JP6909077B2 - Buffer - Google Patents

Buffer Download PDF

Info

Publication number
JP6909077B2
JP6909077B2 JP2017131721A JP2017131721A JP6909077B2 JP 6909077 B2 JP6909077 B2 JP 6909077B2 JP 2017131721 A JP2017131721 A JP 2017131721A JP 2017131721 A JP2017131721 A JP 2017131721A JP 6909077 B2 JP6909077 B2 JP 6909077B2
Authority
JP
Japan
Prior art keywords
spring
spring portion
valve
rate
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017131721A
Other languages
Japanese (ja)
Other versions
JP2019015312A (en
Inventor
瀬戸 信治
信治 瀬戸
山岡 史之
史之 山岡
幹郎 山下
幹郎 山下
治 湯野
治 湯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2017131721A priority Critical patent/JP6909077B2/en
Priority to PCT/JP2018/018496 priority patent/WO2019008902A1/en
Publication of JP2019015312A publication Critical patent/JP2019015312A/en
Application granted granted Critical
Publication of JP6909077B2 publication Critical patent/JP6909077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/32Belleville-type springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)
  • Vehicle Body Suspensions (AREA)
  • Magnetically Actuated Valves (AREA)
  • Springs (AREA)

Description

本発明はピストンロッドのストロークに対する減衰力を発生させる緩衝器に係り、特に減衰力を制御可能にした減衰力調整式緩衝器に関するものである。 The present invention relates to a shock absorber that generates a damping force with respect to the stroke of the piston rod, and particularly relates to a damping force adjusting type shock absorber that makes the damping force controllable.

自動車等の車両に用いられる緩衝器では、走行条件によって減衰力を自由に変更できるのが望ましい。そこで、走行状態等を検出し、緩衝器のピストンに設けた油路を開閉するバルブの作動圧をリニアソレノイドによって変化させる減衰力調整式緩衝器が知られている。 For shock absorbers used in vehicles such as automobiles, it is desirable that the damping force can be freely changed depending on the driving conditions. Therefore, there is known a damping force adjusting type shock absorber that detects a running state or the like and changes the operating pressure of a valve provided in the piston of the shock absorber to open and close the oil passage by a linear solenoid.

例えば、特開平8−170679号公報(特許文献1)の段落0013〜0024には、作動油が封入されたシリンダと、シリンダ内を2つの主油室(シリンダ上室およびシリンダ下室)に画成すると共にシリンダ内に摺動可能に嵌装されたピストンと、ピストンに連結されシリンダの外部に延出されたピストンロッドと、ピストンの摺動によって生じる作動油の流れを制御して減衰力を発生させる機構(減衰力発生機構)と、を備えた減衰器(緩衝器)が記載されている。減衰力を発生させる機構は、減衰力を発生させる制御弁(メインバルブ部)と、高圧側の主油室の内圧が導かれ制御弁を閉じる方向に背圧を作用させる副油室(背圧室)と、副油室に背圧を導くチェック弁を備えた導入路と、背圧室の背圧を排出するパイロット通路(排出路)と、パイロット通路中に設けたパイロット弁(パイロットバルブ部)と、からなる。パイロット弁は、パイロット通路中に設けた弁体および弁座と、電流に対応して弁体を閉じ方向に移動させる力を発生するリニアソレノイド(アクチュエータ)と、弁体をリニアソレノイドによる移動方向と対向する開き方向に付勢する板ばね(ばね部材)と、を有する。 For example, in paragraphs 0013 to 0024 of JP-A-8-170679 (Patent Document 1), a cylinder in which hydraulic oil is sealed and the inside of the cylinder are divided into two main oil chambers (cylinder upper chamber and cylinder lower chamber). A piston that is slidably fitted in the cylinder, a piston rod that is connected to the piston and extends to the outside of the cylinder, and a hydraulic oil flow generated by the sliding of the piston are controlled to reduce damping force. A mechanism for generating (damping force generating mechanism) and an attenuator (buffer) provided with the mechanism are described. The mechanism that generates the damping force is the control valve (main valve part) that generates the damping force and the auxiliary oil chamber (back pressure) that induces the internal pressure of the main oil chamber on the high pressure side and applies back pressure in the direction of closing the control valve. A chamber), an introduction path equipped with a check valve that guides the back pressure to the auxiliary oil chamber, a pilot passage (exhaust passage) that discharges the back pressure in the back pressure chamber, and a pilot valve (pilot valve section) provided in the pilot passage. ) And. The pilot valve has a valve body and a valve seat provided in the pilot passage, a linear solenoid (actuator) that generates a force to move the valve body in the closing direction in response to an electric current, and a movement direction of the valve body by the linear solenoid. It has a leaf spring (spring member) that urges the facing opening direction.

特開平8−170679号公報Japanese Unexamined Patent Publication No. 8-170679

特許文献1の減衰器では、故障などによりリニアソレノイド(アクチュエータ)が機能しなくなる異常時にパイロット弁(パイロットバルブ部)の弁体を完全かつ確実に開いた状態(開弁状態)に移動させる必要があるが,正常時のリニアソレノイドの消費電力を少なくするために、板ばねのばね力は小さい方が好ましい。一方で,リニアソレノイドが正常に機能する正常時(通常時)で制御する際には,騒音を抑えるために,バルブの着座付近では板ばねのばね力が大きいことが好ましい。従って、上記の板ばねのばね力に対する要求を両立することは難しい。 In the attenuator of Patent Document 1, it is necessary to move the valve body of the pilot valve (pilot valve portion) to a completely and surely opened state (valve open state) in the event of an abnormality in which the linear solenoid (actuator) does not function due to a failure or the like. However, in order to reduce the power consumption of the linear solenoid under normal conditions, it is preferable that the spring force of the leaf spring is small. On the other hand, when controlling in the normal state (normal time) when the linear solenoid functions normally, it is preferable that the spring force of the leaf spring is large near the seating of the valve in order to suppress noise. Therefore, it is difficult to satisfy the above-mentioned requirements for the spring force of the leaf spring.

以下の説明では、減衰器(緩衝器)に構成される、パイロット弁(パイロットバルブ部)を含む弁機構を、制御弁と呼んで説明する。 In the following description, a valve mechanism including a pilot valve (pilot valve portion), which is configured as an attenuator (buffer), will be referred to as a control valve.

本発明の目的は、制御弁の弁体を付勢するばね部材のばね力設定の自由度を向上した緩衝器を提供することにある。 An object of the present invention is to provide a shock absorber having an improved degree of freedom in setting the spring force of a spring member for urging a valve body of a control valve.

上記目的を達成するために、本発明の緩衝器は、
流体が封入されたシリンダと、前記シリンダの内側に摺動可能に嵌装されたピストンと、前記ピストンの移動によって前記シリンダの内側に生じる流体の流れを制御して減衰力を発生させる制御弁と、を備え、
前記制御弁は、弁体と、前記弁体と協働して流路の開閉部を形成する弁座と、電流に対応して前記弁体を移動させる力を発生するアクチュエータと、前記弁体を前記アクチュエータによる移動方向に対向する方向に付勢するばね装置と、を有する緩衝器であって、
前記ばね装置は、第一ばね部と第二ばね部とを有するばね部材と、前記ばね部材の所定以上のばね変位に対し前記第一ばね部のばね変位を規制する規制部と、を有し、
前記ばね部材は、外側環状部と、内側環状部と、前記内側環状部と接続され径方向に延びる径方向延設ばね部と、一端が前記外側環状部に接続され他端が前記径方向延設ばね部の外周側に接続される周方向延設ばね部と、を有し、
前記周方向延設ばね部が前記第一ばね部を構成し、
前記径方向延設ばね部が前記第二ばね部を構成し、
前記周方向延設ばね部と前記径方向延設ばね部とを、それぞれ少なくとも一対ずつ備え、
前記周方向延設ばね部の前記外側環状部に接続される側の内径は、前記径方向延設ばね部の外径よりも大きく、
一対の前記径方向延設ばね部のうち一方の径方向延設ばね部は、他方の径方向延設ばね部が接続される周方向延設ばね部と重複する中心角の範囲に設けられ
前記第一ばね部を構成する前記周方向延設ばね部は、前記外側環状部に接続される側に設けられ第一ばね区分と、前記第二ばね部を構成する前記径方向延設ばね部に接続される側に設けられ外径が前記第一ばね区分の内径よりも小さい第二ばね区分と、を備え、
前記規制部は、前記第一ばね区分のばね変位を規制する第一規制部と、前記第二ばね区分のばね変位を規制する第二規制部と、を備え、
前記第二ばね部のばね変位に対する荷重の変化率である第二変化率は、前記第一ばね部のばね変位に対する荷重の変化率である第一変化率よりも大きく、
前記第一ばね区分のばね変位に対する荷重の変化率は前記第一変化率であり、
前記第二ばね区分のばね変位に対する荷重の変化率は、前記第一変化率よりも大きく、且つ前記第二変化率よりも小さい第三変化率であり、
前記第二ばね区分の第三変化率及び前記第二ばね部の第二変化率を減衰力制御で使用する。
In order to achieve the above object, the shock absorber of the present invention is
A cylinder filled with fluid, a piston slidably fitted inside the cylinder, and a control valve that controls the flow of fluid generated inside the cylinder by the movement of the piston to generate a damping force. , Equipped with
The control valve includes a valve body, a valve seat that cooperates with the valve body to form an opening / closing portion of a flow path, an actuator that generates a force for moving the valve body in response to an electric current, and the valve body. A shock absorber comprising a spring device for urging the actuator in a direction opposite to the moving direction.
The spring device includes a spring member having a first spring portion and a second spring portion, and a regulating portion that regulates the spring displacement of the first spring portion with respect to a spring displacement of the spring member equal to or greater than a predetermined value. ,
The spring member includes an outer annular portion, an inner annular portion, a radially extending spring portion connected to the inner annular portion and extending in the radial direction, and one end connected to the outer annular portion and the other end extending in the radial direction. It has a circumferential extension spring portion connected to the outer peripheral side of the installation spring portion, and has.
The circumferential extension spring portion constitutes the first spring portion,
The radial extension spring portion constitutes the second spring portion, and the second spring portion constitutes the second spring portion.
At least one pair of each of the circumferential extension spring portion and the radial extension spring portion is provided.
The inner diameter of the circumferential extension spring portion connected to the outer annular portion is larger than the outer diameter of the radial extension spring portion.
One of the pair of radial extension springs is provided in a range of a central angle that overlaps with the circumferential extension spring to which the other radial extension is connected .
The circumferential extension spring portion constituting the first spring portion is provided on the side connected to the outer annular portion, and has a first spring division and the radial extension spring portion forming the second spring portion. A second spring section having an outer diameter smaller than the inner diameter of the first spring section, which is provided on the side connected to the first spring section, is provided.
The regulation unit includes a first regulation unit that regulates the spring displacement of the first spring division and a second regulation unit that regulates the spring displacement of the second spring division.
The second rate of change, which is the rate of change of the load with respect to the spring displacement of the second spring portion, is larger than the first rate of change, which is the rate of change of the load with respect to the spring displacement of the first spring portion.
The rate of change of the load with respect to the spring displacement of the first spring category is the first rate of change.
The rate of change of the load with respect to the spring displacement of the second spring category is a third rate of change that is larger than the first rate of change and smaller than the second rate of change.
The third change rate and the second rate of change of the second spring portion of the second spring segment to use in damping force control.

本発明によれば、フェイルに必要なばね力を十分低くした上で、制御領域のばね力を高くすることができ、それによって、制御弁の弁体を付勢するばね部材のばね力設定の自由度を向上した緩衝器を提供することができる。 According to the present invention, the spring force required for failing can be sufficiently lowered and then the spring force in the control region can be increased, thereby setting the spring force of the spring member for urging the valve body of the control valve. It is possible to provide a shock absorber with an improved degree of freedom.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.

本発明が適用されるセミアクティブサスペンションの油圧回路図である。It is a hydraulic circuit diagram of the semi-active suspension to which this invention is applied. 本発明の第1実施例に係る減衰力調整式緩衝器の通常動作状態の時の断面図である。It is sectional drawing in the normal operation state of the damping force adjustment type shock absorber which concerns on 1st Embodiment of this invention. 図2に示す減衰力調整式緩衝器の通常動作状態のパイロットバルブ部付近を拡大した拡大断面図でパイロットバルブ部が閉弁あるいは微小に開口した状態を示す図である。FIG. 2 is an enlarged cross-sectional view of the vicinity of the pilot valve portion in the normal operating state of the damping force adjusting shock absorber shown in FIG. 2 showing a state in which the pilot valve portion is closed or slightly opened. 図2に示す減衰力調整式緩衝器の通常動作状態のパイロットバルブ部付近を拡大した拡大断面図でパイロットバルブ部が開口した状態を示す図である。It is a figure which shows the state which the pilot valve part opened in the enlarged cross-sectional view which magnified the vicinity of the pilot valve part in the normal operation state of the damping force adjustment type shock absorber shown in FIG. 図2に示す減衰力調整式緩衝器のパイロットバルブ部付近を拡大した拡大断面図でフェイル状態を示す図である。It is a figure which shows the fail state in the enlarged cross-sectional view which magnified the vicinity of the pilot valve part of the damping force adjustment type shock absorber shown in FIG. 本発明の第1実施例のばね部材を示す図である。It is a figure which shows the spring member of 1st Example of this invention. 本発明の第1実施例のばね部材の特性を示す図である。It is a figure which shows the characteristic of the spring member of 1st Example of this invention. 本発明の第2実施例のパイロットバルブ部付近を示す断面図でフェイル状態を示す図である。It is a figure which shows the fail state in the cross-sectional view which shows the vicinity of the pilot valve part of the 2nd Example of this invention. 本発明の第2実施例のばね部材を示す図である。It is a figure which shows the spring member of the 2nd Example of this invention. 本発明の第2実施例に係る減衰力調整式緩衝器のパイロットバルブ部付近を拡大した拡大断面図でフェイル状態を示す図である。It is a figure which shows the fail state by the enlarged sectional view around the pilot valve part of the damping force adjustment type shock absorber which concerns on 2nd Embodiment of this invention. 本発明の第2実施例に係る減衰力調整式緩衝器の通常動作状態のパイロットバルブ部付近を拡大した拡大断面図でパイロットバルブ部の第2の開口状態を示す図である。It is a figure which shows the 2nd opening state of the pilot valve part in the enlarged cross-sectional view around the pilot valve part of the normal operation state of the damping force adjustment type shock absorber which concerns on 2nd Embodiment of this invention. 本発明の第2実施例に係る減衰力調整式緩衝器の通常動作状態のパイロットバルブ部付近を拡大した拡大断面図でパイロットバルブ部の第1の開口状態を示す図である。It is a figure which shows the 1st opening state of the pilot valve part in the enlarged cross-sectional view around the pilot valve part of the normal operation state of the damping force adjustment type shock absorber which concerns on 2nd Embodiment of this invention. 本発明の第2実施例に係る減衰力調整式緩衝器の通常動作状態のパイロットバルブ部付近を拡大した拡大断面図でパイロットバルブ部が閉弁あるいは微小に開口した状態を示す図である。FIG. 5 is an enlarged cross-sectional view of the vicinity of the pilot valve portion in the normal operating state of the damping force adjusting shock absorber according to the second embodiment of the present invention, showing a state in which the pilot valve portion is closed or slightly opened. 本発明の第2実施例のばね部材の特性を示す図である。It is a figure which shows the characteristic of the spring member of the 2nd Example of this invention.

本発明の実施形態について図面を用いて詳細に説明する。なお、以下の説明において、上下方向を指定して説明する場合があるが、この上下方向は説明を分かり易くするために指定するものであり、装置の実装状態における上下方向とは必ずしも一致しない。 Embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the vertical direction may be specified for explanation, but this vertical direction is specified for the sake of easy understanding, and does not necessarily match the vertical direction in the mounted state of the apparatus.

[実施例1]
以下、本発明の第1実施例に係る減衰力調整式緩衝器を図面に基づいて説明する。
[Example 1]
Hereinafter, the damping force adjusting shock absorber according to the first embodiment of the present invention will be described with reference to the drawings.

図1を参照して、セミアクティブサスペンション用の減衰力調整式緩衝器の全体構成について説明する。図1は、本発明が適用されるセミアクティブサスペンションの油圧回路図である。 The overall configuration of the damping force adjusting shock absorber for the semi-active suspension will be described with reference to FIG. FIG. 1 is a hydraulic circuit diagram of a semi-active suspension to which the present invention is applied.

図1に示すように、本実施例に係る緩衝器1は、シリンダ2、リザーバ4、減衰力発生機構25から構成され、図示しない車両のサスペンション装置のばね上(車体)側、ばね下(車輪側)等の相対移動可能な二部材間に装着されるものである。 As shown in FIG. 1, the shock absorber 1 according to the present embodiment is composed of a cylinder 2, a reservoir 4, and a damping force generating mechanism 25, and is a spring-up (vehicle body) side and unsprung (wheel) side of a vehicle suspension device (not shown). It is mounted between two relative movable members such as the side).

シリンダ2内には摺動可能にピストン5が介装され、このピストン5によりシリンダ2内がシリンダ上室(第一室)2Aとシリンダ下室(第二室)2Bとに区分されている。 A piston 5 is slidably interposed in the cylinder 2, and the inside of the cylinder 2 is divided into a cylinder upper chamber (first chamber) 2A and a cylinder lower chamber (second chamber) 2B by the piston 5.

ピストン5にはピストンロッド6が連結されており、ピストンロッド6のピストン5とは反対側端部は、シリンダ上室2Aを通り、図示しないオイルシールを通して、シリンダ2の外側に突出している。シリンダ2の下端側には、シリンダ下室2Bとリザーバ4を区分するベースバルブ10が設けられている。 A piston rod 6 is connected to the piston 5, and the end portion of the piston rod 6 opposite to the piston 5 passes through the cylinder upper chamber 2A and projects to the outside of the cylinder 2 through an oil seal (not shown). A base valve 10 that separates the cylinder lower chamber 2B and the reservoir 4 is provided on the lower end side of the cylinder 2.

ピストン5にはシリンダ上室2Aとシリンダ下室2Bとの間を連通させる通路11、12が設けられている。そして通路12にはシリンダ下室2Bからシリンダ上室2Aへの流体の流通のみを許容する逆止弁13が設けられ、また通路11にはシリンダ上室2A側の流体の圧力が所定圧力に達した時に開弁して、流体の圧力をシリンダ下室2B側へリリーフするリリーフ弁14が設けられている。 The piston 5 is provided with passages 11 and 12 for communicating between the cylinder upper chamber 2A and the cylinder lower chamber 2B. A check valve 13 that allows only fluid to flow from the cylinder lower chamber 2B to the cylinder upper chamber 2A is provided in the passage 12, and the pressure of the fluid on the cylinder upper chamber 2A side reaches a predetermined pressure in the passage 11. A relief valve 14 is provided which opens the valve at the same time and relieves the pressure of the fluid to the cylinder lower chamber 2B side.

ベースバルブ10には、シリンダ下室2Bとリザーバ4とを連通させる通路15、16が設けられている。そして通路15にはリザーバ4からシリンダ下室2Bへの流体の流通のみを許容する逆止弁17が設けられ、通路16には、シリンダ下室2B側の流体の圧力が所定圧力に達したときに開弁して、流体の圧力をリザーバ4側へリリーフするリリーフ弁18が設けられている。減衰力発生機構25は、上流側25uがシリンダ上室2A側に接続され、下流側25dがリザーバ4に接続されている。 The base valve 10 is provided with passages 15 and 16 for communicating the lower chamber 2B of the cylinder and the reservoir 4. A check valve 17 that allows only fluid to flow from the reservoir 4 to the cylinder lower chamber 2B is provided in the passage 15, and when the pressure of the fluid on the cylinder lower chamber 2B side reaches a predetermined pressure in the passage 16. A relief valve 18 is provided which opens the valve to relieve the pressure of the fluid toward the reservoir 4. In the damping force generation mechanism 25, the upstream side 25u is connected to the cylinder upper chamber 2A side, and the downstream side 25d is connected to the reservoir 4.

次に、減衰力発生機構25のシリンダ2への取り付け構造及び減衰力発生機構25の詳細構造について図2から図5を用いて説明する。図2は、本発明の第1実施例に係る減衰力調整式緩衝器の通常動作状態の時の断面図である。図3は、図2に示す減衰力調整式緩衝器の通常動作状態のパイロットバルブ部付近を拡大した拡大断面図でパイロットバルブ部が閉じた状態を示す図である。図4は、図2に示す減衰力調整式緩衝器の通常動作状態のパイロットバルブ部付近を拡大した拡大断面図でパイロットバルブ部が開口した状態を示す図である。図5は、図2に示す減衰力調整式緩衝器のパイロットバルブ部付近を拡大した拡大断面図でフェイル状態を示す図である。 Next, the structure of mounting the damping force generating mechanism 25 on the cylinder 2 and the detailed structure of the damping force generating mechanism 25 will be described with reference to FIGS. 2 to 5. FIG. 2 is a cross-sectional view of the damping force adjusting shock absorber according to the first embodiment of the present invention in a normal operating state. FIG. 3 is an enlarged cross-sectional view of the vicinity of the pilot valve portion in the normal operating state of the damping force adjusting shock absorber shown in FIG. 2 and shows a state in which the pilot valve portion is closed. FIG. 4 is an enlarged cross-sectional view of the vicinity of the pilot valve portion in the normal operating state of the damping force adjusting shock absorber shown in FIG. 2 and shows a state in which the pilot valve portion is opened. FIG. 5 is an enlarged cross-sectional view showing the fail state in the vicinity of the pilot valve portion of the damping force adjusting shock absorber shown in FIG.

図2は減衰力発生機構25の全体構成を示し、図3から図5はパイロットバルブ部とフェイルバルブ部付近を拡大した構成を示している。図2では、パイロットバルブ部とフェイルバルブ部付近の構成が判別しづらいので、図3から図5も併せて参照して説明する。尚、図2、図3に示す状態は通電している通常動作状態で、パイロットバルブ部28が閉弁あるいは微小に開口している図を示す。 FIG. 2 shows the overall configuration of the damping force generating mechanism 25, and FIGS. 3 to 5 show an enlarged configuration in the vicinity of the pilot valve portion and the fail valve portion. In FIG. 2, since it is difficult to distinguish the configuration in the vicinity of the pilot valve portion and the fail valve portion, FIGS. 3 to 5 will also be referred to for description. The state shown in FIGS. 2 and 3 is a normal operating state in which the power is applied, and the pilot valve portion 28 is closed or slightly opened.

シリンダ2は内部にピストン5が摺動可能な円筒状で形成され、その外側(外周側)にセパレータチューブ20が設けられている。シリンダ2の側壁とセパレータチューブ20との間には環状通路21が形成されており、環状通路21はシリンダ上室2A側に連通されている。セパレータチューブの20の側壁には、環状通路21に連通する開口を有する小径の枝管23が突出している。枝管23は、円筒状に形成されており、略円筒状のセパレータチューブ開口を構成する。また、シリンダ2及びセパレータチューブの20の外側(外周側)には外筒3を設けた複筒構造となっており、シリンダ2と外筒3との間に環状のリザーバ4が形成されている。 The cylinder 2 is formed in a cylindrical shape in which the piston 5 can slide, and a separator tube 20 is provided on the outside (outer peripheral side) of the cylinder 2. An annular passage 21 is formed between the side wall of the cylinder 2 and the separator tube 20, and the annular passage 21 communicates with the cylinder upper chamber 2A side. A small-diameter branch pipe 23 having an opening communicating with the annular passage 21 projects from the side wall of the separator tube 20. The branch pipe 23 is formed in a cylindrical shape, and constitutes a substantially cylindrical separator tube opening. Further, a double cylinder structure is provided in which an outer cylinder 3 is provided on the outer side (outer peripheral side) of the cylinder 2 and the separator tube 20, and an annular reservoir 4 is formed between the cylinder 2 and the outer cylinder 3. ..

外筒3の側壁には、枝管23に対向して円環状の開口24が設けられている。開口24は、枝管23よりも大径で、枝管23と同心的に配置されている。外筒3の側壁には、枝管23及び開口24に対向して減衰力発生機構25が溶接等によって取り付けられている。尚、セパレータチューブ開口(枝管23)は、セパレータチューブ20から径方向外側に突出してリザーバ4に連通される枝管構造ではなく、単なる開口だけでも良いものである。 An annular opening 24 is provided on the side wall of the outer cylinder 3 so as to face the branch pipe 23. The opening 24 has a larger diameter than the branch pipe 23 and is arranged concentrically with the branch pipe 23. A damping force generating mechanism 25 is attached to the side wall of the outer cylinder 3 by welding or the like so as to face the branch pipe 23 and the opening 24. The separator tube opening (branch pipe 23) does not have a branch pipe structure that protrudes radially outward from the separator tube 20 and communicates with the reservoir 4, but may be a simple opening.

減衰力発生機構25は、外筒3の開口24を覆うように取り付けられた略円筒状のケース26と、その内部に設けられた、パイロット型のメインバルブ部27と、メインバルブ部27の開弁圧力を制御するソレノイド駆動の圧力制御弁であるパイロットバルブ部28と、更にパイロットバルブ部28の下流側に位置し、フェイル時に作動するフェイルバルブ部29と、を含んで構成されている。 The damping force generating mechanism 25 is a substantially cylindrical case 26 attached so as to cover the opening 24 of the outer cylinder 3, a pilot-type main valve portion 27 provided inside the case 26, and an opening of the main valve portion 27. The pilot valve portion 28, which is a solenoid-driven pressure control valve for controlling the valve pressure, and a fail valve portion 29, which is located on the downstream side of the pilot valve portion 28 and operates at the time of failing, are included.

ここで、パイロットバルブ部28とフェイルバルブ部29とで構成されるバルブ部、或いはパイロットバルブ部28とフェイルバルブ部29とメインバルブ部27とで構成されるバルブ部が本実施形態では「制御弁組立体」として機能するものである。したがって、パイロットバルブ部28とフェイルバルブ部29とを合せて「制御弁組立体」とする場合と、パイロットバルブ部28とフェイルバルブ部29とメインバルブ部27とを合せて「制御弁組立体」とする場合とがある。なお、「制御弁組立体」は単に「制御弁」と呼ぶこともある。 Here, the valve portion composed of the pilot valve portion 28 and the fail valve portion 29, or the valve portion composed of the pilot valve portion 28, the fail valve portion 29, and the main valve portion 27 is a "control valve" in the present embodiment. It functions as an "assembly". Therefore, there are cases where the pilot valve portion 28 and the fail valve portion 29 are combined to form a "control valve assembly", and cases where the pilot valve portion 28, the fail valve portion 29, and the main valve portion 27 are combined to form a "control valve assembly". In some cases. The "control valve assembly" may be simply referred to as a "control valve".

ケース26は有底円筒状に形成され、その底部26aには、セパレータチューブ20の枝管23よりも大径で外筒3の開口24に接続する開口部33が形成されており、外筒3に溶接等により固定されている。ケース26内には、底部26a側(外筒3側)から順に、通路部材30、メインバルブ部27のシート部36cを形成するメインボディ36、メインボディ36との間で流路を開閉するメインバルブ39、パイロット通路37bを形成するパイロットピン37、及び内部にパイロットバルブ部28などが設けられるパイロットボディ69が収納されている。そして、ケース26の開口部にパイロットバルブ部28を駆動するリニアソレノイド部154がナット52によってねじ結合されている。 The case 26 is formed in a bottomed cylindrical shape, and an opening 33 having a diameter larger than that of the branch pipe 23 of the separator tube 20 and connecting to the opening 24 of the outer cylinder 3 is formed in the bottom portion 26a. It is fixed by welding or the like. In the case 26, the main body 36 that forms the seat portion 36c of the passage member 30, the main valve portion 27, and the main body 36 that opens and closes the flow path in this order from the bottom portion 26a side (outer cylinder 3 side). A valve 39, a pilot pin 37 forming a pilot passage 37b, and a pilot body 69 provided with a pilot valve portion 28 and the like are housed therein. A linear solenoid portion 154 that drives the pilot valve portion 28 is screwed to the opening of the case 26 by a nut 52.

通路部材30は、円筒部30aの一端部外周にフランジ部30bが形成された形状で、円筒部30aがセパレータチューブ20の枝管23内に液密的に嵌合され、フランジ部30bがケース16の底部26aとメインボディ36との間に挟持されて固定されている。尚、ケース底部26aには溝部26bが設けられており、メインボディ36の外周側とリザーバ4とが連通されている。 The passage member 30 has a shape in which a flange portion 30b is formed on the outer periphery of one end of the cylindrical portion 30a, the cylindrical portion 30a is liquid-tightly fitted in the branch pipe 23 of the separator tube 20, and the flange portion 30b is the case 16. It is sandwiched and fixed between the bottom portion 26a of the main body 36 and the main body 36. A groove portion 26b is provided in the case bottom portion 26a, and the outer peripheral side of the main body 36 and the reservoir 4 are communicated with each other.

メインボディ36は、一端側(通路部材30側)が凹部36dを持った略円筒形状で、他端側には液室57を形成する円環状溝部36eを持ち、溝部36eの外側の凸部でメインバルブ39が着座するシート部36cを形成する。また、メインボディ36の円環状溝部36eの中心には円筒のパイロットピン37が挿入され、かつパイロット通路を形成する中心穴36aが設けられる。メインボディ36の一端側は、ケース26の底部26aとの間で通路部材30を挟持している。 The main body 36 has a substantially cylindrical shape with a recess 36d on one end side (passage member 30 side), has an annular groove 36e forming a liquid chamber 57 on the other end, and is a convex portion on the outside of the groove 36e. It forms a seat portion 36c on which the main valve 39 is seated. Further, a cylindrical pilot pin 37 is inserted into the center of the annular groove portion 36e of the main body 36, and a center hole 36a forming a pilot passage is provided. One end side of the main body 36 sandwiches the passage member 30 with the bottom portion 26a of the case 26.

液室57は、リザーバ4側に接続、連通されており、流体的に見てメインバルブ39の下流側に位置する「リザーバ側領域」となっている。一方、メインバルブ39の上流側は通路部材30を介してシリンダ2側に接続、連通されており、流体的に見てメインバルブ39の上流側に位置する「シリンダ側領域」となっている。 The liquid chamber 57 is connected to and communicates with the reservoir 4 side, and is a "reservoir side region" located on the downstream side of the main valve 39 in terms of fluid. On the other hand, the upstream side of the main valve 39 is connected to and communicates with the cylinder 2 side via the passage member 30, and is a "cylinder side region" located on the upstream side of the main valve 39 in terms of fluid.

メインボディ36の一端側の凹部36dと他端側の円環状溝部36eとの間には複数の連通穴36bが設けられている。パイロットピン37は、中心に絞り37aをもつ連通路37bと、中間部に径方向外側に突出した大径部37cを持つ円筒形状に形成してあり、一端側はメインボディ36に挿入され、他端側はパイロットボディ69の中心穴69aに嵌装されている。 A plurality of communication holes 36b are provided between the recess 36d on one end side of the main body 36 and the annular groove portion 36e on the other end side. The pilot pin 37 is formed in a cylindrical shape having a communication passage 37b having a throttle 37a in the center and a large diameter portion 37c protruding outward in the radial direction in the middle portion, and one end side is inserted into the main body 36, and the other The end side is fitted in the center hole 69a of the pilot body 69.

パイロットボディ69の外側(外周面側)は、外径が、ケース26の内径よりも小さく、かつメインバルブ部27側の外径が、メインバルブ部27とは反対側の外径よりも大きくなるように、段部をもって変化する円筒形状に形成されている。また、パイロットボディ69の内側は、メインバルブ部27側には、階段状に径が変化する凹部69j(図2)が形成され、メインバルブ部27とは反対側にも階段状に径が変化する凹部69d〜69h(図3)が形成されている。 The outer diameter of the outer side (outer peripheral surface side) of the pilot body 69 is smaller than the inner diameter of the case 26, and the outer diameter on the main valve portion 27 side is larger than the outer diameter on the side opposite to the main valve portion 27. As described above, it is formed in a cylindrical shape that changes with a step portion. Further, inside the pilot body 69, a recess 69j (FIG. 2) whose diameter changes stepwise is formed on the main valve portion 27 side, and the diameter changes stepwise on the side opposite to the main valve portion 27. The recesses 69d to 69h (FIG. 3) are formed.

凹部69d〜69hは、径の大きい側(外径側)から、大内径部(最外内径部)69f、中内径部(中間内径部)69g、小内径部(最内内径部)69hとし、大内径部69fと中内径部69g間にできる平面部を第一段差面69d、中内径部69gと小内径部69hの間にできる平面部を第二段差面69eとする。大内径部69f、中内径部69g、及び小内径部69hは、メインバルブ部27とは反対側から凹部69d〜69hの奥側(メインバルブ部27側)に向かって、この順に形成されている。また、凹部69d〜69hの底部となる部分には小径連通孔69bが設けられ、その周りにパイロットバルブ51が離着座するシート部69cが設けられている。 The recesses 69d to 69h are formed from the larger diameter side (outer diameter side) to the large inner diameter portion (outermost inner diameter portion) 69f, the middle inner diameter portion (intermediate inner diameter portion) 69 g, and the smaller inner diameter portion (inner inner diameter portion) 69h. The flat surface formed between the large inner diameter portion 69f and the medium inner diameter portion 69g is referred to as a first stepped surface 69d, and the flat surface portion formed between the medium inner diameter portion 69g and the small inner diameter portion 69h is referred to as a second stepped surface 69e. The large inner diameter portion 69f, the medium inner diameter portion 69g, and the small inner diameter portion 69h are formed in this order from the side opposite to the main valve portion 27 toward the inner side (main valve portion 27 side) of the recesses 69d to 69h. .. Further, a small-diameter communication hole 69b is provided at the bottom of the recesses 69d to 69h, and a seat portion 69c on which the pilot valve 51 is detached and seated is provided around the small-diameter communication hole 69b.

なお、大内径部69f、中内径部69g及び小内径部69hは、内径の大きい順に、第一内径部69f、第二内径部69g及び第三内径部69hと呼ぶ場合がある。 The large inner diameter portion 69f, the middle inner diameter portion 69g, and the small inner diameter portion 69h may be referred to as a first inner diameter portion 69f, a second inner diameter portion 69g, and a third inner diameter portion 69h in descending order of inner diameter.

パイロットバルブ51は、弁体であるパイロット弁部材95と、パイロット弁部材95を付勢するばね部材60とを備えている。ばね部材60は、弁部材95をシート部69cから離す開弁方向に付勢するばね装置を構成する。この開弁方向は、コイル40や作動ロッド79等からなるソレノイドアクチュエータへの通電によりパイロット弁部材95が移動する方向に対向する方向である。パイロット弁部材95は、パイロットボディ69に設けた環状のシート部69cに離着座してパイロットボディ69の小径連通孔69bを開閉するものである。 The pilot valve 51 includes a pilot valve member 95, which is a valve body, and a spring member 60 that urges the pilot valve member 95. The spring member 60 constitutes a spring device that urges the valve member 95 in the valve opening direction away from the seat portion 69c. The valve opening direction is a direction facing the direction in which the pilot valve member 95 moves by energizing the solenoid actuator composed of the coil 40, the operating rod 79, and the like. The pilot valve member 95 takes off and seats on the annular seat portion 69c provided on the pilot body 69 to open and close the small-diameter communication hole 69b of the pilot body 69.

パイロット弁部材95は、略円筒状に形成され、一端側に設けられる貫通孔96と、貫通孔96に連通して、作動ロッド79の一端部を収容するように軸方向(開閉弁方向)に延びる収容孔97とを有する。収容孔97の貫通孔96とは反対側端部の開口縁は拡開されている。 The pilot valve member 95 is formed in a substantially cylindrical shape, communicates with a through hole 96 provided on one end side, and communicates with the through hole 96 in the axial direction (on-off valve direction) so as to accommodate one end of the operating rod 79. It has an extending accommodating hole 97. The opening edge of the accommodating hole 97 at the end opposite to the through hole 96 is widened.

パイロット弁部材95の一端面には、断面略三角形状で環状に延び、パイロットボディ69のシート部69cに離着座する弁先端部98が形成される。また、パイロット弁部材95の他端側寄りの外周部に径方向外側に延びるフランジ状のばね受部99が形成される。パイロット弁部材95は、ばね部材60によって、パイロットボディ69の小径連通孔69b周りのシート部69cに対向して軸方向に移動可能に弾性的に保持されている。 On one end surface of the pilot valve member 95, a valve tip portion 98 having a substantially triangular cross section, extending in an annular shape, and taking off and seating on the seat portion 69c of the pilot body 69 is formed. Further, a flange-shaped spring receiving portion 99 extending radially outward is formed on the outer peripheral portion of the pilot valve member 95 closer to the other end side. The pilot valve member 95 is elastically held by the spring member 60 so as to be movable in the axial direction so as to face the seat portion 69c around the small-diameter communication hole 69b of the pilot body 69.

ばね装置を構成するばね部材60は、薄厚のディスク状部材で構成される。ばね部材60は、パイロットバルブ51(パイロット弁部材95)をフェイル位置へ戻すためのスプリング機能と、パイロットバルブ51のリフト量を制御するためのスプリング機能とを有するものである。 The spring member 60 constituting the spring device is composed of a thin disk-shaped member. The spring member 60 has a spring function for returning the pilot valve 51 (pilot valve member 95) to the fail position and a spring function for controlling the lift amount of the pilot valve 51.

ばね部材60は外側環状部60aが、パイロットボディ69の第一段差面69d上に配置され、内側環状部60dの貫通孔60eにパイロット弁部材95の一端側が挿入されて、内側環状部60dがばね受部99の一端面に当接される。また、ばね受部99の他端面側には、フェイルバルブ部29を構成するフェイルディスク67が複数積層されている。フェイルディスク67はワッシャ66を介してばね部材60の上側(シート部69cとは反対側)に積層されている。これにより、ばね部材60の外側環状部60a上には、ワッシャ66及び各フェイルディスク67の外周部がそれぞれ重ねられる。 In the spring member 60, the outer annular portion 60a is arranged on the first step surface 69d of the pilot body 69, one end side of the pilot valve member 95 is inserted into the through hole 60e of the inner annular portion 60d, and the inner annular portion 60d is a spring. It comes into contact with one end surface of the receiving portion 99. Further, a plurality of fail disks 67 constituting the fail valve portion 29 are laminated on the other end surface side of the spring receiving portion 99. The fail disk 67 is laminated on the upper side of the spring member 60 (the side opposite to the seat portion 69c) via the washer 66. As a result, the washer 66 and the outer peripheral portion of each fail disk 67 are overlapped on the outer annular portion 60a of the spring member 60.

フェイル状態においては、各フェイルディスク67の内周部下面がばね受部99の他端面に当接される。さらに、各フェイルディスク67の外周部上には、リテーナ64及びスペーサ62が重ねられて、保持プレート61及びキャップ49により、パイロットボディ69の移動が規制される。 In the fail state, the lower surface of the inner peripheral portion of each fail disk 67 is brought into contact with the other end surface of the spring receiving portion 99. Further, a retainer 64 and a spacer 62 are superposed on the outer peripheral portion of each fail disk 67, and the movement of the pilot body 69 is restricted by the holding plate 61 and the cap 49.

つぎに、図6を参照して、ばね部材60の形状について説明する。 Next, the shape of the spring member 60 will be described with reference to FIG.

ばね部材60は、帯状で径方向外側(外周側)を環状に延びる外側環状部60aと、径方向中央部に備えられ帯状で環状に延びる内側環状部60dと、内側環状部60dの外周から径方向外方に向かって相反する方向にそれぞれ延びる一対の径方向延設ばね部60cと、外側環状部60aの内周面で対向する部位(角度位置が180°異なる部位)から帯状でそれぞれ周方向に延び、一対の径方向延設ばね部60cの先端にそれぞれ接続される周方向延設ばね部60bとから構成される。内側環状部60dの内周は貫通孔60eを構成する。 The spring member 60 has a strip-shaped outer annular portion 60a extending radially outward (outer peripheral side) in an annular shape, an inner annular portion 60d provided in the radial central portion and extending in a annular shape, and a diameter from the outer circumference of the inner annular portion 60d. A pair of radially extending spring portions 60c extending in opposite directions toward the outside in the direction and a portion facing each other on the inner peripheral surface of the outer annular portion 60a (a portion having an angular position different by 180 °) in a band shape, respectively, in the circumferential direction. It is composed of a circumferential extension spring portion 60b extending to and connected to the tips of a pair of radial extension spring portions 60c, respectively. The inner circumference of the inner annular portion 60d constitutes a through hole 60e.

図5及び図6に示すように、外側環状部60aの外径D60aは、パイロットボディ69の凹部69d〜69hの大内径部69fの内径D69fに略一致し、内径D69fよりもわずかに小さい。内側環状部60dの内径D60diは、パイロット弁部材95の外径D95に略一致し、外径D95よりもわずかに大きい。内側環状部60dの外径D60doは、パイロット弁部材95のばね受部99の外径D99より大径に設定される。 As shown in FIGS. 5 and 6, the outer diameter D60a of the outer annular portion 60a substantially coincides with the inner diameter D69f of the large inner diameter portion 69f of the recesses 69d to 69h of the pilot body 69, and is slightly smaller than the inner diameter D69f. The inner diameter D60di of the inner annular portion 60d substantially coincides with the outer diameter D95 of the pilot valve member 95, and is slightly larger than the outer diameter D95. The outer diameter D60do of the inner annular portion 60d is set to be larger than the outer diameter D99 of the spring receiving portion 99 of the pilot valve member 95.

各周方向延設ばね部60bは、外側環状部60aと、一対の径方向延設ばね部60cとの間に延設され、各周方向延設ばね部60bと外側環状部60aとの間に各外側間隙60fが形成される。一方、各周方向延設ばね部60bと内側環状部60dとの間に、内側間隙60gが形成される。内側間隙60gが油液の流路となる。各外側間隙60fは各内側間隙60gよりもその幅が狭く形成される。各周方向延設ばね部60bの幅は外側環状部60aの幅よりも狭く設定される。また、各径方向延設ばね部60cの幅は各周方向延設ばね部60bの幅よりも広く設定される。 Each circumferential extension spring portion 60b is extended between the outer annular portion 60a and the pair of radial extension spring portions 60c, and is between each circumferential extension spring portion 60b and the outer annular portion 60a. Each outer gap 60f is formed. On the other hand, an inner gap 60g is formed between each circumferential extending spring portion 60b and the inner annular portion 60d. The inner gap of 60 g serves as a flow path for the oil liquid. Each outer gap 60f is formed to be narrower in width than each inner gap 60g. The width of each circumferential extending spring portion 60b is set to be narrower than the width of the outer annular portion 60a. Further, the width of each radial extension spring portion 60c is set wider than the width of each circumferential extension spring portion 60b.

外側間隙60fと内側間隙60gとは、それぞれ一つずつ形成される。一方の外側間隙60fと一方の内側間隙60gとが連通し、他方の外側間隙60fと他方の内側間隙60gとが連通する。また、一方の外側間隙60f及び内側間隙60gと他方の外側間隙60f及び内側間隙60gとは、連通せず隔絶される。すなわち、一枚の板状部材に、二つの外側間隙60fと二つの内側間隙60gとが上述のように形成されることで、ばね部材60が形成される。連通する外側間隙60fと内側間隙60gとの組数は、二組に限定される訳ではなく、三組以上であってもよい。しかし、外側間隙60fと内側間隙60gとの組数は、ばね定数及び油液の流路断面積を確保するために、2〜3組とするのが好ましい。 The outer gap 60f and the inner gap 60g are formed one by one. One outer gap 60f and one inner gap 60g communicate with each other, and the other outer gap 60f and the other inner gap 60g communicate with each other. Further, one outer gap 60f and inner gap 60g and the other outer gap 60f and inner gap 60g are isolated without communication. That is, the spring member 60 is formed by forming the two outer gaps 60f and the two inner gaps 60g on one plate-shaped member as described above. The number of pairs of the outer gap 60f and the inner gap 60g that communicate with each other is not limited to two, and may be three or more. However, the number of pairs of the outer gap 60f and the inner gap 60g is preferably 2 to 3 in order to secure the spring constant and the cross-sectional area of the flow path of the oil and liquid.

図6を参照して、周方向円設ばね部60bの形状の詳細を説明する。 The details of the shape of the circumferential circular spring portion 60b will be described with reference to FIG.

各周方向円設ばね部60bの外側環状部60aに接続される側60b1は、O1を中心として、外側間隙60fを介して外側環状部60aの内径よりも小さい半径R1の外径にて周方向に中心角で90゜延設される。一方、径方向延設ばね部60cに接続される側60b4は、O1を中心として、ばね部60cの最外径側の径と同じ半径R2の外径にて周方向に接続される。外側環状部60aに接続される側60b1と径方向延設ばね部60cに接続される側60b4との間には、外側半径がR2で、中心がO1からR1−R2だけ60b1の端部側に偏心してO2を中心として形成される、中心角が90゜で延設される小径接続部60b2と、小径接続部60b2の端部から直線で形成される直線部60b3とが挿入され、全体が接続される形状となっている。 The side 60b1 connected to the outer annular portion 60a of each circumferential spring portion 60b is located in the circumferential direction with an outer diameter of radius R1 smaller than the inner diameter of the outer annular portion 60a via the outer gap 60f with O1 as the center. It is extended 90 ° at the central angle. On the other hand, the side 60b4 connected to the radially extending spring portion 60c is connected in the circumferential direction with an outer diameter of radius R2, which is the same as the diameter on the outermost diameter side of the spring portion 60c, centering on O1. Between the side 60b1 connected to the outer annular portion 60a and the side 60b4 connected to the radial extension spring portion 60c, the outer radius is R2, and the center is from O1 to R1-R2 only to the end side of 60b1. A small-diameter connecting portion 60b2 formed eccentrically around O2 and extending at a central angle of 90 ° and a straight portion 60b3 formed in a straight line from the end of the small-diameter connecting portion 60b2 are inserted and connected as a whole. It has a shape to be used.

この際、R1の部分の内径側の半径はr1とし、このr1とR2とがr1>R2とすることにより、周方向延設ばね部60bの外側環状部60aに接続される部分から、径方向延設ばね部60cに接続される側までの中心角は180゜以上とすることができる。なお、周方向延設ばね部60bを一周以上設けると、周方向延設ばね部60bを配置するために必要なばね部材60及び凹部の径方向寸法が大きくなるので、周方向延設ばね部60bの外側環状部60aに接続される部分から、径方向延設ばね部60cに接続される側までの中心角は360゜以下とすることが好ましい。 At this time, the radius on the inner diameter side of the portion of R1 is r1, and by setting r1 and R2 to r1> R2, the radial direction from the portion connected to the outer annular portion 60a of the circumferential extension spring portion 60b. The central angle to the side connected to the extended spring portion 60c can be 180 ° or more. If the circumferential extension spring portion 60b is provided more than once, the radial dimensions of the spring member 60 and the recess required for arranging the circumferential extension spring portion 60b become large, so that the circumferential extension spring portion 60b The central angle from the portion connected to the outer annular portion 60a to the side connected to the radially extending spring portion 60c is preferably 360 ° or less.

ここでは60bを60b1〜60b4に分割して接続するようにしたが、上記のような方法ではなく、たとえば徐々に外径がR1からR2に変わるようにつなげるなどとしてもよい。また各半径の関係は、小内径部69hの内径D69hよりもR2が大きく、中内径部69gの内径D69gよりもR1が小さくなるようにするとよい。 Here, 60b is divided into 60b1 to 60b4 and connected, but instead of the above method, for example, the outer diameter may be gradually changed from R1 to R2. Further, regarding the relationship between the radii, it is preferable that R2 is larger than the inner diameter D69h of the small inner diameter portion 69h and R1 is smaller than the inner diameter D69g of the medium inner diameter portion 69g.

本実施例のばね部材60は、周方向延設ばね部60bが、外側環状部60aに接続される側の一端部(始端部)から、径方向延設ばね部60cに接続される側の他端部(終端部)に向かって、曲率が次第に大きくなるように形成される。周方向延設ばね部60bは、上述したように、曲率が段階的に大きくなるように形成してもよいし、連続的に大きくなるように、すなわち螺旋状に巻いた平面曲線の形に形成してもよい。或いは、60b3のような直線部を設けてもよい。本実施例では、周方向延設ばね部60bを中心角で180°以上の角度範囲に亘って形成し、一対の周方向延設ばね部60bのうち一方の周方向延設ばね部60bの始端部側の一部と、他方の周方向延設ばね部60bの終端部側の一部とが重複する角度範囲(中心角の範囲)に存在するように、一対の周方向延設ばね部60bを配置することができる。これにより、周方向延設ばね部60bのばね力の設定の自由度が高まる。 The spring member 60 of this embodiment is the side where the circumferential extension spring portion 60b is connected to the radial extension spring portion 60c from one end portion (starting end portion) on the side connected to the outer annular portion 60a. It is formed so that the curvature gradually increases toward the end (end). As described above, the circumferential extension spring portion 60b may be formed so that the curvature gradually increases, or is formed so as to continuously increase, that is, in the shape of a spirally wound plane curve. You may. Alternatively, a straight portion such as 60b3 may be provided. In this embodiment, the circumferential extension spring portion 60b is formed over an angle range of 180 ° or more at a central angle, and the start end of one of the pair of circumferential extension spring portions 60b in the circumferential direction extension spring portion 60b. A pair of circumferential extension springs 60b so that a part on the part side and a part on the terminal side of the other circumferential extension spring 60b exist in an overlapping angle range (central angle range). Can be placed. As a result, the degree of freedom in setting the spring force of the circumferential extension spring portion 60b is increased.

なお、各径方向延設ばね部60cが第二ばね部に相当して、各周方向延設ばね部60bが第一ばね部に相当する。そして、ばね部材60の各周方向延設ばね部60bと各径方向延設ばね部60cとは、その付勢力が力学的に直列に作用するようになる。ばね部材60は、弁体(パイロットバルブ)51が移動する全範囲でばね力が作用するばねであり、荷重−変位特性が図7に示す非線形特性を有する。 Each radial extension spring portion 60c corresponds to a second spring portion, and each circumferential extension spring portion 60b corresponds to a first spring portion. Then, the urging force of each circumferential extension spring portion 60b and each radial extension spring portion 60c of the spring member 60 dynamically acts in series. The spring member 60 is a spring in which a spring force acts in the entire range in which the valve body (pilot valve) 51 moves, and the load-displacement characteristic has a non-linear characteristic shown in FIG. 7.

図7は、本発明の第1実施例のばね部材の特性を示す図である。 FIG. 7 is a diagram showing the characteristics of the spring member according to the first embodiment of the present invention.

ばね部材60の荷重−変位特性は、パイロットバルブ51がフェイル位置にある状態又はリニアソレノイド部154の通電がオフの状態からパイロットボディ69のシート部69cに近づくに従って、荷重はばね変位(ばねの撓み量)に対して緩やかに大きくなる。この状態では、周方向延設ばね部(第一ばね部)60bのばね力がパイロットバルブ51に作用している。その後、更にパイロット弁部材95がシート部69cに近づいてばね変位が大きくなると、ばね変位に対する荷重の変化が急に大きくなる。この状態では、径方向延設ばね部(第二ばね部)60cのばね力がパイロットバルブ51に作用している。すなわちばね部材60は、ばね変位に対して荷重が緩やかに変化する第一変化率の範囲F60Aと、ばね変位に対して荷重が急激に立ち上がる、第一変化率の範囲F60Aよりも大きな第二変化率の範囲F60Bと、を有する。セミアクティブサスペンション用の減衰力調整式緩衝器としては、第二変化率の範囲F60Bを減衰力制御で使用する。 The load-displacement characteristic of the spring member 60 is such that the load is spring-displaced (spring deflection) as the pilot valve 51 approaches the seat portion 69c of the pilot body 69 from the state where the pilot valve 51 is in the fail position or the linear solenoid portion 154 is off. It gradually increases with respect to the amount). In this state, the spring force of the circumferential extension spring portion (first spring portion) 60b acts on the pilot valve 51. After that, when the pilot valve member 95 approaches the seat portion 69c and the spring displacement becomes large, the change in the load with respect to the spring displacement suddenly becomes large. In this state, the spring force of the radial extension spring portion (second spring portion) 60c acts on the pilot valve 51. That is, the spring member 60 has a second change larger than the first change rate range F60A in which the load changes gently with respect to the spring displacement and the first change rate range F60A in which the load suddenly rises with respect to the spring displacement. It has a rate range F60B and. As the damping force adjustment type shock absorber for the semi-active suspension, the range F60B of the second rate of change is used for the damping force control.

以上のような構成を備えた本実施例の減衰力調整式緩衝器の具体的な動作について説明するが、先ず通常状態の動作を図1乃至図3を用いて説明する。 The specific operation of the damping force adjusting shock absorber of the present embodiment having the above configuration will be described. First, the operation in the normal state will be described with reference to FIGS. 1 to 3.

図1に示すように、ピストンロッド6の伸び行程時には、シリンダ2内のピストン5の移動(図1において上方向)によって、ピストン5の逆止弁13が閉じ、リリーフ弁14の開弁前にはシリンダ上室2A側の作動油が加圧されるので、作動油は環状通路21を通ってセパレータチューブ20の枝管23から減衰力発生機構25の通路部材30へ流入する。 As shown in FIG. 1, during the extension stroke of the piston rod 6, the check valve 13 of the piston 5 is closed by the movement of the piston 5 in the cylinder 2 (upward in FIG. 1), and before the relief valve 14 is opened. Since the hydraulic oil on the cylinder upper chamber 2A side is pressurized, the hydraulic oil flows from the branch pipe 23 of the separator tube 20 to the passage member 30 of the damping force generating mechanism 25 through the annular passage 21.

そして、図2に示すように、通路部材30から流入した作動油は、メインバルブ部27、パイロットバルブ部28を通って、実線で示す流線F1及び破線で示す流線F2の流れに沿ってケース26で囲まれた液室57へ流れ、更に、ケース26の端部の空間(通路溝)26b及び外筒3の開口24を通ってリザーバ4へ流入する。 Then, as shown in FIG. 2, the hydraulic oil flowing in from the passage member 30 passes through the main valve portion 27 and the pilot valve portion 28, and follows the flow of the streamline F1 shown by the solid line and the streamline F2 shown by the broken line. It flows into the liquid chamber 57 surrounded by the case 26, and further flows into the reservoir 4 through the space (passage groove) 26b at the end of the case 26 and the opening 24 of the outer cylinder 3.

このとき、図1にあるようにピストン5が伸び行程で移動した分の流体が、リザーバ4からベースバルブ10の逆止弁17を開いてシリンダ下室2Bへ流入する。尚、シリンダ上室2Aの圧力がピストン5のリリーフ弁14の開弁圧力に達すると、リリーフ弁14が開いて、シリンダ上室2Aの圧力をシリンダ下室2Bへリリーフすることにより、シリンダ上室2Aの過度の圧力の上昇を防止することができる。 At this time, as shown in FIG. 1, the fluid corresponding to the movement of the piston 5 in the extension stroke opens the check valve 17 of the base valve 10 from the reservoir 4 and flows into the cylinder lower chamber 2B. When the pressure of the cylinder upper chamber 2A reaches the valve opening pressure of the relief valve 14 of the piston 5, the relief valve 14 opens and the pressure of the cylinder upper chamber 2A is relieved to the cylinder lower chamber 2B, whereby the cylinder upper chamber 2A is released. It is possible to prevent an excessive increase in pressure of 2A.

一方、ピストンロッド6の縮み行程時には、シリンダ2内のピストン5の移動(図1において下方向)によって、ピストン5の逆止弁13が開き、ベースバルブ10の通路15の逆止弁17が閉じ、リリーフ弁18の開弁前には、ピストン下室2Bの作動油がシリンダ上室2Aへ流入し、ピストンロッド6がシリンダ2内に侵入した分の流体がシリンダ上室2Aから、上述した伸び行程時と同様の経路を通ってリザーバ4へ流れる。 On the other hand, during the contraction stroke of the piston rod 6, the check valve 13 of the piston 5 opens and the check valve 17 of the passage 15 of the base valve 10 closes due to the movement of the piston 5 in the cylinder 2 (downward in FIG. 1). Before the relief valve 18 is opened, the hydraulic oil of the piston lower chamber 2B flows into the cylinder upper chamber 2A, and the amount of fluid that the piston rod 6 has entered into the cylinder 2 extends from the cylinder upper chamber 2A as described above. It flows to the reservoir 4 through the same route as during the stroke.

尚、シリンダ下室2B内の圧力がベースバルブ10のリリーフ弁18の開弁圧力に達すると、リリーフ弁18が開いて、シリンダ下室2Bの圧力をリザーバ4へリリーフすることにより、シリンダ下室2Bの過度の圧力の上昇を防止することができる。 When the pressure in the cylinder lower chamber 2B reaches the valve opening pressure of the relief valve 18 of the base valve 10, the relief valve 18 opens and the pressure in the cylinder lower chamber 2B is relieved to the reservoir 4, so that the cylinder lower chamber 2B is relieved. It is possible to prevent an excessive increase in pressure of 2B.

このように、ピストンロッド6の伸縮行程において、減衰力発生機構25のメインバルブ部27の開弁前(ピストン速度が低速域にある時)では、パイロットバルブ部28によって減衰力が発生し、メインバルブ部27の開弁後(ピストン速度が高速域にある時)においては、メインバルブ部27の開度に応じて減衰力が発生する。そして、コイル40への通電電流によってパイロットバルブ部28の制御圧力を調整することにより、減衰力を調整することができ、その結果、背圧室58の内圧が変化してメインバルブ部27の開弁圧力及び開度を調整することができる。 In this way, in the expansion / contraction stroke of the piston rod 6, the pilot valve portion 28 generates a damping force before the valve opening of the main valve portion 27 of the damping force generating mechanism 25 (when the piston speed is in the low speed range), and the main valve portion 28 is generated. After the valve portion 27 is opened (when the piston speed is in the high speed range), a damping force is generated according to the opening degree of the main valve portion 27. Then, the damping force can be adjusted by adjusting the control pressure of the pilot valve portion 28 by the energizing current to the coil 40, and as a result, the internal pressure of the back pressure chamber 58 changes and the main valve portion 27 is opened. The valve pressure and opening can be adjusted.

次に、リニアソレノイド154の通電が停止された状態の動作を図5を用いて説明する。 Next, the operation in the state where the energization of the linear solenoid 154 is stopped will be described with reference to FIG.

例えば、信号待ち等による車両の停止、或いは制御装置の故障等により、コイル40への通電が遮断されたとき、パイロットバルブ51を閉弁する方向の力が発生せず、ばね部材60により、パイロットバルブ51を開弁する方向の力が発生する。それにより、図5のパイロットバルブ51が上方(開弁方向)に移動することで、パイロットバルブ51のばね受部99の上面がフェイルディスク67の下面に当接する。この状態では、常時開となったパイロットバルブ部28の代りに、パイロットバルブ51のばね受部99とフェイルディスク67との間の流路が閉じられ、フェイルバルブ部29が閉弁する。しかしながらフェイルディスク67は板状の弾性体で構成されることから、所定の圧力ではフェイルバルブ部は開弁するように構成される。これによりフェイル時においても力の過度の低下を防止して適度な減衰力を維持することができる。 For example, when the energization of the coil 40 is cut off due to a vehicle stop due to waiting for a signal or a failure of the control device, a force in the direction of closing the pilot valve 51 is not generated, and the spring member 60 causes the pilot. A force is generated in the direction of opening the valve 51. As a result, the pilot valve 51 of FIG. 5 moves upward (valve opening direction), so that the upper surface of the spring receiving portion 99 of the pilot valve 51 comes into contact with the lower surface of the fail disk 67. In this state, instead of the pilot valve portion 28 that is always open, the flow path between the spring receiving portion 99 of the pilot valve 51 and the fail disk 67 is closed, and the fail valve portion 29 is closed. However, since the fail disk 67 is composed of a plate-shaped elastic body, the fail valve portion is configured to open at a predetermined pressure. As a result, it is possible to prevent an excessive decrease in the force even at the time of failing and maintain an appropriate damping force.

ここで、通電停止状態(図5)から、通電状態(図3)に至る際のばね部材60の動きについて、図3乃至図5を用いて説明する。 Here, the movement of the spring member 60 from the energization stop state (FIG. 5) to the energization state (FIG. 3) will be described with reference to FIGS. 3 to 5.

図5の状態でソレノイドの通電によりパイロットバルブ51に図の下方向に力が作用する。これにより、ばね受部99で当接しているばね部材60の内側環状部60dが押し下げられる。このとき、径方向延設ばね部60cは、ほぼ平行な状態を保ちながら、下方に移動し、周方向延設ばね部60bが変形することで、外側環状部60aと内側環状部60dとの間に高さの差が生じるようになり、ばね部材60は図4に示すように変形する。 In the state of FIG. 5, a force acts on the pilot valve 51 in the downward direction of the figure by energizing the solenoid. As a result, the inner annular portion 60d of the spring member 60 that is in contact with the spring receiving portion 99 is pushed down. At this time, the radial extension spring portion 60c moves downward while maintaining a substantially parallel state, and the circumferential extension spring portion 60b is deformed between the outer annular portion 60a and the inner annular portion 60d. The spring member 60 is deformed as shown in FIG.

図4の状態に至ると、径方向延設ばね部60cが第二段差面69eと当接する。さらに、パイロットバルブ51の推力が大きくなると、径方向延設部60cの内径側がばね受部99に当接されていることから、径方向延設ばね部60cと第二段差面69eとの当接部分が支点となり、径方向延設ばね部60cは内径側が外径側に対して下方に位置するように変形し、図3の状態に至る。すなわち図3の状態では、径方向延設ばね部60cに撓み(ばね変位)が生じている。 When the state shown in FIG. 4 is reached, the radial extension spring portion 60c comes into contact with the second step surface 69e. Further, when the thrust of the pilot valve 51 becomes large, the inner diameter side of the radial extension portion 60c is in contact with the spring receiving portion 99, so that the radial extension spring portion 60c and the second step surface 69e are in contact with each other. The portion serves as a fulcrum, and the radial extension spring portion 60c is deformed so that the inner diameter side is located downward with respect to the outer diameter side, and reaches the state shown in FIG. That is, in the state of FIG. 3, the radial extension spring portion 60c is bent (spring displacement).

ここで径方向延設ばね部60cを周方向延設ばね部60bよりも太く(幅広に)設定することで、径方向延設ばね部60cと第二段差面69eとが当接した後のばね部材60の剛性を高くすることができる。すなわち図7に示すばね特性とすることができる。ここで、周方向延設ばね部60bは、中心角で180゜以上の範囲に亘って長く構成できることで、周方向延設ばね部60bの剛性と径方向延設ばね部60cの剛性との間に大きな差を持たせることができる。 Here, by setting the radial extension spring portion 60c to be thicker (wider) than the circumferential extension spring portion 60b, the spring after the radial extension spring portion 60c and the second step surface 69e come into contact with each other. The rigidity of the member 60 can be increased. That is, the spring characteristics shown in FIG. 7 can be obtained. Here, the circumferential extension spring portion 60b can be configured to be long over a range of 180 ° or more in the central angle, so that the rigidity between the circumferential extension spring portion 60b and the radial extension spring portion 60c is between the rigidity of the circumferential extension spring portion 60b and the rigidity of the radial extension spring portion 60c. Can make a big difference.

本実施例では、周方向延設ばね部60bがばね部材60の第一ばね部、径方向延設ばね部60c(内側環状部60dを含めてもよい)がばね部材60の第二ばね部、第二段差面69eが第一ばね部60bの撓みを規制(制限)する規制部を構成する。この規制部69eは、ばね力の設定に関係し、ばね装置の一部を構成する。 In this embodiment, the circumferential extension spring portion 60b is the first spring portion of the spring member 60, and the radial extension spring portion 60c (may include the inner annular portion 60d) is the second spring portion of the spring member 60. The second stepped surface 69e constitutes a regulating portion that regulates (limits) the deflection of the first spring portion 60b. The regulation unit 69e is related to the setting of the spring force and constitutes a part of the spring device.

以上の通り、本実施例によれば、パイロットバルブ開口量が微小な制御領域においてばねの剛性を高めることができ、急激な圧力変動を抑えることが可能となり、振動騒音抑制が可能となる。また、ばね部材60のばね力設定の自由度を向上することができる。 As described above, according to the present embodiment, the rigidity of the spring can be increased in the control region where the pilot valve opening amount is minute, the sudden pressure fluctuation can be suppressed, and the vibration noise can be suppressed. Further, the degree of freedom in setting the spring force of the spring member 60 can be improved.

[実施例2]
つぎに、本発明の第2の実施例に係る減衰力調整式緩衝器を図面に基づいて説明する。
[Example 2]
Next, the damping force adjusting shock absorber according to the second embodiment of the present invention will be described with reference to the drawings.

本実施例では、ばね部材60の形状およびパイロットボディ69の形状が実施例1と異なり、これ以外の構成は実施例1と同様である。したがって、以下の説明では実施例1と重複する説明は省略する。 In this embodiment, the shape of the spring member 60 and the shape of the pilot body 69 are different from those of the first embodiment, and the other configurations are the same as those of the first embodiment. Therefore, in the following description, the description overlapping with the first embodiment will be omitted.

まず、パイロットボディ69の形状について図8を用いて説明する。図8は、本発明の第2実施例のパイロットバルブ部付近を示す断面図でフェイル状態を示す図である。 First, the shape of the pilot body 69 will be described with reference to FIG. FIG. 8 is a cross-sectional view showing the vicinity of the pilot valve portion of the second embodiment of the present invention, showing a fail state.

図8に示すように、本実施例では、パイロットボディ69のメインバルブ部27とは反対側に設ける、階段状に径が変化する凹部69d〜69hの構成が実施例1と異なる。 As shown in FIG. 8, in the present embodiment, the configurations of the recesses 69d to 69h whose diameters change stepwise, which are provided on the opposite side of the pilot body 69 from the main valve portion 27, are different from those in the first embodiment.

図に示すように、階段状に外径側から大内径部69f、第1中内径部69g1、第2中内径部69g2、小内径部69hとなるように形成される。また、大内径部69f、第1中内径部69g1、第2中内径部69g2、及び小内径部69hは、メインバルブ部27とは反対側から凹部69d〜69hの奥側(メインバルブ部27側)に向かって、この順に形成されている。そして、パイロットボディ69には、大内径部69fと第一中内径部69gとの間にできる平面部である第一段差面69dと、第一中内径部69gと第二中内径部69hとの間にできる平面部である第二段差面69eと、第二中内径部と小内径部との間にできる平面部である第三段差面69iと、が形成される。 As shown in the figure, the large inner diameter portion 69f, the first middle inner diameter portion 69g1, the second middle inner diameter portion 69g2, and the small inner diameter portion 69h are formed stepwise from the outer diameter side. Further, the large inner diameter portion 69f, the first middle inner diameter portion 69g1, the second middle inner diameter portion 69g2, and the small inner diameter portion 69h are located on the opposite side of the main valve portion 27 to the back side of the recesses 69d to 69h (main valve portion 27 side). ), In this order. The pilot body 69 has a first stepped surface 69d, which is a flat surface formed between the large inner diameter portion 69f and the first middle inner diameter portion 69g, and the first middle inner diameter portion 69g and the second middle inner diameter portion 69h. A second stepped surface 69e, which is a flat surface portion formed between them, and a third stepped surface 69i, which is a flat surface portion formed between the second middle inner diameter portion and the small inner diameter portion, are formed.

本実施例では、実施例1における第一内径部69f、第二内径部69g及び第三内径部69hにおいて、第二内径部69gが第1中内径部69g1と第2中内径部69g2とに分割される。 In this embodiment, in the first inner diameter portion 69f, the second inner diameter portion 69g, and the third inner diameter portion 69h in the first embodiment, the second inner diameter portion 69g is divided into a first inner inner diameter portion 69g1 and a second inner inner diameter portion 69g2. Will be done.

また、ばね部材60は実施例1と同様に、帯状で外側を環状に延びる外側環状部60aと、径方向中央部に備えられ帯状で環状に延びる内側環状部60dと、内側環状部60dの外周から径方向外方の相反する方向にそれぞれ延びる一対の径方向延設ばね部60cと、外側環状部60aの内周面で対向する部位から帯状でそれぞれ周方向に延び、一対の径方向延設ばね部60cの先端にそれぞれ接続される周方向延設ばね部60bとから構成される。 Further, as in the first embodiment, the spring member 60 has a strip-shaped outer annular portion 60a extending outward in an annular shape, an inner annular portion 60d provided in the radial center portion and extending in a annular shape, and an outer circumference of the inner annular portion 60d. A pair of radially extending spring portions 60c extending in opposite directions radially outward from each other, and a pair of radially extending spring portions 60c extending in the circumferential direction from opposite portions on the inner peripheral surface of the outer annular portion 60a. It is composed of a circumferentially extending spring portion 60b connected to the tip of each spring portion 60c.

ここで周方向延設ばね部60hの構成が実施例1の周方向延設ばね部60bの構成と異なる。各周方向円設ばね部60bの外側環状部60aに接続される側(大径ばね部)60h1は、外側径の半径をR1として、また内径側の半径をr1として、周方向に延設される。一方、径方向延設ばね部60cに接続される側(小径ばね部)60h2は、外側径の半径をR2として、また内径側の半径をr2として、周方向に延設される。大径ばね部60h1は、外側環状部60aに接続される側の端部(始端部)から小径ばね部60h2に接続される終端部まで、外径R1及び内径r1が一定に形成されている。小径ばね部60h2は、大径ばね部60h1に接続される側の端部(始端部)から径方向延設ばね部60cに接続される終端部まで、外径R2及び内径r2が一定に形成されている。 Here, the configuration of the circumferential extension spring portion 60h is different from the configuration of the circumferential extension spring portion 60b of the first embodiment. The side (large diameter spring portion) 60h1 connected to the outer annular portion 60a of each circumferential circular spring portion 60b is extended in the circumferential direction with the radius of the outer diameter as R1 and the radius of the inner diameter side as r1. NS. On the other hand, the side (small diameter spring portion) 60h2 connected to the radial extension spring portion 60c is extended in the circumferential direction with the radius of the outer diameter as R2 and the radius of the inner diameter side as r2. The large-diameter spring portion 60h1 has a constant outer diameter R1 and inner diameter r1 from an end portion (starting end portion) connected to the outer annular portion 60a to an end portion connected to the small-diameter spring portion 60h2. In the small diameter spring portion 60h2, the outer diameter R2 and the inner diameter r2 are formed to be constant from the end portion (starting end portion) on the side connected to the large diameter spring portion 60h1 to the end portion connected to the radially extending spring portion 60c. ing.

大径ばね部60h1の終端部と小径ばね部60h2の始端部とが連結される部分に径変化部60h3が設けられる。径変化部60h3の外径はR1であり、大径ばね部60h1の外径に等しい大きさである。径変化部60h3の内径はr2であり、小径ばね部60h2の内径に等しい大きさである。大径ばね部60h1と小径ばね部60h2とを径変化部60h3で接続することで、周方向延設ばね部60hが形成される。 A diameter changing portion 60h3 is provided at a portion where the end portion of the large diameter spring portion 60h1 and the start end portion of the small diameter spring portion 60h2 are connected. The outer diameter of the diameter changing portion 60h3 is R1, which is equal to the outer diameter of the large diameter spring portion 60h1. The inner diameter of the diameter changing portion 60h3 is r2, which is equal to the inner diameter of the small diameter spring portion 60h2. By connecting the large-diameter spring portion 60h1 and the small-diameter spring portion 60h2 with the diameter-changing portion 60h3, the circumferential extension spring portion 60h is formed.

ここでr1よりもR2が小さくなるように設定することで、周方向延設ばね部60hは中心角を180゜以上とすることができる。 Here, by setting R2 to be smaller than r1, the central angle of the circumferential extension spring portion 60h can be set to 180 ° or more.

また、第一中内径部69g1の内周の半径D69g1/2はR1よりも大きくなるように設定する。すなわち、第一中内径部69g1の内径D69g1は、R1の2倍(2×R1)よりも大きくなるように設定する。また、第二中内径部69g2の内周の半径D69g2/2はR1よりも小さく、R2よりも大きくなるように設定する。すなわち、第二中内径部69g2の内径D69g2は、R1の2倍(2×R1)よりも小さく、R2の2倍(2×R2)よりも大きくなるように設定する。 Further, the radius D69g1 / 2 of the inner circumference of the first middle inner diameter portion 69g1 is set to be larger than R1. That is, the inner diameter D69g1 of the first middle inner diameter portion 69g1 is set to be larger than twice R1 (2 × R1). Further, the radius D69g2 / 2 of the inner circumference of the second inner diameter portion 69g2 is set to be smaller than R1 and larger than R2. That is, the inner diameter D69g2 of the second middle inner diameter portion 69g2 is set to be smaller than twice R1 (2 × R1) and larger than twice R2 (2 × R2).

次に、本実施例の減衰力調整式緩衝器の動作について、図11乃至図14を用いて説明する。図10は、本発明の第2実施例に係る減衰力調整式緩衝器のパイロットバルブ部付近を拡大した拡大断面図でフェイル状態を示す図である。図11は、本発明の第2実施例に係る減衰力調整式緩衝器の通常動作状態のパイロットバルブ部付近を拡大した拡大断面図でパイロットバルブ部の第2の開口状態を示す図である。図12は、本発明の第2実施例に係る減衰力調整式緩衝器の通常動作状態のパイロットバルブ部付近を拡大した拡大断面図でパイロットバルブ部の第1の開口状態を示す図である。図13は、本発明の第2実施例に係る減衰力調整式緩衝器の通常動作状態のパイロットバルブ部付近を拡大した拡大断面図でパイロットバルブ部が閉弁あるいは微小に開口した状態を示す図である。なお、図10,12,13は図9のA−A断面を示し、図11は図9のB−B断面を示す。また、図11乃至図14では、ばね部材60の状態を分かり易くするため、パイロットボディ69及びばね部材60のみを示し、その他のパイロットバルブ51やフェイルディスク67等の記載は省略している。 Next, the operation of the damping force adjusting shock absorber of this embodiment will be described with reference to FIGS. 11 to 14. FIG. 10 is an enlarged cross-sectional view showing a fail state in the vicinity of the pilot valve portion of the damping force adjusting shock absorber according to the second embodiment of the present invention. FIG. 11 is an enlarged cross-sectional view of the vicinity of the pilot valve portion in the normal operating state of the damping force adjusting shock absorber according to the second embodiment of the present invention, showing the second opening state of the pilot valve portion. FIG. 12 is an enlarged cross-sectional view of the vicinity of the pilot valve portion in the normal operating state of the damping force adjusting shock absorber according to the second embodiment of the present invention, showing the first opening state of the pilot valve portion. FIG. 13 is an enlarged cross-sectional view of the vicinity of the pilot valve portion in the normal operating state of the damping force adjusting shock absorber according to the second embodiment of the present invention, showing a state in which the pilot valve portion is closed or slightly opened. Is. In addition, FIGS. 10, 12, and 13 show the AA cross section of FIG. 9, and FIG. 11 shows the BB cross section of FIG. Further, in FIGS. 11 to 14, only the pilot body 69 and the spring member 60 are shown in order to make the state of the spring member 60 easy to understand, and the description of the other pilot valve 51, the fail disk 67, and the like is omitted.

ばね部材60以外の動作は実施例1と同様であるため、ばね部材60の動作について、実施例1と異なる部分を中心に説明する。 Since the operations other than the spring member 60 are the same as those in the first embodiment, the operation of the spring member 60 will be described focusing on the parts different from the first embodiment.

パイロットバルブ51がフェイル位置にある状態、又はリニアソレノイド部154の通電がオフの状態では、ばね部材60はわずかに撓んだ状態である(図10)。 When the pilot valve 51 is in the fail position or the linear solenoid portion 154 is off, the spring member 60 is slightly bent (FIG. 10).

ソレノイドの通電によりパイロットバルブ51に図8の下方向に力が作用する。これにより、ばね受部99で当接しているばね部材60の内側環状部60dが押し下げられ、方向延設ばね部60cはほぼ平行な状態を保ちながら下方に移動する。このとき、周方向延設ばね部60hが変形することで、外側環状部60aと内側環状部60dとの間に高さの差(高低差)が生じるようになる。そして、径変化部60h3の外径側が第二段差面69eと当接する(図11)。 By energizing the solenoid, a force acts on the pilot valve 51 in the downward direction of FIG. As a result, the inner annular portion 60d of the spring member 60 that is in contact with the spring receiving portion 99 is pushed down, and the directional extending spring portion 60c moves downward while maintaining a substantially parallel state. At this time, the deformation of the circumferential extension spring portion 60h causes a height difference (height difference) between the outer annular portion 60a and the inner annular portion 60d. Then, the outer diameter side of the diameter changing portion 60h3 comes into contact with the second stepped surface 69e (FIG. 11).

さらに、パイロットバルブ51の推力が大きくなると、
径変化部60h3と第二段差面69eとの当接部分が支点となり、この当接部分よりも内径側を中心にばね部材60の小径ばね部60h2が下側方向に変形する。そして、径方向延設ばね部60cの外径側が第三段差面69iと当接する(図12)。その後、径方向延設ばね部60cと第三段差面69iとの当接部分よりも内径側を中心に径方向延設ばね部60cが下側方向に変形する。すなわち、径方向延設ばね部60c及び内側環状部60dは、内径側が外径側に対して下方に位置するように変形し、径方向延設ばね部60cに撓み(ばね変位)が生じる(図13)。
Further, when the thrust of the pilot valve 51 increases,
The contact portion between the diameter changing portion 60h3 and the second stepped surface 69e serves as a fulcrum, and the small diameter spring portion 60h2 of the spring member 60 is deformed downward with respect to the inner diameter side of the contact portion. Then, the outer diameter side of the radial extension spring portion 60c comes into contact with the third step surface 69i (FIG. 12). After that, the radial extension spring portion 60c is deformed downward with respect to the inner diameter side of the contact portion between the radial extension spring portion 60c and the third step surface 69i. That is, the radial extension spring portion 60c and the inner annular portion 60d are deformed so that the inner diameter side is located downward with respect to the outer diameter side, and the radial extension spring portion 60c is bent (spring displacement) (FIG. 13).

ばね部材60が、第二段差面69e当接、第三段差面69i当接と順に当接することで、徐々にばね部材60の剛性を高くすることができる。すなわち図14に示すばね特性とすることができる。 When the spring member 60 comes into contact with the second step surface 69e and the third step surface 69i in this order, the rigidity of the spring member 60 can be gradually increased. That is, the spring characteristics shown in FIG. 14 can be obtained.

本実施例では、周方向延設ばね部60hがばね部材60の第一ばね部、径方向延設ばね部60cがばね部材60の第二ばね部を構成し、さらに第一ばね部60bが少なくとも二つのばね部(第一ばね区分60h1及び第二ばね区分60h2)に区分される。第二段差面69eは第一ばね区分60h1の撓みを規制する第一規制部を構成し、第三段差面69iは第二ばね区分60h2の撓みを規制する第二規制部を構成する。そして、第一ばね区分60h1の撓みが第一規制部69eにより規制された後で、第二ばね区分60h2の撓みを第二規制部69iで規制する。第二ばね区分60h2の撓みが第二規制部69iで規制された後、第二ばね部60cが撓む。 In this embodiment, the circumferential extension spring portion 60h constitutes the first spring portion of the spring member 60, the radial extension spring portion 60c constitutes the second spring portion of the spring member 60, and the first spring portion 60b is at least. It is divided into two spring portions (first spring division 60h1 and second spring division 60h2). The second step surface 69e constitutes a first regulation portion that regulates the deflection of the first spring division 60h1, and the third step surface 69i constitutes a second regulation portion that regulates the deflection of the second spring division 60h2. Then, after the deflection of the first spring division 60h1 is regulated by the first regulation unit 69e, the deflection of the second spring division 60h2 is regulated by the second regulation unit 69i. After the bending of the second spring section 60h2 is regulated by the second regulating portion 69i, the second spring portion 60c bends.

第一規制部69e及び第二規制部69iは、ばね力の設定に関係し、ばね装置の一部を構成する。 The first regulation unit 69e and the second regulation unit 69i are related to the setting of the spring force and form a part of the spring device.

図14は、本発明の第2実施例のばね部材の特性を示す図である。 FIG. 14 is a diagram showing the characteristics of the spring member according to the second embodiment of the present invention.

本実施例のばね部材60の荷重−変位特性は、実施例1の第一変化率の範囲F60Aにおいて、ばね変位(ばねの撓み量)に対して荷重の変化率が二段階F60A1,F60A2に変化する。本実施例では、ばね変位が大きくなるに従って、ばね変位に対する荷重の変化率は、範囲F60A1、範囲F60A2、範囲F60Bの三段階で変化する。またこの変化率は、範囲F60A1の変化率よりも範囲F60A2の変化率の方が大きく、範囲F60A2の変化率よりも範囲F60Bの変化率の方が更に大きい。 Regarding the load-displacement characteristic of the spring member 60 of this embodiment, in the range F60A of the first rate of change of Example 1, the rate of change of the load with respect to the spring displacement (the amount of deflection of the spring) changes in two stages F60A1 and F60A2. do. In this embodiment, as the spring displacement increases, the rate of change of the load with respect to the spring displacement changes in three stages of range F60A1, range F60A2, and range F60B. Further, this rate of change is larger in the range F60A2 than in the range F60A1, and is further larger in the range F60B than in the range F60A2.

範囲F60A1の第一変化率は第一ばね区分60h1の撓みにより得られ、範囲F60A2の第三変化率は第二ばね区分60h2の撓みにより得られる。セミアクティブサスペンション用の減衰力調整式緩衝器としては、第二ばね区分60h2による第三変化率の範囲F60A2及び第二ばね部60cによる第二変化率の範囲F60Bを、減衰力制御で使用する。 The first rate of change of the range F60A1 is obtained by the deflection of the first spring section 60h1, and the third rate of change of the range F60A2 is obtained by the deflection of the second spring section 60h2. As the damping force adjustment type shock absorber for the semi-active suspension, the range F60A2 of the third rate of change according to the second spring division 60h2 and the range F60B of the second rate of change due to the second spring portion 60c are used for damping force control.

以上の通り、本実施例によれば、実施例1の効果に加えて、パイロットバルブ開口量が微小な制御領域においてばねの剛性を2段階で変化させることができ、急激な圧力変動を抑えることが可能となり、振動騒音抑制が可能となると同時に、スムーズな圧力変化特性を得ることができる。 As described above, according to the present embodiment, in addition to the effect of the first embodiment, the rigidity of the spring can be changed in two steps in the control region where the pilot valve opening amount is minute, and a sudden pressure fluctuation can be suppressed. This makes it possible to suppress vibration and noise, and at the same time, it is possible to obtain smooth pressure change characteristics.

従来の減衰力調整式緩衝器に用いられるばね部材では、フェイルに必要なばね力を十分低くした上で、制御領域のばね力を高くすることができず、制御弁(パイロット弁)の弁体の上流側の圧力を大きくする必要がある。しかし、制御弁の弁体の上流側の圧力を大きくすると、急激な圧力変動が発生しやすくなり、騒音が発生しやすくなるという課題があった。 With the spring member used in the conventional damping force adjustment type shock absorber, the spring force required for failing cannot be sufficiently lowered and then the spring force in the control region cannot be increased, so that the valve body of the control valve (pilot valve) cannot be increased. It is necessary to increase the pressure on the upstream side of. However, when the pressure on the upstream side of the valve body of the control valve is increased, there is a problem that sudden pressure fluctuations are likely to occur and noise is likely to be generated.

上述した実施例に係る緩衝器は、流体が封入されたシリンダと、シリンダ内に摺動可能に嵌装されたピストンと、ピストンに連結されてシリンダの外部へ延出されたピストンロッドと、シリンダ内におけるピストンの移動によって生じる流体の流れを制御して減衰力を発生させる制御弁と、を備える。制御弁は、弁体と、弁体と協働して流路の開閉部を形成する弁座と、電流に対応して弁体を移動させる力を発生するアクチュエータと、弁体をアクチュエータによる移動方向と対向する方向に付勢するばね装置と、を有する。ばね装置は、弁体が移動する全範囲で作用するばね部材と、ばね部材の所定以上の撓みに対しばね部材の一部の撓みを制限する規制部材とを有する。ばね部材は、外側環状部と、内側環状部と、内側環状部と接続され径方向に延びる径方向ばね部と、一端が外側環状部に接続されると共に他端が径方向ばね部の外周側と接続される周方向ばね部と、を有する。周方向ばね部は、外側環状部に接続される側の内径が、径方向ばね部の最外径部の外径よりも大きい形状を有する。 The shock absorber according to the above-described embodiment includes a cylinder in which a fluid is sealed, a piston slidably fitted in the cylinder, a piston rod connected to the piston and extended to the outside of the cylinder, and a cylinder. It includes a control valve that controls the flow of fluid generated by the movement of the piston inside to generate a damping force. The control valve consists of a valve body, a valve seat that cooperates with the valve body to form an opening / closing part of a flow path, an actuator that generates a force to move the valve body in response to an electric current, and an actuator that moves the valve body. It has a spring device for urging in a direction opposite to the direction. The spring device includes a spring member that operates in the entire range in which the valve body moves, and a regulating member that limits the deflection of a part of the spring member with respect to the deflection of the spring member beyond a predetermined value. The spring member includes an outer annular portion, an inner annular portion, a radial spring portion connected to the inner annular portion and extending in the radial direction, one end connected to the outer annular portion, and the other end on the outer peripheral side of the radial spring portion. It has a circumferential spring portion connected to the above. The circumferential spring portion has a shape in which the inner diameter on the side connected to the outer annular portion is larger than the outer diameter of the outermost diameter portion of the radial spring portion.

上述した実施例に係る減衰力調整式緩衝器によれば、フェイルに必要なばね力を十分低くした上で、制御領域のばね力を高くすることができ、それによって、急激な圧力変動を抑えることができ、低騒音の減衰力調整式緩衝器とすることができる。 According to the damping force adjustment type shock absorber according to the above-described embodiment, the spring force required for failing can be sufficiently lowered and then the spring force in the control region can be increased, thereby suppressing sudden pressure fluctuations. It can be a low noise damping force adjustable shock absorber.

なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

1…緩衝器、2…シリンダ、4…リザーバ、5…ピストン、6…ピストンロッド、10…ベースバルブ、20…ピストンケース、25…減衰力発生機構、27…メインバルブ、28…パイロットバルブ部、29…フェイルバルブ部、60…ばね部材、154…リニアソレノイド部。 1 ... shock absorber, 2 ... cylinder, 4 ... reservoir, 5 ... piston, 6 ... piston rod, 10 ... base valve, 20 ... piston case, 25 ... damping force generating mechanism, 27 ... main valve, 28 ... pilot valve part, 29 ... Fail valve part, 60 ... Spring member, 154 ... Linear solenoid part.

Claims (2)

流体が封入されたシリンダと、前記シリンダの内側に摺動可能に嵌装されたピストンと、前記ピストンの移動によって前記シリンダの内側に生じる流体の流れを制御して減衰力を発生させる制御弁と、を備え、
前記制御弁は、弁体と、前記弁体と協働して流路の開閉部を形成する弁座と、電流に対応して前記弁体を移動させる力を発生するアクチュエータと、前記弁体を前記アクチュエータによる移動方向に対向する方向に付勢するばね装置と、を有する緩衝器であって、
前記ばね装置は、第一ばね部と第二ばね部とを有するばね部材と、前記ばね部材の所定以上のばね変位に対し前記第一ばね部のばね変位を規制する規制部と、を有し、
前記ばね部材は、外側環状部と、内側環状部と、前記内側環状部と接続され径方向に延びる径方向延設ばね部と、一端が前記外側環状部に接続され他端が前記径方向延設ばね部の外周側に接続される周方向延設ばね部と、を有し、
前記周方向延設ばね部が前記第一ばね部を構成し、
前記径方向延設ばね部が前記第二ばね部を構成し、
前記周方向延設ばね部と前記径方向延設ばね部とを、それぞれ少なくとも一対ずつ備え、
前記周方向延設ばね部の前記外側環状部に接続される側の内径は、前記径方向延設ばね部の外径よりも大きく、
一対の前記径方向延設ばね部のうち一方の径方向延設ばね部は、他方の径方向延設ばね部が接続される周方向延設ばね部と重複する中心角の範囲に設けられ
前記第一ばね部を構成する前記周方向延設ばね部は、前記外側環状部に接続される側に設けられ第一ばね区分と、前記第二ばね部を構成する前記径方向延設ばね部に接続される側に設けられ外径が前記第一ばね区分の内径よりも小さい第二ばね区分と、を備え、
前記規制部は、前記第一ばね区分のばね変位を規制する第一規制部と、前記第二ばね区分のばね変位を規制する第二規制部と、を備え、
前記第二ばね部のばね変位に対する荷重の変化率である第二変化率は、前記第一ばね部のばね変位に対する荷重の変化率である第一変化率よりも大きく、
前記第一ばね区分のばね変位に対する荷重の変化率は前記第一変化率であり、
前記第二ばね区分のばね変位に対する荷重の変化率は、前記第一変化率よりも大きく、且つ前記第二変化率よりも小さい第三変化率であり、
前記第二ばね区分の第三変化率及び前記第二ばね部の第二変化率を減衰力制御で使用することを特徴とする緩衝器。
A cylinder filled with fluid, a piston slidably fitted inside the cylinder, and a control valve that controls the flow of fluid generated inside the cylinder by the movement of the piston to generate a damping force. , Equipped with
The control valve includes a valve body, a valve seat that cooperates with the valve body to form an opening / closing portion of a flow path, an actuator that generates a force for moving the valve body in response to an electric current, and the valve body. A shock absorber comprising a spring device for urging the actuator in a direction opposite to the moving direction.
The spring device includes a spring member having a first spring portion and a second spring portion, and a regulating portion that regulates the spring displacement of the first spring portion with respect to a spring displacement of the spring member equal to or greater than a predetermined value. ,
The spring member includes an outer annular portion, an inner annular portion, a radially extending spring portion connected to the inner annular portion and extending in the radial direction, and one end connected to the outer annular portion and the other end extending in the radial direction. It has a circumferential extension spring portion connected to the outer peripheral side of the installation spring portion, and has.
The circumferential extension spring portion constitutes the first spring portion,
The radial extension spring portion constitutes the second spring portion, and the second spring portion constitutes the second spring portion.
At least one pair of each of the circumferential extension spring portion and the radial extension spring portion is provided.
The inner diameter of the circumferential extension spring portion connected to the outer annular portion is larger than the outer diameter of the radial extension spring portion.
One of the pair of radial extension springs is provided in a range of a central angle that overlaps with the circumferential extension spring to which the other radial extension is connected .
The circumferential extension spring portion constituting the first spring portion is provided on the side connected to the outer annular portion, and has a first spring division and the radial extension spring portion forming the second spring portion. A second spring section having an outer diameter smaller than the inner diameter of the first spring section, which is provided on the side connected to the first spring section, is provided.
The regulation unit includes a first regulation unit that regulates the spring displacement of the first spring division and a second regulation unit that regulates the spring displacement of the second spring division.
The second rate of change, which is the rate of change of the load with respect to the spring displacement of the second spring portion, is larger than the first rate of change, which is the rate of change of the load with respect to the spring displacement of the first spring portion.
The rate of change of the load with respect to the spring displacement of the first spring category is the first rate of change.
The rate of change of the load with respect to the spring displacement of the second spring category is a third rate of change that is larger than the first rate of change and smaller than the second rate of change.
Shock absorber, characterized in that you use in the damping force control the third change rate and the second rate of change of the second spring portion of the second spring section.
請求項に記載の緩衝器において、
前記周方向延設ばね部の中心角は180゜以上であることを特徴とする緩衝器。
In the shock absorber according to claim 1,
A shock absorber characterized in that the central angle of the circumferential extension spring portion is 180 ° or more.
JP2017131721A 2017-07-05 2017-07-05 Buffer Active JP6909077B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017131721A JP6909077B2 (en) 2017-07-05 2017-07-05 Buffer
PCT/JP2018/018496 WO2019008902A1 (en) 2017-07-05 2018-05-14 Shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017131721A JP6909077B2 (en) 2017-07-05 2017-07-05 Buffer

Publications (2)

Publication Number Publication Date
JP2019015312A JP2019015312A (en) 2019-01-31
JP6909077B2 true JP6909077B2 (en) 2021-07-28

Family

ID=64949926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017131721A Active JP6909077B2 (en) 2017-07-05 2017-07-05 Buffer

Country Status (2)

Country Link
JP (1) JP6909077B2 (en)
WO (1) WO2019008902A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7525292B2 (en) * 2020-04-22 2024-07-30 日立Astemo株式会社 Valve drive device and shock absorber using the same
JP7450057B2 (en) * 2020-09-24 2024-03-14 日立Astemo株式会社 control valve device
US12005752B2 (en) * 2021-01-28 2024-06-11 Volvo Car Corporation Limiting vehicle damper jerk
KR20240026243A (en) * 2021-11-10 2024-02-27 히다치 아스테모 가부시키가이샤 Damping force adjustable shock absorbers, damping valves and solenoids
JP7142824B1 (en) 2022-04-22 2022-09-28 正裕 井尻 Vehicle active suspension system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771808A (en) * 1986-09-19 1988-09-20 Alexander Controls Limited Apparatus for controlling the flow of gas
EP1536169B1 (en) * 2003-11-29 2008-11-05 Asco Joucomatic GmbH Electromagnetic valve
JP6108912B2 (en) * 2013-03-29 2017-04-05 日立オートモティブシステムズ株式会社 Shock absorber

Also Published As

Publication number Publication date
WO2019008902A1 (en) 2019-01-10
JP2019015312A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
JP6909077B2 (en) Buffer
KR102588959B1 (en) buffer
JP5387841B2 (en) Damping force adjustable shock absorber
JP5120629B2 (en) Damping force adjustable shock absorber and suspension control device using the same
US9206876B2 (en) Damping force control type shock absorber
KR101946642B1 (en) Damping force adjustable type damper
JP6108912B2 (en) Shock absorber
JP5648790B2 (en) Shock absorber
US8413774B2 (en) Shock absorber
JP6465983B2 (en) Shock absorber
JP6652895B2 (en) Damping force adjustable shock absorber
JP2011179550A (en) Shock absorber
JPWO2018168865A1 (en) Damping force adjustable shock absorber
KR20110098616A (en) Buffer
KR20180113596A (en) Damping force adjusting buffer
JP6863667B2 (en) Buffer
WO2019208200A1 (en) Shock absorber
EP3333446B1 (en) Valve structure for buffer
JP2017048825A (en) Shock absorber
JP6814644B2 (en) Damping force adjustable shock absorber
JP5678348B2 (en) Damping force adjustable shock absorber
JP2022152580A (en) buffer
JP7450057B2 (en) control valve device
KR20240006637A (en) buffer
WO2020110452A1 (en) Damping valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210702

R150 Certificate of patent or registration of utility model

Ref document number: 6909077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250