JP6909998B2 - Gas phase heating method and vapor phase heating device - Google Patents

Gas phase heating method and vapor phase heating device Download PDF

Info

Publication number
JP6909998B2
JP6909998B2 JP2018209895A JP2018209895A JP6909998B2 JP 6909998 B2 JP6909998 B2 JP 6909998B2 JP 2018209895 A JP2018209895 A JP 2018209895A JP 2018209895 A JP2018209895 A JP 2018209895A JP 6909998 B2 JP6909998 B2 JP 6909998B2
Authority
JP
Japan
Prior art keywords
steam
heating furnace
pressure
space
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018209895A
Other languages
Japanese (ja)
Other versions
JP2020076540A (en
Inventor
健介 岸下
健介 岸下
直文 日野
直文 日野
永井 耕一
耕一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018209895A priority Critical patent/JP6909998B2/en
Priority to CN201910962234.7A priority patent/CN111156702B/en
Publication of JP2020076540A publication Critical patent/JP2020076540A/en
Application granted granted Critical
Publication of JP6909998B2 publication Critical patent/JP6909998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/012Soldering with the use of hot gas
    • B23K1/015Vapour-condensation soldering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/001Drying-air generating units, e.g. movable, independent of drying enclosure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、熱転移液の蒸気の凝縮潜熱を利用して被加熱物を加熱する気相式加熱方法及び気相式加熱装置に関するものである。 The present invention relates to a vapor phase heating method and a vapor phase heating apparatus that heat an object to be heated by utilizing the latent heat of condensation of the vapor of the thermal transfer liquid.

近年、様々な工業製品若しくは家電の組み立て製造工程、又はそれらの製品の構成部品となる各種電子部品、各種の電池、若しくは、電子部品が実装された基板などのデバイス製造工程において、各種熱処理装置で処理される被加熱物の形状が複雑化している。例えば、電子部品が実装された基板においても、平面基板だけでなく、立体的な基板の水平面以外の部分に、はんだペーストを塗布して電子部品を配置しただけの保持力が弱い状態で、はんだペーストを溶融して接合するための加熱処理が行われている。また、立体となることで、被加熱物の熱容量そのものも、増加する傾向にある。ここで、各種熱処理装置とは、例えば乾燥炉、キュア炉、若しくは電子部品の実装工程などではんだ付けに使用されるリフロー炉などである。 In recent years, in various heat treatment devices in the assembly manufacturing process of various industrial products or home appliances, or in the device manufacturing process of various electronic parts, various batteries, or substrates on which electronic parts are mounted, which are constituent parts of those products. The shape of the object to be treated is complicated. For example, even in a substrate on which electronic components are mounted, solder is applied in a state where the holding force is weak as the electronic components are placed by applying solder paste not only to the flat substrate but also to the part of the three-dimensional substrate other than the horizontal plane. Heat treatment is performed to melt and join the paste. In addition, the heat capacity of the object to be heated tends to increase due to the three-dimensional structure. Here, the various heat treatment devices are, for example, a drying furnace, a curing furnace, a reflow furnace used for soldering in a mounting process of electronic components, and the like.

これらの被加熱物の加熱工程では、不均一な加熱能力による被加熱物の各箇所における温度上昇のばらつきがある場合は、加熱工程の所望の所要時間を得るために、全ての部分が所望の温度に昇温した状態から、さらに所望の時間を保持する必要があり、昇温の遅い部分を所望の時間だけ保持するためには、昇温の早い部分は必要以上の熱にさらされることになり、特に熱影響の大きい被加熱物の場合は、被加熱物の品質への影響が懸念される。また、熱風の衝突による熱伝達を利用した加熱工程の場合、被加熱物の熱容量が大きい場合は、所望の昇温速度を得るために、熱風の被加熱物への衝突速度を速めることで、熱伝達率を高くすることが出来る。 In these heating steps of the object to be heated, if there is a variation in temperature rise at each location of the object to be heated due to non-uniform heating capacity, all parts are desired in order to obtain the desired time required for the heating step. It is necessary to further hold the desired time from the state where the temperature has risen to a temperature, and in order to hold the portion where the temperature rises slowly for the desired time, the portion where the temperature rises quickly is exposed to more heat than necessary. Therefore, in the case of an object to be heated, which is particularly affected by heat, there is a concern that the quality of the object to be heated may be affected. Further, in the case of a heating process using heat transfer due to collision of hot air, when the heat capacity of the object to be heated is large, the collision rate of hot air with the object to be heated is increased in order to obtain a desired rate of temperature rise. The heat transfer coefficient can be increased.

しかしながら、例えば、立体的な基板の水平面以外の部分に、はんだペーストを塗布して電子部品を配置しただけの保持力が弱い状態で加熱処理をする必要がある場合、はんだの溶融、その後の冷却によるはんだの凝固が完了する以前に、熱風を高速で衝突させることで、部品が基板から剥離してしまう可能性が大きくなる。 However, for example, when it is necessary to apply a solder paste to a portion of a three-dimensional substrate other than the horizontal surface and heat-treat the electronic components in a state where the holding force is weak, the solder is melted and then cooled. By colliding hot air at high speed before the solidification of the solder is completed, there is a high possibility that the components will peel off from the substrate.

そこで、熱容量の大きい基板についても熱風の衝突による部品の剥離などを回避し、高い熱伝達率を利用して被加熱物を効率良く加熱する方法として、熱転移液の蒸気が有する凝縮潜熱を利用して加熱する蒸気加熱炉による加熱方法が知られている。このような蒸気加熱炉で使われる蒸気は、空気に比べて比重が大きいので、空気と蒸気は比較的容易に2相に分離するが、被加熱物を蒸気加熱炉中に搬入/搬出するために、通常は蒸気加熱炉に出入口を設けるので、蒸気が容易に炉外に流出し、貴重な熱転移液の蒸気を回収不能のまま失うことになる。 Therefore, as a method of efficiently heating the object to be heated by utilizing the high heat transfer coefficient while avoiding the peeling of parts due to the collision of hot air even for a substrate with a large heat capacity, the latent heat of condensation contained in the vapor of the heat transfer liquid is used. A heating method using a steam heating furnace is known. Since the steam used in such a steam heating furnace has a larger specific gravity than air, the air and steam are relatively easily separated into two phases, but the object to be heated is carried in / out into the steam heating furnace. In addition, since the steam heating furnace is usually provided with an inlet / outlet, the steam easily flows out of the furnace, and the steam of the valuable heat transfer liquid is lost without being recovered.

このための対策として、一般的に、以下のような方法が知られている。 As a countermeasure for this, the following methods are generally known.

(1)蒸気加熱炉内の空気と熱転移液の蒸気とがその比重の差によって分離する界面よりも上部に、被加熱物を搬入及び搬出するための開口部を設け、この開口部から被加熱物を蒸気加熱炉に搬入及び搬出する方法。 (1) An opening for carrying in and out the object to be heated is provided above the interface where the air in the steam heating furnace and the steam of the heat transfer liquid are separated by the difference in their specific gravities, and is covered from this opening. A method of loading and unloading a heated material into a steam heating furnace.

(2)被加熱物を搬入及び搬出する蒸気加熱炉の出入口に二重のシャッター等を設けて、蒸気加熱炉と外部空間とを一時的に遮蔽するための閉空間を構成し、被加熱物の搬入及び搬出時に蒸気加熱炉と外部空間とを区切る方法。 (2) A double shutter or the like is provided at the entrance / exit of the steam heating furnace for carrying in and out the object to be heated to form a closed space for temporarily shielding the steam heating furnace and the external space, and the object to be heated is provided. A method of separating the steam heating furnace from the external space when carrying in and out.

(3)蒸気加熱炉の出入口に比較的長めのトンネルを設け、トンネルの途中に冷却部等による熱転移液の蒸気を凝縮する凝縮器を取り付けてトンネル内に流出した蒸気を凝縮回収する方法。 (3) A method in which a relatively long tunnel is provided at the entrance and exit of a steam heating furnace, and a condenser for condensing the steam of the heat transfer liquid by a cooling unit or the like is attached in the middle of the tunnel to condense and recover the steam flowing out into the tunnel.

しかしながら、方法(1)の場合は、被加熱物を加熱するためには、被加熱物を蒸気加熱炉に搬入した水平面に対して、熱転移液の蒸気に被加熱物が浸漬する高さまで下方に移動させる必要があるために、搬送のための機構が複雑になるとともに、被加熱物の搬入及び蒸気の相への下降浸漬時に蒸気加熱炉内の熱転移液の蒸気を攪拌するために、熱転移液の蒸気に空気が混合してしまい、熱転移液の蒸気の凝縮潜熱による加熱能力自体が低下してしまう可能性がある。 However, in the case of the method (1), in order to heat the object to be heated, the object to be heated is lowered to a height at which the object to be heated is immersed in the steam of the thermal transfer liquid with respect to the horizontal plane in which the object to be heated is carried into the steam heating furnace. The mechanism for transporting is complicated due to the need to move to, and the steam of the heat transfer liquid in the steam heating furnace is agitated during the loading of the object to be heated and the descent immersion of the steam into the phase. Air may be mixed with the steam of the heat transfer liquid, and the heating capacity itself due to the latent heat of condensation of the steam of the heat transfer liquid may decrease.

方法(2)の場合は、特に蒸気加熱炉の出口側において、被加熱物を出口側の閉空間に移送するために閉空間の蒸気加熱炉側のシャッターを一時的に開放した際に熱転移液の蒸気も被加熱物と一緒に閉空間に導入され、閉空間の蒸気加熱炉側のシャッターを閉じ、被加熱物を外部空間に搬出するために閉空間の外部空間側のシャッターを一時的に解放することで、被加熱物の外部空間への搬出とともに熱転移液の蒸気の一部が外部空間に流出することを防ぐことはできない。 In the case of method (2), especially on the outlet side of the steam heating furnace, heat transfer occurs when the shutter on the steam heating furnace side of the closed space is temporarily opened in order to transfer the object to be heated to the closed space on the outlet side. The liquid vapor is also introduced into the closed space together with the object to be heated, closes the shutter on the steam heating furnace side of the closed space, and temporarily releases the shutter on the external space side of the closed space to carry the object to be heated to the external space. It is not possible to prevent a part of the vapor of the thermal transfer liquid from flowing out to the external space as the object to be heated is carried out to the external space.

方法(3)は、熱転移液の蒸気を一度冷却し、液化してから回収することで、熱転移液を蒸気に気化するための加熱に要した気化潜熱をそのまま冷却して奪ってしまうためにエネルギーの多大な損失になるとともに、蒸気の冷却温度によっては、熱転移液の飽和蒸気圧によって熱転移液の蒸気を気化しきれずに、蒸気の一部が大気中に流出するのを完全に防ぐことはできない。 In method (3), the vapor of the thermal transfer liquid is cooled once, liquefied, and then recovered, so that the latent heat of vaporization required for heating to vaporize the thermal transfer liquid is cooled and taken away as it is. In addition to a large loss of energy, depending on the cooling temperature of the steam, the saturated vapor pressure of the thermal transfer fluid cannot completely vaporize the vapor of the thermal transition fluid, and a part of the vapor completely flows out into the atmosphere. Cannot be prevented.

これらの課題に対し、例えば特許文献1の方式が知られている。図10は特許文献1の従来の気相式はんだ付け装置の説明図である。特許文献1で開示されている構成は以下の構成である。図10は側面図であり、蒸気加熱炉35の左半分は縦断面で示す。液体40は、加熱によって蒸気31を発生させるための熱転移液である。排気口32は、蒸気加熱炉35内の気体を炉外に排出するためのノズルである。出入口33は、炉の内外の境界となる出入口端である。コンベア34は、被処理物を蒸気加熱炉35に搬入するためのコンベアである。トンネル36は被処理物を搬入、搬出する通路となるとともに、後述の空気流の通路となる。トンネル37は、トンネル36を延長したトンネルであり、被加熱物を搬入する通路となる。トンネル38は、トンネル36よびトンネル37の境にあり、トンネル36から分岐しており、これらトンネル26,27の上部から斜め上方向に延びているトンネルであり、トンネル36を通過する空気流の通路となる。排出口39は、この空気流を排出するノズルである。 For these problems, for example, the method of Patent Document 1 is known. FIG. 10 is an explanatory view of the conventional vapor phase soldering apparatus of Patent Document 1. The configuration disclosed in Patent Document 1 is the following configuration. FIG. 10 is a side view, and the left half of the steam heating furnace 35 is shown in a vertical cross section. The liquid 40 is a heat transfer liquid for generating vapor 31 by heating. The exhaust port 32 is a nozzle for discharging the gas in the steam heating furnace 35 to the outside of the furnace. The doorway 33 is a doorway end that serves as a boundary between the inside and outside of the furnace. The conveyor 34 is a conveyor for carrying the object to be processed into the steam heating furnace 35. The tunnel 36 serves as a passage for carrying in and out the object to be processed, and also serves as a passage for air flow, which will be described later. The tunnel 37 is an extension of the tunnel 36, and serves as a passage for carrying in the object to be heated. The tunnel 38 is located on the boundary between the tunnel 36 and the tunnel 37, is a tunnel that branches from the tunnel 36 and extends diagonally upward from the upper part of the tunnels 26 and 27, and is an air flow passage passing through the tunnel 36. It becomes. The discharge port 39 is a nozzle that discharges this air flow.

動作としては、液体40を、加熱して蒸気31を発生させると、蒸気31は、蒸気加熱炉35の内部をある高さまで上昇し、上部の空気相との間に空気−蒸気の界面41ができる。一方、一部の蒸気は、出入口33及びトンネル37を通って炉外に流出する。ここでトンネル36内に流出蒸気の運動量を越える運動量をもった空気流を作れば、この気流はトンネル38を通過し、排出口39より排出されるので、トンネル37内にまで流出した蒸気31はこの気流に押し戻されて炉外流出が防止できる。 As an operation, when the liquid 40 is heated to generate the steam 31, the steam 31 rises to a certain height inside the steam heating furnace 35, and the air-steam interface 41 is formed between the liquid 40 and the upper air phase. can. On the other hand, some steam flows out of the furnace through the entrance 33 and the tunnel 37. Here, if an air flow having a momentum exceeding the momentum of the outflow steam is created in the tunnel 36, this airflow passes through the tunnel 38 and is discharged from the discharge port 39, so that the steam 31 that has flowed out into the tunnel 37 It is pushed back by this air flow and can be prevented from flowing out of the furnace.

トンネル36内に流れ方向に均一な気流を作るためには、トンネル36の長さはトンネル高さの3倍以上あればよい。トンネル38は、トンネル36を通過した空気をできるだけなめらかに上部に導くために、蒸気加熱炉35の方へ向って斜め上方向に延ばしている。トンネル36とトンネル38との境に渦流が生ずれば、トンネル37内の蒸気をまき込むからである。気流を上部に導くのは、蒸気31は対空気比重が大きいので下部に、すなわちトンネル37内に集めるためである。 In order to create a uniform air flow in the flow direction in the tunnel 36, the length of the tunnel 36 may be three times or more the height of the tunnel. The tunnel 38 extends diagonally upward toward the steam heating furnace 35 in order to guide the air passing through the tunnel 36 to the upper part as smoothly as possible. This is because if a vortex is generated at the boundary between the tunnel 36 and the tunnel 38, the steam in the tunnel 37 is taken in. The reason why the airflow is guided to the upper part is that the steam 31 has a large specific gravity to the air and therefore is collected in the lower part, that is, in the tunnel 37.

蒸気をトンネル37内に封じ込めるために、さらに望ましくは、トンネル36を通過する空気の運動エネルギーをトンネル37の出入口33より流出する蒸気の運動エネルギーより大きくすることである。すなわち、蒸気の対空気比重をα、流出蒸気の平均流速をVl、空気の流速をV2とすると、V2>V1×√αが成り立つことが望ましい。 In order to contain the steam in the tunnel 37, more preferably, the kinetic energy of the air passing through the tunnel 36 is made larger than the kinetic energy of the steam flowing out from the entrance / exit 33 of the tunnel 37. That is, assuming that the specific gravity of steam to air is α, the average flow velocity of outflow steam is Vl, and the flow velocity of air is V2, it is desirable that V2> V1 × √α holds.

トンネル37において、その出入口33で空気側と蒸気側が均圧するよう蒸気加熱炉35の上部の圧力をトンネル38内の圧力より小さくすれば、蒸気の吹き出し圧力が小さくなるので、トンネル37内に空気−蒸気の斜めの界面が生じ、蒸気の流出量は大幅に少なくなる。 In the tunnel 37, if the pressure at the upper part of the steam heating furnace 35 is made smaller than the pressure inside the tunnel 38 so that the air side and the steam side are equalized at the inlet / outlet 33, the steam blowing pressure becomes smaller. An oblique interface of steam is created, and the amount of steam outflow is significantly reduced.

なお、トンネル36及びトンネル37ともに蒸気加熱炉35に向って下がるように多少勾配をつけておけば、凝縮液が自然に蒸気加熱炉35に戻り、都合が良い。 If both the tunnel 36 and the tunnel 37 are slightly inclined so as to descend toward the steam heating furnace 35, the condensate naturally returns to the steam heating furnace 35, which is convenient.

特開昭60−108163号公報Japanese Unexamined Patent Publication No. 60-108163

このような特許文献1の構成では、蒸気加熱炉が1ゾーンだけの単独で構成される装置の場合は、前述のように外部からの気流を取り込んで気流制御によって熱転移液の蒸気を蒸気加熱炉内に閉じ込める動作は可能である。 In such a configuration of Patent Document 1, in the case of a device in which the steam heating furnace is composed of only one zone alone, as described above, the steam of the heat transfer liquid is steam-heated by taking in the airflow from the outside and controlling the airflow. The operation of confining in the furnace is possible.

しかしながら、より複雑な温度プロファイルを形成する必要がある際は、1ゾーンだけではなく、蒸気加熱炉、又は蒸気の凝縮潜熱を利用する加熱方法以外の加熱手段を用いる加熱炉等を複数連結して用いる装置が必要となり、その場合は、複数の隣接する蒸気加熱炉又は加熱炉との隣接間の狭小な空間において、蒸気の流出防止のための特別な機構が必要となり、連続炉では全長が長くなるといった課題を有している。 However, when it is necessary to form a more complicated temperature profile, not only one zone but also a steam heating furnace or a heating furnace using a heating means other than the heating method utilizing the latent heat of condensation of steam is connected. The equipment to be used is required, and in that case, a special mechanism for preventing the outflow of steam is required in a narrow space between a plurality of adjacent steam heating furnaces or the heating furnaces, and the total length is long in a continuous furnace. It has a problem of becoming.

本発明は、前記従来の課題を解決するもので、熱転移液の蒸気の凝縮潜熱を利用して被加熱物を加熱する蒸気加熱炉を含む、複数の加熱炉が連結されて構成される連続炉の気相式加熱方法及び装置において、蒸気の流出防止のための特別な機構が不要となり、隣接する蒸気加熱炉と加熱炉との間で熱転移液の蒸気の圧力差を低減することができる気相式加熱方法及び気相式加熱装置を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and is continuously configured by connecting a plurality of heating furnaces including a steam heating furnace that heats an object to be heated by utilizing the latent heat of condensation of the steam of the heat transfer liquid. In the gas phase heating method and equipment of the furnace, a special mechanism for preventing the outflow of steam is not required, and the pressure difference of the steam of the heat transfer liquid between the adjacent steam heating furnace and the heating furnace can be reduced. It is an object of the present invention to provide a vapor-phase heating method and a vapor-phase heating apparatus capable of performing the same.

前記目的を達成するために、本発明の1つの態様にかかる気相式加熱方法は、
熱転移液の蒸気の凝縮潜熱を利用して被加熱物の加熱を行う少なくとも一つの蒸気加熱炉と、前記一つの蒸気加熱炉と連通して配置された少なくとも一つの加熱炉又は他の蒸気加熱炉とを備える連続炉で、前記被加熱物を加熱する気相式加熱方法であって、
前記一つの蒸気加熱炉と隣接する前記加熱炉又は前記他の蒸気加熱炉と、前記一つの蒸気加熱炉との間を常に連通する連通部を介して、前記被加熱物を前記加熱炉又は前記他の蒸気加熱炉又は前記一つの蒸気加熱炉に搬入し、
前記一つの蒸気加熱炉内の前記連通部よりも上方に備えた蒸気冷却部で、前記一つの蒸気加熱炉内の前記熱転移液の前記蒸気を冷却して液化するとともに、圧力調整部により前記一つの蒸気加熱炉内の圧力を前記加熱炉内又は他の蒸気加熱炉内の圧力と同等に保持することで、前記連続炉内の圧力を均等にしつつ、搬入された前記被加熱物を加熱する。
In order to achieve the above object, the vapor phase heating method according to one aspect of the present invention is:
At least one steam heating furnace that heats the object to be heated by utilizing the latent heat of condensation of the steam of the heat transfer liquid, and at least one heating furnace or another steam heating furnace arranged in communication with the one steam heating furnace. in a continuous furnace and a furnace, a gas-phase heating method of heating the object to be heated,
Said heating furnace or said other steam heating furnace, via the communication unit always that pass communicating between said one steam heating furnace adjacent to the one steam heating furnace, the heating furnace the object to be heated Or, carry it into the other steam heating furnace or the one steam heating furnace, and carry it into the steam heating furnace.
In the steam cooling unit provided above the communicating portion of said one steam heating furnace, together with liquefied by cooling the vapor of the heat transfer liquid within said one steam heating furnace, wherein the pressure adjustment section By keeping the pressure in one steam heating furnace equal to the pressure in the heating furnace or the other steam heating furnace, the pressure in the continuous furnace is equalized and the carried-in object to be heated is heated. do.

また、前記目的を達成するために、本発明の別の態様にかかる気相式加熱装置は、
熱転移液の蒸気の凝縮潜熱を利用して被加熱物の加熱を行う少なくとも一つの蒸気加熱炉と、前記一つの蒸気加熱炉と連通して配置された少なくとも一つの加熱炉又は他の蒸気加熱炉とを備える連続炉で構成されて前記被加熱物を加熱する気相式加熱装置であって、
前記一つの蒸気加熱炉は、
前記被加熱物を搬出入可能に、隣接する前記加熱炉又は前記他の蒸気加熱炉との間で常に連通する連通部と、
前記連通部よりも上方に配置されて、前記一つの蒸気加熱炉内の前記熱転移液の前記蒸気を冷却して液化する蒸気冷却部と、
前記蒸気加熱炉の内部圧力を前記加熱炉内又は他の蒸気加熱炉内の圧力と同等に保持するように調整する圧力調整部とを備える。
In addition, in order to achieve the above object, the gas phase heating device according to another aspect of the present invention may be used.
At least one steam heating furnace that heats the object to be heated by utilizing the latent heat of condensation of the steam of the heat transfer liquid, and at least one heating furnace or another steam heating furnace arranged in communication with the one steam heating furnace. It is a gas phase heating device that is composed of a continuous furnace including a furnace and heats the object to be heated.
The one steam heating furnace
A communication unit that always communicates with the adjacent heating furnace or the other steam heating furnace so that the object to be heated can be carried in and out.
A steam cooling unit, which is arranged above the communication unit and cools and liquefies the steam of the heat transfer liquid in the one steam heating furnace.
And a pressure adjustment unit for adjusting the internal pressure of the steam heating furnace so as to hold the equivalent to the pressure in the furnace or other steam heating furnace.

以上のように、本発明の前記態様にかかる気相式加熱方法及び気相式加熱装置によれば、複数の加熱炉が狭小な間隔で連結するような連続炉であっても、熱転移液の蒸気の凝縮潜熱を利用して被加熱物の加熱を行う蒸気加熱炉の炉内圧力を、圧力調整部で一定圧力に保持することが可能となる。その結果として、蒸気の流出防止のための特別な機構が不要となり、隣接する蒸気加熱炉と加熱炉との間で被加熱物の搬送部の連通部での蒸気の移動を低減して熱転移液の蒸気の圧力差を低減することが出来る。 As described above, according to the vapor phase heating method and the vapor phase heating apparatus according to the above aspect of the present invention, even in a continuous furnace in which a plurality of heating furnaces are connected at narrow intervals, a heat transfer liquid is used. The pressure inside the steam heating furnace, which heats the object to be heated by utilizing the latent heat of condensation of the steam, can be maintained at a constant pressure by the pressure adjusting unit. As a result, a special mechanism for preventing the outflow of steam is not required, and the movement of steam between the adjacent steam heating furnace and the heating furnace at the communication part of the transport part of the object to be heated is reduced to reduce the heat transfer. The pressure difference between the vapors of the liquid can be reduced.

本発明の実施の形態における気相式加熱装置を含む連続炉の説明図Explanatory drawing of continuous furnace including gas-phase heating apparatus in embodiment of this invention 本発明の実施の形態における気相式加熱装置の説明図Explanatory drawing of vapor-phase heating apparatus in embodiment of this invention 本発明の実施の形態における気相式加熱装置の詳細説明図Detailed explanatory view of the gas phase heating apparatus according to the embodiment of the present invention. 本発明の実施の形態における気相式加熱装置の詳細説明図Detailed explanatory view of the gas phase heating apparatus according to the embodiment of the present invention. 本発明の実施の形態における気相式加熱装置の詳細説明図Detailed explanatory view of the gas phase heating apparatus according to the embodiment of the present invention. 本発明の実施の形態における別の態様の気相式加熱装置の詳細説明図Detailed explanatory view of the gas phase heating device of another aspect in the embodiment of the present invention. 本発明の実施の形態における気相式加熱装置の説明図Explanatory drawing of vapor-phase heating apparatus in embodiment of this invention 被加熱物の連続搬送の構成における温度プロファイルと気相式加熱装置との説明図Explanatory drawing of temperature profile and gas phase heating device in the configuration of continuous transport of the object to be heated 被加熱物の分割搬送の構成における温度プロファイルと気相式加熱装置との説明図Explanatory drawing of temperature profile and gas phase heating device in the configuration of split transfer of the object to be heated 本発明の別の実施の形態における気相式加熱装置の蒸気加熱炉の被加熱物の搬送方向とは90度異なる方向から見た説明図Explanatory drawing seen from the direction which is 90 degrees different from the transport direction of the object to be heated of the steam heating furnace of the vapor phase heating apparatus in another embodiment of this invention. 従来の気相式加熱装置を示す説明図Explanatory drawing showing a conventional gas phase heating apparatus

以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態)
図1は、本発明の実施形態における気相式加熱装置の説明図である。気相式加熱装置50は、少なくとも一つの蒸気加熱炉4とを備える連続炉である。蒸気加熱炉4は、連通部6と、被加熱物冷却部8とを備える。
(Embodiment)
FIG. 1 is an explanatory diagram of a gas phase heating device according to an embodiment of the present invention. The gas phase heating device 50 is a continuous furnace including at least one steam heating furnace 4. The steam heating furnace 4 includes a communication unit 6 and an object cooling unit 8 to be heated.

気相式加熱装置50は、一例として、複数の加熱炉5が直列的に連結して構成されている。気相式加熱装置50は、熱転移液2の蒸気3の凝縮潜熱を与えることで被加熱物1を加熱する蒸気加熱炉4を少なくとも一つ含み、他に熱風循環等による熱転移液2の蒸気3を用いない被加熱物1の加熱手段による加熱炉5などが接続されている。図1の場合は、気相式加熱装置50は、被加熱物1の搬送方向に対して、順番に、入口部7と、蒸気加熱炉4Aと、加熱炉5と、蒸気加熱炉4と、出口側の被加熱物冷却部8とを備える連続炉である。連通部6を介して搬送部9で被加熱物1を搬送する。熱転移液の一例としては、電気絶縁性のフッ素系不活性液体である。 As an example, the gas phase heating device 50 is configured by connecting a plurality of heating furnaces 5 in series. The gas phase heating device 50 includes at least one steam heating furnace 4 that heats the object to be heated 1 by giving latent heat of condensation of the steam 3 of the heat transfer liquid 2, and also of the heat transfer liquid 2 by hot air circulation or the like. A heating furnace 5 or the like by the heating means of the object 1 to be heated that does not use the steam 3 is connected. In the case of FIG. 1, the vapor phase heating device 50 sequentially includes the inlet portion 7, the steam heating furnace 4A, the heating furnace 5, the steam heating furnace 4, and the steam heating furnace 4 in the transport direction of the object to be heated 1. It is a continuous furnace provided with a heated object cooling unit 8 on the outlet side. The object to be heated 1 is transported by the transport unit 9 via the communication unit 6. An example of a thermal transfer liquid is an electrically insulating fluorine-based inert liquid.

図2は、本発明の実施形態における気相式加熱装置50の詳細な説明図である。図2の場合は、搬出方向における蒸気加熱炉4の前後(図2では左側と右側と)に、熱風循環等による熱転移液2の蒸気3を用いない加熱手段による加熱炉5が、搬出方向の前後に連通して配置されている。 FIG. 2 is a detailed explanatory view of the gas phase heating device 50 according to the embodiment of the present invention. In the case of FIG. 2, before and after the steam heating furnace 4 in the carry-out direction (on the left side and the right side in FIG. 2), a heating furnace 5 by a heating means that does not use the steam 3 of the heat transfer liquid 2 by hot air circulation or the like is placed in the carry-out direction. It is arranged in communication with each other before and after.

蒸気加熱炉4は、底面付近に、所定量の熱転移液2を保持する浴槽4xを有する。浴槽4x内には、保持する熱転移液2を加熱して蒸気3にするための電気ヒータなどの加熱源10を備えている。 The steam heating furnace 4 has a bathtub 4x that holds a predetermined amount of the heat transfer liquid 2 near the bottom surface. The bathtub 4x is provided with a heating source 10 such as an electric heater for heating the heat transfer liquid 2 to be held into steam 3.

加熱源10は、熱転移液2の浴槽4xの中に投入して使用する投げ込み式、若しくは浴槽4xの壁面全体、若しくは浴槽4xの壁面の一部を加熱する構成でも可である。なお、加熱源10の加熱能力は、少なくとも熱転移液2の蒸気3が、蒸気加熱炉4の内壁面又は搬送部9等で冷却されて液化するよりも多くの熱転移液2を蒸気3とするために必要な加熱能力と、それに加えて、被加熱物1を所望の昇温速度で加熱するために必要な量の蒸気3を形成するために熱転移液2に付与する加熱能力との総量よりも大きい加熱能力が必要である。搬送部9は、一例として、連続炉を貫通して被加熱物1を搬送可能なベルトコンベヤで構成される。 The heating source 10 may be a throw-in type used by throwing the heat transfer liquid 2 into the bathtub 4x, or may be configured to heat the entire wall surface of the bathtub 4x or a part of the wall surface of the bathtub 4x. The heating capacity of the heating source 10 is such that at least the steam 3 of the heat transfer liquid 2 is cooled and liquefied by the inner wall surface of the steam heating furnace 4 or the transport portion 9 or the like to liquefy the heat transfer liquid 2. In addition, the heating capacity required to heat the object 1 to be heated and the heating capacity imparted to the heat transfer liquid 2 to form the amount of steam 3 required to heat the object to be heated 1 at a desired heating rate. A heating capacity larger than the total amount is required. As an example, the transport unit 9 is composed of a belt conveyor capable of transporting the object to be heated 1 through a continuous furnace.

蒸気加熱炉4は、その上流、又は下流に配置される加熱炉5と連通する、連通部6を有する。連通部6は、上流の加熱炉5から蒸気加熱炉4に被加熱物1を搬入、又は、蒸気加熱炉4から下流の加熱炉5に被加熱物1を搬出するために必要な開口部であって、被加熱物1の搬入及び搬出のための搬送部9によって被加熱物1が通過するための搬出入部の一例として機能する。 The steam heating furnace 4 has a communication portion 6 that communicates with a heating furnace 5 arranged upstream or downstream of the steam heating furnace 4. The communication portion 6 is an opening required for carrying the object to be heated 1 from the upstream heating furnace 5 to the steam heating furnace 4 or carrying out the object to be heated 1 from the steam heating furnace 4 to the heating furnace 5 downstream. Therefore, it functions as an example of a carry-in / out section for passing the object 1 to be heated by the transport section 9 for carrying in / out the object 1 to be heated.

ここで、このような構成の場合、通常では、熱転移液2の気化による体積膨張等で蒸気加熱炉4内の圧力が高くなると、連通部6を通じて連通する前後の加熱炉5内の圧力が大気圧、若しくは少なくとも蒸気加熱炉4内の圧力よりも低い場合、蒸気加熱炉4内の蒸気3は、連通部6を通して加熱炉5側に流出してしまう。その結果、加熱炉5等を介して連続炉の外に熱転移液2の蒸気3が流出することになる。これを回避するためには、加熱炉5内の圧力を蒸気加熱炉4内の圧力と同等にするか、逆に、蒸気加熱炉4内の圧力を加熱炉5と同等にする必要がある。 Here, in the case of such a configuration, normally, when the pressure in the steam heating furnace 4 becomes high due to volume expansion due to vaporization of the heat transfer liquid 2, the pressure in the heating furnace 5 before and after communicating through the communication portion 6 increases. When the pressure is lower than the atmospheric pressure, or at least the pressure in the steam heating furnace 4, the steam 3 in the steam heating furnace 4 flows out to the heating furnace 5 side through the communication portion 6. As a result, the steam 3 of the heat transfer liquid 2 flows out of the continuous furnace via the heating furnace 5 and the like. In order to avoid this, it is necessary to make the pressure in the heating furnace 5 equal to the pressure in the steam heating furnace 4, or conversely, make the pressure in the steam heating furnace 4 equal to the pressure in the heating furnace 5.

そこで、蒸気加熱炉4内の圧力を、隣接する前後の加熱炉5内の圧力と同等にする気相式加熱方法について説明する。 Therefore, a vapor phase heating method for making the pressure in the steam heating furnace 4 equal to the pressure in the adjacent heating furnaces 5 before and after will be described.

図3は、図2の蒸気加熱炉4のIII−III線沿いの断面図である。 FIG. 3 is a cross-sectional view of the steam heating furnace 4 of FIG. 2 along lines III-III.

被加熱物1が搬送される搬送部9よりも上方に配置されている第1冷却用連通部11は、蒸気冷却部12の一端に連通しており、蒸気冷却部12の他端は、第2冷却用連通部13を介して圧力調整部19に連通している。蒸気冷却部12は、一端から入った蒸気3が蛇行して他端に向かうような通路が形成され、蒸気3が蛇行するうちに通路壁面に吸熱されて冷却されるように構成されている。圧力調整部19は、一例としてシリンダとピストンとで構成される。その場合、圧力調整部19の外郭又は容器19aとしてはシリンダであり、ピストンが移動体18の役割をする。圧力調整部19の内部空間は移動体18で2分割されている。移動体18で分割された一方の第1空間14Aは、開閉弁15と圧力調整部16を介して外部空間と連通することが出来る。また、圧力調整部19の内部空間で、移動体18で2分割された他方の第2空間14Bは、圧力調整部19の外部空間用連通部20を介して外部空間と連通している。 The first cooling communication unit 11 arranged above the transport unit 9 to which the object to be heated 1 is transported communicates with one end of the steam cooling unit 12, and the other end of the steam cooling unit 12 is the first. 2 Communicates with the pressure adjusting unit 19 via the cooling communication unit 13. The steam cooling unit 12 is configured so that a passage is formed such that the steam 3 entering from one end meanders toward the other end, and while the steam 3 meanders, heat is absorbed by the wall surface of the passage and cooled. The pressure adjusting unit 19 is composed of a cylinder and a piston as an example. In that case, the outer shell of the pressure adjusting unit 19 or the container 19a is a cylinder, and the piston acts as a moving body 18. The internal space of the pressure adjusting unit 19 is divided into two by the moving body 18. One of the first spaces 14A divided by the moving body 18 can communicate with the external space via the on-off valve 15 and the pressure adjusting unit 16. Further, in the internal space of the pressure adjusting unit 19, the other second space 14B divided into two by the moving body 18 communicates with the external space via the external space communicating portion 20 of the pressure adjusting unit 19.

なお、移動体18は、移動体固定部17によって必要に応じて、シリンダ19aの所定の位置に固定することが出来る。 The moving body 18 can be fixed to a predetermined position of the cylinder 19a by the moving body fixing portion 17 as needed.

また、移動体18は、移動体固定部17の固定が解除された際には、圧力調整部19内のシリンダ19aの壁面に沿って、第1空間14Aと第2空間14Bとを遮蔽したまま移動することが可能である。 Further, when the fixing of the moving body fixing portion 17 is released, the moving body 18 keeps the first space 14A and the second space 14B shielded along the wall surface of the cylinder 19a in the pressure adjusting portion 19. It is possible to move.

ここで、蒸気冷却部12は、加熱源10で加熱されて気化潜熱を加えられて気化した熱転移液2の蒸気3のうち、第1冷却用連通部11から導入される蒸気3を全て液体に相変化することが出来る冷却能力を有する。なお、蒸気冷却部12で冷却されて液化した熱転移液2は、蒸気冷却部12の最底面に接続されたパイプ23を介して回収部21に回収することで、再利用することが可能となる。回収部21に回収された熱転移液2は、必要に応じて、ポンプ22によって蒸気加熱炉4内の熱転移液2の浴槽4xに戻される。 Here, the steam cooling unit 12 liquids all the vapors 3 introduced from the first cooling communication unit 11 among the vapors 3 of the heat transfer liquid 2 which is heated by the heating source 10 and vaporized by the latent heat of vaporization. It has a cooling capacity that can change its phase. The heat transfer liquid 2 cooled and liquefied by the steam cooling unit 12 can be reused by collecting it in the recovery unit 21 via a pipe 23 connected to the bottom surface of the steam cooling unit 12. Become. The heat transfer liquid 2 recovered by the recovery unit 21 is returned to the bathtub 4x of the heat transfer liquid 2 in the steam heating furnace 4 by the pump 22 as needed.

被加熱物1を蒸気加熱炉4に搬入する前に、加熱のための準備として、蒸気加熱炉4内では、熱転移液2を加熱源10によって加熱し、連続的に熱転移液2を蒸気3とするための気化潜熱を与えて、蒸気3の蒸気相を形成させ増加させていく。加熱源10の稼働の当初は、蒸気加熱炉4内の各箇所の温度は熱転移液2の沸点以下であるため、蒸気加熱炉4内の各箇所に接触した熱転移液2の蒸気3は、蒸気3が接触した各箇所に凝縮潜熱を与えて液化し、液化した熱転移液2は自重によって蒸気加熱炉4の下部に落下し、熱転移液2の浴槽に回収される。この繰り返しで、蒸気加熱炉4内の各箇所は、熱転移液2の凝縮潜熱を受け取ることによって徐々に加熱されて、順次、熱転移液2の沸点温度まで達する。その結果、蒸気加熱炉4内の大気の相と熱転移液2の蒸気3の蒸気相との界面が徐々に上方に移動し、連通部6の高さまで達する。 Before the object 1 to be heated is carried into the steam heating furnace 4, as a preparation for heating, the heat transfer liquid 2 is heated by the heating source 10 in the steam heating furnace 4, and the heat transfer liquid 2 is continuously steamed. The latent heat of vaporization to make it 3 is applied to form and increase the vapor phase of steam 3. At the beginning of the operation of the heating source 10, the temperature of each part in the steam heating furnace 4 is lower than the boiling point of the heat transfer liquid 2, so that the steam 3 of the heat transfer liquid 2 in contact with each part in the steam heating furnace 4 , Latent heat of condensation is applied to each place where the steam 3 comes into contact to liquefy the heat transfer liquid 2, and the liquefied heat transfer liquid 2 falls to the lower part of the steam heating furnace 4 by its own weight and is recovered in the bath of the heat transfer liquid 2. By repeating this process, each part in the steam heating furnace 4 is gradually heated by receiving the latent heat of condensation of the heat transfer liquid 2, and sequentially reaches the boiling point temperature of the heat transfer liquid 2. As a result, the interface between the atmospheric phase in the steam heating furnace 4 and the steam phase of the steam 3 of the heat transfer liquid 2 gradually moves upward and reaches the height of the communication portion 6.

ここで、熱転移液2の蒸気3の比重が炉内の気体、例えば大気よりも軽い場合は問題ないが、大気よりも重い場合は、蒸気の自重によって連通部6から自然に流出してしまう。このため、事前に開閉弁15を解放したまま、圧力調整部16によって、蒸気加熱炉4内の圧力が、大気圧、又は隣接する加熱炉5内の圧力と同等になるように調整する。これによって、熱転移液2の蒸気3は、蒸気加熱炉4内で搬送部9を超えて第1冷却用連通部11の高さにまで達する。 Here, there is no problem when the specific gravity of the steam 3 of the heat transfer liquid 2 is lighter than that of the gas in the furnace, for example, the atmosphere, but when it is heavier than the atmosphere, the steam naturally flows out from the communication portion 6 due to its own weight. .. Therefore, with the on-off valve 15 released in advance, the pressure adjusting unit 16 adjusts the pressure in the steam heating furnace 4 so as to be equal to the atmospheric pressure or the pressure in the adjacent heating furnace 5. As a result, the steam 3 of the heat transfer liquid 2 exceeds the transport section 9 and reaches the height of the first cooling communication section 11 in the steam heating furnace 4.

図4は、図3と同様に図2の蒸気加熱炉4のIII−III線の断面図であり、被加熱物1を連続炉及び蒸気加熱炉4に搬入して生産を開始するための準備が完了した状態を示す。 FIG. 4 is a cross-sectional view taken along the line III-III of the steam heating furnace 4 of FIG. 2 as in FIG. 3, and is a preparation for carrying the object to be heated 1 into the continuous furnace and the steam heating furnace 4 to start production. Indicates the completed state.

熱転移液2の蒸気3は、蒸気加熱炉4と蒸気冷却部12との第1冷却用連通部11に達し、蒸気冷却部12を圧力調整部16によって負圧にすることで、蒸気3は、第1冷却用連通部11を介して蒸気冷却部12に導入され、熱転移液2の蒸気3は、蒸気冷却部12で冷却されて液化する。蒸気冷却部12は、前述のように加熱源10で加熱されて気化潜熱を加えられて気化した熱転移液2の蒸気3のうち、第1冷却用連通部11から導入される分の蒸気3を全て液体に相変化させることが出来る能力を有する。このため、第2冷却用連通部13に達する前に、蒸気3は蒸気冷却部12により全て液化される。ここで、被加熱物1の搬入準備が完了し、圧力調整部16に連通する開閉弁15を閉じ、圧力調整部19の第1空間14Aは、蒸気冷却部12との連通は維持するが、外部空間とは、開閉弁15と移動体18とで遮蔽された状態となる。 The steam 3 of the heat transfer liquid 2 reaches the first cooling communication section 11 between the steam heating furnace 4 and the steam cooling section 12, and the steam cooling section 12 is made a negative pressure by the pressure adjusting section 16, so that the steam 3 becomes negative. , It is introduced into the steam cooling unit 12 via the first cooling communication unit 11, and the steam 3 of the heat transfer liquid 2 is cooled by the steam cooling unit 12 and liquefied. The steam cooling unit 12 is the steam 3 of the heat transfer liquid 2 that is heated by the heating source 10 and vaporized by the latent heat of vaporization as described above, and is introduced from the first cooling communication unit 11. Has the ability to change the phase of all to liquid. Therefore, the steam 3 is completely liquefied by the steam cooling unit 12 before reaching the second cooling communication unit 13. Here, the preparation for carrying in the object to be heated 1 is completed, the on-off valve 15 communicating with the pressure adjusting unit 16 is closed, and the first space 14A of the pressure adjusting unit 19 maintains the communication with the steam cooling unit 12. The external space is in a state of being shielded by the on-off valve 15 and the moving body 18.

次に、図5は、図3と図4と同様に、図2の蒸気加熱炉4のIII−III線の断面図である。被加熱物1の投入準備が完了したことで、被加熱物1の搬入等による蒸気3の量の変動が起きた場合に対応するために、移動体固定部17の移動体18の固定を解除する。 Next, FIG. 5 is a cross-sectional view taken along the line III-III of the steam heating furnace 4 of FIG. 2, similarly to FIGS. 3 and 4. The fixing of the moving body 18 of the moving body fixing portion 17 is released in order to cope with a change in the amount of steam 3 due to the carry-in of the heated object 1 or the like due to the completion of the preparation for charging the object 1 to be heated. do.

なお、この解除は、手動で行う場合と、自動で行う場合とがある。 This release may be performed manually or automatically.

手動で行う場合には、圧力調整部16によって制御される「負圧」は所定の値で一定であるため、固定解除のトリガーとして、何らかの変化点を検出することは困難なため、複合的に準備完了の判断をユーザがした後に手動で固定解除する。 In the case of manual operation, since the "negative pressure" controlled by the pressure adjusting unit 16 is constant at a predetermined value, it is difficult to detect any change point as a trigger for releasing the fixation. Manually unlock after the user decides that the preparation is complete.

一方、自動で行う場合の例としては、以下のような構成が例示できる。装置の立ち上げ初期の段階では、圧力調整部16は、第1空間14A内を所定の負圧とするために、第1空間14A内の大気を開閉弁15を介して放出し続けている。ここで、準備完了の状態は、蒸気加熱炉4内から吸引する蒸気量と、蒸気冷却部12で液化する量とが釣り合って、蒸気3の無い空間の体積が変動しない状態、つまりは、移動体固定部17の固定を解除する際に、移動体18が動かないようになっている必要があり、このとき、圧力調整部16を通過する気体はゼロとなる。この、圧力調整部16を流れる気体の流量がゼロとなった状態、を圧力調整部16などで検出することができれば、これをトリガーとして、自動的に固定を解除することができる。 On the other hand, as an example of the case of automatic operation, the following configuration can be exemplified. At the initial stage of starting up the device, the pressure adjusting unit 16 continues to release the atmosphere in the first space 14A through the on-off valve 15 in order to make the inside of the first space 14A a predetermined negative pressure. Here, the ready state is a state in which the amount of steam sucked from the steam heating furnace 4 and the amount of liquefied by the steam cooling unit 12 are balanced and the volume of the space without the steam 3 does not fluctuate, that is, the movement. When releasing the fixation of the body fixing portion 17, the moving body 18 needs to be immobile, and at this time, the amount of gas passing through the pressure adjusting portion 16 becomes zero. If the pressure adjusting unit 16 or the like can detect the state in which the flow rate of the gas flowing through the pressure adjusting unit 16 becomes zero, the fixing can be automatically released by using this as a trigger.

移動体固定部17で固定されていた移動体18の固定を解除することで、移動体18が、圧力調整部19のシリンダ19a内の壁面に沿って、第1空間14Aと第2空間14Bとを遮蔽したまま移動するようになる。このとき、被加熱物1の蒸気加熱炉4への搬入等による外乱に対して、熱転移液2の蒸気3が、搬送部9の連通部6を通じて、隣接する加熱炉5などへ流出することを防ぐためには、蒸気加熱炉4内の圧力を準備完了の状態のまま保持する必要がある。蒸気加熱炉4内の圧力を準備完了の状態のまま保持するためには、連通する蒸気冷却部12内の圧力を一定に保持する必要がある。さらにそのためには、蒸気冷却部12に連通する第1空間14Aの圧力を一定に保持する必要がある。つまり、移動体18の固定を解除した時点、すなわち、開閉弁15を閉じた時点の第1空間14Aの圧力を維持する必要がある。このとき、移動体18が接しているもう一方の第2空間14Bの圧力は、外部空間用連通部20によって外部空間の大気圧で一定となっている。よって、移動体18の固定を解除した時点で第1空間14Aの圧力が変動しないためには、第1空間14Aの体積が変化しない、つまり、移動体18が移動しない必要があり、すなわち、移動体18の重量による重力方向への力が、第2空間14Bの圧力である大気圧と第1空間14Aの圧力との圧力差を相殺することが出来れば良い。 By releasing the fixation of the moving body 18 fixed by the moving body fixing portion 17, the moving body 18 becomes the first space 14A and the second space 14B along the wall surface in the cylinder 19a of the pressure adjusting unit 19. Will move while shielding. At this time, the steam 3 of the heat transfer liquid 2 flows out to the adjacent heating furnace 5 or the like through the communication portion 6 of the transport portion 9 in response to the disturbance caused by carrying the object 1 to be heated into the steam heating furnace 4. It is necessary to keep the pressure in the steam heating furnace 4 in the ready state in order to prevent the above. In order to keep the pressure in the steam heating furnace 4 in the ready state, it is necessary to keep the pressure in the communicating steam cooling unit 12 constant. Further, for that purpose, it is necessary to keep the pressure of the first space 14A communicating with the steam cooling unit 12 constant. That is, it is necessary to maintain the pressure in the first space 14A when the moving body 18 is released from being fixed, that is, when the on-off valve 15 is closed. At this time, the pressure of the other second space 14B in contact with the moving body 18 is constant at the atmospheric pressure in the external space by the communication portion 20 for the external space. Therefore, in order for the pressure of the first space 14A not to fluctuate when the fixing of the moving body 18 is released, the volume of the first space 14A must not change, that is, the moving body 18 must not move, that is, it moves. It suffices if the force in the direction of gravity due to the weight of the body 18 can cancel the pressure difference between the atmospheric pressure, which is the pressure in the second space 14B, and the pressure in the first space 14A.

これにより、様々な圧力変動の外乱要因、例えば蒸気加熱炉4への被加熱物1の搬入による蒸気3自体の量の変化、又は、蒸気冷却部12における蒸気3の液化及び回収の量の変動などの影響を受けて、第1空間14Aの圧力が変化しようとしても、移動体18の自重による重力方向への上下動によって第1空間14Aの体積が自動的に変化して、圧力も自動的に保持される。言い換えれば、蒸気加熱炉4内の圧力と加熱炉5内の圧力との圧力差と移動体18の重量とに基づきシリンダ19a内を移動体18が摺動することにより、蒸気加熱炉4内の圧力を加熱炉5内の圧力と同等に保持する。 As a result, various disturbance factors of pressure fluctuation, for example, a change in the amount of steam 3 itself due to the introduction of the object to be heated 1 into the steam heating furnace 4, or a change in the amount of liquefaction and recovery of steam 3 in the steam cooling unit 12. Even if the pressure of the first space 14A tries to change due to the influence of such factors, the volume of the first space 14A automatically changes due to the vertical movement of the moving body 18 in the direction of gravity due to its own weight, and the pressure also automatically changes. Is held in. In other words, the moving body 18 slides in the cylinder 19a based on the pressure difference between the pressure in the steam heating furnace 4 and the pressure in the heating furnace 5 and the weight of the moving body 18, so that the moving body 18 slides in the steam heating furnace 4. The pressure is maintained equal to the pressure in the heating furnace 5.

このとき、連通している第2冷却用連通部13と、蒸気冷却部12と、第1冷却用連通部11とを介した蒸気加熱炉4内の圧力についても、所望の圧力に保持される。よって、連続炉で蒸気加熱炉4の前後に接続された加熱炉5等と蒸気加熱炉4との圧力差が発生することはなく、熱転移液2の蒸気3の流出を防ぐことが出来る。 At this time, the pressure in the steam heating furnace 4 via the second cooling communication unit 13, the steam cooling unit 12, and the first cooling communication unit 11 that communicate with each other is also maintained at a desired pressure. .. Therefore, in the continuous furnace, the pressure difference between the heating furnace 5 and the like connected before and after the steam heating furnace 4 and the steam heating furnace 4 does not occur, and the outflow of the steam 3 of the heat transfer liquid 2 can be prevented.

前記実施形態によれば、複数の加熱炉4,5が狭小な間隔で連結するような連続炉であっても、熱転移液2の蒸気3の凝縮潜熱を利用して被加熱物1の加熱を行う蒸気加熱炉4の炉内圧力を一定圧力に保持することが可能となる。その結果として、蒸気の流出防止のための特別な機構が不要となり、隣接する蒸気加熱炉4と加熱炉5との間で被加熱物1の搬送部9の連通部6での蒸気3の移動を低減して熱転移液2の蒸気3の圧力差を低減することが出来る。 According to the above embodiment, even in a continuous furnace in which a plurality of heating furnaces 4 and 5 are connected at narrow intervals, the object 1 to be heated is heated by utilizing the latent heat of condensation of the steam 3 of the heat transfer liquid 2. It is possible to maintain the pressure inside the steam heating furnace 4 at a constant pressure. As a result, a special mechanism for preventing the outflow of steam becomes unnecessary, and the steam 3 moves between the adjacent steam heating furnace 4 and the heating furnace 5 in the communication portion 6 of the transport portion 9 of the object to be heated 1. Can be reduced to reduce the pressure difference of the vapor 3 of the thermal transfer liquid 2.

なお、本発明は前記実施形態に限定されるものではなく、その他種々の態様で実施できる。 The present invention is not limited to the above embodiment, and can be implemented in various other aspects.

例えば、図6は、本発明の実施の形態における別の態様の気相式加熱装置の詳細説明図である。移動体18の動作に対して、移動体18とシリンダ19aの端部19bとに連結されたバネなどの弾性体24によって一定の応力を移動体18に印加し続けることで、同様の効果を得ることが可能である。なお、弾性体24はその伸びの程度によって弾性力が変化するため、この場合の移動体18の可動範囲は、弾性体24の弾性力の変化が無視できる範囲に限られる。また、弾性体24を使用する際は、移動体18の重量の影響は少ないため、移動体18の移動方向は垂直方向に限定されるものではない。 For example, FIG. 6 is a detailed explanatory view of a gas phase heating device according to another embodiment of the embodiment of the present invention. The same effect can be obtained by continuously applying a constant stress to the moving body 18 by an elastic body 24 such as a spring connected to the moving body 18 and the end 19b of the cylinder 19a with respect to the operation of the moving body 18. It is possible. Since the elastic force of the elastic body 24 changes depending on the degree of elongation, the movable range of the moving body 18 in this case is limited to a range in which the change in the elastic force of the elastic body 24 can be ignored. Further, when the elastic body 24 is used, the influence of the weight of the moving body 18 is small, so that the moving direction of the moving body 18 is not limited to the vertical direction.

また、図7は、蒸気加熱炉4に隣接する上流側にも、熱転移液2の凝縮潜熱を利用した加熱を行うための蒸気加熱炉4Aを連結した場合の説明図である。上流側の蒸気加熱炉4Aは、一例として、蒸気加熱炉4とは沸点の異なる熱転移液2Aを使用する場合、又は、別の例として、熱転移液2Aの仕様は同じであるが、熱転移液2Aに付与する熱エネルギーの量を制御することで、熱転移液2Aの蒸気3Aの濃度が異なる蒸気加熱炉4Aを隣接して配置している場合である。蒸気加熱炉4と蒸気加熱炉4Aとのそれぞれについて、図3のような構成の蒸気冷却部12及び圧力調整部19を連通させることで、炉内圧力を一定に保持することが出来るため、圧力差が発生することが無く、隣接する炉体間での沸点の異なる熱転移液2Aの蒸気3Aの流出、流入、あるいは蒸気3Aの濃度差異による隣接する蒸気加熱炉4Aと蒸気加熱炉4との間で被加熱物1の搬送部9の連通部6での蒸気3Aの移動を低減して熱転移液2Aの蒸気3Aの圧力差を低減することが出来る。 Further, FIG. 7 is an explanatory diagram in the case where the steam heating furnace 4A for heating using the latent heat of condensation of the heat transfer liquid 2 is also connected to the upstream side adjacent to the steam heating furnace 4. As an example, when the steam heating furnace 4A on the upstream side uses a heat transfer liquid 2A having a boiling point different from that of the steam heating furnace 4, or as another example, the specifications of the heat transfer liquid 2A are the same, but heat. By controlling the amount of heat energy applied to the transfer liquid 2A, steam heating furnaces 4A having different concentrations of steam 3A in the heat transfer liquid 2A are arranged adjacent to each other. By communicating the steam cooling unit 12 and the pressure adjusting unit 19 having the configuration as shown in FIG. 3 for each of the steam heating furnace 4 and the steam heating furnace 4A, the pressure inside the furnace can be kept constant. There is no difference between the adjacent steam heating furnaces 4A and the steam heating furnace 4 due to the outflow or inflow of steam 3A of the heat transfer liquid 2A having different boiling points between adjacent furnace bodies, or the difference in the concentration of steam 3A. It is possible to reduce the movement of the vapor 3A in the communication portion 6 of the transport portion 9 of the object to be heated 1 and reduce the pressure difference of the vapor 3A of the thermal transfer liquid 2A.

また、図8は、本発明の実施の形態における気相式加熱装置において、入口から出口まで連続して同一速度で被加熱物1が搬送される搬送部9を有する場合の温度プロファイルの説明図である。被加熱物1の搬入からの加熱について、第1の蒸気加熱炉4Aを予熱工程として被加熱物1を所望の温度まで加熱し、次の加熱炉5では、熱風循環加熱等によって予熱温度を保持する。その後、第2の蒸気加熱炉4において、本加熱工程として、さらに所望の温度まで昇温することで、加熱処理が終了し、被加熱物冷却部8で被加熱物1の冷却を行うことで、温度プロファイルが完成する。なお、図3のような構成の蒸気冷却部12及び圧力調整部19は図示を省略している。 Further, FIG. 8 is an explanatory diagram of a temperature profile in the gas phase heating apparatus according to the embodiment of the present invention, in the case of having a transport portion 9 in which the object to be heated 1 is continuously transported from the inlet to the outlet at the same speed. Is. Regarding the heating from the carry-in of the object to be heated 1, the object to be heated 1 is heated to a desired temperature by using the first steam heating furnace 4A as a preheating step, and in the next heating furnace 5, the preheating temperature is maintained by hot air circulation heating or the like. do. After that, in the second steam heating furnace 4, as the main heating step, the heat treatment is completed by further raising the temperature to a desired temperature, and the heated object 1 is cooled by the heated object cooling unit 8. , The temperature profile is completed. The steam cooling unit 12 and the pressure adjusting unit 19 having the configuration as shown in FIG. 3 are not shown.

さらに、図9は、本発明の実施の形態における気相式加熱装置において、入口から出口までの被加熱物1の搬送部25は、各蒸気加熱炉4及び加熱炉5ごとに区切った搬送とする構成とした場合の温度プロファイルの説明図である。各蒸気加熱炉4及び加熱炉5ごとに区切った搬送部25とすることで、各蒸気加熱炉4及び加熱炉5内で被加熱物1の移動速度を変化させることが出来、場合によって、停止することも可能となり、各蒸気加熱炉4及び加熱炉5でそれぞれ所望の時間保持することが出来る。そのため、図8の場合の温度プロファイルよりも、各加熱工程を長短変化させることが出来、これによって、例えば一例として図9に示す温度プロファイルのように加熱炉5における温度保持時間を長くする場合、又は、図示はしないが、蒸気加熱炉4におけるピーク温度に到達した後の時間を変化させることが可能となるなど、より複雑な温度プロファイルを作成することが可能となる。なお、ここでも、図3のような構成の蒸気冷却部12及び圧力調整部19は図示を省略している。 Further, FIG. 9 shows that in the vapor phase heating apparatus according to the embodiment of the present invention, the transport portion 25 of the object to be heated 1 from the inlet to the outlet is transported separately for each steam heating furnace 4 and heating furnace 5. It is explanatory drawing of the temperature profile in the case of the configuration. By providing a transport unit 25 separated for each steam heating furnace 4 and heating furnace 5, the moving speed of the object to be heated 1 can be changed in each steam heating furnace 4 and heating furnace 5, and in some cases, the operation is stopped. It is also possible to hold the steam heating furnace 4 and the heating furnace 5 for a desired time. Therefore, it is possible to change the length of each heating step more than the temperature profile in the case of FIG. 8, and thereby, for example, when the temperature holding time in the heating furnace 5 is lengthened as in the temperature profile shown in FIG. Alternatively, although not shown, it is possible to create a more complicated temperature profile, such as being able to change the time after reaching the peak temperature in the steam heating furnace 4. Also here, the steam cooling unit 12 and the pressure adjusting unit 19 having the configuration as shown in FIG. 3 are not shown.

また、蒸気加熱炉4は、その内部の下部の浴槽4x内に加熱源10を配置しているが、このような構成に限定されるものではなく、図10に示すように、蒸気加熱炉4の外部に蒸気発生部4yを接続部4zを介して接続し、蒸気発生部4yの加熱源17yで熱転移液2を加熱して蒸気3を発生させ、発生した蒸気3を接続部4zを介して蒸気加熱炉4に供給するようにしてもよい。なお、図10は、蒸気加熱炉4の被加熱物1の搬送方向とは90度異なる方向から見た説明図として図示している。 Further, in the steam heating furnace 4, the heating source 10 is arranged in the lower tub 4x inside the steam heating furnace 4, but the heating source 10 is not limited to such a configuration, and as shown in FIG. 10, the steam heating furnace 4 The steam generating part 4y is connected to the outside of the furnace via the connecting part 4z, the heat transfer liquid 2 is heated by the heating source 17y of the steam generating part 4y to generate the steam 3, and the generated steam 3 is passed through the connecting part 4z. It may be supplied to the steam heating furnace 4. Note that FIG. 10 is shown as an explanatory view viewed from a direction 90 degrees different from the transport direction of the object 1 to be heated in the steam heating furnace 4.

なお、前記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせ又は実施例同士の組み合わせ又は実施形態と実施例との組み合わせが可能であると共に、異なる実施形態又は実施例の中の特徴同士の組み合わせも可能である。 By appropriately combining any of the various embodiments or modifications, the effects of each can be achieved. Further, it is possible to combine the embodiments or the embodiments, or the embodiments and the embodiments, and also to combine the features in the different embodiments or the embodiments.

本発明の前記態様にかかる気相式加熱方法及び気相式加熱装置は、被加熱物への熱伝達を行う熱転移液の蒸気の濃度を増減して調節しかつ均等にすることができ、昇温速度を加減することが可能となり、被加熱物の加熱の際に場所及び時間による加熱能力の差が生じず、立体的な形状の被加熱物においても均一な熱伝達による加熱を行うことが可能となる。このため、本発明の前記態様は、立体的な被加熱物を均一に加熱する加熱方法及び装置として、工業製品又は家電製品の製造工程又は各種電子部品の製造工程における乾燥炉、キュア炉、又はリフロー炉などの各種熱処理を行う熱処理方法及び装置に適用できる。 The vapor phase heating method and the vapor phase heating apparatus according to the above aspect of the present invention can adjust and equalize the concentration of the steam of the heat transfer liquid that transfers heat to the object to be heated. It is possible to adjust the heating rate, and when heating the object to be heated, there is no difference in heating capacity depending on the location and time, and even a three-dimensional object to be heated can be heated by uniform heat transfer. Is possible. Therefore, in the above aspect of the present invention, as a heating method and apparatus for uniformly heating a three-dimensional object to be heated, a drying furnace, a curing furnace, or a curing furnace in a manufacturing process of an industrial product or a home electric appliance or a manufacturing process of various electronic parts, or It can be applied to heat treatment methods and equipment that perform various heat treatments such as reflow furnaces.

1 被加熱物
2 熱転移液
2A 熱転移液
3 蒸気
3A 蒸気
4 蒸気加熱炉
4x 浴槽
4y 蒸気発生部
4z 接続部
4A 蒸気加熱炉
5 加熱炉
6 連通部
7 入口部
8 被加熱物冷却部
9 搬送部
10 加熱源
11 第1冷却用連通部
12 蒸気冷却部
13 第2冷却用連通部
14A 第1空間
14B 第2空間
15 開閉弁
16 圧力調整部
17 移動体固定部
18 移動体
19 圧力調整部
19a シリンダ
19b 端部
20 外部空間用連通部
21 回収部
22 ポンプ
23 パイプ
24 弾性体
25 搬送部
31 蒸気
32 排気口
33 出入口
34 コンベア
35 蒸気加熱炉
36 トンネル
37 トンネル
38 トンネル
39 排出口
40 液体
41 空気−蒸気の界面
1 Heated object 2 Thermal transfer liquid 2A Thermal transfer liquid 3 Steam 3A Steam 4 Steam heating furnace 4x Bathtub 4y Steam generator 4z Connection part 4A Steam heating furnace 5 Heating furnace 6 Communication part 7 Inlet part 8 Heated object cooling part 9 Transport Part 10 Heating source 11 1st cooling communication part 12 Steam cooling part 13 2nd cooling communication part 14A 1st space 14B 2nd space 15 On-off valve 16 Pressure adjustment part 17 Moving body fixing part 18 Moving body 19 Pressure adjusting part 19a Cylinder 19b End 20 External space communication part 21 Recovery part 22 Pump 23 Pipe 24 Elastic body 25 Transport part 31 Steam 32 Exhaust port 33 Doorway 34 Conveyor 35 Steam heating furnace 36 Tunnel 37 Tunnel 38 Tunnel 39 Discharge port 40 Liquid 41 Air- Vapor interface

Claims (8)

熱転移液の蒸気の凝縮潜熱を利用して被加熱物の加熱を行う少なくとも一つの蒸気加熱炉と、前記一つの蒸気加熱炉と連通して配置された少なくとも一つの加熱炉又は他の蒸気加熱炉とを備える連続炉で、前記被加熱物を加熱する気相式加熱方法であって、
前記一つの蒸気加熱炉と隣接する前記加熱炉又は前記他の蒸気加熱炉と、前記一つの蒸気加熱炉との間を常に連通する連通部を介して、前記被加熱物を前記加熱炉又は前記他の蒸気加熱炉又は前記一つの蒸気加熱炉に搬入し、
前記一つの蒸気加熱炉内の前記連通部よりも上方に備えた蒸気冷却部で、前記一つの蒸気加熱炉内の前記熱転移液の前記蒸気を冷却して液化するとともに、圧力調整部により前記一つの蒸気加熱炉内の圧力を前記加熱炉内又は他の蒸気加熱炉内の圧力と同等に保持することで、前記連続炉内の圧力を均等にしつつ、搬入された前記被加熱物を加熱する気相式加熱方法。
At least one steam heating furnace that heats the object to be heated by utilizing the latent heat of condensation of the steam of the heat transfer liquid, and at least one heating furnace or another steam heating furnace arranged in communication with the one steam heating furnace. in a continuous furnace and a furnace, a gas-phase heating method of heating the object to be heated,
Said heating furnace or said other steam heating furnace, via the communication unit always that pass communicating between said one steam heating furnace adjacent to the one steam heating furnace, the heating furnace the object to be heated Or, carry it into the other steam heating furnace or the one steam heating furnace, and carry it into the steam heating furnace.
In the steam cooling unit provided above the communicating portion of said one steam heating furnace, together with liquefied by cooling the vapor of the heat transfer liquid within said one steam heating furnace, wherein the pressure adjustment section By keeping the pressure in one steam heating furnace equal to the pressure in the heating furnace or the other steam heating furnace, the pressure in the continuous furnace is equalized and the carried-in object to be heated is heated. Steam-type heating method.
前記一つの蒸気加熱炉では、その下部の浴槽で前記熱転移液を加熱して前記蒸気を生成する、請求項1に記載の気相式加熱方法。 The vapor phase heating method according to claim 1, wherein in the one steam heating furnace, the heat transfer liquid is heated in a bathtub below the steam heating furnace to generate the steam. 前記圧力調整部は、シリンダ内部の空間容積変化によって圧力を調整する空間であり、前記圧力を調整する空間は、前記シリンダ内を重力によって摺動可能なピストンで第1空間と第2空間とに区切った状態で、前記第1空間は、前記蒸気冷却部を介して前記一つの蒸気加熱炉と連通し、前記第2空間は、外部空間に連通しており、前記一つの蒸気加熱炉内の圧力と前記外部空間の圧力との圧力差と前記ピストンの重量とに基づき前記シリンダ内を前記ピストンが摺動することにより、前記一つの蒸気加熱炉内の圧力を前記加熱炉内又は他の蒸気加熱炉内の圧力と同等に保持する、請求項1又は2に記載の気相式加熱方法。 The pressure adjusting unit is a space for adjusting the pressure by changing the volume of the space inside the cylinder , and the space for adjusting the pressure is a first space and a second space with a piston slidable by gravity in the cylinder. The first space communicates with the one steam heating furnace via the steam cooling unit, and the second space communicates with the external space in the one steam heating furnace. By sliding the piston in the cylinder based on the pressure difference between the pressure in the external space and the pressure in the external space and the weight of the piston, the pressure in the one steam heating furnace is reduced to the pressure in the heating furnace or the other. The vapor phase heating method according to claim 1 or 2, wherein the pressure is maintained at the same level as the pressure in the steam heating furnace. 熱転移液の蒸気の凝縮潜熱を利用して被加熱物の加熱を行う少なくとも一つの蒸気加熱炉と、前記一つの蒸気加熱炉と連通して配置された少なくとも一つの加熱炉又は他の蒸気加熱炉とを備える連続炉で構成されて前記被加熱物を加熱する気相式加熱装置であって、
前記一つの蒸気加熱炉は、
前記被加熱物を搬出入可能に、隣接する前記加熱炉又は前記他の蒸気加熱炉との間で常に連通する連通部と、
前記連通部よりも上方に配置されて、前記一つの蒸気加熱炉内の前記熱転移液の前記蒸気を冷却して液化する蒸気冷却部と、
前記蒸気加熱炉の内部圧力を前記加熱炉内又は他の蒸気加熱炉内の圧力と同等に保持するように調整する圧力調整部とを備える気相式加熱装置。
At least one steam heating furnace that heats the object to be heated by utilizing the latent heat of condensation of the steam of the heat transfer liquid, and at least one heating furnace or another steam heating furnace arranged in communication with the one steam heating furnace. It is a gas phase heating device that is composed of a continuous furnace including a furnace and heats the object to be heated.
The one steam heating furnace
A communication unit that always communicates with the adjacent heating furnace or the other steam heating furnace so that the object to be heated can be carried in and out.
A steam cooling unit, which is arranged above the communication unit and cools and liquefies the steam of the heat transfer liquid in the one steam heating furnace.
Vapor heating device and a pressure adjustment unit for adjusting the internal pressure of the steam heating furnace so as to hold the equivalent to the pressure in the furnace or other steam heating furnace.
前記一つの蒸気加熱炉では、その下部の浴槽で前記熱転移液を加熱して蒸気を生成する加熱源を有する、請求項4に記載の気相式加熱装置。 The vapor-phase heating apparatus according to claim 4, wherein the one steam heating furnace has a heating source for heating the heat transfer liquid in a bathtub below the steam heating furnace to generate steam. 前記圧力調整部は、容積変化によって圧力を調整する空間を有する容器を備える請求項4又は5に記載の気相式加熱装置。 The vapor phase heating device according to claim 4 or 5, wherein the pressure adjusting unit includes a container having a space for adjusting the pressure by changing the volume. 前記圧力を調整する空間は、シリンダ内部の空間であって、前記シリンダ内を重力によって摺動可能なピストンで第1空間と第2空間とに区切られ、前記第1空間は、前記蒸気冷却部を介して前記一つの蒸気加熱炉と連通し、前記第2空間は、外部空間に連通しており、前記一つの蒸気加熱炉内の圧力と前記外部空間の圧力との圧力差と前記ピストンの重量とに基づき前記シリンダ内を前記ピストンが摺動することにより、前記一つの蒸気加熱炉内の圧力を前記加熱炉内又は他の蒸気加熱炉内の圧力と同等に保持する、請求項6に記載の気相式加熱装置。 The space for adjusting the pressure is a space inside the cylinder, and the inside of the cylinder is divided into a first space and a second space by a piston slidable by gravity, and the first space is the steam cooling unit. communicates with the one of the steam furnace through said second space is communicated with the outer space, the pressure difference between the pressure of the pressure and the external space within the one steam heating furnace and the piston by the piston slides within the cylinder based on the weight, to hold the pressure in the one of the steam furnace equal to the pressure in the furnace or other steam heating furnace, to claim 6 The described vapor phase heating device. 前記圧力を調整する空間は、シリンダ内部の空間であって、前記シリンダ内を重力によって摺動可能なピストンで第1空間と第2空間とに区切られ、前記第1空間は、前記蒸気冷却部を介して前記一つの蒸気加熱炉と連通し、前記第2空間では、前記シリンダと前記ピストンとの間に弾性体が張設される、請求項6に記載の気相式加熱装置。 The space for adjusting the pressure is a space inside the cylinder, and the inside of the cylinder is divided into a first space and a second space by a piston slidable by gravity, and the first space is the steam cooling unit. The vapor-phase heating device according to claim 6, wherein an elastic body is stretched between the cylinder and the piston in the second space, which communicates with the one steam heating furnace via the above.
JP2018209895A 2018-11-07 2018-11-07 Gas phase heating method and vapor phase heating device Active JP6909998B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018209895A JP6909998B2 (en) 2018-11-07 2018-11-07 Gas phase heating method and vapor phase heating device
CN201910962234.7A CN111156702B (en) 2018-11-07 2019-10-10 Gas phase heating method and gas phase heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018209895A JP6909998B2 (en) 2018-11-07 2018-11-07 Gas phase heating method and vapor phase heating device

Publications (2)

Publication Number Publication Date
JP2020076540A JP2020076540A (en) 2020-05-21
JP6909998B2 true JP6909998B2 (en) 2021-07-28

Family

ID=70555646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018209895A Active JP6909998B2 (en) 2018-11-07 2018-11-07 Gas phase heating method and vapor phase heating device

Country Status (2)

Country Link
JP (1) JP6909998B2 (en)
CN (1) CN111156702B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7170222B2 (en) * 2019-04-01 2022-11-14 パナソニックIpマネジメント株式会社 Gas phase heating device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023107B1 (en) * 1979-07-09 1983-09-07 Electrovert Ltd. Method and apparatus for vapour phase soldering
JPS62252670A (en) * 1986-04-25 1987-11-04 Hitachi Techno Eng Co Ltd Paper reflow type soldering device
JPS63115674A (en) * 1986-11-04 1988-05-20 Tamura Seisakusho Co Ltd Gaseous phase type soldering device
JPH0347674A (en) * 1989-07-11 1991-02-28 Mitsubishi Electric Corp Gaseous phase type soldering device
US7380699B2 (en) * 2002-06-14 2008-06-03 Vapour Phase Technology Aps Method and apparatus for vapour phase soldering
WO2010066002A1 (en) * 2008-12-10 2010-06-17 Kevin Stephen Davies Method and apparatus for reflow soldering
JP6188671B2 (en) * 2014-12-12 2017-08-30 株式会社Ssテクノ Steam reflow apparatus and steam reflow method

Also Published As

Publication number Publication date
CN111156702B (en) 2021-08-03
JP2020076540A (en) 2020-05-21
CN111156702A (en) 2020-05-15

Similar Documents

Publication Publication Date Title
US4321031A (en) Method and apparatus for condensation heating
KR900004296B1 (en) Vapor tank
US7380699B2 (en) Method and apparatus for vapour phase soldering
JP6909998B2 (en) Gas phase heating method and vapor phase heating device
JPH0240953B2 (en)
CN110385494B (en) Gas phase heating method and gas phase heating device
CN111156703B (en) Gas phase heating method and gas phase heating device
Lai et al. Determination of smarter reflow profile to achieve a uniform temperature throughout a board
JP6607507B2 (en) Vapor phase heating method and vapor phase heating apparatus
JP4652500B2 (en) Method of heat-treating workpiece with at least one heat transfer liquid and condensing furnace for realizing the method
JP2018537290A (en) Methods for improving the heat treatment of castings.
JP7170222B2 (en) Gas phase heating device
JP7182109B2 (en) Gas-phase heating method and gas-phase heating apparatus
EP3206509A1 (en) Method and system for treating a product
JPH03219008A (en) Cooling vessel for quenching steel
EP2745716A1 (en) Method and Apparatus for Expanding a Product Containing Starch
JP6274448B2 (en) Firing furnace and coating method
CA1142454A (en) Method and apparatus for condensation heating
JPH0423976A (en) Roasting machine for coffee bean or the like
US1526582A (en) Enameling furnace
CN107206414A (en) Continuous painting device
JPH0459068B2 (en)
JPS63235070A (en) Vapor soldering device
MXPA99007011A (en) Heat treatment of a work piece by at least one heat transfer liquid and condensation furnace for realizing the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210618

R151 Written notification of patent or utility model registration

Ref document number: 6909998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151