JP6907448B2 - タンクおよび容器のための音響検量アレイ - Google Patents

タンクおよび容器のための音響検量アレイ Download PDF

Info

Publication number
JP6907448B2
JP6907448B2 JP2019556253A JP2019556253A JP6907448B2 JP 6907448 B2 JP6907448 B2 JP 6907448B2 JP 2019556253 A JP2019556253 A JP 2019556253A JP 2019556253 A JP2019556253 A JP 2019556253A JP 6907448 B2 JP6907448 B2 JP 6907448B2
Authority
JP
Japan
Prior art keywords
container
transducer
sensors
acoustic
tof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019556253A
Other languages
English (en)
Other versions
JP2020517918A (ja
JP2020517918A5 (ja
Inventor
パロット,ブライアン
アブデルラティフ,ファドゥル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Publication of JP2020517918A publication Critical patent/JP2020517918A/ja
Publication of JP2020517918A5 publication Critical patent/JP2020517918A5/ja
Application granted granted Critical
Publication of JP6907448B2 publication Critical patent/JP6907448B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F17/00Methods or apparatus for determining the capacity of containers or cavities, or the volume of solid bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/223Supports, positioning or alignment in fixed situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0427Flexural waves, plate waves, e.g. Lamb waves, tuning fork, cantilever
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/103Number of transducers one emitter, two or more receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/105Number of transducers two or more emitters, two or more receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、構造物の非破壊試験のためのシステムおよび方法に関し、特に、非破壊的な方法によるコンテナの幾何学的形状の音響測定のためのシステムおよび方法に関する。
石油およびガス産業では、原油製品および精製製品の貯蔵タンクが、炭化水素のサプライチェーンにおいて重要な役割を果たす。これらの貯蔵ユニットの正確な容積を知ることは、タンクに、かつ/またはタンクから製品を移送する場合、重要な役割を果たす。外部および内部条件(すなわち、温度)、ならびに経年変化の結果として、また、液体製品の重量(すなわち、静水圧)の結果としても、タンク容積は、+/−0.2%ほどだけ変動し得る。250,000バレルの貯蔵タンクについて考察すると、この変動により、容積が、+/−500バレル変動することになる。
石油炭化水素の価格が高いため、貯蔵タンクの検量に対して、必須の要件が存在する。保管移送に使用されるタンクは、移送される容積が極めて正確にわかるように(例えば、0.1%未満の誤差で)検量される必要がある。これを実行するために最も一般的に使用される技術は、手動ストラッピング法(API MPMS 2.2A)、光学技術(光学基準線法ORLM‐API第2.2B章、光学三角測量法(OTM)‐API第2.2C章、電気光学距離測距法(EODR)‐API第2.2D章)、および液体検量(API標準規格2555)である。しかしながら、これらの測定では、誤差を引き起こすことが判明しており、有効でないと考えられている。場合によっては、前述した試験技術は、タンク停止時間(例えば、タンクを空にするか、そうでなければ、タンク動作を一時的に停止すること)を必要とし、この停止時間によって被った損失に対する追加のコストが累積される。さらに、前述した試験技術の多くは、それらがタンクの内部容積にアクセスする必要があり、また、破壊的でもあり得るという点で、侵襲性がある。
石油およびガス産業では、超音波プローブを使用して、局所的な箇所におけるパイプラインおよび容器の健全性、および構造的な保全性を判定してきた。超音波を使用して壁の厚さを測定するための既知のシステムは、音が壁の外側表面と内側表面との間を伝搬する飛行時間(TOF)を使用して伝搬する距離を判定するという概念に基づいている。そのような実施態様では、金属媒体(すなわち、パイプまたは容器)を通る超音波パルス戻り行程のTOF分析を使用して、壁の厚さ、したがって、腐食による劣化を判定する。同様に、パイプの長さに沿って音響波を送出する作用が存在し、予期せぬ反射を引き起こすことになる亀裂や他の異常が存在するかどうかを判定する。しかしながら、そのようなシステムは、既知の、または想定されたパイプ寸法を前提としており、パイプの幾何学的形状プロファイルを判定するようには構成されていない。むしろ、コンテナの幾何学的形状の測定は、上述した既知の代替方法を使用して想定または判定される。
タンク検査の場合、前述の方法は、高いレベルの検量を必要とし、また、数日に相当する作業を必要とする(例えば、測定システムを配備し、測定を実施するための高い足場の組み立ておよび使用を含む)。それゆえに、タンクの検量/測定は、まれにしか行われず、タンク容積の誤認、および販売利益の損失につながる。
タンク検量のための既存方法には、大きな欠点がある。例えば、現在の標準規格を使用すると、検量を実行するのに1〜2日の作業がかかり得る。その結果、貯蔵タンクの検量は、まれにしか実行されず、したがって、タンク内部に貯蔵された、または、タンクにおよびタンクから移送された実際の容積の測定が不正確になり、これは、費用がかかり得る。例えば、従来の検量間の期間は、5年と15年との間である場合がある。
必要とされることは、既存のシステムを使用して検量を効率的に行うことに伴う制約に対処する、貯蔵タンクの容積を検量するためのシステムおよび方法である。より具体的には、必要とされることは、比較的迅速に、低コストで、かつ非侵襲的な方法で配備および操作され得る、タンク検量を正確に実行するためのシステムおよび方法である。また、必要とされることは、迅速にかつ要求あり次第配備され得、したがって、より頻繁に(例えば、毎日のように、またはさらには充填ごとに)、タンク容積内の変化を検出し易くするシステムである。
本明細書でなされた開示が提示するのは、これらおよび他の考察に関するものである。
本発明の態様によれば、トランスデューサおよび1つ以上のセンサを含む複数の音響装置を使用して、貯蔵コンテナの容積を測定するための方法が提供されている。この方法は、複数の音響装置を貯蔵コンテナの円周壁の外側表面上のそれぞれの位置に配備するステップを含む。より具体的には、1つ以上のセンサが、表面に音響的に結合され、かつ表面に沿って伝播するパルスを検出するように構成される。同様に、トランスデューサは、表面に音響的に結合され、かつ少なくとも第1の円周経路および第2の円周経路において、トランスデューサから離れ、1つ以上のセンサに向かって、表面に沿って放射する1つ以上のパルスを生成するように構成される。また、この方法は、トランスデューサを使用して1つ以上のパルスを生成するステップであって、各パルスがインパルス時間に生成される、生成するステップを含む。加えて、この方法は、1つ以上のセンサを使用して、第1の円周経路、および第2の円周経路に沿って放射する1つ以上のパルスを検出し、かつそれぞれの円周経路に沿って放射する1つ以上のパルスが検出されるそれぞれの時間を記録するステップを含む。また、この方法は、1つ以上のセンサと電子通信する計算装置によって、1つ以上のパルスに対するそれぞれの飛行時間(TOF)を計算するステップを含む。より具体的には、TOFは、インパルス時間およびそれぞれの検出時間に基づいて計算され、各それぞれのTOFは、パルスが特定の円周経路に沿って音響装置のうちの2つの間を伝搬する経過時間である。また、この方法は、計算装置を使用して、それぞれのTOF、および壁を通る音速に基づいて、第1および第2の円周方向の各々における音響装置間のそれぞれの距離を計算するステップを含む。最後に、この方法は、計算装置を使用して、計算されたそれぞれの距離に基づいて、貯蔵コンテナの容積を判定するステップを含む。
本発明のさらなる態様によれば、貯蔵コンテナの容積を測定するためのシステムが提供される。このシステムは、コンテナの円周壁の外側表面のそれぞれの位置に配備されるように構成された複数の音響装置を備える。特に、この音響装置は、円周壁に音響的に結合され、また、表面に沿って放射するパルスを検出するように構成されている複数のセンサを含む。また、それらの音響装置には、表面に音響的に結合され、かつ、トランスデューサから離れた表面に沿って、かつそれぞれの円周経路に沿った複数のセンサに向かって放射する1つ以上のパルスを生成するように構成されたトランスデューサも、含まれる。
また、このシステムは、非一時的コンピュータ可読記憶媒体、ならびに複数の音響装置およびコンピュータ可読記憶媒体と電子通信する1つ以上のプロセッサを備える計算システムを含む。また、この計算システムは、記憶媒体に格納され、かつプロセッサにより実行可能である実行可能命令を含む1つ以上のソフトウェアモジュールを含む。特に、このソフトウェアモジュールは、トランスデューサを使用して、それぞれのインパルス時間にトランスデューサを使用した1つ以上のパルスを生成するようにプロセッサを構成する信号制御モジュールを含む。加えて、この信号制御モジュールは、センサを使用して、センサにおける1つ以上のパルスの到着をそれぞれ検出し、かつそれぞれの検出時間を記録するようにプロセッサをさらに構成する。また、ソフトウェアモジュールには、それぞれのインパルス時間およびそれぞれの検出時間に基づいて、1つ以上のパルスに対するそれぞれの飛行時間(TOF)を計算するように、プロセッサを構成する信号分析モジュールも含まれる。より具体的には、それぞれのTOFは、パルスがそれぞれの円周経路に沿った音響装置のうちの2つの間を伝搬する経過時間である。また、ソフトウェアモジュールには、それぞれのTOF、および壁を通る音速に基づいて、音響装置間の距離を計算し、かつ計算された距離に基づいて、貯蔵コンテナの容積を計算するように、プロセッサを構成する幾何学的分析モジュールも含まれる。
本発明のなおもさらなる態様によれば、貯蔵コンテナの容積を測定するための別のシステムが提供される。このシステムは、コンテナの円周壁の外側表面のそれぞれの位置に配備されるように構成された複数の音響装置を備える。特に、この音響装置は、円周壁に音響的に結合され、また表面に沿って放射するパルスを検出するように構成されている複数のセンサを含む。また、それらの音響装置には、表面に音響的に結合され、かつトランスデューサから離れた表面に沿って、かつそれぞれの円周経路に沿って複数のセンサに向かって放射する1つ以上のパルスを生成するように構成されたトランスデューサも含まれる。また、このシステムは、円周壁の表面上に音響装置のうちの1つ以上を配備するように構成されたロボットを備える。より具体的には、このロボットは、駆動システム、およびロボットの位置をモニタリングするための1つ以上の位置センサを含む。さらに、このロボットは、表面上のそれぞれの位置に1つ以上のセンサを制御可能に配備するように構成される。
特定の実施態様によるシステムは、非一時的コンピュータ可読記憶媒体、ならびに複数の音響装置、ロボット、およびコンピュータ可読記憶媒体と電子通信する1つ以上のプロセッサを備える計算システムをさらに含むことができる。また、この計算システムは、記憶媒体に格納され、かつプロセッサにより実行可能である実行可能命令を含む1つ以上のソフトウェアモジュールを含む。特に、このソフトウェアモジュールは、トランスデューサを使用して、それぞれのインパルス時間にトランスデューサを使用した1つ以上のパルスを生成するようにプロセッサを構成する信号制御モジュールを含む。加えて、この信号制御モジュールは、センサを使用して、センサにおける1つ以上のパルスの到着をそれぞれ検出し、かつそれぞれの検出時間を記録するようにプロセッサをさらに構成する。また、ソフトウェアモジュールには、それぞれのインパルス時間およびそれぞれの検出時間に基づいて、1つ以上のパルスに対するそれぞれの飛行時間(TOF)を計算するように、プロセッサを構成する信号分析モジュールも含まれる。より具体的には、それぞれのTOFは、パルスがそれぞれの円周経路に沿って音響装置のうちの2つの間を伝搬する経過時間である。また、ソフトウェアモジュールには、それぞれのTOF、および壁を通る音速に基づいて、音響装置間の距離を計算し、かつ計算された距離に基づいて、貯蔵コンテナの容積を計算するように、プロセッサを構成する幾何学的分析モジュールも含まれる。加えて、このソフトウェアモジュールは、ロボットを使用して、表面上の音響装置のうちの1つ以上のそれぞれの位置を反復調整し、かつ音響装置のうちの少なくとも2つが横方向および長手方向のうちの1つに整列されるまでそれぞれのTOFを再計算するようにプロセッサを構成する位置制御モジュールを含む。より具体的には、少なくとも2つの音響装置の間で放射するパルスの再計算されたTOFが最小化されたときに、少なくとも2つの装置の整列が達成される。
これらおよび他の態様、特徴、ならびに利点は、本発明の特定の実施形態の付随する説明、ならびに添付の図面および特許請求の範囲から理解することができる。
本発明の実施形態による貯蔵コンテナの容積の検量のためのシステムの例示的な構成を示す高レベル図である。 本発明の実施形態による制御コンピュータの典型的な構成を示すブロック図である。 本発明の実施形態による貯蔵コンテナの容積の検量のためのシステムおよび方法を説明するルーチンを示すフローチャートである。 本発明の実施形態による典型的なコンテナ容積検量システムの簡略化された上面図である。 図4Aの典型的なコンテナ容積検量システムの側面図である。 図4Aの典型的なコンテナ容積検量システムの平面化された二次元図を示す。 図4Aの典型的なコンテナ容積検量システムにおける音響信号経路の概念的線形画像描写である。 本発明の実施形態による典型的なコンテナ容積検量システムの簡略化された上面図である。 図5Aの典型的なコンテナ容積検量システムにおける音響信号経路の概念的線形画像描写である。 本発明の実施形態による典型的なコンテナ容積検量システムの簡略化された側面図である。 図6Aの典型的なコンテナ容積検量システムの平面化された二次元図であり、本発明の実施形態による音響信号経路を概念的に描写する。 本発明の実施形態による典型的なコンテナ容積検量システムの簡略化された側面図である。 図6Cの典型的なコンテナ容積検量システムの平面化された二次元図であり、本発明の実施形態による音響信号経路を概念的に描写する。 図6Cの典型的なコンテナ容積検量システムの平面化された二次元図であり、本発明の実施形態による音響信号経路を概念的に描写する。 本発明の実施形態による典型的なコンテナ容積検量システムの平面化された二次元図である。 本発明の実施形態による典型的なコンテナ容積検量システムの平面化された二次元図である。 本発明の実施形態による典型的なコンテナ容積検量システムの平面化された二次元図である。
概要および導入を目的として、貯蔵コンテナの容積を検量するためのシステムおよび方法が開示されている。より具体的には、本明細書に開示されたシステムおよび方法は、音響波、またはより一般的には機械波に基づく検査技術を使用して、大型の石油貯蔵タンクの寸法を測定かつ判定し、そのようなタンクの容積を計算することを対象とする。好ましくは、このシステムは、現場でのコンテナの使用中に、要求に応じてコンテナの外部から検量を実行するように構成される。
音響試験は、被試験材料(例えば、コンテナの壁)内の音響波の伝播の分析に基づいた、非破壊的かつ非侵襲的試験技術である。本明細書に記載された実施形態では、この測定技術を実行して、典型的には概して円筒形状であり、かつ典型的には鋼鉄または他の金属、および合金でできた大型貯蔵コンテナの容積を測定する。しかしながら、開示された技術およびシステムはまた、コンクリート、複合材料、天然材料(例えば、木材)、または前述のものの組み合わせなどの他の材料でできた構造物の容積を検量するために適用され得る。加えて、本明細書に開示されたシステムおよび技術はまた、様々なサイズおよび形状を有するコンテナの容積を測定するために適用され得る。例えば、典型的な実施形態を使用して、開放もしくは密閉された容器、タンク、および様々なサイズの他のそのようなコンテナもしくは導管の容積を測定することができる。
いくつかの典型的な構成では、コンテナ容積検量システムは、測定装置の動作を制御するのに好適な関連する電子ハードウェアおよび/またはソフトウェアを有する測定装置のアレイを備える。測定装置は、(例えば、手動、ロボットなどにより)貯蔵コンテナの外部表面に取り付けられるように構成され、それによって、装置のアレイを画定する。測定装置は、音響装置と通信する診断計算装置によってコンテナの容積の判定を可能にする、機械波または音響波に基づく測定を行うように構成される。より具体的には、装置のアレイは、コンテナの壁の内部または壁に沿って伝播する信号を受信、測定、および処理するように構成された1つ以上のセンサを含む。また、装置のアレイは、コンテナの壁に沿って伝播する信号を生成するように構成されている少なくとも1つの信号生成要素または「トランスデューサ」を含む。
センサ/生成要素(集合的に、「測定装置」と称される)は、診断計算装置(以降、コントローラまたは制御コンピュータと称される)を使用して接続かつ制御され、この計算装置は、音響生成要素を使用した音響信号の生成から、コンテナの壁を通って少なくとも第1の音響波がセンサに到着するまでの時間(すなわち、音響信号の「飛行時間」または「TOF」)を判定するように構成される。理想的には、センサのうちの1つ以上に到達する追加音響波の同様のTOF情報が、さらに測定/収集される(例えば、コンテナの周りを第1の波の反対方向に移動する第2の音響波の飛行時間)。したがって、コンテナ壁の寸法(例えば、コンテナの円周、容積、高さなど)は、音響インパルスと放射音波の受信との間の時間に基づいて、かつ、壁の材料を通る音速に基づいて、そのような幾何学的情報を使用してコントローラにより計算され得る。さらに、コンテナの内部容積は、壁の幾何学的測定値、および壁厚などのコンテナの他の既知の特性に基づいて、検量/測定され得る。
いくつかの基本的な構成では、貯蔵コンテナの容積を検量するためのシステムは、1つのトランスデューサおよび1つのセンサを含む。より複雑な構成では、システムは、複数のレベル(すなわち、垂直方向の異なる高さ)でコンテナ上に設置され、かつ/または異なる円周位置に設置された(すなわち、上面からコンテナを見たとき、時計の9時の位置にある1つの装置、および3時の位置にある別の装置などのコンテナの円周の周りに離間されている)複数のセンサを含む。互いに相対的なセンサの配置に基づいて、検出された信号情報は、制御コンピュータ110によって使用されて、センサのそれぞれの位置の各々を、したがって、多次元のコンテナの精密寸法を正確に三角測量および検証することができる。その結果、コンテナの二次元マップまたは三次元マップが、幾何学の原理を用いてコンテナの外壁を実質上「展開する」ことにより作り出され得る。
別の際立った態様によれば、開示された検量システムは、例えば、検量されるコンテナの外部上に様々な測定装置を配備するロボットを使用して、コンテナ容積検量プロセス前および/または最中に、送信装置および検出装置のうちの1つ以上を各位置に制御可能に移動させるように構成され得る。そのような実施形態では、様々な異なる方向/次元での整列が、各測定装置間で達成され得、コンテナの容積の計算が改善される。
貯蔵コンテナ100の容積の検量のための典型的なシステムが、図1に示されている。図1に示すように、このコンテナ容積検量システム100は、円筒形状を有する金属製の貯蔵コンテナ150の容積を測定するために配設されている測定装置の「アレイ」として実装されている。上述したように、典型的な実施形態が、おおむね円筒形状を有する貯蔵コンテナ(例えば、150)の容積を測定する文脈で、説明されている。円筒形コンテナは、必ずしも正確な円筒である必要はないが、例えば、以下に限定されないが、円筒の円周は、壁上の異なる高さで異なり得、円筒は、不均一な曲率の壁を有し得、形状において他にもそのような変形を有し得ることが理解され得る。
用語「長手方向軸」116は、コンテナの中心軸を指すことを意図されている。図1に示すように、長手方向軸116は、コンテナの基部(例えば、コンテナが地面に固定または設置されている場所)とコンテナの反対側の上端部との間に延在する中心軸である。簡単にするため、開示された実施形態は、円筒形コンテナの基部が平坦な地面に固定され、長手方向(すなわち、コンテナの地面/基部に対して垂直方向)に上向きに延在するという前提の下で説明される。したがって、用語「長手方向」116は、長手方向軸に平行である方向を指すことを意図されている。理解され得るように、コンテナが地面に固定されていると想定し、長手方向軸に沿って、基部から離れるように移動すると、コンテナの断面を通って延在する横方向または「緯度方向」の一連の無数の平面が存在し、その平面上に音響装置が、コンテナ壁の外部表面に対して設置され得る。
2つの装置は、それらの装置が同じ横方向または緯度方向の平面に位置するコンテナの表面上にそれぞれの位置を有する場合、「長手方向」に整列され(また、「長手方向整列」にあるとも称される)、その平面は、長手方向軸に垂直であり、かつコンテナを二分する平面である。言い替えると、「長手方向」に整列されていると称される装置は、長手方向軸に沿ってコンテナの基部に対して計測した場合、同じ高さ(すなわち、緯度)を有する(例えば、両方の装置は、長手方向に基部から計測した場合、地面から9フィート離れているが、それぞれ異なる角度位置を有する)。
円筒形コンテナは、三次元表面であるため、用語「円周方向」118は、コンテナの円周の周りであり、かつ長手方向軸116に垂直な1つ以上の角度方向を指すことを意図されている。特に、コンテナの円周の周りの円周方向は、反時計回り方向114および時計回り方向112を含む。円周方向118は、横方向であり、これは、それぞれの緯度において、長手方向に垂直である表面に沿った1つ以上の方向を指すことが理解され得る。
本明細書において、表面155上の各装置のそれぞれの位置が、同じ長手方向平面(すなわち、長手方向軸を通ってかつそれに沿って延在する平面)に位置する場合、各装置は横方向または「円周方向」に整列されていると称され、好ましくは、各装置は、コンテナの反対側面上にある。例えば、0度の基準半径102に対してそれぞれ角度位置+270度および+90度に配置された2つの装置(円筒形のコンテナ150を上面から見た場合)は、それらのそれぞれの表面上の緯度に関係なく、円周方向に整列されている。
また、コンテナの円周壁の表面は、本明細書において、二次元空間に「展開された」二次元表面として説明されているため、円周方向118は、「水平方向」(すなわち、縦方向に対して垂直であり、かつ地面に対して平行である)、または、より総体的には、横方向と称される場合がある。
コンテナ容積を測定するための典型的なシステムおよび方法は、特定の実用的なアプリケーション、すなわち、円筒形状および金属構造を有する大型石油貯蔵コンテナの容積を測定するという文脈で本明細書にさらに記載されているが、主題となる発明は、この典型的なアプリケーションに限定されないことを理解されるべきである。例えば、いくつかの実施態様では、その円筒は、中心軸が地面に対して水平に延在するように配向され得る。本明細書に開示される典型的な技術は、同様に、他の形状、例えば、球形のタンクを有するコンテナの容積を検量することに適用可能であるが、そのような別のコンテナ形状は、コンテナ容積を計算するために、一組の異なる既知のパラメータ(例えば、測定装置間の相対的な配置または距離)を必要とし得る。
余談として、前述したことは、コンテナに対する装置の位置決め、および装置の相互の位置決めについて述べ、ならびに装置が移動および整列され得る様々な方向について述べるための1つの典型的な慣例を説明していることを理解されたい。他の慣例および用語を使用して、本発明の開示された実施形態の範囲を逸脱することなく、装置の位置決めおよび移動を説明することができ、例えば、同じ緯度を有する2つの地点を一般に緯度整列(また、円周整列)と称し得、これに対して、同じ経度(互いに垂直である)を有する2つの地点を経度整列と称し得る。そのような慣例によれば、例えば、トランスデューサを円周方向/緯度方向に移動させることで、トランスデューサは円周方向に整列されているすべてのセンサを通過し、距離測定値を取り込むことができる。
システム100は、1つ以上のセンサを含み、このセンサは、(例えば、手動、ロボットなどによって)コンテナ150の側壁155の外部表面上に配備されるように構成されている(。図1に示すように、複数の音響センサ120A、120B、および120C(コンテナの反対側に示す)が、側壁上に配設され、センサのアレイを画定する。加えて、システム100は、少なくとも1つの信号生成ユニット130A(以下、「トランスデューサ」と称される)を含み、このユニットは、センサによる検出に好適な、機械的信号、より具体的には、音響信号を生成し、そしてコンテナの壁に印加するように構成されている。追加のトランスデューサ130Bもまた、いくつかの実施態様において使用され得る好ましくは、各トランスデューサ(例えば、130A)は、起点から離れるように放射し、そして壁の表面に沿って伝搬する信号を生成する。「壁を通って」伝搬するという用語は、信号が壁の厚さ全体を通過し、壁により制限されたコンテナの内部容積160を横断するのとは対照的に、信号が壁の厚さの内部を、または壁の表面に沿って伝播することを意味することが企図されている。信号は、壁が延在する方向のうちの1つ以上(例えば、コンテナの円周の周りの円周方向118、長手方向116、および/または前述のものの組み合わせ)に壁を通って伝播する。図1に示す円筒形貯蔵コンテナ上のシステム100の典型的な実施態様では、信号は、好ましくは、おおむね時計方向112および反時計方向114に、コンテナの壁の周りを円周方向に伝搬する。しかしながら、いくつかの実施態様では、トランスデューサのうちの1つ以上は、コンテナの内部容積を通って信号を送信するように構成され得ることが理解され得る。
様々な種類の信号または「波」が、トランスデューサおよびセンサを使用して送信および検出され得る。前述のように、これらの信号は、おおむね、機械波および、本明細書に記載された非限定的な典型的実施態様では、音響波の広いカテゴリに分類される。いくつかの実施態様では、センサが1つ以上の異なる種類の波を検出するように構成され得るため、距離測定は、材料自体の内側を移動する表面波および/または圧縮波に基づき得る。媒体内の波の速度が正確に較正されていると想定すると、波の想定速度が首尾一貫したままである限り、測定される特定の種類の波は、必ずしも対応する距離測定値に影響を与えるとは限らない。
いくつかの実施態様では、表面波に基づく測定は、それらの表面波が最も急峻な振幅で表面に対して上下に移動するときに、好ましい場合があり、より容易に検出され得る。一般に、一次波は、媒体を通過するときに、二次波よりも速く伝搬し得、表面波は、二次波よりも遅く伝搬する。したがって、複数の種類の波がセンサを使用して検出される場合、各種類の波がセンサに到達するまでの時間差を使用して、距離をより正確に測定することができる。例えば、本明細書にさらに記載されているように、このシステムは、センサにおける一次波と二次波との到達時間の差を測定して距離を判定し、次いで、それぞれの装置の位置を三角測量するように構成され得る。
図1に示すように、センサおよびトランスデューサ(複数可)は、制御コンピュータ110と電気的に接続され(接続手段は、図示せず)、この制御コンピュータは、コンテナ容積検量システム100および様々な測定装置の動作を調整するように構成されている。さらに本明細書に記載されているように、制御コンピュータ110は、システム100の様々な装置と通信し、電子情報を受信、送信、および格納し、ならびに貯蔵コンテナの容積を測定および検量するようにそのような情報を処理することができる計算装置および/またはデータ処理装置である。さらに図2に関連して説明されているように、制御コンピュータは、プロセッサ(図示せず)を備え、このプロセッサは、機械実装可能なコードの形式で1つ以上のソフトウェアモジュールを実行し、それを実行することで、トランスデューサおよびセンサによって、それそれ、信号の送信および受信を制御するように構成されている。加えて、ソフトウェアは、トランスデューサにより生成され、センサにより測定され、そしてコンテナの様々な寸法(すなわち、コンテナの幾何学的形状)を幾何学的に計算するように、信号情報を分析するための制御コンピュータを構成する。いくつかの実施態様では、ソフトウェアはまた、コンテナの構造的な条件、ならびにコンテナの他の動作特性(例えば、コンテナ内部の内容物の容積、内容物の分類、またはコンテナ壁の構造的保全性など)を査定するためにプロセッサを構成し得る。
より具体的には、制御コンピュータは、トランスデューサ130Aによる1つ以上の信号またはパルスの生成から、1つ以上のセンサにおいてコンテナの壁を通って伝搬する少なくとも第1の波の到着までの時間を判定するように構成されている。理想的には、センサ(複数可)に到達する追加の波の同様の「飛行時間」情報(例えば、第1の波とは反対方向にコンテナの周りを移動する第2の波の飛行時間)が、制御コンピュータ110および装置を使用して、さらに測定/収集される。したがって、制御コンピュータは、波のインパルスと受信との間の時間に基づき、さらに壁の材料を通る既知の音速に基づいて、信号が伝搬する距離、およびコンテナの寸法を計算するように、さらに構成されている。壁を通る音速がコンテナ壁の材料特性に従って変動し得るため、いくつかの実施態様では、音速は、材料に基づいて想定され得る。加えて、または別の方法として、いくつかの実施態様では、音速は、また、システム100を使用して動的に計算することもできる。例えば、既知の離隔を有する2つ以上の音響センサを使用して、コンテナ容積の検量を知らせる音速測定を較正することができる。
好ましくは、アレイは、貯蔵コンテナの壁上の複数のレベルに(例えば、コンテナの基部157から長手方向116に計測されたときの異なる高さに)配置された複数のセンサを備える。いくつかの実施態様では、長手方向116および円周方向118のうちの1つ以上に既知の量だけ離間されているセンサおよび/またはインパルス生成器が、コンテナに適用され得る。例えば、複数の離間されたセンサの短冊板が使用され得る。本明細書にさらに記載されるように、既知の間隔を有する少なくとも2つの測定装置を利用することで、システム100を使用してコンテナの容積を検量するときに、システム100の検量および精度保証を支援することができる。同様に、いくつかの実施態様では、センサは、コンテナの周りの既知の高さに個別に配設され得る。その結果、計算の精度および速度が改善され得る。さらに、複数のセンサが様々なレベルおよび円周位置で制御される配置により、センサのそれぞれの位置を正確に三角測量して検証することに役立つ。このため、二次元マップの正確な寸法が、コンテナの外壁を「展開する」ことによって作り出され得る。
いくつかの実施態様では、測定装置のうちの1つ以上は、コンテナの外部上のそれぞれの位置に取り付けられ、長期的または恒久的検量システムを提供し得る。しかしながら、いくつかの実施態様では、測定装置のうちの1つ以上は、一時的に配備され得、システムを使用して必要に応じて様々なコンテナを検量し得る。さらに、いくつかの移動式検量システム構成では、センサは、ロボットを使用して配備され得、このため、コンテナ上にセンサを設置する場合に足場を組む必要性を省くことができる。
センサ:
当業者には理解されるように、センサ120A〜120Cは、任意の様々なセンサまたは送受信機とすることができ、これらは、コンテナの外部表面に据え付けられ、コンテナの壁から壁に沿って放射する機械波の信号を検出および受信し、そのような情報を処理するのに好適である。好ましくは、センサは、波の検出に対する位置の誤差を最小限に抑えるように、表面に接触する極めて小さい先端を有する。この先端のサイズは、システムの必要な精度の関数として定義され得る。例えば、圧電センサ、広帯域音響トランスデューサなど、様々な種類のセンサが使用され得る。
例えば、いくつかの実施態様では、センサは、圧電センサとすることができ、これは、例えば、以下に限定されないが、一次波、二次波、表面波、レイリー波などの、壁に沿って伝播する様々な機械波の種類のうちの1つを検出するように構成されている。センサが複数の異なる種類の波を検出するように構成されている実施態様では、センサおよび/または制御コンピュータがセンサにおいて受信された異なる種類の波を区別することが、さらに好ましい場合がある。さらに、いくつかの実施態様では、当業者には理解されるように、センサは、様々な方法(例えば、応力/歪み、圧力、振動など)に従って表面の横方向または半径方向の移動を測定するように構成され得る。
好ましくは、センサは、制御コンピュータと電子通信し、その結果、制御コンピュータは、センサの動作を制御することができ、センサは、受信された信号データを、さらに処理するための制御コンピュータに提供し得る。
信号生成器:
上述したように、当業者には理解されるように、信号生成装置(例えば、トランスデューサ130)は、機械信号および/または音響信号をコンテナの壁に印加するのに好適な任意の様々なトランスデューサまたは送受信機とすることができ、その結果、それらの信号は、コンテナの円周の周りのコンテナ壁を通って、またはそれに沿って、伝搬する。
より基本的な実施態様では、トランスデューサは、硬い物体でコンテナの表面を制御可能に打ち当てて機械的なパルスまたは波を生成するように構成された電気機械装置とすることができる。加えて、または別の方法として、インパルス生成器は、音響トランスデューサとすることができる。以降に続く説明では、用語「音響」は、機械波および音響信号、例えば、100Hz〜50MHzの周波数範囲、より任意選択的には、超音波の音響放射範囲内の音響信号を包含するように広く解釈されるべきである。ただし、いくつかの実施態様では、低周波数の信号を使用して、例えば、信号の望ましくない反射を最小限に抑えること、および信号の特定形状をより簡単に検出することを可能にすることで、信号の区別を容易にすることによって精度を向上させることができる。
各トランスデューサは、少なくとも1つのパルスを含む信号を生成するように構成され得、このパルスは、信号を検出するように構成されたセンサ(複数可)に向かって、コンテナの壁に沿って伝搬する。したがって、それぞれの場所でトランスデューサ(複数可)を使用して少なくとも1つの機械的パルスを生成することによって、個別のパルスが伝搬した対応する距離を測定し得る。各トランスデューサは、個別のインパルス/パルスを含む信号を送信するように構成され得るが、トランスデューサはまた、波、例えば、特定の周波数、形状、波長振幅などを有するパルスのストリームを生成するように構成され得る。
トランスデューサは、信号をコンテナの壁に印加するように構成され得、その結果、信号は、パルスの起点から離れるように放射する。好ましくは、トランスデューサは、コンテナの壁を導波路として使用するように構成され、その導波路は、起点から壁の表面に沿って信号の伝播を誘導する。いくつかの構成では、トランスデューサは、信号が1つ以上の画定された方向に伝播するよう信号を導入するように構成され、その結果、その信号は、制御された方法でコンテナの円周の周りを伝播する。
好ましくは、トランスデューサは、制御コンピュータと電子通信して、制御コンピュータがトランスデューサの動作を制御し得るようにする。いくつかの実施態様では、トランスデューサは、ある特定の特性、すなわち、特定の周波数または特定の周波数範囲を有する信号を導入するように構成され得る。信号の特性は、トランスデューサの特定のハードウェア構成によって画定され得、加えて、または別の方法として、制御コンピュータを使用して制御され得る。
より具体的には、波が、壁の一方の表面と他方の表面との間を移動しない(すなわち、反響する)ことが好ましく(例えば、それらの表面間で半径方向に跳ね返る)、これは、波が伝搬する距離を意図的に増加させ得、最縁端部の後方に回り込む波の一部としてノイズを作り出し得るからである。したがって、いくつかの実施態様では、信号の周波数を較正して、材料内部の反射を最小限に抑えることができる。例えば、コンテナ壁の厚さによっては信号が壁内部で跳ね返る場合があるため、低周波信号を使用することによって、より正確な結果をもたらし得る。さらなる例として、壁の厚さよりも長い波長を有する信号を使用し得、信号が壁の厚さ内で反響するのを防ぐことができる。このため、周波数が十分に低い場合(例えば、1(1)つの波長が壁の厚さに収まり得ない場合)、壁内の反響は、最小限に抑える必要があり、したがって、信号の伝播は、表面に沿ってより首尾一貫している必要がある。
いくつかのアプリケーションでは、音波は、ある特定の周波数で互いに干渉する場合がある。加えて、周波数がより高くなると、信号の鋭さが増加し、正確な検出に役立ち得るが、上述したように、場合によっては信号の振幅および/または反響を失うという代償を払う可能性がある。したがって、制御コンピュータおよびトランスデューサは、インパルスの周波数を変調するように構成され得、その結果、各インパルスが、コンテナ壁の厚さ、円周などの特定のアプリケーションに関する制約条件を考慮してセンサに到達したときに、各インパルスの最縁端部をより正確に検出することを可能にする。他の好適な信号特性は、また、本明細書の方法およびシステムで選択または変調され得、例えば、パルスの振幅および波長が、変調または画定され得る。
ロボット配備:
前述したように、いくつかの構成では、システム100は、1つ以上のロボットを含み得、これらのロボットは、一時的なやり方で検量されるコンテナ上に、測定装置のうちの1つ以上を自立的および半自立的に配備するように構成されている。図1に示す典型的な構成では、音響トランスデューサ130Aは、ロボット160を使用して配備される。いくつかの構成では、ロボットは、それぞれの場所で装置をコンテナに取り付けることによって、測定装置を配備し得る。したがって、ロボットは、複数の異なる測定装置を配備し得る。他の構成では、測定装置が、ロボットに搭載され得、その結果、その配備は、ロボットを所定の位置に移動することを含み、そのロボットは、壁155と通信する装置を設置し、その後、必要に応じて、別の位置に移動し得る。そのような配設では、ロボットが、それ自体を再配置し、任意選択的に装置を移動して、システムにより実装されたコードのプログラム制御下で、コンテナと係合することができる。
ロボット工学の当業者には理解されるように、各ロボット160は、移動式ロボット装置であり、これは、本体、および動作中にロボットを移動させるための運動システムを含む。このロボットは、例えば、太陽電池、バッテリ、または任意の他の好適な電源によって駆動され得る。このロボットは、動作タスクの実行を容易にするように特別に設計された機能的ハードウェアコンポーネント、例えば、ロボットの高さ、位置、配向などを検出するためのセンサを含み得る。ロボットハードウェアはまた、コンテナ容積検量プロセスで使用されるオンボード音響センサおよびトランスデューサも含み得、加えて、または別の方法として、スタンドアロンで動作するように構成された測定装置の輸送および配備に好適なコンポーネントも含み得る。ロボットは、本体内部に電子回路を含み得、その電子回路には、コンテナ容積検量動作の実行を容易にする構成設定および1つ以上の制御プログラムなどのロボットの動作に関する情報を格納するように構成されたメモリおよび/またはコンピュータ可読記憶媒体が含まれる。
際立った態様によれば、いくつかの実施形態では、システム100は、コンテナ容積検量プロセスの実施の前および/または最中に測定装置を各位置に(例えば、手動により、またはロボットを使用して)制御可能に配備するように構成され得、自動化された仕方でコンテナ容積を正確に測定する。より具体的には、ロボットベースの配備策を実施して、より複雑な検量手順を高い精度で自動的に実行し得、それによって、任意の数の異なるセンサおよび/またはトランスデューサ配置方式のための機械波または音響波ベースの測定値を取り込むことにより、コンテナ検量結果の精度を改善する。例えば、ロボットを制御コンピュータ110によって制御して、コンテナ壁上の異なる位置(例えば、様々な高さ、相対的な位置、絶対的な位置など)にセンサおよび/またはトランスデューサを系統的に移動させ得、その結果、音響測定値が装置の各配設に対して取得され得、その後、それらの測定値は、個別に分析および組み合わされて、コンテナの形状、より具体的にはコンテナ容積の詳細なマップを生成し得る。
典型的な制御コンピュータ110は、図2を参照して、さらに説明される。図に示すように、制御コンピュータ110は、システム100の動作を可能にする役割を果たす様々なハードウェアおよびソフトウェアコンポーネントと共に配設され得、それらのコンポーネントには、配線板215、プロセッサ210、メモリ220、ディスプレイ235、ユーザインターフェース225、通信インターフェース250、およびコンピュータ可読記憶媒体290が含まれる。
プロセッサ210は、記憶装置290に格納され得、メモリ220にロードされ得るソフトウェア命令を実行する役割を果たす。プロセッサ210は、特定の実施態様に応じて、いくつかのプロセッサ、マルチプロセッサコア、またはいくつかの他の種類のプロセッサであり得る。ディスプレイは、タッチスクリーン、または入力装置(図示せず)に動作可能に結合された他のディスプレイ上に表示され得る。
好ましくは、メモリ220および/または記憶装置290は、プロセッサ210によってアクセス可能であり、それによって、プロセッサ210が、メモリ220上および/または記憶装置290上に格納された命令を受信および実行することが可能になる。メモリ220は、例えば、ランダムアクセスメモリ(RAM)、または任意の他の好適な揮発性もしくは不揮発性のコンピュータ可読記憶媒体であり得る。加えて、メモリ220は固定式でも取り外し可能でもよい。記憶装置290は、特定の実施態様に応じて、様々な形式を取り得る。例えば、記憶装置290は、ハードドライブ、フラッシュメモリ、書換可能な光ディスク、書換可能な磁気テープ、または上記の何らかの組み合わせなどの1つ以上のコンポーネントまたは装置を包含し得る。記憶装置290は、また、固定式でも取り外し可能でもよく、ローカル記憶装置またはクラウドベースデータ記憶システムなどのリモート記憶装置とすることもできる。
1つ以上のソフトウェアモジュール230は、記憶装置290内および/またはメモリ220内に符号化されている。このソフトウェアモジュール230は、コンピュータプログラムコード、スクリプト、またはプロセッサ210内で実行される一組の解釈可能な命令を有する1つ以上のソフトウェアプログラムまたはアプリケーションを含み得る。本明細書に開示されたシステムおよび方法の動作を実行し、態様を実施するためのそのようなコンピュータプログラムコードまたは命令は、1つ以上のプログラミング言語またはスクリプトの任意の組み合わせで記述され得る。プログラムコードは、独立型ソフトウェアパッケージとして制御コンピュータ110上で全体的に、部分的に制御コンピュータ上で、さらに部分的にリモートコンピュータ/装置(例えば、センサ、トランスデューサ、および/またはロボット)上で、またはそのようなリモートコンピュータ/装置上で全体的に、実行することができる。後者のシナリオでは、リモートコンピュータシステムは、ローカルエリアネットワーク(LAN)もしくはワイドエリアネットワーク(WAN)を含む、任意の種類の電子データ接続もしくはネットワークを介して制御コンピュータ110に接続され得るか、または、外部コンピュータを介して(例えば、インターネットサービスプロバイダを使ったインターネットを介して)接続され得る。
好ましくは、ソフトウェアモジュール230には、信号制御モジュール270、信号分析モジュール272、幾何学的分析モジュール274、位置制御モジュール276が含まれ、それらは、プロセッサ210により実行される。以下でさらに詳細に説明されるように、ソフトウェアモジュール230の実行中、プロセッサ210は、貯蔵コンテナの検量に関係する様々な動作を実行するように構成されている。
また、当業者には既知であるように、ソフトウェアモジュール230のプログラムコード、および非一時的コンピュータ可読記憶装置(メモリ220および/または記憶装置290など)の1つ以上は、本開示に従って製造および/または販売され得るコンピュータプログラム製品を形成するとも言える。
いくつかの例証となる実施形態では、ソフトウェアモジュール230のうちの1つ以上は、現場ロボット100を構成するためのシステム内部で使用する通信インターフェース250を介して別の装置またはシステムから記憶装置290にネットワークを通じてダウンロードされ得ることを理解されたい。
加えて、本システムおよび方法の動作に関連する他の情報および/またはデータもまた、記憶装置290に格納され得、例えば、様々な制御プログラムが、使用中の測定装置(例えば、センサおよびトランスデューサ)および/またはロボットの動作に使用され得ることに留意されたい。
データベース285もまた、記憶装置290に格納され得る。データベース285は、様々なデータ項目および要素を含み、かつ/または保持し得、それらは、システム100の様々な動作全体にわたって利用される。データベース185に格納される情報には、以下に限定されないが、測定装置の動作を調整するためのソフトウェアおよび情報、コンテナの検量中に測定装置をそれぞれの位置に配備しながらロボットの移動を調整するためのソフトウェアおよび情報、音響測定を実行し、かつコンテナ寸法を計算するのに使用される既知のコンテナ特性(例えば、コンテナ壁の厚さ、コンテナ壁の材料組成物、コンテナの内容物、コンテナの高さ、コンテナの大まかな寸法)が含まれ得る。データベース285は、制御コンピュータ110の記憶装置にローカルに構成されているように描かれているが、特定の実施態様では、データベース285および/またはそこに格納された様々なデータ要素は、当業者に既知の方法でリモートに配置され、ネットワークを介して制御コンピュータ110に接続され得ることに留意されたい。
また、通信インターフェース250は、プロセッサ210と動作可能に接続され、制御コンピュータ110と、外部装置、マシン、ならびに/またはトランスデューサ、センサおよび/もしくは検量動作に関連して使用される任意のロボットなどの要素との間での通信を可能にする任意のインターフェースとすることができる。好ましくは、通信インターフェース250は、以下に限定されないが、モデム、ネットワークインターフェースカード(NIC)、統合ネットワークインターフェース、無線周波数送信機/受信機(例えば、ブルートゥース(登録商標)、移動通信、NFC)、衛星通信送信機/受信機、赤外線ポート、USB接続、ならびに/または、制御コンピュータ110を、他の計算装置および/もしくはプライベートネットワークおよびインターネットなどの通信ネットワークに接続するための任意の他のそのようなインターフェースを含む。そのような接続は、有線接続または(例えば、IEEE802.11標準規格を使用する)無線接続を含み得るが、通信インターフェース250は、実際には、制御コンピュータへ/からの通信を可能にする任意のインターフェースとすることができることを理解されたい。
コンテナ容積100を検量するためのシステムの動作、ならびに上述した様々な要素およびコンポーネントは、図3を参照してさらに理解されるであろう。図3は、本発明の実施形態による貯蔵コンテナの容積を検量するためのルーチン300の要素を示す高レベルのフローチャートである。図3の方法は、図4A〜4Dに示されるシステム100の典型的で実用的な実施態様を参照して論じられるが、ルーチン300は、図5A〜9の観点から説明される典型的な検量システム構成およびプロセスと関連して同様に適用され得ることを理解されたい。
ルーチン300は、ステップ305から始まり、そのときに、音響装置は、それぞれの位置でコンテナ上に物理的に配備される。より具体的には、1つ以上の音響センサおよび1つ以上の音響トランスデューサが、手動により、またはロボットを使用して、コンテナの壁の外部表面上のそれぞれの位置に配備され得る。好ましくは、1つ以上のセンサが、壁に音響学的に結合され、その結果、それらのセンサは、表面に沿って伝搬している音響信号を検出するように構成される。トランスデューサは、表面に音響学的に結合され、一実施形態では、1つ以上のパルスを生成するように構成され、そのパルスは、起点において壁に印加され、それによって、音波を表面に沿ってトランスデューサの位置から離れるように放射させる。音響装置の「位置」は、装置が音響信号を送信および/または受信するコンテナの表面上の場所(例えば、地点または領域)を指すものとして理解されたい。さらに、好ましくは、音響センサは、測定に必要な精度を達成し、したがって、音波の検出の誤差を最小限に抑えるための好適なサイズである表面と接触する先端を有する。例えば、このセンサ先端は、距離ベースの測定に対して必要な精度許容値よりも小さい直径を有することができる。
図4Aは、典型的なコンテナ容積検量システム400の簡略化した上面図であり、このシステムは、音響装置、すなわちトランスデューサ430、および円筒形コンテナ450の壁455の外部表面上に配置された第1のセンサ420Aを備える。また、音響装置(430および420A)と通信し、その音響装置の動作を調整するように構成されている制御コンピュータ110も示されている。図4Bに示すように、この図は、コンテナ450上に配備されたシステム400の側面図であり、トランスデューサ430および第1のセンサ420Aは、コンテナの壁上の(長手方向416に測定された)同じ高さに位置決めされ、その結果、それらは、長手方向に(すなわち、上述したように、同じ緯度で)整列されている。トランスデューサおよびセンサが、同じ緯度で提供されると想定すると(すなわち、その結果、音響信号がそれらの間で最も直接的な/最短の円周経路に沿ってトランスデューサからセンサに伝搬し得る)、以降のルーチン300の典型的なステップは、システム400を使用して実行され得、音響装置の所与の緯度におけるコンテナの円周を計算する。追加のセンサ420(例えば、420B、420Cなど)は、図5A〜9と関連して論じられるように、任意の所与の配設で利用され得ることを理解されたい。
ステップ310において、1つ以上のパルスが、トランスデューサを使用して生成される。実際のアプリケーションでは、制御コンピュータ110は、例えば、以下に限定しないが、信号制御モジュール270を使用してソフトウェアモジュールのうちの1つ以上を実行することによって構成され、トランスデューサ430にパルスを生成させることができる。制御コンピュータは、また、例えば、インパルス時間を含む、パルスに関係する様々なパラメータを記録することもできる。他のパラメータは、強度、周波数などのパルス特性を含み得る。好ましくは、パルスは、トランスデューサのそれぞれの場所から壁455に印可され、壁の表面に沿って起点から外側に放射する。特に、パルスの第1成分(「第1の音波」)は、表面に沿って時計回りの方向に伝搬し、音波の第2成分(「第2の音波」)は、コンテナの表面に沿って反時計回りの方向に伝搬する。図4Cは、(あたかも、壁が、図4Aおよび4Bで示した架空の分割線480に沿って切断され、そして展開/平面化されたかのように)壁の内部表面から見通したコンテナ壁の平面化された二次元図を示す。図4Cは、パルスの起点(すなわち、トランスデューサ430の場所)から放射している音波を示す。実際上、図4Cに示すように、第1の音波は、第1の経路470に沿って起点からセンサ420Aの位置まで伝搬し、第2の音波は、第2の経路475に沿って伝搬する。
ここで、ルーチン300に戻ると、ステップ315において、1つ以上のパルスは、1つ以上のセンサを使用して検出される。図4A〜4Dに示された音響装置の特定の相対的な配置が与えられると、第1の音波は、センサ420Aに到達する前に、第2の音波(「距離2」)より長い距離(「距離1」)を伝搬することが理解され得る。その結果、第2の音波の到着は、第1の音波の到着の前にセンサにより検出される。加えて、ステップ315において、検出された音波に関係する情報は、センサを使用して測定され、さらなる処理のために制御コンピュータ110によって記録され得る。好ましくは、この情報は、センサが音波の到着をそれぞれ検出する特定の時間を含む。加えて、さらなる分析のために測定および記録された情報は、強度、周波数などの音波特性を含み得る。例えば、検出された音波特性は、制御コンピュータを使用して分析されてパルスを区別することができ、いくつかの実施態様では、コンテナの様々な動作条件を判定することができる。
次いで、ステップ320において、制御コンピュータ110は、インパルス時間、および1つ以上のパルスのそれぞれの検出時間に基づいて、1つ以上のパルスのそれぞれの飛行時間(TOF)を計算する。各それぞれのTOFは、パルスが音響装置のうちの2つの間を伝搬する経過時間を表し、パルスが伝搬した距離の関数であり、例えば、トランスデューサの場所から、特定のセンサが最初に検出した地点まで伝搬した時間である。
より具体的には、図4A〜4Dに示す典型的な実施態様では、制御コンピュータ110は、例えば、以下に限定しないが、信号分析モジュール272を含むソフトウェアモジュール130のうちの1つ以上を実行することによって構成されており、この制御コンピュータは、インパルス時間と、第1および第2の音波が第1のセンサ420Aによって検出されたそれぞれの時間との間の経過時間に基づいて、第1および第2の経路に沿って伝搬する第1および第2の音波のTOFをそれぞれ計算することができる。さらに、制御コンピュータは、第1および第2の波に対して計算されたTOFを合計することによって、パルスがコンテナの表面全体の周りを伝搬するのにかかる合計時間を推定することができる。
ステップ325において、制御コンピュータ110は、それぞれのTOF、および壁を通る音速に基づいて、音響装置間のそれぞれの距離を計算する。より具体的には、制御コンピュータは、例えば、以下に限定しないが、幾何学的分析モジュール274を含むソフトウェアモジュール130のうちの1つ以上を実行することによって構成されており、この制御コンピュータは、計算されたTOF、およびコンテナの材料を通る音速の関数として、それぞれの経路に沿って第1および第2の音波が伝搬した距離を計算するように構成され得る。例えば、距離は、おおむね、式(距離=TOF*材料を通る音速)に従って計算され得る。同様に、トランスデューサおよびセンサが、長手方向418に整列されていると想定すると、コンテナの円周は、式(円周=(TOF音波1+TOF音波2)*材料を通る音速)に従って計算され得る。第1および第2の音波がそれぞれの経路に沿って伝搬した距離(すなわち、パルスが伝搬した円周方向の距離)の「展開された」線形画像描写が、図4Dに示されている。
ステップ330において、制御コンピュータは、ステップ325で計算された距離の関数として貯蔵コンテナの容積を判定する。より具体的には、図4A〜4Cに示す例において、容積は、音響的に測定されたコンテナの円周、およびコンテナの既知の高さに基づいて、計算され得る(円周が、高さによって変化しないと想定する)。
コンテナの円周を計算するための前述のステップは、トランスデューサ430および第1のセンサ420Aが長手方向に(例えば、コンテナ上の同じ高さに)整列しているという想定に基づいているが、そのようには整列されていない(例えば、異なる緯度に配置されている)音響装置間のTOFベースの距離測定値を同様に使用して、音響装置のうちの少なくとも2つの相対的な位置が既知である(例えば、横方向または長手方向のうちの1つ以上にある少なくとも2つの装置間の距離)ことを前提として、コンテナの寸法を計算することができる。
残りの図、および対応する説明は、本発明の開示された実施形態のうちの1つ以上によるコンテナ容積検量システム100の様々な構成および概念をさらに示している。
図5Aは、図4Aに示したシステム400を上から見下ろした図であるが、第2のセンサ420Bを含むように修正されている。図5Aには示されていないが、第2のセンサ420Bは、第1のセンサ420Aと同じ緯度に位置決めされている。したがって、動作中、第1のセンサ420Aおよび第2のセンサ420Bは、時計回り方向および反時計回り方向にそれぞれ伝搬するパルスからの音波が検出される時間を検出するように構成されている。
いくつかの実施態様では、制御コンピュータ110は、トランスデューサに対する第1および第2のセンサのおおむね既知の場所に基づいて、第1および第2の音波に対応する検出時間を区別するように構成され得る。そのような一般的な位置情報は、例えば、音響装置上に設けられたGPSまたは高度センサを使用して判定されるか、または、例えば、センサを配備するロボットもしくはコンテナ上に装置を手動で設置している作業者によって、配備中に測定され得る。例えば、第1のセンサがほぼ時計の5時の位置に設置され(上面図からコンテナの円周を見たとき)、第2のセンサ420Bが2時の位置に設置され、かつトランスデューサが9時の位置にあるという理解に基づいて、制御コンピュータ110は、第2のセンサ420Bにより検出された音波の第1のインスタンスが、時計回り方向に伝搬する第1の音波であり、かつ第1の距離(すなわち、距離1)を有する経路に対応すると判定することができる。制御コンピュータはまた、第2のセンサ420Bにより検出された音波の第2のインスタンスが、反時計回り方向にコンテナの周りでより長い距離を伝搬する(すなわち、図5Aに示すように、距離2+距離3Bからなる経路に沿って)第2の音波に対応することも判定することができる。同様の判定が、第1のセンサ420Aを使用して検出された音響信号を使用して行われ得る。
複数のセンサ(すなわち、センサ420Aおよび420B)の使用により、検量の精度をさらに高めることができる。特に、第1のセンサ420Aおよび第2のセンサ420Bを使用して測定された第2の音波(上述したように、反時計回り方向に伝搬する)のそれぞれの検出時間を使用して、第2の音波が第1のセンサから第2のセンサまで伝搬するのにかかった時間を判定し得る。同様に、第1の音波に対してセンサ420Aおよび420Bを使用して測定されるそれぞれの検出時間を使用して、第2のセンサ420Bから第1のセンサ420Aまで伝搬する第1の音波のTOFを判定し得る。
図5Aに示すように、第1のパルスは、トランスデューサと第2のセンサ420Bとの間の距離1を伝搬し、そして第1の音響センサ420Aと第2の音響センサ420Bとの間の距離3Aを伝搬する。同様に、第2の音波は、トランスデューサとセンサ420Aとの間の距離2を伝搬し、そして第1の音響センサ420Aと第2の音響センサ420Bとの間の距離3Bを伝搬する。第1および第2の音波が様々な音響装置間のそれぞれの経路に沿って伝搬した距離について「展開された」線形画像描写が、図5Bに示されている。
いくつかの実施態様では、2つのセンサ間の距離を使用して、コンテナの寸法を計算するために使用される変数を較正することができる。より具体的には、例えば、実際の距離3が既知である場合(例えば、配備中に距離を手動で測定することによって)、それを使用して経験的に判定された距離(例えば、距離3Aおよび/または距離3B)と比較することによって、音速の精度を一定に保つことができる。加えて、または別の方法として、コンテナの円周を計算するのに使用される音速は、センサベースの距離測定値のうちの1つ以上に基づいて調整され得る。例えば、音速は、距離3Aおよび距離3Bの値がより近くなるように調整され得る。
図6Aは、開示された実施形態のうちの1つ以上によるコンテナ容積検量システム600の典型的な構成を示す。このシステム600は、トランスデューサ630、ならびに表面655上のそれぞれの位置に設置された3つのセンサ620A、620B、および620Cを含む。図に示すように、センサは、コンテナ上の異なるそれぞれの高さに設置され、この特定の構成では、また、トランスデューサの高さとも異なる。
図6Bは、コンテナ壁655に関する、簡略化した二次元の「展開された」図である。図6Bは、あたかも、壁が、図6Aに示す架空の分割線680に沿って切断され、そして展開され、または平面化されたかのように、コンテナ壁の内部表面の斜視から示されている。また、図6Bは、センサに向かって起点(すなわち、トランスデューサ630の場所)から離れるように放射する音波がそれぞれ伝搬する経路も示している。特に、一般に時計回り方向に、かつセンサ620A、620Bおよび620Cに向かって伝搬する音波の経路は、A1、B1、およびC1としてそれぞれ識別され、一般に反時計回り方向に、かつセンサ620A、620Bおよび620Cに向かって伝搬する音波の経路は、A2、B2、およびC2としてそれぞれ識別されている。
それぞれの経路に沿って伝搬する音波のTOF、および経路のそれぞれの距離/長さは、制御コンピュータ(図示せず)によって、例えば、ルーチン300のうちの1つ以上のステップに従って計算され得る。さらに、コンテナの円周がセンサの高さによって変化しないと想定すると、コンテナの寸法は、例えば、以下の連立方程式を用いて数学的に計算され得る。
Figure 0006907448


前述の解法を使用した計算は、音響装置のうちの2つ以上の間の既知の位置に基づく関係を必要とし得る。例えば、既知の関係は、音響装置のうちの2つ(例えば、センサ620Aおよびトランスデューサ630)の間の既知の、または独立に測定された距離とすることができる。いくつかの実施態様では、既知の関係は、長手方向および/または横方向における表面上の少なくとも2つの音響装置の既知の整列とすることができる。当業者には理解されるように、コンテナの寸法の計算は、また、追加の想定、例えば、コンテナの一定の高さ、円筒形状、一定の曲率半径などに基づき得る。
図6Cは、図6Aのコンテナ容積検量システム600の側面図であり、音響トランスデューサ630は、壁上で長手方向に上下に移動するように構成されている。例えば、トランスデューサ630は、ロボット(図示せず)に搭載され得、そのロボットは、制御コンピュータ110(図示せず)を使用して制御され得、音響コンテナ容積検量プロセス中にトランスデューサ630の位置を測定可能に調整する。
前述したように、音響センサのうちの1つ以上と長手方向に整列するトランスデューサを位置決めすること(すなわち、円筒形コンテナ上の長手方向に同じ高さにあり、その高さは、一定であると想定される)は、整列された装置の対応する高さでコンテナの円周を正確に計算することを容易にし得る。したがって、1つ以上の典型的な実施形態では、システムは、コンテナ650の壁655に沿って(例えば、ロボットを使用して)トランスデューサ630を長手方向に系統的に移動するように構成され得、トランスデューサがセンサのうちの1つ以上と同じ高さにある各位置に対して、コンテナの円周は、例えば、前述したルーチン300のうちの1つ以上のステップに従って測定され得る。このため、異なる高さに配置された複数のセンサを含む構成では、コンテナ円周は、各センサの高さで判定され得、最終的に、コンテナの容積は、円周における、高さに依存した任意の変動を考慮して、より正確に計算され得る。また、音響センサの位置は、長手方向に同様に調整され得、追加の高さにおけるコンテナの円周の測定を容易にすることを理解されたい。
開示された実施形態のうちの1つ以上によれば、コンテナ容積検量システムは、コンテナの円周壁に対して1つ以上の方向に2つ以上の音響装置を自動的に整列させるように構成され得る。この整列は、音響ベースの測定を使用して達成され得、より具体的には、特定の装置間の音響信号に関して計算されたTOFに基づき達成され得る。一般に、各装置が整列していることを検証することは、横方向および長手方向のうちの1つ以上にコンテナの表面上の音響装置のうちの1つ以上の位置を反復調整すること、ならびに各位置に対して、音響装置のうちの少なくとも2つのそれぞれの位置が整列していることを、再計算されたTOFのうちの1つ以上が示すまで、生成するステップ、検出するステップ、およびTOFを計算するステップを繰り返すことを含み得る。
より具体的には、例として、以下に限定されないが、制御コンピュータ110は、ソフトウェアモジュール230のうちの1つ以上を実行することによって構成され、例えば、以下に限定されないが、位置制御モジュール276を含み、ロボットを使用してコンテナの表面に沿って長手方向に測定された量だけトランスデューサ630を位置決めおよび再位置決めすることができる。コンテナの表面上の1つ以上の方向にトランスデューサを測定量だけ移動させることは、ほぼリアルタイムで収集された位置測定値に基づいて、例えば、ロボットの絶対位置または相対位置、および移動を測定するために好適である、ロボットに実装された1つ以上のセンサ(例えば、GPSセンサ、加速度計、高度センサなど)を使用して、制御され得る。ロボット、したがって、トランスデューサの新しい位置ごとに、制御コンピュータは、トランスデューサを使用して1つ以上の音響パルスを生成するステップ、センサのうちの1つ以上を使用して表面に沿って伝搬する音波を検出するステップ、およびその1つ以上の音響パルスのTOFを計算するステップを実行することができる。好ましくは、トランスデューサを特定のセンサ、例えば、センサ620Aに整列させようとする場合に、TOFは、特定のセンサ620Aにより検出された音波に対して計算される。トランスデューサと特定のセンサとの間を伝搬する音波のTOFが、距離に正比例するため、整列は、それらの間を伝搬するパルスのTOFの最小値が識別されるまで、トランスデューサを反復移動させることによって達成される。上記のように、制御コンピュータは、トランスデューサまたは他の音響装置をコンテナから分離し、ロボットを再位置決めし、次いで、音響装置を新しい場所でコンテナに係合するように設置し直すように構成され得る。
図6Dは、壁の内部表面から見た(あたかも、壁が、図6Aで示した架空の分割線680に沿って切断され、そして展開/平面化されたかのように)トランスデューサおよびセンサ620Aを整列させるプロセス全体にわたる、コンテナ壁655の二次元の「展開された」断面図である。図6Dは、整列プロセス中のトランスデューサ(P1〜P4)の複数の位置、および各トランスデューサ位置に対して、音波がトランスデューサからセンサの静止位置「A」まで伝搬する対応する経路を示している。図6Dに示すように、トランスデューサの位置P4とセンサ位置Aとの間の経路A1およびA2が最短であり、このため、位置P4は、トランスデューサが、位置Aを有するセンサと整列するトランスデューサ位置であると判定され得る。図6Dは、さらに、一連の垂直トランスデューサ(または、ロボット上に搭載された可動トランスデューサ)が、それぞれの装置位置間の距離に対する解法をもたらし得る複数の経路を作り出すことによって、追加情報をどのように提供し得るかを示している。具体的には、水平線A1およびA2は、センサAでのコンテナ円周の判定を可能にするため重要であり、また、トランスデューサのロボット/回線に対するタンク上の当該センサの配置も提供し、したがって、連立方程式の解法を可能にしている。
図6Eは、図6Bと同様に、コンテナ壁655に関する二次元の「展開された」図であり、システム600のそれぞれのセンサに向かってトランスデューサ630から離れるように放射する音波が伝搬する経路を示している。さらに、図6Eは、2つのセンサ間(またはトランスデューサと1つのセンサとの間)の既知の距離が、連立方程式を解くこと、および/または材料内の音速を較正することにどのように役立つかを示している。理解され得るように、コンテナ容積検量システムの較正は、結果としてもたらされるコンテナ容積測定の精度を高めることができる。いくつかの実施態様では、検量は、表面または最短経路に沿って、長手方向および横方向(x,y)のセンサ間の距離を測定することによって達成され得る。例えば、図6Eに示すように、BCxおよびBCyが測定されるか、または既知である場合、次式は、真である:By−Cy=BCy、かつBx−Cx=BCx。したがって、次の一組の式(また、以前に提供されたもの)が、
Figure 0006907448


解として解かれ得、また、音速の計算が前提条件を検証することも可能になり得る。前述したように、上記の典型的な連立方程式は、コンテナがその高さ全体にわたって同じ円周を有するという前提に基づいて、簡略化されている。
1つ以上の典型的な実施形態では、既知の離隔を有する2つ以上のセンサからなるコンテナ容積検量システムを使用して、検量の精度を改善することができる。例えば、図7は、典型的なコンテナ壁755、トランスデューサ730、ならびにセンサ720A、720B、および720Cを含むコンテナ容積検量システム700の二次元の「展開された」図である。図7は、2つのセンサ間(またはトランスデューサと1つのセンサとの間)の既知の距離が、連立方程式を解くこと、および/または材料内の音速を較正することにどのように役立つかを示している。図7に示した特定の構成では、センサ720Aは、BCy=BAyかつBCx=BAxであり、ならびに長手方向および横方向距離もまた、互いに等しくなるような方法で、コンテナの壁に取り付けられている。
すべてのセンサがこの典型的な方法でグループ化された場合、縦揺れや他の現象からのノイズを最小限に抑えられ得る。さらに、システム700は、それ自体を較正するように構成され得、センサ配設を使用して任意のインパルスが生成された方向を計算することができる。例えば、波の方向性は、センサ間の既知の距離を使用して計算され得、これを使用して、タンク壁の上端部および下端部から反射する波などの望ましくない方向から伝播する任意の波を無視することができる。また、音速に関する自己較正は、既知の間隔を有する2つのセンサ間のTOFを考慮し、波の伝搬方向を考慮することによっても達成され得る。そのような追加情報は、制御コンピュータ110によるコンテナ幾何学的形状の計算をさらに通知し得、これを使用して、例えば、不良データを除去し、任意選択的に、局所化した音速測定を提供することによって、コンテナの容積をより正確に判定することができる。
コンテナ容積検量システム800の典型的な構成が、図8に示されており、これは、円筒形貯蔵コンテナの壁855の「展開された」二次元図である。図に示すように、システム800は、2つの長手方向列センサ(列825および820)を備え、これらのセンサは、各組のセンサが壁上のそれぞれの高さに設けられ、その壁の円周が計算され得るように配設されている。また、システム800は、1つ以上の移動式インパルス生成器を含み得る。いくつかの構成では、トランスデューサ(複数可)は、移動式構成(例えば、ロボット上に搭載されている)を有し得、その結果、トランスデューサは、様々な高さでコンテナ円周を測定するための位置に移動され得る。図8に示すシステム800の特定の構成では、複数のトランスデューサを含む長手方向短冊板850が、長手配向の壁に搭載されている。動作中、各それぞれの高さにあるセンサは、インパルスを受け取ることになり、制御装置(110、図示せず)は、センサ間の既知の長手方向距離(y)を使用して、トランスデューサ(複数可)とセンサとの間の任意のずれを補正することができる。例えば、そのような補正には、アプリケーションに必要な精度に応じて、十分に正確であり得るわずかな高低差の平均円周を判定することが含まれ得る。加えて、または別の方法として、前述したように、次の測定に進む前に、1つ以上のセンサとの適切な長手方向の整列が達成されるまで、トランスデューサのうちの1つ以上の高さは、長手方向に調整され得る。
コンテナ容積検量システム900の典型的な構成が、図9に示されており、これは、円筒形貯蔵コンテナの壁955の「展開された」二次元図である。システム900は、例えば、センサの長期的な設置とすることができる。図に示すように、システム900は、2つの組、または「短冊板」925および920を備え、各板は、水平方向の既知の距離xだけ離間された2つの長手方向列センサを含む。したがって、各短冊板は、2つのセンサが壁上のそれぞれの高さに設けられるように配設され、その壁の円周が計算される。加えて、センサは、また、長手方向に既知の距離yだけ離間されている。図に示すように、システム900は、また、インパルス生成器930をも含む。
図9に示したセンサの典型的な構成は、精度を高めることで、かつ/またはトランスデューサの移動の必要性を省くことで、円周の判定を容易にし得る。例えば、単一の固定されたインパルス生成器を有することが望ましい場合、移動式トランスデューサを使用することから生じるより高い精度とは対照的に、円周の測定は、三次元空間内の各センサの位置を判定し、次いで、トランスデューサと同じ高さを有する2つのセンサを使用してその同じ高さでコンテナの直径を計算することによってもたらされ得る。したがって、制御コンピュータは、単一パルスを使用して、一対の対向するセンサを含む各高さの直径を計算し、このため、対応する円周および/またはコンテナの全容積を判定するように構成され得る。そのような典型的なシステム構成は、頻繁なモニタリングが望まれる場合に有利であろう。さらに、コンテナの幾何学的形状の計算は、表面955上に2組のセンサを設置することによってさらに簡略化され得、それらのセンサが、コンテナのほぼ反対側に配置される(例えば、時計回りおよび反時計回りの両方の方向において、円筒形コンテナの周りの920と926との間の円周距離がおおむね等しい)ことは、留意する価値がある。
この時点において、前述の説明のほとんどが、貯蔵コンテナの容積の検量のためのシステムおよび方法を対象としているが、本明細書に開示されたシステムおよび方法は、同様に配備され、かつ/または参照したシナリオをはるかに越えるシナリオ、状況、および設定で実施され得ることに留意されたい。例えば、典型的なシステムおよび方法は、様々な種類の機械波を使用して、かつ音響装置に限定することなく、コンテナの容積を測定するように適合され得る。
図示または説明されたものよりも多いまたは少ない動作が実行され得ることを理解されたい。また、これらの動作は、説明された動作とは異なる順序でも実行され得る。図面中の類似した数字は、いくつかの図面を通して類似の要素を表し、図面に関連して記載され説明されたすべてのコンポーネントおよび/またはステップが、すべての実施形態または配設に必要とされるわけではないことが理解されるべきである。
このため、本システムおよび方法について例示した実施形態および配設は、貯蔵コンテナの容積の検量のためのシステムおよびコンピュータ実施方法、コンピュータシステム、ならびにコンピュータプログラム製品を提供する。図中のフローチャートおよびブロック図は、様々な実施形態および配設によるシステム、方法、およびコンピュータプログラム製品の可能な実施態様のアーキテクチャ、機能性、および動作を示す。この点について、フローチャートまたはブロック図の各ブロックは、モジュール、セグメント、またはコードの一部を表し得、これらは、指定された論理機能(複数可)を実施するための1つ以上の実行可能な命令を含む。また、いくつかの代替の実施態様では、ブロック中に記載された機能は、図中に記載された順序とは異なる順序で行われてもよいことにも留意されたい。例えば、連続して示された2つのブロックは、実際には、実質的に同時に実行されてもよく、または各ブロックは、場合によっては、必要とする機能性に応じて、逆の順序で実行されてもよい。また、ブロック図および/またはフローチャート説明の各ブロック、ならびにブロック図および/またはフローチャート説明内のブロックの組み合わせは、特定の機能もしくは動作を実行する特定用途ハードウェアベースシステム、または特定用途ハードウェアおよびコンピュータ命令の組み合わせによって実施され得ることにも留意されたい。
本明細書で使用される用語は、特定の実施形態のみを説明する目的のためであり、本開示を限定することを意図していない。本明細書で使用するとき、単数形「a」、「an」および「the」は、文脈で別に明示していない限り、複数形も含むことを意図している。さらに、本明細書で使用するとき、用語「備える」および/または「備えている」は、記載する特徴、整数、ステップ、動作、要素、および/またはコンポーネントの存在を特定するが、1つ以上の他の特徴、整数、ステップ、動作、要素、コンポーネント、および/またはそれらのグループの存在または追加を排除しないことが理解される。
また、本明細書で使用する表現および用語は、説明の目的のためであり、限定されたものとみなされてはならない。本明細書内の「含む」、「備える」または「有する」、「包含する」、「伴う」、およびこれらの変形の使用は、それ以降に列挙された項目、およびその等価物、ならびに追加項目を包含することを意味する。
上述の主題は、単に例示として提供されており、限定されたものと解釈されるべきではない。説明および記載された例示的な実施形態およびアプリケーションに従うことなく、かつ、以降の特許請求の範囲に記載されている本開示の真の精神および範囲から逸脱することなく、様々な修正および変更が、本明細書に記載された主題に対して行われ得る。

Claims (18)

  1. 複数の音響装置を使用して貯蔵コンテナの容積を測定する方法であって、前記複数の音響装置が、トランスデューサおよび1つ以上のセンサを含み、前記方法が、
    前記複数の音響装置を前記コンテナの円周壁の外側表面上のそれぞれの位置に配備することであって、前記1つ以上のセンサが、前記表面に音響的に結合され、かつ前記コンテナの壁に沿って円周方向に伝播する1つ以上のパルスを検出するように構成され、前記トランスデューサが、前記表面に音響的に結合され、かつ前記1つ以上のパルスを生成するように構成され、前記1つ以上のパルスが、少なくとも第1の円周経路および第2の円周経路において、前記トランスデューサから離れ、前記1つ以上のセンサに向かって、前記に沿って放射する配備することと、
    前記トランスデューサを使用して前記1つ以上のパルスを生成することであって、各パルスがインパルス時間に生成される、生成することと、
    前記1つ以上のセンサを使用して、前記第1の円周経路および前記第2の円周経路に沿って放射する前記1つ以上のパルスを検出し、それぞれの円周経路に沿って放射する前記1つ以上のパルスが検出されるそれぞれの時間を記録することと、
    前記インパルス時間およびそれぞれの検出時間に基づいて、前記1つ以上のセンサと電子通信する計算装置によって、前記1つ以上のパルスに対するそれぞれの飛行時間(TOF)を計算することであって、各それぞれのTOFは、前記パルスが特定の円周経路に沿って前記音響装置のうちの2つの間を伝搬する経過時間である、計算することと、
    前記計算装置を使用して、前記それぞれのTOFおよび前記壁を通る音速に基づいて、前記第1および第2の円周経路の各々における音響装置間のそれぞれの距離を計算することと、
    前記計算装置を使用して、前記計算されたそれぞれの距離に基づいて、前記貯蔵コンテナの前記容積を判定することと、を含む、方法。
  2. 前記複数の音響装置を配備することが、既知の距離だけ分離されたそれぞれの位置に少なくとも第1の音響センサおよび第2の音響センサを配備することを含み、
    前記計算装置を使用して、前記既知の分離距離を有する前記第1および第2の音響センサの間で放射する前記パルスのTOFを計算するステップと、
    前記計算装置を使用して、前記第1および第2の音響センサの間で放射する前記パルスの前記TOF、ならびに前記既知の分離距離に基づいて、前記壁を通る前記音速を計算するステップと、をさらに含む、請求項1に記載の方法。
  3. 前記計算されたTOFに基づいて、前記コンテナの前記円周壁に対して横方向および長手方向のうちの1つ以上に、前記音響装置のうちの少なくとも2つを整列させること、をさらに含む、請求項1に記載の方法。
  4. 前記整列させるステップが、
    前記表面上の前記音響装置のうちの1つ以上の前記それぞれの位置を前記横方向および長手方向のうちの1つ以上に反復調整することと、
    1つ以上の再計算されたTOFが、前記音響装置のうちの少なくとも2つの前記それぞれの位置が横方向および長手方向のうちの1つ以上に整列されていることを示すまで、前記生成するステップ、検出するステップ、およびTOFを計算するステップを繰り返すことと、を含む、請求項3に記載の方法。
  5. 前記配備するステップが、前記計算装置の制御下で動作する1つ以上のロボットを使用して、前記表面上のそれぞれの位置に前記1つ以上の音響装置を配備することを含む、請求項4に記載の方法。
  6. 前記音響装置のうちの1つ以上の前記それぞれの位置を反復調整する前記ステップが、
    前記計算装置およびロボットを使用して、前記トランスデューサを前記長手方向に所定量移動させることであって、前記トランスデューサの前記それぞれの位置、および前記所定量が、前記ロボットに搭載された1つ以上の位置センサを使用してほぼリアルタイムで測定される、移動させること、を含む、請求項4に記載の方法。
  7. 前記コンテナの前記表面上の前記複数のセンサをそれぞれの位置に配備することが、前記コンテナの前記表面上の異なるそれぞれの高さに前記複数のセンサを配備することと、
    ロボットを使用して、前記コンテナの前記表面に沿って長手方向に前記トランスデューサを段階的に再位置決めすることと、
    生成するステップ、検出するステップ、および前記トランスデューサの各々の位置の前記1つ以上のパルスに対するTOFを計算するステップを繰り返すことと、
    前記計算されたTOFに基づいて、前記トランスデューサが前記長手方向に前記センサのうちの1つ以上と整列されているかどうかを判定することと、
    前記計算されたTOFに基づいて、前記トランスデューサが前記複数のセンサのうちの1つ以上と整列していると判定される各位置において、前記コンテナの円周長を計算することと、を含む、請求項1に記載の方法。
  8. 貯蔵コンテナの容積を測定するためのシステムであって、前記システムが、
    前記コンテナの円周壁の外側表面のそれぞれの位置に配備されるように構成された複数の音響装置であって、前記音響装置が、
    前記円周壁に音響的に結合され、かつ前記コンテナの壁に沿って円周方向に放射する1つ以上のパルスを検出するように構成されている複数のセンサと、
    記表面に音響的に結合され、かつ前記1つ以上のパルスを生成するように構成されたトランスデューサであって、前記1つ以上のパルスが、前記トランスデューサから離れて前記コンテナの壁に沿って、それぞれの円周経路に沿って前記複数のセンサに向かって放射するトランスデューサと、を含む、音響装置と、
    制御計算システムであって、
    非一時的コンピュータ可読記憶媒体と、
    前記複数の音響装置、および前記コンピュータ可読記憶媒体と電子通信する1つ以上のプロセッサと、
    前記記憶媒体に格納された実行可能な命令を含む1つ以上のソフトウェアモジュールであって、前記1つ以上のソフトウェアモジュールが、前記プロセッサにより実行可能であり、
    前記トランスデューサを使用して、それぞれのインパルス時間に前記トランスデューサを使用した前記1つ以上のパルスを生成するように前記プロセッサを構成する信号制御モジュールであって、前記信号制御モジュールが、前記センサを使用して、前記センサにおける前記1つ以上のパルスの到着をそれぞれ検出し、かつそれぞれの検出時間を記録するように前記プロセッサをさらに構成する、信号制御モジュールと、
    前記それぞれのインパルス時間およびそれぞれの検出時間に基づいて、前記1つ以上のパルスに対するそれぞれの飛行時間(TOF)を計算するように、前記プロセッサを構成する信号分析モジュールであって、それぞれのTOFは、前記パルスがそれぞれの円周経路に沿った前記音響装置のうちの2つの間を伝搬する経過時間である、信号分析モジュールと、
    前記それぞれのTOF、および前記壁を通る音速に基づいて、前記音響装置間の距離を計算し、前記計算された距離に基づいて、前記貯蔵コンテナの前記容積を計算するように、前記プロセッサを構成する幾何学的分析モジュールと、を含む、ソフトウェアモジュールと、を備える、制御計算システムと、を備える、システム。
  9. 前記円周壁の前記表面上に前記音響装置のうちの1つ以上を配備するように構成されたロボットであって、前記ロボットが、駆動システム、および前記ロボットの位置をモニタリングするための1つ以上の位置センサを含み、前記ロボットが、前記表面上の前記1つ以上の音響装置を制御可能に配備するように構成されている、ロボットと、
    前記ソフトウェアモジュール中の位置制御モジュールであって、前記位置制御モジュールが、前記ロボットを使用して、前記長手方向に前記表面上の前記トランスデューサの前記それぞれの位置を反復調整し、かつ前記トランスデューサが前記音響センサのうちの少なくとも1つと長手方向に整列されるまでそれぞれのTOFを再計算するように、前記プロセッサを構成し、前記トランスデューサと前記少なくとも1つセンサとの間を伝搬するパルスに関する再計算された最小のTOFが前記プロセッサによって識別されたときに、整列が達成される、位置制御モジュールと、をさらに備える、請求項8に記載のシステム。
  10. 前記複数のセンサが、長手方向および横方向のうちの1つ以上に既知の距離だけ分離されたそれぞれの位置に配備されている少なくとも第1の音響センサおよび第2の音響センサを含む、請求項8に記載のシステム。
  11. 前記信号分析モジュールが、前記既知の分離距離を有する前記第1および第2の音響センサの間で放射する前記パルスのTOFを計算するように、前記プロセッサをさらに構成し、前記第1および第2の音響センサの間で放射する前記パルスの前記TOF、ならびに前記既知の分離距離に基づいて、前記壁を通る前記音速を計算するように、前記プロセッサをさらに構成する、請求項10に記載のシステム。
  12. 音響センサのアレイであって、前記アレイが、音響センサの少なくとも2つの平行な長手方向列を含み、長手方向列の前記音響センサが、既知の長手方向間隔だけ離間されており、前記2つの列が、前記横方向に既知の横方向間隔だけ離間されている、アレイ、をさらに備える、請求項10に記載のシステム。
  13. 貯蔵コンテナの容積を測定するためのシステムであって、前記システムが、
    前記コンテナの円周壁の外側表面のそれぞれの位置に配備されるように構成された複数の音響装置であって、前記音響装置が、
    前記円周壁に音響的に結合され、かつ前記コンテナの壁に沿って円周方向に放射する1つ以上のパルスを検出するように構成されている複数のセンサと、
    前記表面に音響的に結合され、かつ前記1つ以上のパルスを生成するように構成されたトランスデューサであって、前記1つ以上のパルスが、前記トランスデューサから離れて前記コンテナの壁に沿って、それぞれの円周経路に沿って前記複数のセンサに向かって放射するトランスデューサと、を含む、音響装置と、
    前記円周壁の前記表面上に前記音響装置のうちの1つ以上を配備するように構成されたロボットであって、前記ロボットが、駆動システム、および前記ロボットの位置をモニタリングするための1つ以上の位置センサを含み、前記ロボットが、前記表面上の前記1つ以上の音響装置を制御可能に配備するように構成されている、ロボットと、
    制御計算システムであって、
    非一時的コンピュータ可読記憶媒体と、
    前記複数の音響装置、前記ロボット、および前記非一時的コンピュータ可読記憶媒体と電子通信する1つ以上のプロセッサと、
    前記記憶媒体に格納された実行可能な命令を含む1つ以上のソフトウェアモジュールであって、前記1つ以上のソフトウェアモジュールが、前記プロセッサにより実行可能であり、
    前記トランスデューサを使用して、それぞれのインパルス時間に前記トランスデューサを使用した1つ以上のパルスを生成するように前記プロセッサを構成する信号制御モジュールであって、前記信号制御モジュールが、前記センサを使用して、前記センサにおける前記1つ以上のパルスの到着をそれぞれ検出し、かつそれぞれの検出時間を記録するように前記プロセッサをさらに構成する、信号制御モジュールと、
    前記それぞれのインパルス時間およびそれぞれの検出時間に基づいて、前記1つ以上のパルスに対するそれぞれの飛行時間(TOF)を計算するように、前記プロセッサを構成する信号分析モジュールであって、それぞれのTOFは、前記パルスがそれぞれの円周経路に沿った前記音響装置のうちの2つの間を伝搬する経過時間である、信号分析モジュールと、
    前記それぞれのTOF、および前記壁を通る音速に基づいて、前記音響装置間の距離を計算し、かつ前記計算された距離に基づいて、前記貯蔵コンテナの前記容積を計算するように、前記プロセッサを構成する幾何学的分析モジュールと、
    前記ロボットを使用して、前記表面上の前記音響装置のうちの1つ以上の前記それぞれの位置を反復調整し、かつ前記音響装置のうちの少なくとも2つが横方向および長手方向のうちの1つに整列されるまでそれぞれのTOFを再計算するように、前記プロセッサを構成する位置制御モジュールであって、前記少なくとも2つの装置の整列が、前記少なくとも2つの音響装置の間で放射するパルスの前記再計算されたTOFが最小化されたときに達成される、位置制御モジュールと、を含む、ソフトウェアモジュールと、を含む、制御計算システムと、を備える、システム。
  14. 前記複数のセンサが、前記横方向および前記長手方向のうちの1つ以上に既知の距離だけ分離されたそれぞれの位置に配備されている、少なくとも第1の音響センサおよび第2の音響センサを含む、請求項13に記載のシステム。
  15. 前記信号分析モジュールが、前記既知の分離距離を有する前記第1および第2の音響センサの間に放射する前記パルスのTOFを計算するように、前記プロセッサをさらに構成し、前記第1および第2の音響センサの間に放射する前記パルスの前記TOF、ならびに前記既知の分離距離に基づいて、前記壁を通る音速を計算するように、前記プロセッサをさらに構成する、請求項14に記載のシステム。
  16. 前記プロセッサが、前記計算されたTOFに基づいて、前記コンテナの前記円周壁に対して横方向および長手方向のうちの1つ以上に、前記音響装置のうちの少なくとも2つの整列を制御するように構成されている、請求項13に記載のシステム。
  17. 前記位置制御モジュールが、前記トランスデューサが前記複数のセンサのうちの1つ以上と整列されるまで、前記トランスデューサの前記位置を前記長手方向に所定量だけ調整するように、前記プロセッサを構成する、請求項16に記載のシステム。
  18. 前記プロセッサが、前記トランスデューサが前記複数のセンサのうちの前記1つ以上と整列される各位置に対して、前記コンテナの円周を計算するように構成されている、請求項17に記載のシステム。
JP2019556253A 2017-04-19 2018-03-20 タンクおよび容器のための音響検量アレイ Active JP6907448B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/491,588 2017-04-19
US15/491,588 US10480982B2 (en) 2017-04-19 2017-04-19 Acoustic calibration array for tanks and vessels
PCT/US2018/023316 WO2018194784A1 (en) 2017-04-19 2018-03-20 Acoustic calibration array for tanks and vessels

Publications (3)

Publication Number Publication Date
JP2020517918A JP2020517918A (ja) 2020-06-18
JP2020517918A5 JP2020517918A5 (ja) 2021-04-22
JP6907448B2 true JP6907448B2 (ja) 2021-07-21

Family

ID=61913572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019556253A Active JP6907448B2 (ja) 2017-04-19 2018-03-20 タンクおよび容器のための音響検量アレイ

Country Status (8)

Country Link
US (2) US10480982B2 (ja)
EP (1) EP3612830B1 (ja)
JP (1) JP6907448B2 (ja)
KR (1) KR20200003385A (ja)
CN (1) CN110520723A (ja)
SA (1) SA519410187B1 (ja)
SG (1) SG11201909387TA (ja)
WO (1) WO2018194784A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10480982B2 (en) * 2017-04-19 2019-11-19 Saudi Arabian Oil Company Acoustic calibration array for tanks and vessels
US10458831B2 (en) * 2017-07-05 2019-10-29 Saudi Arabian Oil Company System and method for acoustic container volume calibration
US11097796B2 (en) * 2018-11-29 2021-08-24 Saudi Arabian Oil Company Articulated magnet-bearing legs for UAV landing on curved surfaces
US11231311B2 (en) 2019-05-31 2022-01-25 Perceptive Sensor Technologies Llc Non-linear ultrasound method and apparatus for quantitative detection of materials
EP3822660A1 (en) 2019-11-13 2021-05-19 ABB Schweiz AG Integrity detection system for an ultrasound transducer
WO2022120074A1 (en) 2020-12-02 2022-06-09 Perceptive Sensor Technologies Llc Variable angle transducer interface block
WO2022120258A1 (en) 2020-12-04 2022-06-09 Perceptive Sensor Technologies, Inc. Multi-bounce acoustic signal material detection
US11788904B2 (en) 2020-12-04 2023-10-17 Perceptive Sensor Technologies, Inc. Acoustic temperature measurement in layered environments
WO2022120257A1 (en) 2020-12-04 2022-06-09 Perceptive Sensor Technologies, Inc. Systems and methods for determining floating roof level tilt and characterizing runoff
US11604294B2 (en) 2020-12-04 2023-03-14 Perceptive Sensor Technologies, Inc. Determining layer characteristics in multi-layered environments
CN116917729A (zh) * 2020-12-04 2023-10-20 感知传感器技术股份有限公司 多路径声学信号在材料检测方面的改进
US11536696B2 (en) 2020-12-04 2022-12-27 Perceptive Sensor Technologies, Inc. In-wall multi-bounce material property detection and acoustic signal amplification
US11525743B2 (en) 2020-12-04 2022-12-13 Perceptive Sensor Technologies, Inc. Acoustic temperature measurement in layered environments
US11525809B2 (en) 2020-12-04 2022-12-13 Perceptive Sensor Technologies, Inc. Apparatus, system, and method for the detection of objects and activity within a container
CA3203819A1 (en) 2020-12-30 2022-07-07 Lazar Bivolarsky Evaluation of fluid quality with signals
US11860014B2 (en) 2022-02-11 2024-01-02 Perceptive Sensor Technologies, Inc. Acoustic signal detection of material composition in static and dynamic conditions
US11940420B2 (en) 2022-07-19 2024-03-26 Perceptive Sensor Technologies, Inc. Acoustic signal material identification with nanotube couplant

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748846A (en) * 1982-10-14 1988-06-07 Gilbarco, Inc. Tank gauging system and methods
US4805453A (en) * 1982-10-14 1989-02-21 Gilbarco, Inc. Tank sonic gauging system and methods
US5456114A (en) 1993-04-23 1995-10-10 Panametrics, Inc. Elastic wave sensing system
US5765433A (en) * 1995-03-10 1998-06-16 Arizona Instrument Corporation Liquid measuring system and methods
US6573732B1 (en) * 1999-05-04 2003-06-03 Ssi Technologies, Inc. Dynamic range sensor and method of detecting near field echo signals
US6363788B1 (en) 2000-06-07 2002-04-02 Digital Wave Corporation Noninvasive detection of corrosion, mic, and foreign objects in containers, using guided ultrasonic waves
US7216536B2 (en) 2001-06-22 2007-05-15 Young Manufacturing & Engineering, Inc. Acoustic volume indicator
US6938488B2 (en) * 2002-08-21 2005-09-06 Battelle Memorial Institute Acoustic inspection device
US6925870B2 (en) * 2003-09-23 2005-08-09 Battelle Memorial Institute Ultrasonic fill level device and method
DE10348676A1 (de) * 2003-10-15 2005-05-12 Flowtec Ag Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massendurchflusses eines Mediums in einer Rohrleitung
EP1959229A1 (en) 2007-02-19 2008-08-20 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Ultrasonic surface monitoring
US8806944B2 (en) * 2009-09-18 2014-08-19 Conocophillips Company High precision ultrasonic corrosion rate monitoring
US20120281096A1 (en) * 2011-05-02 2012-11-08 Honeywell-Enraf B.V. Storage tank inspection system and method
US9052230B2 (en) * 2011-05-13 2015-06-09 Chevron U.S.A. Inc Industrial process monitoring and imaging
US9188472B2 (en) 2013-05-21 2015-11-17 Saudi Arabian Oil Company Enhanced reference line tank calibration method and apparatus
GB2521661A (en) 2013-12-27 2015-07-01 Xsens As Apparatus and method for measuring flow
US20160041024A1 (en) * 2014-08-11 2016-02-11 Ssi Technologies, Inc. Through-wall tank ultrasonic transducer
US20160320226A1 (en) * 2015-04-30 2016-11-03 Siemens Industry, Inc. Determining height of a liquid level interface in a container from acoustic signal or echo time measurement
EP3115753B1 (en) * 2015-07-06 2022-01-05 ABB Schweiz AG System and method for non-intrusive and continuous level measurement of a liquid
US10571328B2 (en) * 2015-08-29 2020-02-25 Mopeka Products Llc Sensor arrangements, sensor systems, and methods for determining height of liquids in tanks
CN108367292B (zh) * 2015-10-12 2021-06-08 拉伯赛特股份有限公司 用于标记和声学表征容器的系统和方法
DK3256862T3 (da) * 2016-01-18 2021-05-25 Gwf Messsysteme Ag Forbedret stråleformende akustisk signalgennemløbstidsstrømningsmåler
US10480982B2 (en) * 2017-04-19 2019-11-19 Saudi Arabian Oil Company Acoustic calibration array for tanks and vessels
US10458831B2 (en) * 2017-07-05 2019-10-29 Saudi Arabian Oil Company System and method for acoustic container volume calibration

Also Published As

Publication number Publication date
JP2020517918A (ja) 2020-06-18
EP3612830A1 (en) 2020-02-26
KR20200003385A (ko) 2020-01-09
CN110520723A (zh) 2019-11-29
WO2018194784A1 (en) 2018-10-25
US20190360850A1 (en) 2019-11-28
SG11201909387TA (en) 2019-11-28
US10942054B2 (en) 2021-03-09
SA519410187B1 (ar) 2022-07-20
US20180306628A1 (en) 2018-10-25
EP3612830B1 (en) 2022-03-02
US10480982B2 (en) 2019-11-19

Similar Documents

Publication Publication Date Title
JP6907448B2 (ja) タンクおよび容器のための音響検量アレイ
US10935408B2 (en) System and method for acoustic container volume calibration
JP6652455B2 (ja) 非破壊試験機器の自動較正
JP6888922B2 (ja) 製造物の表面に設置した可撓性の二次元アレイを用いた超音波検査
US7606113B2 (en) Modeling sound propagation for underwater test areas
Darmon et al. Main features of a complete ultrasonic measurement model: Formal aspects of modeling of both transducers radiation and ultrasonic flaws responses
CN111936849B (zh) 用于检测伸长方向的映射部件的方法和设备
CN109341819A (zh) 自修正超声波测量装置及其测量方法
RU2560754C1 (ru) Способ ультразвукового контроля профиля внутренней поверхности изделия с неровными поверхностями
Reusser et al. Guided plate wave scattering at vertical stiffeners and its effect on source location
EP4170339B1 (en) Ultrasonic inspection of complex surfaces
US20220011269A1 (en) Digital twin of an automated non-destructive ultrasonic testing system
US11150369B2 (en) Three-dimensional fracture radius model
US10578589B2 (en) System and method for ultrasound inspection with time reversal
JP2021124498A (ja) 超音波で動作する距離センサをテストするための検査装置
CN108957463B (zh) 超声波的测量方法和装置
JP7551457B2 (ja) 計測方法及び計測装置
LT6977B (lt) Ultragarsinės tomografijos būdas ir sistema vamzdynų korozijai įvertinti
Zhang et al. Autofocus imaging: Experimental results in an anisotropic austenitic weld

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210310

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210310

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210609

R150 Certificate of patent or registration of utility model

Ref document number: 6907448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150