JP6906619B2 - 回路基板その他の構造からの極低温冷却されたコンポーネントの熱的絶縁 - Google Patents

回路基板その他の構造からの極低温冷却されたコンポーネントの熱的絶縁 Download PDF

Info

Publication number
JP6906619B2
JP6906619B2 JP2019545250A JP2019545250A JP6906619B2 JP 6906619 B2 JP6906619 B2 JP 6906619B2 JP 2019545250 A JP2019545250 A JP 2019545250A JP 2019545250 A JP2019545250 A JP 2019545250A JP 6906619 B2 JP6906619 B2 JP 6906619B2
Authority
JP
Japan
Prior art keywords
components
conductors
conductor
substrate
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019545250A
Other languages
English (en)
Other versions
JP2020509587A (ja
Inventor
アール. チョウ,ジェームズ
アール. チョウ,ジェームズ
ジェイ. コンラッド,セオドア
ジェイ. コンラッド,セオドア
リン,ステファニー
シー. ロス,リチャード
シー. ロス,リチャード
タイラニ,レザ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of JP2020509587A publication Critical patent/JP2020509587A/ja
Application granted granted Critical
Publication of JP6906619B2 publication Critical patent/JP6906619B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20154Heat dissipaters coupled to components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20209Thermal management, e.g. fan control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20372Cryogenic cooling; Nitrogen liquid cooling

Description

本開示は、概して、極低温冷却システムに関する。より具体的には、本開示は、極低温冷却されたコンポーネントを回路基板その他の構造から熱的に絶縁することに関する。
さまざまな電子デバイスにおいて、多くの場合、単に既存の集積回路チップまたはモジュールを冷却することによって、改善された性能を達成することができる。極低温で動作する超伝導材料を回路レイアウトに組み込むことによって、より大きな改良が実証されている。明らかに、このような方法は、超伝導材料を有効に使用するために、非常に低い温度(極低温)への冷却を必要とする。
一般的な冷却方法の1つは、回路基板をデュワーと呼ばれる真空エンクロージャ内に配置し、次にデュワーの内部を極低温温度に冷却することを含む。この方法は、回路基板への外部熱の流れを最小限にするのに役立つ。この方法は、単一の回路基板または少数の回路基板に対して機能し、デュワーの使用に関連するサイズおよび重量の増加は、一定の用途においては許容され得る。しかし、この方法は、一般的に、大きな回路基板アレイを有するような様々な現実の用途において使用することができない。大型アレイでは、アレイ全体をカプセル化する単一の大型デュワーの使用、またはそのアレイの部分をカプセル化する複数のより小型のデュワーの使用は、おそらくプラットフォームによって提供される利用可能なリソースを超えて、システム全体のサイズ、重量、および電力要件を劇的に増加させる。
本開示は、極低温冷却されたコンポーネントを回路基板その他の構造から熱的に絶縁することを提供する。
第1の実施形態において、装置は、凹部を有する基板と、前記基板の凹部にサブマージ(submerge)された第1の絶縁体とを有する。また、前記装置は、前記第1の絶縁体と共に、絶縁ボリュームを画定する第2の絶縁体を有するカバーも含む。前記装置は、さらに、第1の絶縁体上および前記絶縁ボリューム内に配置される1つ以上の冷却されるコンポーネントを含む。
第2の実施形態において、システムは、クライオクーラーを含む。また、前記システムは、凹部を有する基板と、前記基板の凹部にサブマージされた第1の絶縁体とを含む装置を含む。前記装置は、前記第1の絶縁体と共に、絶縁ボリュームを画定する第2の絶縁体を有するカバーも含む。前記装置はさらに、前記クライオクーラーにより冷却される1つ以上のコンポーネントを含む。前記1つ以上のコンポーネントは、第1の絶縁体上および前記絶縁ボリューム内に配置される。
第3の実施形態において、方法は、凹部を有する基板と、前記基板の凹部にサブマージされた第1の絶縁体とを取得することを含む。また、前記方法は、第1の絶縁体の上に冷却すべき1つ以上のコンポーネントを配置することも含む。前記方法はさらに、第2の絶縁体を有するカバーを1つ以上のコンポーネントの上に配置することを含む。前記第2の絶縁体は、前記第1の絶縁体と共に、前記1つ以上のコンポーネントが配置される絶縁ボリューム(insulated volume)を画定する。
他の技術的な特徴は、以下の図面、詳細な説明、及び特許請求の範囲に基づき、当業者には容易に明らかとなるであろう。
本発明をよりよく理解してもらうため、添付した図面を参照しつつ以下に説明する。
本開示による、1つ以上の極低温冷却されたコンポーネントを回路基板その他の構造から熱的に絶縁する例示的な構成を示す。 本開示による1つ以上の回路基板その他の構造上のコンポーネントを冷却する例示的な分散型クライオクーラアーキテクチャを示す図である。 本開示による1つ以上の回路基板その他の構造上のコンポーネントを冷却する例示的な分散型クライオクーラアーキテクチャを示す図である。 本開示による、1つ以上の極低温冷却されたコンポーネントを回路基板その他の構造から熱的に絶縁する例示的な方法を示す。 本開示による1つ以上の回路基板その他の構造上のコンポーネントを冷却する分散型クライオクーラアーキテクチャを作動させる例示的な方法を示す。
以下に説明する図1ないし5及びこの特許文献において本発明の原理を説明するために使用する様々な実施形態は、単なる例示であって、いかなる方法であっても本発明の範囲を限定するものと解釈してはならない。当業者には言うまでもないが、本発明の原理は、任意のタイプの適切に構成されたデバイスまたはシステムで実施することができる。
上述のように、ある集積回路チップまたはモジュール(超伝導材料を有するものを含む)を低温または極低温に冷却することにより、これらの集積回路チップまたはモジュールの性能を向上させることができる。具体的な例として、極低温冷却されたアナログ−ディジタル変換器を使用して、より高いビットレート変換およびより高いビット解像度を達成することができる。この冷却は、一般的には、回路基板をデュワー内に配置し、デュワーの内部を極低温温度に冷却することによって達成される。しかし、デュワーその他の熱的、機械的及び電気的上部構造(super structure)の使用は、システム全体の体積及び重量を著しく増加させる。また、複数のデュワーを反復性の高い回路構造(多くのアンテナアレイに見られる構造など)と使用すると、全体の構造が容認できないほど大きくなり、プラットフォームでサポートできないことになる可能性がある。
本開示の一態様によれば、デュワーを使用せずに、集積回路チップまたはモジュールを個々にまたはグループで、低温に冷却するための技術が提供される。熱絶縁体層および導電体(例えば、カーボンナノチューブ)は、回路基板その他の構造に埋め込まれ、少なくとも1つの集積回路チップまたはモジュールが、熱絶縁体層および導電体の上に配置される。絶縁カバーが集積回路チップまたはモジュールを覆って配置され、それによって集積回路チップまたはモジュールを効率的に冷却することができるボリューム内に入れる。導電体を使用して、集積回路チップまたはモジュールを他の回路コンポーネントに電気的に結合することができる。
本開示の別の態様によれば、分散型クライオクーラアーキテクチャを用いて電子コンポーネントを冷却する技術が提供される。分散型クライオクーラアーキテクチャは、単一のより大きな(マクロスケール)コンプレッサによって駆動される、より小さな(マイクロスケール)クライオジェニック膨張器のネットワークを含む。各膨張器は、単一の電子コンポーネントまたは少数の電子コンポーネントのグループを冷却するために使用することができる。
図1は、本開示による、1つ以上の極低温冷却されたコンポーネントを回路基板その他の構造から熱的に絶縁する例示的な構成100を示す。以下の実施例では、構成100は、単一の集積回路チップ102を熱的に絶縁するために使用されるものとして説明する。しかし、同じまたは類似の方法を使用して、複数の集積回路チップまたは1つ以上の他の電子コンポーネント(1つ以上の集積回路モジュールなど)を熱的に絶縁できる。
集積回路チップ102は、より低い温度(場合によっては極低温に)冷却される集積回路を示す。例えば、集積回路チップ102は、冷却されたときに改善された性能を達成する集積回路を示すものと思っても良い。また、集積回路チップ102は、少なくとも1つの超伝導材料を組み込み、所望の動作をするためにより低い温度(場合によっては極低温)を必要とする集積回路であってもよい。集積回路チップ102は、冷却される任意の適切な集積回路を含む。
図1に示すように、装置100は、凹部106を有する基板104を含む。基板104は、一般に、冷却される回路コンポーネント(集積回路チップ102を含む)その他のコンポーネントを配置または作り込める任意の適切な構造を含む。例えば、基板104は、回路コンポーネントのための概ね平坦なキャリアを示すことができる。基板104は、任意の適切な材料および任意の適切な物質から形成することができる。一例として、基板104は、ポリマーから形成され得る。
凹部106は、基板104の一部が除去されている、または形成されていない基板104のオープン領域(open area)を示す。基板104を形成する材料の一部を除去することによって、または基板104の形成中にその領域に材料を配置しないことによって、任意の適切な方法で凹部106を基板104内に形成することができる。凹部106は、(とりわけ)冷却される集積回路チップ102その他のコンポーネントに依存し得る、任意の適切なサイズ、形状、および寸法を有することができる。
凹部106内には、絶縁体層108と、1つ以上の熱絶縁性導電体及び導電性導電体110と、誘電体層112とがある。絶縁体層108は、熱的に絶縁性であって、冷却される集積回路チップ102その他のコンポーネントの下に位置する材料の層を示す。絶縁体層108は、任意の適切な材料から任意の適切な方法で形成することができる。一例として、絶縁体層108は、アスペンエアロゲル(aspen aerogels)の絶縁体のような、フォームまたはエアロゲル絶縁を用いて形成することができる。絶縁体層108は凹部106内に配置されているので、絶縁体層108は「サブマージド(submerged)」絶縁体層と呼ばれる。
1つ以上の導電体110は、冷却される集積回路チップ102その他のコンポーネントへの1つ以上の電気的接続を提供する。導電体110は、熱的に絶縁性であるため、導電体110は、動作中に冷却される集積回路チップ102又は他のコンポーネントに向けて大量の熱が漏れる経路を提供しないことがある。各導電体110は、制限された熱伝達を伴う電気的接続を提供する任意の適切な構造を含む。いくつかの実施形態において、各導電体110は、カーボンナノチューブのストリップを使用して形成され得る。一例として、カーボンナノチューブの各ストリップは、図1の他のコンポーネントにはんだ付けまたは電気的に結合され得る銅その他の金属または導電性材料でめっきされる端部を有することができる。導電体110は、凹部106内に配置されるため、導電体110は、「サブマージド」導体と呼ばれることもある。しかし、導電体110は、図に示されるように、サブマージされる(submerged)必要がないことに留意されたい。
誘電体層112は、絶縁体層108及び導電体110を覆う誘電体の層を示す。誘電体層112は、導電体110によって集積回路チップ102に形成された電気的接続部を除いて、集積回路チップ102を電気的に絶縁するのを助ける。また、誘電体層112は、その下の導電体110を保護するシールを提供することができる。絶縁体層112は、任意の適切な材料から任意の適切な方法で形成することができる。一例として、誘電体層112は、二酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)、その他の酸化物もしくは窒化物材料から形成され得る。
絶縁体層116を有するカバー114が、冷却される集積回路チップ102その他のコンポーネントの上に配置される。カバー114は、冷却される集積回路チップ102その他のコンポーネントを、カバー114と下層構造との間に画定されたボリューム内に収容する。カバー114は、(とりわけ)冷却される集積回路チップ102その他のコンポーネントに依存し得る、任意の適切なサイズ、形状、および寸法を有することができる。また、カバー114は、任意の適切な方法で、下層構造に取り付けることができる。例えば、基板104または誘電体層112を形成する材料は、カバー114のための集積回路チップ102の周囲に良好な平面熱シール面を提供するように選択することができる。
絶縁体層116は、熱的に絶縁性であって、冷却される集積回路チップ102その他のコンポーネントの上または周辺に位置する材料の層を示す。絶縁体層116は、任意の適切な材料から任意の適切な方法で形成することができる。一例として、絶縁体層116は、アスペンエアロゲル(aspen aerogels)の絶縁体のような、フォームまたはエアロゲル絶縁を用いて形成することができる。集合的に、絶縁体層108および116は、すべての、冷却される集積回路チップ102その他のコンポーネントを実質的に取り囲む。これは、寄生熱流束を著しく減少させるために、冷却されるコンポーネントの周囲に非常に効果的な絶縁を提供するのに役立つ。
1つ以上の導電トレース118は、冷却される集積回路チップ102その他のコンポーネントと1つ以上の他の回路コンポーネントとの間の電気的接続を提供する。導電トレース118は、導電体110に電気的に接続される。図1に示すように、導電体110はカバー114の下に延在するが、導電トレース118は延在しないので、導電トレース118は、熱エネルギーがカバー114の下を通り集積回路チップ102を加熱する経路とはならない。必要または所望に応じて、1つ以上の導電トレース120を、構造の他の部分に使用することができる。各導電トレース118および120は、任意の適切な材料から任意の適切な方法で形成することができる。一例として、各導電トレース118および120は、銅その他の金属または導電性材料から形成することができる。
留意点として、導電体110及び導電トレース118を用いて任意の適切な信号を送ることができる。例えば、直流(DC)回路において、導電体110及び導電トレース118を用いて、電力又はDC電気信号を送ることができる。導電体110及び導電トレース118を用いてより高い周波数の信号を送る場合、インピーダンスマッチングメカニズムが必要とされ得る。一例として、マイクロストリップとして実装される導電トレース118を介して高周波信号を送ることができ、カバー114の下を通るストリップラインにマイクロストリップを移すことができ、集積回路チップ102に供給する別のマイクロストリップにストリップラインを移すことができる。いくつかの実施形態では、導電体110は、断熱カバー114を配置(seat)できる平面インターフェースを提供するように構成することができる。
コールドチップ(cold tip)122は、カバー114を通過し、冷却すべき集積回路チップ102その他のコンポーネントと物理的に接触することができる。冷却器(例えば、クライオクーラー)は、コールドチップ122を冷却するように動作することができ、コールドチップは、集積回路チップ102から熱を取り冷却する。コールドチップ122は、冷却されるべき1つ以上のコンポーネントからの熱伝達を支持する、冷却される任意の適切な構造を含む。一例として、コールドチップ122は、クライオクーラーの一部または金属プラグを表すことができる。コールドチップ122は、ここでは、集積回路チップ102と物理的に接触するものとして示されているが、必ずしもそうである必要はないことに留意されたい。例えば、コールドチップ122は、集積回路チップ102に接触することなく、カバー114に物理的に接触することができる。
図1に示される方法は、効果的に、冷却すべき1つ以上の集積回路チップまたはモジュールの周囲にデュワーの「レプリカ(replica)」を形成することを可能にする。デュワー状のボリュームをチップまたはモジュールの周囲に形成し、熱がそのボリュームから除去され得るようにする。ここで用いた設計のために、周囲の環境からボリューム内に漏れる熱を補償する必要がほとんど、または全くないことがある。この方法は、回路基板の凹部を有効に利用して、高品質の発泡断熱材その他の断熱材で囲まれた台(pedestal)上にチップまたはモジュールをパッケージ化する。これにより、空間的に焦点を合わせた低サイズ、重量、および電力(SWaP)ソリューションを用いて、冷却されたチップまたはモジュールを取り囲む、より局所化された断熱ボリュームの使用が可能になる。この方法は、アンテナアレイの複数のチャネルにわたるような、冷却すべき複数のデバイスに対して繰り返すことができる。
とりわけ、この方法は多くの革新的な特徴を含んでいる。これらの特徴には、少なくとも1つのチップまたはモジュールの周囲にデュワー状ボリュームを生成することを含む。また、これらの特徴は、環境からの熱がボリュームに漏れ得る界面領域が限定されたデュワー状ボリュームの使用を含むので、冷却剤は、チップまたはモジュールから放散される熱を除去する(及び、初期の常在熱を除去する)だけでよい。これらの特徴には、さらに、標準的な無線周波数(RF)伝搬構造その他の信号構造を使用して、チップまたはモジュールとの間で信号をやりとりする能力、および自然なシール面を形成して熱がボリューム内へ漏れることを防止する構造を選択する能力を含む。さらに、これらの特徴には、市販のエアロゲルその他の断熱材料およびRF伝搬構造の使用、ならびに良好なインピーダンス整合を得るために電気トレースの寸法を調整する能力が含まれる。これらの特徴のいずれも、装置100のある実施形態において、任意の適切な組み合わせで使用することができる。
実装に依存して、この方法は以下の利点のうち、1つ、いくつか、または全てを達成することができる。この方法は、極低温に達するために外部デュワーを使用する必要がなく、絶縁および冷却を支持するために大きな超構造物を使用する必要がない。その結果、従来の方法と比較して、SWaPを大幅に節約することができる。また、集積回路チップまたはモジュールは、カーボンナノチューブ導体(極低温で導電性であるが熱的に絶縁性である)から形成される電気的接続のためのエアロゲルその他の絶縁体およびサブマージド導体(submerged conductors)のようなコンポーネントを使用して、非常に小さなフットプリントで、絶縁および極低温まで冷却することができる。この方法は、典型的な回路基板の処理または製造技術を使用して、例えば凹部を形成することができ、これは製造コストを低減するのに役立つ。さらに、この方法は、電気的接続にサブマージド導体を使用することができ、これは、環境攻撃からサブマージド導体を保護するのに役立つ。さらに、この方法は、コンパクトなパッケージングアーキテクチャを提供することができ、その結果、周囲温度で動作する回路コンポーネントなどの他の回路コンポーネントのために、十分な回路基板面積を残すことができる。
具体的な実施形態において、図1に示されるさまざまなコンポーネントは、多層プリント回路基板(PCB)またはカスタム回路基板(CCB)を使用して実装され得る。例えば、多層PCBおよびCCBは、ポケット凹部を備えて製造することができ、これらの凹部は、冷却する集積回路チップ102その他のコンポーネントを包囲するのに十分であり得る。多層PCBおよびCCBは、絶縁体層108および導電体110などのコンポーネントを含むように製造することもできる。
図1は、1つ以上の極低温冷却された構成要素を回路基板その他の構造から熱的に絶縁する例示的な構成100を示す。例えば、図1のコンポーネントの相対的な大きさ、形状、および寸法は、例示のみを目的としている。また、図1の構成を任意回数反復して、任意の数の集積回路チップまたはモジュール、その他のコンポーネントに対して冷却を提供することも可能である。
図2と図3は、本開示による1つ以上の回路基板その他の構造上の構成要素を冷却する例示的な分散型クライオクーラアーキテクチャ200を示す図である。以下の例では、アーキテクチャ200は、1つ以上の回路基板上の集積回路チップまたはモジュールを冷却するために使用されるものとして説明される。しかし、同じまたは類似の方法を使用して、他のコンポーネントを冷却することができる。
図2に示すように、分散型クライオクーラアーキテクチャ200は、回路基板202と共に使用される。回路基板202は、単層または多層のPCBまたはCCBであり得る。この例では、回路基板202は、複数の回路コンポーネント204a−204bを担持する。各回路コンポーネント204a−204bは、1つ以上の電気回路の任意の適切なコンポーネントを示す。回路コンポーネント204a−204bの数および構成は、例示のみを目的としていることに留意されたい。この例では、回路コンポーネント204a−204bは、冷却を必要とする回路コンポーネント204aと、冷却を必要としない回路コンポーネント204bとに分割されているが、他の実施形態では、冷却を必要とする回路コンポーネント204aのみを使用することができる。
分散型クライオクーラアーキテクチャ200は、複数のクライオクーラー熱交換器206を含み、これらは流体供給/戻りライン208を通して供給される。熱交換器206は、熱交換器206の周囲の領域から、供給/戻りライン208を通って往復する流体に熱を伝達するように動作する。例えば、熱交換器206は、供給/戻りライン208から圧縮ガスを流入させて膨張させる膨張器を含むことができる。圧縮ガスの膨張は冷却効果を生じ、次にガスは再圧縮のために熱交換器206から引き出される。
熱交換器206の各々は、流体と熱を交換する任意の好適な構造を含む。一例として、熱交換器206の各々は、ジュール−トムソンクライオクーラー、パルスチューブクライオクーラー、スターリングクライオクーラー、またはギフォード−マクマホンクライオクーラーのうちの再生器またはレキュペレーター(recuperator)を含むことができる。各供給/戻りライン208は、熱交換器に流体を流し、熱交換器から流す任意の適切な通路を示す。
熱交換器206の各々は、ここで、1つ以上の回路コンポーネント204aを冷却するように動作する。例えば、回路コンポーネント204aは、熱交換器206によって冷却されるキャビティ内に配置することができる。熱交換器206は、図1に示す方法を用いて回路コンポーネント204aに物理的に接触し冷却するコールドチップ(cold tip)122に結合することもできる。
また、図3に示すように、分散型クライオクーラアーキテクチャ200は、コンプレッサ302および分配マニフォールド(manifold)304を含む。コンプレッサ302は、流体を圧縮し、供給/戻りライン208を介して熱交換器206に圧縮流体を供給するように構成されている。コンプレッサ302は、流体を圧縮するための任意の好適な構造を含む。
分配マニフォールド304は、コンプレッサ302からの圧縮流体を、供給/戻りライン208を介して複数の熱交換器206に供給することを可能にする。また、分配マニフォールド304は、流体が熱交換器206からコンプレッサ302に戻ることを可能にする。分配マニフォールド304は、共通の流体源から複数の位置へ流体を供給する任意の適切な構造を含む。
図3に示すように、分散型クライオクーラアーキテクチャ200は、複数の回路基板202a−202nと共に使用することができる。これにより、例えば、コンプレッサ302および分配マニフォールド304を、送受信モジュールのアレイまたはアンテナアレイその他のシステムの他のコンポーネントと共に使用することができる。図3には、熱交換器206は、回路基板202a−202nの上または内部に存在するように示されているが、回路基板202a−202nの間にあってもよく、または代替的に回路基板202a−202nの間にあってもよいことに留意されたい。
分散型クライオクーラアーキテクチャ200は、より大きな、すなわち「マクロ」なコンプレッサ302を、より小さな、つまり「ミクロ」のクライオジェニック膨張器と効果的に組み合わせる。各膨張器は、単一の電子コンポーネントまたは少数の電子コンポーネントのグループを冷却するために使用することができ、極低温冷却は、各冷却コンポーネントにおいて局所的に行うことができる。ミニチュア膨張器を駆動するために必要な圧縮は、マクロ・スケール・コンプレッサによってネットワーク全体に分散される。
単一のマクロスケール圧縮機を使用することにより、極低温システムの機械的複雑性および駆動要件を低減する。また、この方法は、室温で動作する他の電子コンポーネントと散在し得る冷却された電子回路のアレイに特に適している。従って、この方法は、効率的な極低温冷却が、コンパクトで、統合するのに便利な方法で提供されることを可能にする。
図2および図3は、1つ以上の回路基板その他の構造上のコンポーネントを冷却する分散型クライオクーラアーキテクチャ200の一例を示しているが、図2および図3には、様々な変更を加えることができる。例えば、図2および図3のコンポーネントの相対的な大きさ、形状、および寸法は、例示のみを目的としている。また、分散型クライオクーラアーキテクチャ200は、任意の数の回路基板その他の構造と共に使用することができ、各回路基板その他の構造は、任意の数の極低温膨張器を含むことができる。さらに、ここでは、冷却構成は、回路コンポーネント204aを熱交換器206と並んでいるように示されている。しかし、冷却される回路コンポーネント204aの上方に熱交換器206が配置されている図1に示すものと同様のもののような、他の構成を使用することもできる。
図4は、本開示による、1つ以上の極低温冷却された構成要素を回路基板その他の構造から熱的に絶縁する例示的な方法400を示す。説明を容易にするために、方法400は、図1に示される構成100に関して説明される。しかし、この方法400は、任意の他の適切なコンポーネントの配置および任意の適切なシステムで使用することができる。
図4に示すように、ステップ402において、サブマージド(submerged)絶縁体層およびサブマージド導体層を有する構造が得られる。これは、例えば、絶縁体層108を有する凹部106と、凹部106内の1つ以上の導電体110とを有する多層PCBまたはCCBを製造、購入、その他の方法で得ることを含み得る。絶縁体層108は、発泡体またはエアロゲル絶縁体を用いて形成することができ、導電体110は、(場合によっては、銅その他の金属でメッキされた端部を有する)カーボンナノチューブを用いて形成することができる。
ステップ404において、少なくとも1つの集積回路チップまたはモジュールが、サブマージド絶縁体層の上に配置され、サブマージド導体層に電気的に接続される。これは、例えば、絶縁体層108上に集積回路チップ102を挿入することを含み得る。これはまた、短絡ワイヤを集積回路チップ102および導電体110に半田付けすること、または集積回路チップ102を導電体110に直接半田付けすることを含み得る。
ステップ406において、絶縁体層を有するカバーが、集積回路チップまたはモジュールの上に取り付けられる。これは、例えば、絶縁体層116を有するカバー114を集積回路チップ102の上に配置し、カバー114を下層構造に接合することを含み得る。絶縁体層116は、フォームまたはエアロゲル絶縁を用いて形成することができる。カバー114は、導電体110、基板104、またはその他の下層(underlying)コンポーネントに、任意の適切な方法で取り付けることができる。
クライオクーラーのコールドチップは、ステップ408において集積回路チップまたはモジュールと熱的に接触するように構成される。これは、例えば、カバー114の開口部を通してコールドチップ122を配置し、開口部をシールすることを含み得る。コールドチップ122は、カバー114と一体に形成することもでき、この場合、前のステップでカバー114が取り付けられたとき、コールドチップ122を集積回路チップ102と熱的に接触させることができる。
ステップ410において、1つ以上の外部電気的接続が、サブマージド導体層になされる。これは、例えば、基板104上の銅その他の導電トレース118を導電体110に結合することを含み得る。一例として、これは、導電トレース118と導電体110とをはんだ付けその他の方法で接続することを含み得る。
デバイスの製作は、ステップ412で完了する。これは、例えば、集積回路チップまたは集積回路モジュールを含むデバイスを製造する、任意の他の適切な動作を実行することを含み得る。ここで実行される操作は、製造されるデバイスのタイプに依存して変化し得る。
図4は、4つ以上の極低温冷却された構成要素を回路基板その他の構造から熱的に絶縁する例示的な方法400を示す。例えば、一連のステップとして示されているが、図4の様々なステップは、オーバーラップしてもよいし、並列に行っても良いし、異なる順序で行っても良いし、または任意回数行ってもよい。また、図4は、冷却される複数のコンポーネントの同一または類似の構造を形成するために、任意回数繰り返すことができる。
図5は、本開示による1つ以上の回路基板その他の構造上の構成要素を冷却する分散型クライオクーラアーキテクチャを作動させる例示的な方法500を示す。説明を容易にするために、図2および図3に示す分散型クライオクーラアーキテクチャ200に関して方法500を説明する。しかし、この方法500は、任意の他の適切なコンポーネントの配置および任意の適切なシステムで使用することができる。
図5に示すように、ステップ502において、クライオクーラコンプレッサは、圧縮流体を提供するように動作する。これは、例えば、コンプレッサ302が、クライオクーラーで使用されるガスを圧縮するように作動することを含むことができる。ステップ504において、圧縮流体がマニフォールドを通して複数の熱交換器に分配される。これは、例えば、圧縮ガスが、分配マニフォールド304を通って、さまざまな回路基板202、202a−202nのさまざまな供給/戻りライン208へ移動することを含むことができる。
ステップ506において、圧縮された流体が熱交換器内で膨張し、冷却作用を提供する。これは、例えば、圧縮されたガスが熱交換器206に入ることを含み、これは、極低温復熱器または再生器を示すことができる。圧縮ガスが膨張するが、これは熱を吸収する等温過程である。
その結果、ステップ508において、近傍の回路コンポーネントが冷却される。これは、例えば、熱交換器206が、図1に示された方法を使用して集積回路チップ102その他のコンポーネントと物理的に接触し冷却する複数のコールドチップ122を冷却するように動作することを含むことができる。これは、ステップ510において、近傍の回路コンポーネントが極低温で動作することを可能にする。任意的に、ステップ512において、(場合によっては同じ回路基板上の)他の回路コンポーネントは非極低温温度で動作可能である。
図5は、1つ以上の回路基板その他の構造上のコンポーネントを冷却する分散型クライオクーラアーキテクチャを動作させるための方法500の一例を示しているが、図5には様々な変更を加えることができる。例えば、一連のステップとして示されているが、図5の様々なステップは、オーバーラップしてもよいし、並列に行っても良いし、異なる順序で行っても良いし、または任意回数行ってもよい。
上述の説明は、断熱されたクライオクーラコンポーネントおよび分散型クライオクーラコンポーネントの両方の使用をしばしば説明してきたが、これらの方法のそれぞれは別々に使用することができることに留意されたい。例えば、分散型クライオクーラアーキテクチャを用いずに断熱されたクライオクーラコンポーネントを用いることができ、または断熱されたクライオクーラコンポーネントを用いずに分散型クライオクーラアーキテクチャを用いることができる。
この特許文献を通して使用されている特定の単語および語句の定義を示すことは有利であろう。用語「含む(include)」および「含む(comprise)」は、それらの派生形と同様に、限定を伴わない包含を意味する。用語「または」は包含的であり、および/またはを意味する。「関連する」という用語はその派生形も合わせて、含む、内部に含む、相互接続されている、含まれる、内部に含まれている、接続されている、結合している、通信可能である、協働する、インターリーブしている、並列する、隣接する、結合している、有する、特性を有する、その他の意味である。「・・・の少なくとも1つ」との用語は、項目のリストと共に使用される場合、リストされた項目の1つ以上のさまざまな組み合わせが使用されてもよく、リスト内の1つの項目のみを必要とするものであってもよいことを意味する。例えば、「A、BおよびCのうち少なくとも1つ」は、A、B、C、AおよびB、AおよびC、BおよびC、ならびにAおよびBおよびCのいずれかの組み合わせを含む。
この特許文献の説明は、いずれかの要素、ステップ又は機能が、特許請求の範囲に含まれなければならない必須又は重要な要素であることを意味するものとして読んではならない。また、これらの請求項のいずれも、「means for」または「step for」という言葉に機能を特定する単一の句が続かない限り、添付の特許請求の範囲または特許請求の範囲に関して、35USC§112(f)を呼び出すことを意図していない。特許請求の範囲における「機構」、「モジュール」、「装置」、「ユニット」、「構成要素」、「要素」、「部材」、「装置」、「機械」および「システム」などの用語の使用は、特許請求の範囲自体の特徴によってさらに変更または改良され、当業者に知られている構造を指すと理解され、意図されており、35U.S.C.§112(f)を呼び出すことを意図するものではない。
本開示を実施形態とそれに一般的に関連づけられた方法とに関して説明したが、これらの実施形態及び方法の変形や置き換えは当業者には明らかである。従って、この開示は上記の実施形態の説明を画定したり、限定したりするものではない。添付した特許請求の範囲に記載した本開示の範囲から逸脱せずに、その他の変更、置き換え、改変も可能である。

Claims (20)

  1. 装置であって、
    上面に凹部を有する、概ね平坦な長い基板と、
    前記基板の凹部にサブマージされた第1の熱的絶縁体と、
    側壁と上部とを有するカバーであって、前記側壁と前記上部の内面は、前記第1の熱的絶縁体と共に、熱的絶縁ボリュームを画定する第2の熱的絶縁体で覆われた、カバーと、
    前記第1の熱的絶縁体上および前記熱的絶縁ボリューム内に配置される1つ以上の冷却されるコンポーネントと、
    前記1つ以上のコンポーネントのうちの少なくとも1つに電気的に接続された1つ以上の導電体であって、各導電体は前記第1の熱的絶縁体の上かつ前記カバーの側壁の1つの下に横方向に延在し、前記導電体の第1の部分は前記熱的絶縁ボリュームの中にあり、前記導電体の第2の部分は前記熱的絶縁ボリュームの外にあり、前記1つ以上の導電体は極低温度で熱的絶縁性である、1つ以上の導電体と、
    前記熱的絶縁ボリュームの外に、前記基板の上面に配置された1つ以上の導電トレースであって、前記1つ以上の導電体に電気的に接続される、1つ以上の導電トレースと、
    前記熱的絶縁ボリュームの外にある各導電体の第2の部分と、前記凹部の中にある各導電トレースの一部とを覆う誘電材料と
    を有する、
    装置。
  2. 前記1つ以上の導電体が、前記基板の凹部にサブマージされる、
    請求項に記載の装置。
  3. 前記1つ以上の導電体はカーボンナノチューブを含む、
    請求項に記載の装置。
  4. 前記1つ以上の導電トレースは、前記1つ以上の導電体にインピーダンス整合される、
    請求項に記載の装置。
  5. 1つ以上のコンポーネントを冷却するように構成されたコールドチップをさらに有する、
    請求項1に記載の装置。
  6. 前記コールドチップは、前記カバーを通して、前記1つ以上のコンポーネントと物理的に接触する、
    請求項に記載の装置。
  7. 前記第1および第2の熱的絶縁体は、発泡体またはエアロゲル絶縁体を含む、
    請求項1に記載の装置。
  8. システムであって、
    クライオクーラーと、
    装置であって、
    上面に凹部を有する、概ね平坦な長い基板と、
    前記基板の凹部にサブマージされた第1の熱的絶縁体と、
    側壁と上部とを有するカバーであって、前記側壁と前記上部の内面は、前記第1の熱的絶縁体と共に、熱的絶縁ボリュームを画定する第2の熱的絶縁体で覆われた、カバーと、
    前記第1の熱的絶縁体上および前記熱的絶縁ボリューム内に配置される、前記クライオクーラーにより冷却される1つ以上のコンポーネントと
    前記1つ以上のコンポーネントのうちの少なくとも1つに電気的に接続された1つ以上の導電体であって、各導電体は前記第1の熱的絶縁体の上かつ前記カバーの側壁の1つの下に横方向に延在し、前記導電体の第1の部分は前記熱的絶縁ボリューム内にあり、前記導電体の第2の部分は前記熱的絶縁ボリュームの外にあり、前記1つ以上の導電体は極低温度で熱的絶縁性である、1つ以上の導電体と、
    前記熱的絶縁ボリュームの外側に、前記基板の上面に配置された1つ以上の導電トレースであって、前記1つ以上の導電体に電気的に接続される、1つ以上の導電トレースと、
    前記熱的絶縁ボリュームの外にある各導電体の第2の部分と、前記凹部の中にある各導電トレースの一部とを覆う誘電材料と
    を有する、装置とを有する、
    システム。
  9. 前記1つ以上の導電体が、前記基板の凹部にサブマージされる、
    請求項に記載のシステム。
  10. 前記1つ以上の導電体はカーボンナノチューブを含み、
    前記第1および第2の熱的絶縁体は、発泡体またはエアロゲル絶縁体を含む、
    請求項に記載のシステム。
  11. 前記クライオクーラーは、流体供給/戻りラインによって連結されたコンプレッサおよび複数の膨張器を有する分散型アーキテクチャを有し、
    前記複数の膨張器のうち少なくとも1つは、前記基板の上または前記基板に近接して配置される、
    請求項に記載のシステム。
  12. 前記装置は複数の基板を有し、
    前記複数の膨張器のうち少なくとも1つは、前記基板の各々の上または前記基板の各々に近接して配置され、
    前記クライオクーラーは、前記コンプレッサから前記膨張器に圧縮流体を供給するように構成された分配マニフォールドをさらに有する、
    請求項11に記載のシステム。
  13. 前記装置は、前記クライオクーラーによって冷却されない1つ以上の追加のコンポーネントをさらに有し、前記1つ以上の追加のコンポーネントは、前記基板によって担持され、前記熱的絶縁ボリュームの外側に配置される、
    請求項に記載のシステム。
  14. 前記クライオクーラーによって冷却され、前記1つ以上のコンポーネントを冷却するように構成されたコールドチップをさらに有する、
    請求項に記載のシステム。
  15. 上面に凹部を有する、概ね平坦な長い基板と、前記基板の凹部にサブマージされた第1の熱的絶縁体とを取得することと、
    第1の絶縁体の上に冷却すべき1つ以上のコンポーネントを配置することと、
    前記1つ以上のコンポーネントの上に、側壁と上部とを有するカバーを配置することであって、前記側壁と前記上部の内面は、前記第1の絶縁体と共に、前記1つ以上のコンポーネントが配置される熱的絶縁ボリュームを画定する第2の熱的絶縁体で覆われている、配置することとを有し、
    前記1つ以上のコンポーネントのうちの少なくとも1つは1つ以上の導電体に電気的に接触し、各導電体は前記第1の熱的絶縁体の上かつ前記カバーの側壁の1つの下に横方向に延在し、前記導電体の第1の部分は前記熱的絶縁ボリューム内にあり、前記導電体の第2の部分は前記熱的絶縁ボリューム外にあり、前記1つ以上の導電体は極低温度で熱的絶縁性であり、、
    前記熱的絶縁ボリュームの外側に、前記基板の上面に配置された1つ以上の導電トレースが前記1つ以上の導電体に電気的に接続され、
    誘電材料が、前記熱的絶縁ボリュームの外にある各導電体の第2の部分と、前記凹部の中にある各導電トレースの一部とを覆う
    方法。
  16. 前記1つ以上の導電体が、前記基板の凹部にサブマージされ、前記第1の絶縁体上に配置される、
    請求項15に記載の方法。
  17. コールドチップを前記1つ以上のコンポーネントに熱的に結合することをさらに含む、
    請求項15に記載の方法。
  18. クライオクーラーの膨張器を前記基板の上または前記基板に近接して配置し、前記膨張器は前記1つ以上のコンポーネントを冷却するように構成される、
    請求項15に記載の方法。
  19. 前記クライオクーラーは、流体供給/戻りラインによって結合されたコンプレッサおよび複数の膨張器を有する分散型アーキテクチャを有する、
    請求項18に記載の方法。
  20. 前記1つ以上のコンポーネントと、前記カバーと、各導電体の前記第1と第2の部分とは、完全に、前記第1の熱的絶縁体の上に配置される、請求項1に記載の装置。
JP2019545250A 2017-03-27 2017-12-22 回路基板その他の構造からの極低温冷却されたコンポーネントの熱的絶縁 Active JP6906619B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/470,315 US10390455B2 (en) 2017-03-27 2017-03-27 Thermal isolation of cryo-cooled components from circuit boards or other structures
US15/470,315 2017-03-27
PCT/US2017/068254 WO2018182810A1 (en) 2017-03-27 2017-12-22 Thermal isolation of cryo-cooled components from circuit boards or other structures

Publications (2)

Publication Number Publication Date
JP2020509587A JP2020509587A (ja) 2020-03-26
JP6906619B2 true JP6906619B2 (ja) 2021-07-21

Family

ID=61006365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019545250A Active JP6906619B2 (ja) 2017-03-27 2017-12-22 回路基板その他の構造からの極低温冷却されたコンポーネントの熱的絶縁

Country Status (6)

Country Link
US (1) US10390455B2 (ja)
EP (1) EP3603361B1 (ja)
JP (1) JP6906619B2 (ja)
IL (1) IL268001B2 (ja)
TW (1) TWI742218B (ja)
WO (1) WO2018182810A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109699163A (zh) * 2019-02-25 2019-04-30 英业达科技有限公司 隔热结构
US11917794B2 (en) * 2020-10-30 2024-02-27 Advanced Micro Devices, Inc. Separating temperature domains in cooled systems

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392362A (en) 1979-03-23 1983-07-12 The Board Of Trustees Of The Leland Stanford Junior University Micro miniature refrigerators
US4425764A (en) 1982-03-16 1984-01-17 Kryovacs Scientific Corporation Micro-cryogenic system with pseudo two stage cold finger, stationary regenerative material, and pre-cooling of the working fluid
KR900001273B1 (ko) * 1983-12-23 1990-03-05 후지쑤 가부시끼가이샤 반도체 집적회로 장치
US4888663A (en) * 1986-03-25 1989-12-19 Hughes Aircraft Company Cooling system for electronic assembly
US4951471A (en) 1986-05-16 1990-08-28 Daikin Industries, Ltd. Cryogenic refrigerator
US4912548A (en) * 1987-01-28 1990-03-27 National Semiconductor Corporation Use of a heat pipe integrated with the IC package for improving thermal performance
US5040053A (en) 1988-05-31 1991-08-13 Ncr Corporation Cryogenically cooled integrated circuit apparatus
US4866570A (en) 1988-08-05 1989-09-12 Ncr Corporation Apparatus and method for cooling an electronic device
US4865331A (en) 1988-09-15 1989-09-12 Ncr Corporation Differential temperature seal
JP2681288B2 (ja) * 1988-11-02 1997-11-26 富士通株式会社 超伝導素子用パッケージ
US5212626A (en) 1990-11-09 1993-05-18 International Business Machines Corporation Electronic packaging and cooling system using superconductors for power distribution
US5142443A (en) 1991-04-29 1992-08-25 Koch Process Systems, Inc. Cryogenic cooling of circuit boards
US5646827A (en) * 1991-05-31 1997-07-08 Nippondenso Co., Ltd. Electronic device having a plurality of circuit boards arranged therein
US5251095A (en) 1992-07-31 1993-10-05 International Business Machines Corporation Low temperature conduction module for a cryogenically-cooled processor
ATE191826T1 (de) * 1993-02-12 2000-04-15 Univ Ohio Mikrominiature tieftemperaturkühler und maschinen mit einem stirling kreislauf
US5380956A (en) * 1993-07-06 1995-01-10 Sun Microsystems, Inc. Multi-chip cooling module and method
US5405808A (en) * 1993-08-16 1995-04-11 Lsi Logic Corporation Fluid-filled and gas-filled semiconductor packages
US5373417A (en) * 1994-02-28 1994-12-13 Motorola, Inc. Liquid-cooled circuit package with micro-bellows for controlling expansion
US5578869A (en) * 1994-03-29 1996-11-26 Olin Corporation Components for housing an integrated circuit device
EP0774888B1 (en) * 1995-11-16 2003-03-19 Matsushita Electric Industrial Co., Ltd Printed wiring board and assembly of the same
US5718117A (en) * 1996-04-10 1998-02-17 Motorola, Inc. Apparatus and method for spray-cooling an electronic module
US5870823A (en) * 1996-11-27 1999-02-16 International Business Machines Corporation Method of forming a multilayer electronic packaging substrate with integral cooling channels
US5775109A (en) 1997-01-02 1998-07-07 Helix Technology Corporation Enhanced cooldown of multiple cryogenic refrigerators supplied by a common compressor
US5794450A (en) * 1997-01-03 1998-08-18 Ncr Corporation Remotely located pulse tube for cooling electronics
US6301097B1 (en) * 1999-07-27 2001-10-09 International Business Machines Corporation Inflatable sealing system for low temperature electronic module
US6243268B1 (en) 1999-10-12 2001-06-05 International Business Machines Corporation Cooled IC chip modules with an insulated circuit board
US6272866B1 (en) 1999-12-08 2001-08-14 Industrial Technology Research Institute Micro cooling engine array system
US6366462B1 (en) * 2000-07-18 2002-04-02 International Business Machines Corporation Electronic module with integral refrigerant evaporator assembly and control system therefore
JP3754992B2 (ja) 2001-08-03 2006-03-15 住友重機械工業株式会社 マルチシステム冷凍機の運転方法、装置及び冷凍装置
US6621071B2 (en) 2001-09-07 2003-09-16 Raytheon Co. Microelectronic system with integral cryocooler, and its fabrication and use
JP3896840B2 (ja) * 2001-12-13 2007-03-22 ソニー株式会社 冷却装置、電子機器装置及び冷却装置の製造方法
US6679315B2 (en) 2002-01-14 2004-01-20 Marconi Communications, Inc. Small scale chip cooler assembly
US7118801B2 (en) * 2003-11-10 2006-10-10 Gore Enterprise Holdings, Inc. Aerogel/PTFE composite insulating material
EP1775765B1 (en) * 2004-06-28 2018-05-02 Mitsubishi Electric Corporation Multilayer dielectric substrate and semiconductor package
US7215547B2 (en) * 2004-08-16 2007-05-08 Delphi Technologies, Inc. Integrated cooling system for electronic devices
US7149087B2 (en) * 2004-09-08 2006-12-12 Thermal Corp. Liquid cooled heat sink with cold plate retention mechanism
US7473585B2 (en) 2005-06-13 2009-01-06 Delphi Technologies, Inc. Technique for manufacturing an overmolded electronic assembly
US20090165996A1 (en) * 2007-12-26 2009-07-02 Lynch Thomas W Reticulated heat dissipation with coolant
EP2330873A1 (de) * 2009-12-03 2011-06-08 Continental Automotive GmbH Elektronisches Modul
US8574965B2 (en) * 2010-10-22 2013-11-05 Ati Technologies Ulc Semiconductor chip device with liquid thermal interface material
KR101994931B1 (ko) * 2012-07-19 2019-07-01 삼성전자주식회사 기억 장치
US8934250B2 (en) * 2012-09-26 2015-01-13 International Business Machines Corporation Immersion-cooling of selected electronic component(s) mounted to printed circuit board
US20160040830A1 (en) * 2014-08-11 2016-02-11 Raytheon Company Cryogenic assembly including carbon nanotube electrical interconnect

Also Published As

Publication number Publication date
TWI742218B (zh) 2021-10-11
EP3603361A1 (en) 2020-02-05
US10390455B2 (en) 2019-08-20
IL268001B (en) 2022-11-01
EP3603361B1 (en) 2022-05-11
TW201836446A (zh) 2018-10-01
US20180279503A1 (en) 2018-09-27
IL268001B2 (en) 2023-03-01
JP2020509587A (ja) 2020-03-26
IL268001A (en) 2019-09-26
WO2018182810A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US5303555A (en) Electronics package with improved thermal management by thermoacoustic heat pumping
US5436793A (en) Apparatus for containing and cooling an integrated circuit device having a thermally insulative positioning member
CN1333627C (zh) 包含冷却基片的电子模块及相关方法
JP6906619B2 (ja) 回路基板その他の構造からの極低温冷却されたコンポーネントの熱的絶縁
AU2002254176A1 (en) Electronic module including a cooling substrate and related methods
JPH07507182A (ja) 三次元マルチチップモジュール
US6418019B1 (en) Electronic module including a cooling substrate with fluid dissociation electrodes and related methods
US20150309114A1 (en) Systems and methods for conforming test tooling to integrated circuit device with heater socket
JP2002327993A (ja) 薄型ヒートパイプ、薄型ヒートシンク、熱制御システムおよび薄型ヒートパイプの製造方法
US20060227515A1 (en) Cooling apparatus for electronic device
US9607924B2 (en) Power semiconductor module and method for cooling power semiconductor module
US6965515B2 (en) Thermoelectric cooling of low-noise amplifier transistors in wireless communications networks
CN115881663A (zh) 一种新型大功率瓦式tr模块
JP2014525207A (ja) 高周波数、高帯域幅、低損失マイクロストリップ−導波路遷移部
US20170230011A1 (en) Vapor chamber amplifier module
JP2005311230A (ja) 回路モジュールおよびこの回路モジュールを用いた回路装置
CN115662965A (zh) 一种新型大功耗芯片封装结构及封装方法
US20140209285A1 (en) Method for manufacturing cooling device, cooling device and electronic component package equipped with cooling device
CN109564910A (zh) 半导体组装件及其制造方法
US20040022026A1 (en) Stacked electronic device modules with heat pipes
Gu et al. Electrical, Mechanical, and Thermal Co‐Design
Kim et al. Innovative electrical thermal co-design of ultra-high Q TPV-based 3D inductors in glass packages
JP2000055491A (ja) 冷凍装置
CN218920827U (zh) 一种功率放大器结构及其电子产品
US20240096749A1 (en) Power module thermal management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150