰り返し荷重付与回数は100回以下が好ましい。 In the repetitive load applying step, the load applying step including the first step and the second step described above in this order is repeated one or more times (hereinafter, the number of repetitions is referred to as "repeated load application number"). In the present embodiment, the repeated load application step in which the number of times of repeated load application is n times (n: positive number) means that the load application process (first step to the second step) is performed n times. When the repeated load application process is not performed, that is, the conventional delayed fracture evaluation method cannot reproduce the grain boundary crack growth mode generally seen in the actual environment, there is a possibility that a high grain boundary fracture surface ratio cannot be obtained. be. The number of times the repeated load is applied is appropriately set so that a desired grain boundary fracture surface ratio can be obtained. The upper limit of the number of times of repeated load application is not particularly limited, but if the number of times of repeated load application is too large, it takes a long time for evaluation, which is not suitable for an accelerated test. Therefore, the number of times of repeated load application is preferably 100 times or less.

[破断工程]
繰り返し荷重付与工程の後に、低歪速度で試験片を破断させる破断工程を行う。破断工程においても繰り返し荷重付与工程と同様に、試験装置は、低歪速度引張試験機を用いるのが好ましい。また、繰り返し荷重付与工程と同様に、引張速度は0.1〜10μm/min程度が好ましい。0.1μm/minを下回る引張速度で試験を行う場合、評価に時間を要するため加速試験には不適となる場合がある。一方、引張速度が10μm/minを超える速度で試験を行うと、水素脆化を効果的に発現させることができずに、遅れ破壊感受性が低下する場合がある。
[Breaking process]
After the repeated load application step, a breaking step of breaking the test piece at a low strain rate is performed. In the breaking step as well as in the repetitive load applying step, it is preferable to use a low strain rate tensile tester as the test apparatus. Further, as in the repetitive load applying step, the tensile speed is preferably about 0.1 to 10 μm / min. When the test is performed at a tensile speed of less than 0.1 μm / min, it may be unsuitable for an accelerated test because it takes time for evaluation. On the other hand, if the test is carried out at a tensile speed exceeding 10 μm / min, hydrogen embrittlement may not be effectively expressed and the delayed fracture susceptibility may decrease.

2.評価指標
次に、耐遅れ破壊性の優劣を判断するための評価指標について説明する。本実施形態では、評価指標は、以下の第1の指標又は第2の指標を採用している。しかし、評価指標は、これらに限らず、適切に耐遅れ破壊性の優劣を判断できるのであればその他の指標を採用してもよい。
2. Evaluation index Next, an evaluation index for judging the superiority or inferiority of delayed fracture resistance will be described. In the present embodiment, the following first index or second index is adopted as the evaluation index. However, the evaluation index is not limited to these, and other indexes may be adopted as long as the superiority or inferiority of the delayed fracture resistance can be appropriately determined.

(第1の指標)
第1の指標では、繰り返される上記荷重付与工程における最大応力(以下、この最大応力を「荷重付与工程応力」という場合がある)と破断工程における最大応力(以下、この最大応力を「破断工程応力」という場合がある)とを評価指標に用いる。
例えば、第1の指標では、評価対象の試験片における複数の荷重付与工程応力及び破断工程応力の全てが、比較対象の試験片における複数の荷重付与工程応力及び破断工程応力の全てよりも大きい場合、評価対象の試験片は、比較対象の試験片よりも耐遅れ破壊性が優れていると判断できる。
(First index)
In the first index, the maximum stress in the repeated load application process (hereinafter, this maximum stress may be referred to as “load application process stress”) and the maximum stress in the fracture process (hereinafter, this maximum stress is referred to as “break process stress”). ”) Is used as an evaluation index.
For example, in the first index, when all of the plurality of load-applying process stresses and breaking process stresses in the test piece to be evaluated are larger than all of the plurality of load-applying process stresses and breaking process stresses in the test piece to be compared. , It can be judged that the test piece to be evaluated has better delayed fracture resistance than the test piece to be compared.

このように判断できる理由は以下の通りである。つまり、評価対象の試験片における複数の荷重付与工程応力及び破断工程応力の全てが、比較対象の試験片における複数の荷重付与工程応力及び破断工程応力の全てよりも大きいということは、当然ながら、繰り返し荷重付与回数が1回目の荷重付与工程における最大応力は、評価対象の試験片の方が比較対象の試験片よりも大きい。これは、評価対象の試験片は、比較対象の試験片よりも初期亀裂が発生し難いことを示している。 The reason for making such a judgment is as follows. That is, it goes without saying that all of the plurality of load-applying process stresses and breaking process stresses in the test piece to be evaluated are larger than all of the plurality of load-applying process stresses and breaking process stresses in the test piece to be compared. The maximum stress in the load application step in which the number of times of repeated load application is the first is larger in the test piece to be evaluated than in the test piece to be compared. This indicates that the test piece to be evaluated is less likely to generate initial cracks than the test piece to be compared.

さらに、評価対象の試験片における複数の荷重付与工程応力及び破断工程応力の全てが、比較対象の試験片における複数の荷重付与工程応力及び破断工程応力の全てよりも大きいということは、当然ながら、繰り返し荷重付与回数が2回目以降の荷重付与工程における最大応力及び破断工程における最大応力は、評価対象の試験片の方が比較対象の試験片よりも大きい。これは、評価対象の試験片は、比較対象の試験片よりも亀裂進展がし難いことを示している。このように、評価対象の試験片は、比較対象の試験片よりも初期亀裂が発生し難く且つ亀裂進展がし難いと判断でき、つまり耐遅れ破壊性が優れていると判断できる。 Furthermore, it goes without saying that all of the plurality of load-applying process stresses and breaking process stresses in the test piece to be evaluated are larger than all of the plurality of load-applying process stresses and breaking process stresses in the test piece to be compared. The maximum stress in the load application process and the maximum stress in the breaking process after the second and subsequent times of repeated load application are larger in the test piece to be evaluated than in the test piece to be compared. This indicates that the test piece to be evaluated is less likely to develop cracks than the test piece to be compared. As described above, it can be judged that the test piece to be evaluated is less likely to generate initial cracks and less likely to grow cracks than the test piece to be compared, that is, it can be judged to be excellent in delayed fracture resistance.

また、評価対象の試験片における複数の荷重付与工程応力及び破断工程応力の全てが、比較対象の試験片における複数の荷重付与工程応力及び破断工程応力の全てよりも大きいことは、繰り返し荷重付与回数が1回目の(最初の)荷重付与工程における最大応力と、当該最大応力から破断工程応力への変化率に基づいて判断してもよい。すなわち、評価対象の試験片の最初の荷重付与工程における最大応力が、比較対象の試験片の最初の荷重付与工程における最大応力よりも大きく、且つ、評価対象の試験片の最初の荷重付与工程における最大応力から評価対象の試験片の破断工程応力への変化率が、評価対象の試験片の最初の荷重付与工程における最大応力から比較対象の試験片の破断工程応力への変化率よりも小さいときに、評価対象の試験片における複数の荷重付与工程応力及び破断工程応力の全てが、比較対象の試験片における複数の荷重付与工程応力及び破断工程応力の全てよりも大きいと判断してもよい。 In addition, the fact that all of the plurality of load-applying process stresses and breaking process stresses in the test piece to be evaluated are larger than all of the plurality of load-applying process stresses and breaking process stresses in the test piece to be compared means that the number of times of repeated loading is applied. May be determined based on the maximum stress in the first (first) loading process and the rate of change from the maximum stress to the breaking process stress. That is, the maximum stress in the first load application step of the test piece to be evaluated is larger than the maximum stress in the first load application step of the test piece to be compared, and the maximum stress in the first load application step of the test piece to be evaluated is When the rate of change from the maximum stress to the breaking process stress of the test piece to be evaluated is smaller than the rate of change from the maximum stress in the initial load application process of the test piece to be evaluated to the breaking process stress of the test piece to be compared. In addition, it may be determined that all of the plurality of load applying process stresses and breaking process stresses in the test piece to be evaluated are larger than all of the plurality of loading process stresses and breaking process stresses in the test piece to be compared.

なお、上記判断方法はあくまで一例であって、比較する項目を複数の荷重付与工程応力及び破断工程応力の全てではなく、例えば、繰り返し荷重付与回数が所定回数のときの荷重付与工程における最大応力と破断工程応力としてもよい。 The above determination method is merely an example, and the items to be compared are not all of the plurality of load application process stresses and the fracture process stress, but are, for example, the maximum stress in the load application process when the number of repeated load applications is a predetermined number. It may be a breaking process stress.

(第2の指標)
第2の指標では、最大応力が予め設定した応力値以下となる荷重付与工程の繰り返し荷重付与回数を評価指標に用いる。第2の指標を採用する場合、繰り返し荷重付与回数を2回以上にして遅れ破壊試験を行う。また、予め設定した応力値は、例えば、鋼材の引張強度に対して60%〜90%とすることが好ましい。第2の指標では、例えば、予め設定した応力値以下となる評価対象の試験片の繰り返し荷重付与回数が、予め設定した応力値以下となる比較対象の試験片の繰り返し荷重付与回数よりも多い場合、評価対象の試験片は、比較対象の試験片よりも耐遅れ破壊性が優れていると判断できる。これは、予め設定した応力値以下となる評価対象の試験片の繰り返し荷重付与回数が、予め設定した応力値以下となる比較対象の試験片の繰り返し荷重付与回数よりも多いということは、評価対象の試験片は、繰り返し荷重付与工程において最大応力値の低下が遅く、初期亀裂が発生し難く且つ亀裂進展がし難いことを示している。つまり、評価対象の試験片は、比較対象の試験片よりも耐遅れ破壊性が優れていると判断できる。
(Second index)
In the second index, the number of times of repeated load application in the load application process in which the maximum stress is equal to or less than the preset stress value is used as the evaluation index. When the second index is adopted, the delayed fracture test is performed by setting the number of times of repeated load application to 2 times or more. Further, the preset stress value is preferably 60% to 90% with respect to the tensile strength of the steel material, for example. In the second index, for example, when the number of times of repeated loading of the test piece to be evaluated that is equal to or less than the preset stress value is larger than the number of times of repeated loading of the test piece to be compared that is equal to or less than the preset stress value. , It can be judged that the test piece to be evaluated has superior delay fracture resistance to the test piece to be compared. This means that the number of times the test piece to be evaluated that is equal to or less than the preset stress value is repeatedly loaded is larger than the number of times that the test piece to be compared is repeatedly loaded that is less than or equal to the preset stress value. The test piece of No. 1 shows that the decrease of the maximum stress value is slow in the repetitive load application step, the initial crack is hard to occur, and the crack is hard to grow. That is, it can be judged that the test piece to be evaluated has better delayed fracture resistance than the test piece to be compared.

3.粒界破面率の測定方法
上記遅れ破壊試験後の試験片における粒界破面率の測定方法は、従来の方法を採用することができる。例えば、上記遅れ破壊試験後の試験片の破面をSEM(Scanning Electron Microscope:走査型電子顕微鏡)を用いて観察する。そして、脆性破面(粒界破面、擬へき開破面)について、例えば南雲道彦著,「水素脆性の基礎」内田老鶴圃(2008),p.186−218を参考にして分類し、粒界破面率を測定することができる。なお、粒界破面率の測定は、破断面が斜めにならない方が望ましく、破断位置特定のために試験片に環状切欠きを付与した方が好ましい。
3. 3. Method for measuring grain boundary fracture surface ratio As the method for measuring the grain boundary fracture surface ratio in the test piece after the delayed fracture test, a conventional method can be adopted. For example, the fracture surface of the test piece after the delayed fracture test is observed using a SEM (Scanning Electron Microscope). Regarding the brittle fracture surface (grain boundary fracture surface, pseudo-cleavage fracture surface), for example, Michihiko Nagumo, "Basics of Hydrogen Brittle", Uchida Otsuru (2008), p. The grain boundary fracture surface ratio can be measured by classifying with reference to 186-218. In the measurement of the grain boundary fracture surface ratio, it is desirable that the fracture surface is not slanted, and it is preferable that the test piece is provided with an annular notch in order to specify the fracture position.

次に、本発明の遅れ破壊評価法の実施例を具体的に説明するが、下記実施例は本発明を限定する性質のものではなく、また、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Next, examples of the delayed fracture evaluation method of the present invention will be specifically described, but the following examples do not have properties that limit the present invention, and are appropriate as long as they can be applied to the purposes described above and below. It is also possible to change to, and all of them are included in the technical scope of the present invention.

1.試験片作製
表1に記載の化学成分組成を有する鋼種SCM440を溶製し、熱間圧延を行って直径14mmφの線材とした。熱間圧延した14mmφの線材を、880℃から油焼き入れを行った。その後、焼き戻し温度を調節することにより硬度を調整し、硬度375〜395Hvを強度クラスA、硬度340〜360Hvを強度クラスBとして、それぞれ硬度を調整した。なお、試験片の表面から線材の軸と垂直な断面の光学顕微鏡観察を行ったところ、組織は焼き戻しマルテンサイトであることを確認した。
硬度が調整された鋼材から図2に記載の形状の試験片を作製した。試験片平行部中央に付与する環状切欠きは、切欠き角度を60度として、切欠き深さと切欠き底曲率を調整し、応力集中係数Ktを2.0〜3.5と変化させた。
1. 1. Preparation of Test Piece The steel grade SCM440 having the chemical composition shown in Table 1 was melted and hot-rolled to obtain a wire rod having a diameter of 14 mmφ. The hot-rolled 14 mmφ wire was oil-quenched from 880 ° C. Then, the hardness was adjusted by adjusting the tempering temperature, and the hardness was adjusted by setting the hardness 375 to 395 Hv as the strength class A and the hardness 340 to 360 Hv as the strength class B. When the cross section of the test piece was observed from the surface of the test piece with an optical microscope perpendicular to the axis of the wire, it was confirmed that the structure was tempered martensite.
A test piece having the shape shown in FIG. 2 was prepared from the hardness-adjusted steel material. In the annular notch provided at the center of the parallel portion of the test piece, the notch angle was set to 60 degrees, the notch depth and the notch bottom curvature were adjusted, and the stress concentration coefficient Kt was changed from 2.0 to 3.5.

Figure 0006910317
Figure 0006910317

2.遅れ破壊試験
上記作製された試験片に対して以下のように遅れ破壊試験を行った。
2. Delayed Fracture Test The delayed fracture test was performed on the prepared test piece as follows.

(水素導入)
まず、試験片へ水素を導入するために、チャージ液として0.3%−NHSCN溶液を使用し、溶液中にて印加電流密度を0.04〜1.00mA/cmと変化させ、48時間の陰極チャージを行った。このとき、環状切欠きを中心として10mm長さを水素導入部とし、その他の部分については樹脂又はマスキングテープで被覆を行った。陰極チャージ後、水素逃散防止のためにZnめっきを行った。
(Introduction of hydrogen)
First, in order to introduce hydrogen into the test piece, a 0.3% -NH 4 SCN solution was used as a charging solution, and the applied current density was changed to 0.04 to 1.00 mA / cm 2 in the solution. Cathode charging was performed for 48 hours. At this time, a hydrogen introduction portion having a length of 10 mm centered on the annular notch was used, and the other portions were covered with resin or masking tape. After charging the cathode, Zn plating was performed to prevent hydrogen from escaping.

(荷重付与)
続いて、低歪速度引張試験機(東伸工業(株)製)を用いて、試験片へ各種応力を付与した。その際の応力付与の条件を表2に示す。表2に示した通り、発明例の試験No.1〜No.7は、引張速度を1.5μm/minに制御した低歪速度試験を行い荷重低下が見られたときに除荷を行う荷重付与工程を1回以上行う繰り返し荷重付与工程を実施した。除荷は、10MPaの荷重まで除荷した。除荷時における最大荷重からの荷重低下についても表2に示す。繰り返し荷重付与工程の後、引張速度を1.5μm/minとした低歪速度試験を行い、破断に至るまで破断工程を実施した。一方、比較例の試験No.8〜11は、引張速度を1.5μm/minとして、繰り返し荷重付与工程を行わず、従来の低歪速度試験で破断に至るまで試験を行った。
なお、表2において、下線を付した数値は、本実施形態の範囲から外れていることを示している。ただし、「−」については、本実施形態の範囲から外れていても下線を付していないことに留意されたい。
(Loading)
Subsequently, various stresses were applied to the test piece using a low strain rate tensile tester (manufactured by Toshin Kogyo Co., Ltd.). Table 2 shows the conditions for applying stress at that time. As shown in Table 2, Test Nos. 1-No. In No. 7, a low strain rate test in which the tensile speed was controlled to 1.5 μm / min was carried out, and a repeated load applying step of performing a load applying step of unloading when a load decrease was observed was carried out at least once. Unloading was performed up to a load of 10 MPa. Table 2 also shows the load reduction from the maximum load at the time of unloading. After the repeated load application step, a low strain rate test with a tensile speed of 1.5 μm / min was performed, and the breaking step was carried out until breaking. On the other hand, the test No. of the comparative example. In Nos. 8 to 11, the tensile speed was set to 1.5 μm / min, the repeated load application step was not performed, and the conventional low strain rate test was carried out until the fracture occurred.
In Table 2, the underlined values indicate that the values are outside the scope of the present embodiment. However, it should be noted that "-" is not underlined even if it is out of the scope of this embodiment.

Figure 0006910317
Figure 0006910317

3.遅れ破壊試験の妥当性
上記鋼材に対応する実際の製造工程で製造された鋼材に対し、実環境下での長期間暴露試験を行うことにより、本発明に係る遅れ破壊試験での耐遅れ破壊性と、実環境下での耐遅れ破壊性とを比較し、本発明の遅れ破壊試験の妥当性を検証した。長期間暴露試験での耐遅れ破壊性は、実ボルトを締め付けた暴露試験にて評価し、破断に至る時間を指標とすることで、強度クラスAの鋼材は強度クラスBの鋼材と比べて耐遅れ破壊性が低いことを確認した。また、暴露試験後の破面における粒界破面率は20面積%以上であることを確認した。そこで、本実施例において、本発明の遅れ破壊試験の妥当性の検証には、実環境下での遅れ破壊挙動の特徴である、粒界破面率が20面積%以上であることを再現できる場合を「○(合格)」とし、これを満たさない場合を「×(不合格)」とした。
3. 3. Appropriateness of Delayed Fracture Test By conducting a long-term exposure test in an actual environment on a steel material manufactured in the actual manufacturing process corresponding to the above steel material, the delayed fracture resistance in the delayed fracture test according to the present invention. And the delayed fracture resistance in the actual environment were compared, and the validity of the delayed fracture test of the present invention was verified. The delayed fracture resistance in the long-term exposure test is evaluated by the exposure test in which the actual bolt is tightened, and the time until breakage is used as an index. Therefore, the strength class A steel material is more resistant than the strength class B steel material. It was confirmed that the delayed destructiveness was low. It was also confirmed that the grain boundary fracture surface ratio on the fracture surface after the exposure test was 20 area% or more. Therefore, in the present embodiment, in order to verify the validity of the delayed fracture test of the present invention, it is possible to reproduce that the grain boundary fracture surface ratio, which is a feature of the delayed fracture behavior in the actual environment, is 20 area% or more. The case was set as "○ (pass)", and the case that did not satisfy this was set as "x (fail)".

表2の試験No.1〜11における繰り返し荷重付与回数と粒界破面率との関係を図3に示す。繰り返し荷重付与回数の増加とともに、粒界破面率が上昇していることが分かる。繰り返し荷重付与工程を行った試験No.1〜7では、粒界破面率が20面積%以上であり、実環境下での遅れ破壊挙動の特徴を再現できたため○(合格)と評価した。一方、繰り返し荷重付与工程を実施しなかった従来の低歪速度引張試験を行った試験No.8〜11では、粒界破面率が20%未満と低かったため×(不合格)と評価した。以上のように、本発明の遅れ破壊試験によれば、20面積%以上の高い粒界破面率が得られることから、実環境下において一般的にみられる粒界亀裂進展モードを短時間で再現できることが分かった。 Test No. in Table 2 FIG. 3 shows the relationship between the number of times of repeated loading and the grain boundary fracture surface ratio in 1 to 11. It can be seen that the grain boundary fracture surface ratio increases as the number of repeated loads increases. Test No. in which the repeated load application process was performed. In 1 to 7, the grain boundary fracture surface ratio was 20 area% or more, and the characteristics of the delayed fracture behavior in the actual environment could be reproduced, so that the evaluation was evaluated as ◯ (pass). On the other hand, the test No. in which the conventional low strain rate tensile test was performed without repeatedly applying the load. In 8 to 11, the grain boundary fracture surface ratio was as low as less than 20%, so it was evaluated as x (failed). As described above, according to the delayed fracture test of the present invention, a high grain boundary fracture surface ratio of 20 area% or more can be obtained, so that the grain boundary crack growth mode generally observed in a real environment can be performed in a short time. It turned out that it can be reproduced.

4.評価指標の妥当性
本実施形態で採用した評価指標の妥当性を検証した。前述したように、実環境下での長期間暴露試験において、強度クラスAの鋼材は強度クラスBの鋼材と比べて耐遅れ破壊性が低いことを確認した。図4は、試験片に付与された切欠の応力集中係数と陰極チャージの電流密度とを同じ値とした場合の、強度クラスA(試験No.6)及び強度クラスB(試験No.7)での繰り返し荷重付与工程における最大応力の変化である。図4に示したように、強度クラスAの試験No.6では、繰り返し荷重付与工程における各々の最大応力が強度クラスBの試験No.7と比べて低くかった。また、試験No.6では、破断工程における最大応力が試験No.7と比べて低いことが予想される。つまり、繰り返し荷重付与工程における各々の最大応力及び破断工程における最大応力の大小を評価指標にすることにより、耐遅れ破壊性の優劣を判断可能であることが分かった。なお、表2では、試験No.6の破断工程における最大応力が試験No.7と比べて高くなっているが、これは試験No.6では試験No.7よりも繰り返し荷重付与回数が少ないためであり、繰り返し荷重付与回数を同じにした場合、試験No.6の破断工程における最大応力は、試験No.7と比べて低くなると予想される。
4. Validity of evaluation index The validity of the evaluation index adopted in this embodiment was verified. As described above, in a long-term exposure test in an actual environment, it was confirmed that the strength class A steel material has a lower delayed fracture resistance than the strength class B steel material. FIG. 4 shows the strength class A (test No. 6) and the strength class B (test No. 7) when the stress concentration coefficient of the notch applied to the test piece and the current density of the cathode charge are the same values. This is the change in maximum stress in the repeated load application process. As shown in FIG. 4, the strength class A test No. In No. 6, each maximum stress in the repetitive load application step is the strength class B test No. It was lower than 7. In addition, the test No. In No. 6, the maximum stress in the breaking step was Test No. 6. It is expected to be lower than 7. That is, it was found that the superiority or inferiority of the delayed fracture resistance can be determined by using the magnitude of each maximum stress in the repetitive load applying process and the maximum stress in the breaking process as evaluation indexes. In Table 2, the test No. The maximum stress in the breaking step of No. 6 was Test No. Although it is higher than No. 7, this is the test No. In No. 6, test No. This is because the number of times of repeated load application is smaller than that of No. 7, and when the number of times of repeated load application is the same, the test No. The maximum stress in the breaking step of No. 6 was determined by Test No. It is expected to be lower than 7.

また、強度クラスAの試験No.6では、例えば最大応力が1100MPa以下となる繰り返し荷重付与回数が1回であり、強度クラスBの試験No.7の2回と比べて少ない回数で応力が低下している。つまり、繰り返し荷重付与工程における各々の最大応力において、予め設定した応力値以下の最大応力となる繰り返し荷重付与回数を評価指標にすることにより、耐遅れ破壊性の優劣を判断可能であることが分かった。 In addition, the strength class A test No. In No. 6, for example, the number of times of repeated load application in which the maximum stress is 1100 MPa or less is one, and the strength class B test No. The stress is reduced less frequently than the two times of 7. That is, it was found that the superiority or inferiority of the delayed fracture resistance can be judged by using the number of times of repeated load application, which is the maximum stress equal to or less than the preset stress value, as an evaluation index at each maximum stress in the repeated load application process. rice field.

本発明は、自動車、輸送機械等の各種産業機械に用いられる金属材料が大気及び風雨、あるいは海塩、道路の融雪剤などによって腐食を受ける環境に曝された場合に、ある程度の時間の経過後に割れが生じる現象である遅れ破壊を、簡便かつ迅速、高感度に評価できる。 According to the present invention, when a metal material used in various industrial machines such as automobiles and transportation machines is exposed to an environment where it is corroded by air, wind and rain, sea salt, a snow melting agent on a road, etc., after a certain period of time has passed. Delayed fracture, which is a phenomenon that causes cracking, can be evaluated easily, quickly, and with high sensitivity.

Claims (5)

金属材料の試験片に水素を導入する水素導入工程と、
水素が導入された前記試験片に引張速度が10μm/min以下の低歪速度で荷重を加える第1工程と、最大荷重に到達後、当該最大荷重の0.1〜10%の範囲内で予め設定した値の荷重低下が発生したときに除荷する第2工程と、をこの順に含む荷重付与工程を1回以上行う繰り返し荷重付与工程と、
前記繰り返し荷重付与工程の後に、低歪速度で前記試験片を破断させる破断工程と、を含み、
前記荷重付与工程における最大応力と前記破断工程における最大応力とに基づいて耐遅れ破壊性を評価する、金属材料の遅れ破壊評価法。
A hydrogen introduction process that introduces hydrogen into a test piece of a metal material,
The first step of applying a load to the test piece into which hydrogen is introduced at a low strain rate of 10 μm / min or less, and after reaching the maximum load, in advance within the range of 0.1 to 10% of the maximum load. A second step of unloading when a load drop of a set value occurs, a repeated load applying step of performing a load applying process including the set values in this order at least once, and a repeated load applying process.
After the repetitive load applying step, a breaking step of breaking the test piece at a low strain rate is included.
A method for evaluating delayed fracture of a metal material, which evaluates delayed fracture resistance based on the maximum stress in the load applying process and the maximum stress in the breaking process.
繰り返し荷重付与回数が1回目の前記荷重付与工程における最大応力と、当該最大応力から前記破断工程における最大応力への変化率と、に基づいて耐遅れ破壊性を評価する、請求項1に記載の遅れ破壊評価法。 The method according to claim 1, wherein the delayed fracture resistance is evaluated based on the maximum stress in the load applying step in which the number of times of repeated loading is first and the rate of change from the maximum stress to the maximum stress in the breaking step. Delayed fracture evaluation method. 金属材料の試験片に水素を導入する水素導入工程と、
水素が導入された前記試験片に引張速度が10μm/min以下の低歪速度で荷重を加える第1工程と、最大荷重に到達後、当該最大荷重の0.1〜10%の範囲内で予め設定した値の荷重低下が発生したときに除荷する第2工程と、をこの順に含む荷重付与工程を2回以上行う繰り返し荷重付与工程と、
前記繰り返し荷重付与工程の後に、低歪速度で前記試験片を破断させる破断工程と、を含み、
最大応力が予め設定した応力値以下となる前記荷重付与工程の繰り返し荷重付与回数に基づいて耐遅れ破壊性を評価する、金属材料の遅れ破壊評価法。
A hydrogen introduction process that introduces hydrogen into a test piece of a metal material,
The first step of applying a load to the test piece into which hydrogen is introduced at a low strain rate of 10 μm / min or less, and after reaching the maximum load, in advance within the range of 0.1 to 10% of the maximum load. A second step of unloading when a load drop of a set value occurs, a repeated load applying step of performing a load applying process including the set values in this order two or more times, and a repeated load applying process.
After the repetitive load applying step, a breaking step of breaking the test piece at a low strain rate is included.
A method for evaluating delayed fracture of a metal material, which evaluates delayed fracture resistance based on the number of times of repeated load application in the load application process in which the maximum stress is equal to or less than a preset stress value.
前記金属材料は、鋼材である、請求項1〜3のいずれか1項に記載の遅れ破壊評価法。 The delayed fracture evaluation method according to any one of claims 1 to 3, wherein the metal material is a steel material. 前記試験片には応力集中係数が10以下である切欠が付与されている、請求項1〜4のいずれか1項に記載の遅れ破壊評価法。 The delayed fracture evaluation method according to any one of claims 1 to 4, wherein the test piece is provided with a notch having a stress concentration coefficient of 10 or less.
JP2018062825A 2018-03-28 2018-03-28 Delayed fracture evaluation method for metallic materials Active JP6910317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018062825A JP6910317B2 (en) 2018-03-28 2018-03-28 Delayed fracture evaluation method for metallic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062825A JP6910317B2 (en) 2018-03-28 2018-03-28 Delayed fracture evaluation method for metallic materials

Publications (2)

Publication Number Publication Date
JP2019174282A JP2019174282A (en) 2019-10-10
JP6910317B2 true JP6910317B2 (en) 2021-07-28

Family

ID=68170260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062825A Active JP6910317B2 (en) 2018-03-28 2018-03-28 Delayed fracture evaluation method for metallic materials

Country Status (1)

Country Link
JP (1) JP6910317B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469654B2 (en) 2020-07-06 2024-04-17 日本製鉄株式会社 Method for evaluating hydrogen embrittlement susceptibility of steel

Also Published As

Publication number Publication date
JP2019174282A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP5081175B2 (en) Method for evaluating hydrogen cracking resistance of steel
CN105825030A (en) Fatigue life assessment method for aged reinforced concrete bridge
JP4370991B2 (en) Method for evaluating delayed fracture resistance of steel for automotive structural members and steel for automotive structural members excellent in delayed fracture resistance
JP6354476B2 (en) Characterization method for hydrogen embrittlement of steel
CN110168123A (en) Steel
Rozali et al. Effect of frequency on fatigue crack growth behavior of magnesium alloy AZ61 under immersed 3.5 mass% NaCl environment
Laurino et al. Effect of corrosion on the fatigue life and fracture mechanisms of 6101 aluminum alloy wires for car manufacturing applications
JP6910317B2 (en) Delayed fracture evaluation method for metallic materials
JP6489292B1 (en) Evaluation method of hydrogen embrittlement characteristics
JP6128102B2 (en) Method for evaluating delayed fracture characteristics of metal material and metal material
Li et al. Influence of hydrogen on the S–N fatigue of DP1180 advanced high-strength steel
JP2010223945A (en) Method for hydrogen charging to material, and method for evaluating hydrogen embrittlement characteristics thereof
JP6973193B2 (en) Hydrogen embrittlement resistance evaluation method
JP7469654B2 (en) Method for evaluating hydrogen embrittlement susceptibility of steel
JP4519680B2 (en) Accelerated testing method for stress corrosion cracking
Li et al. An experimental study on the corrosion behaviors and mechanical properties of Q345qD steel in neutral salt spray environment considering stress state
Kim et al. Evaluation of corrosion fatigue and life prediction of lower arm for automotive suspension component
Chalaftris et al. Hydrogen re-embrittlement of high strength steel by corrosion of cadmium and aluminium based sacrificial coatings
JP5079375B2 (en) Surface treatment method for hydrogen embrittlement resistance evaluation test piece
Kim et al. A non-microstructural crack formation model for understanding fatigue life degradation in shot peened carbon steel under LCF loading
WO2019186898A1 (en) Method for evaluating hydrogen embrittlement characteristics
Drakakaki et al. Corrosion resistance and mechanical characteristics of dual-phase steel B500c, after shot blasting processes
Hu et al. Analysis of hydrogen embrittlement and applied potential of 1670, 1770, and 1860 MPa ultrahigh-strength steel wire for impressed current cathodic protection on cables and hangers
Townsend Resistance of high strength structural steel to environmental stress corrosion cracking
Thodla et al. Effect of reeling on fracture toughness behavior of welded API5LX65 line pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200803

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210706

R150 Certificate of patent or registration of utility model

Ref document number: 6910317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250