JP6905386B2 - Supercooled release substance - Google Patents

Supercooled release substance Download PDF

Info

Publication number
JP6905386B2
JP6905386B2 JP2017088162A JP2017088162A JP6905386B2 JP 6905386 B2 JP6905386 B2 JP 6905386B2 JP 2017088162 A JP2017088162 A JP 2017088162A JP 2017088162 A JP2017088162 A JP 2017088162A JP 6905386 B2 JP6905386 B2 JP 6905386B2
Authority
JP
Japan
Prior art keywords
aqueous solution
agbr
reagent
tbab
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017088162A
Other languages
Japanese (ja)
Other versions
JP2018184565A (en
Inventor
泰弘 外山
泰弘 外山
稲垣 孝治
孝治 稲垣
寛紀 大塩
寛紀 大塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
University of Tsukuba NUC
Original Assignee
Denso Corp
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, University of Tsukuba NUC filed Critical Denso Corp
Priority to JP2017088162A priority Critical patent/JP6905386B2/en
Priority to PCT/JP2018/015658 priority patent/WO2018198848A1/en
Publication of JP2018184565A publication Critical patent/JP2018184565A/en
Application granted granted Critical
Publication of JP6905386B2 publication Critical patent/JP6905386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F23/00Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
    • F28F23/02Arrangements for obtaining or maintaining same in a liquid state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、蓄冷材の過冷却を解除する過冷却解除物質に関する。 The present invention relates to a supercooling release substance that releases supercooling of a cold storage material.

TBAB(臭化テトラブチルアンモニウム)水溶液を冷却して生成するTBAB水和物等の包接水和物は、大きな熱密度を有しており、蓄冷材として用いることが知られている。ところが、包接水和物を生成する水溶液は、水和物生成温度以下に冷却しても水和物が生成しない過冷却状態となりやすく、蓄冷材として安定的に使用することが難しい。 Clathrate hydrates such as TBAB hydrate produced by cooling an aqueous solution of TBAB (tetrabutylammonium bromide) have a large heat density and are known to be used as a cold storage material. However, an aqueous solution that produces clathrate hydrate tends to be in a supercooled state in which hydrate is not produced even when cooled below the hydrate formation temperature, and it is difficult to use it stably as a cold storage material.

これに対し、TBAB水溶液に過冷却解除物質として特定の物質を添加しておくことによって、TBAB水溶液の過冷却状態を解除する技術が報告されている(特許文献1、2参照)。特許文献1には、過冷却解除物質として臭化テトライソペンチルアンモニウムを用いることが記載され、特許文献2には、過冷却解除物質としてアルキルアンモニウムと金属ハロゲン化物からなる化合物を用いることが記載されている。 On the other hand, a technique for releasing the supercooled state of the TBAB aqueous solution by adding a specific substance as a supercooling releasing substance to the TBAB aqueous solution has been reported (see Patent Documents 1 and 2). Patent Document 1 describes that tetraisopentylammonium bromide is used as the supercooling release substance, and Patent Document 2 describes that a compound composed of alkylammonium and a metal halide is used as the supercooling release substance. ing.

特開2010−37446号公報Japanese Unexamined Patent Publication No. 2010-37446 国際公開第2016/075941号International Publication No. 2016/075941

しかしながら、上記特許文献1、2で過冷却解除物質として用いられる材料は、他の工業上の利用例が少なく、工業試薬として入手が困難である。また、これらの材料を合成する場合にはプロセスコストが必要となり、量産には適していない。 However, the materials used as supercooling release substances in Patent Documents 1 and 2 are difficult to obtain as industrial reagents because there are few other examples of industrial use. Further, when synthesizing these materials, a process cost is required, which is not suitable for mass production.

本発明は上記点に鑑み、一般的な材料を用いて蓄冷材の過冷却を解除することができる過冷却解除物質を提供することを目的とする。 In view of the above points, it is an object of the present invention to provide a supercooling release substance capable of releasing supercooling of a cold storage material using a general material.

上記目的を達成するため、請求項1に記載の発明では、水和物生成温度以下に冷却することで水和物を生成する1種類以上のハロゲン化アルキルアンモニウム水溶液を含んだ蓄冷材の過冷却状態を解除する過冷却解除物質であって、Ag化合物を含んでおり、Ag化合物はAg 2 Oであることを特徴とする。 In order to achieve the above object, in the invention according to claim 1, supercooling of a cold storage material containing one or more kinds of alkylammonium halide aqueous solutions that produce hydrate by cooling below the hydrate formation temperature. a supercooling release agent for releasing the state, contains an Ag compound, Ag compound is characterized by Ag 2 O der Rukoto.

本発明によれば、ハロゲン化アルキルアンモニウム水溶液の過冷却解除物質としてAg化合物を用いることで、試薬として一般的に入手容易な材料によって高い過冷却解除効果を得ることができる。 According to the present invention, by using an Ag compound as a supercooling release substance of an aqueous alkylammonium halide solution, a high supercooling release effect can be obtained by using a material generally easily available as a reagent.

本発明の実施形態に係る蓄冷装置の全体構成を示す図である。It is a figure which shows the whole structure of the cold storage apparatus which concerns on embodiment of this invention. TBAB水溶液の濃度と水和物生成温度との関係を示すグラフである。It is a graph which shows the relationship between the concentration of a TBAB aqueous solution, and the hydrate formation temperature. 電圧印加装置の構成を示す図である。It is a figure which shows the structure of the voltage application device. TBAB水溶液の過冷却解除試験の結果を示す図である。It is a figure which shows the result of the supercooling release test of a TBAB aqueous solution. TBAF水溶液に基づく生成物のX線回折パターンを示す図である。It is a figure which shows the X-ray diffraction pattern of the product based on the TBAF aqueous solution. TBACl水溶液に基づく生成物のX線回折パターンを示す図である。It is a figure which shows the X-ray diffraction pattern of the product based on the TBACl aqueous solution. TBAI水溶液に基づく生成物のX線回折パターンを示す図である。It is a figure which shows the X-ray diffraction pattern of the product based on the TBAI aqueous solution. ハロゲン化アルキルアンモニウム水溶液の電圧印加生成物および添加後生成物を構成する材料を示す図表である。It is a figure which shows the material which comprises the voltage application product and the post-addition product of the halogenated alkylammonium aqueous solution. Ag試薬をTBAB水溶液に添加する前後におけるX線回折パターンを示す図である。It is a figure which shows the X-ray diffraction pattern before and after adding the Ag reagent to the TBAB aqueous solution. Ag2O試薬をTBAB水溶液に添加する前後におけるX線回折パターンを示す図である。It is a figure which shows the X-ray diffraction pattern before and after adding the Ag 2 O reagent to a TBAB aqueous solution. AgCl試薬をTBAB水溶液に添加する前後におけるX線回折パターンを示す図である。It is a figure which shows the X-ray diffraction pattern before and after adding the AgCl reagent to the TBAB aqueous solution. Ag試薬、Ag2O試薬、AgCl試薬をTBAB水溶液に添加した後の成分を示す図表である。It is a chart which shows the component after adding Ag reagent, Ag 2 O reagent, and Ag Cl reagent to TBAB aqueous solution. AgBrの平均表面凹凸径等を示す図表である。It is a chart which shows the average surface unevenness diameter of AgBr and the like.

以下、本発明の実施形態について図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示すように、本実施形態の蓄冷装置10は、蓄冷材貯蔵部11、冷熱供給部12、制御部18等を備えている。 As shown in FIG. 1, the cold storage device 10 of the present embodiment includes a cold storage material storage unit 11, a cold heat supply unit 12, a control unit 18, and the like.

蓄冷材貯蔵部11は、内部に蓄冷材が貯蔵されている。蓄冷材貯蔵部11では、蓄冷材を冷却して水和物を生成することで蓄冷するように構成されている。蓄冷材貯蔵部11にて、蓄冷材に蓄えられた冷熱は、例えば空調装置の冷房に利用することができる。 The cold storage material storage unit 11 stores the cold storage material inside. The cold storage material storage unit 11 is configured to store cold by cooling the cold storage material to generate hydrate. The cold heat stored in the cold storage material in the cold storage material storage unit 11 can be used, for example, for cooling the air conditioner.

蓄冷材としては、水和物生成温度以下に冷却することで水和物を生成するハロゲン化アルキルアンモニウム水溶液を用いている。本実施形態では、ハロゲン化アルキルアンモニウム水溶液としてTBAB(臭化テトラブチルアンモニウム)水溶液を用いている。なお、本実施形態では、蓄冷材として、40wt%に調整したTBAB水溶液を使用している。 As the cold storage material, an aqueous alkylammonium halide solution that produces hydrate by cooling to a temperature below the hydrate formation temperature is used. In this embodiment, a TBAB (tetrabutylammonium bromide) aqueous solution is used as the alkylammonium halide aqueous solution. In this embodiment, a TBAB aqueous solution adjusted to 40 wt% is used as the cold storage material.

TBAB水溶液は、冷却することで水溶液中にTBAB水和物が生成し、冷熱を蓄える蓄冷材として好適に用いることができる。蓄冷材として用いられるTBAB水溶液には、TBAB水溶液の過冷却を解除するための過冷却解除物質が予め添加されている。TBAB水溶液および過冷却解除物質については、後で詳細に説明する。 When the TBAB aqueous solution is cooled, TBAB hydrate is generated in the aqueous solution, and the TBAB aqueous solution can be suitably used as a cold storage material for storing cold heat. A supercooling release substance for releasing the supercooling of the TBAB aqueous solution is added in advance to the TBAB aqueous solution used as the cold storage material. The TBAB aqueous solution and the supercooled release substance will be described in detail later.

冷熱供給部12は、冷媒配管13を介して第1熱交換器14に低温冷媒を供給し、蓄冷材貯蔵部11を冷却するように構成されている。冷熱供給部12は、例えば圧縮機、凝縮器、膨張弁等を備える周知の冷凍サイクルとして構成し、第1熱交換器14は冷凍サイクルの蒸発器とすることができる。第1熱交換器14は、蓄冷材貯蔵部11に熱的に接触しており、冷熱供給部12から供給される低温冷媒と蓄冷材貯蔵部11との間で熱交換することで、蓄冷材貯蔵部11に貯蔵された蓄冷材を冷却することができる。 The cold heat supply unit 12 is configured to supply a low-temperature refrigerant to the first heat exchanger 14 via the refrigerant pipe 13 to cool the cold storage material storage unit 11. The cold heat supply unit 12 is configured as a well-known refrigeration cycle including, for example, a compressor, a condenser, an expansion valve, and the like, and the first heat exchanger 14 can be an evaporator of the refrigeration cycle. The first heat exchanger 14 is in thermal contact with the cold storage material storage unit 11, and the cold storage material is exchanged between the low-temperature refrigerant supplied from the cold heat supply unit 12 and the cold storage material storage unit 11. The cold storage material stored in the storage unit 11 can be cooled.

図1に示すように、第1熱交換器14は、蓄冷材貯蔵部11の上部に配置されている。蓄冷材貯蔵部11内で凝固していない蓄熱材は、蓄冷材貯蔵部11の内部における上方に集まると考えられるので、蓄冷材貯蔵部11の上部から冷却することで、蓄熱材を効率よく凝結させることができる。 As shown in FIG. 1, the first heat exchanger 14 is arranged above the cold storage material storage unit 11. Since it is considered that the heat storage material that has not solidified in the cold storage material storage unit 11 gathers upward inside the cold storage material storage unit 11, the heat storage material is efficiently condensed by cooling from the upper part of the cold storage material storage unit 11. Can be made to.

なお、冷熱供給部12から第1熱交換器14に冷熱を供給する手段は、上記に述べた冷媒配管13を用いて行っても良いし、あるいは冷熱供給部12から冷熱を有する風などの流体を第1熱交換器14に直接導入しても良い。 The means for supplying cold heat from the cold heat supply unit 12 to the first heat exchanger 14 may be performed by using the refrigerant pipe 13 described above, or a fluid such as wind having cold heat from the cold heat supply unit 12. May be introduced directly into the first heat exchanger 14.

蓄冷材貯蔵部11の蓄冷材に蓄えられた冷熱は、熱媒体を介して冷熱利用部15に供給される。冷熱利用部15は例えば空調装置とすることができ、熱媒体としては例えば水を用いることができる。蓄冷材貯蔵部11の下方に、第2熱交換器16が熱的に接触するように設けられており、第2熱交換器16は蓄冷材貯蔵部11と熱媒体との間で熱交換する。冷熱を受け取った熱媒体が熱媒体配管17を介して冷熱利用部15に流れることで、蓄冷材貯蔵部11の蓄冷材に蓄えられた冷熱を冷熱利用部15に供給することができる。 The cold heat stored in the cold storage material of the cold storage material storage unit 11 is supplied to the cold heat utilization unit 15 via a heat medium. The cold heat utilization unit 15 can be, for example, an air conditioner, and water can be used as the heat medium, for example. A second heat exchanger 16 is provided below the cold storage material storage unit 11 so as to be in thermal contact, and the second heat exchanger 16 exchanges heat between the cold storage material storage unit 11 and the heat medium. .. When the heat medium that has received the cold heat flows to the cold heat utilization unit 15 via the heat medium pipe 17, the cold heat stored in the cold storage material of the cold storage material storage unit 11 can be supplied to the cold heat utilization unit 15.

また、蓄熱材の水和物結晶は水よりも比重が大きいため、蓄冷材貯蔵部11の内部における下方に集まると考えられる。このため、第2熱交換器16を蓄冷材貯蔵部11の下方に設けることで、蓄冷材貯蔵部11の蓄冷材に蓄えられた冷熱を効率よく利用することができる。 Further, since the hydrate crystals of the heat storage material have a higher specific gravity than that of water, it is considered that the hydrate crystals gather below the inside of the cold storage material storage unit 11. Therefore, by providing the second heat exchanger 16 below the cold storage material storage unit 11, the cold heat stored in the cold storage material of the cold storage material storage unit 11 can be efficiently used.

なお、第2熱交換器16から冷熱利用部15に冷熱を供給する手段は、上記に述べた熱媒体配管17を用いて行っても良いし、あるいは第2熱交換器16から冷熱を有する風などの流体を冷熱利用部15に直接導入しても良い。 The means for supplying cold heat from the second heat exchanger 16 to the cold heat utilization unit 15 may be performed by using the heat medium pipe 17 described above, or the wind having cold heat from the second heat exchanger 16. Such a fluid may be directly introduced into the cold heat utilization unit 15.

制御部18は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、ROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行う。制御部18は、冷熱供給部12、冷熱利用部15等に制御信号を出力するように構成されている。 The control unit 18 is composed of a well-known microcomputer including a CPU, ROM, RAM, and peripheral circuits thereof, and peripheral circuits thereof, and performs various calculations and processes based on an air conditioning control program stored in the ROM. The control unit 18 is configured to output a control signal to the cold heat supply unit 12, the cold heat utilization unit 15, and the like.

次に、本実施形態で蓄冷材として用いられるTBAB水溶液について説明する。図2に示すように、代表的なTBABの水和物として、水和度が約26の第1水和物と、水和度が約38の第2水和物の2種類が報告されている。水和物生成温度は、水和物の種類やTBAB水溶液の濃度によって異なっている。20wt%に調整したTBAB水溶液では、第1水和物と第2水和物のどちらもできる可能性があり、水和物生成温度はいずれの場合でも約8℃である。40wt%に調整したTBAB水溶液では第1水和物ができ、水和物生成温度は約12℃である。 Next, the TBAB aqueous solution used as the cold storage material in the present embodiment will be described. As shown in FIG. 2, two types of typical TBAB hydrates have been reported: a first hydrate having a hydration degree of about 26 and a second hydrate having a hydration degree of about 38. There is. The hydrate formation temperature differs depending on the type of hydrate and the concentration of the TBAB aqueous solution. In the TBAB aqueous solution adjusted to 20 wt%, both the first hydrate and the second hydrate may be formed, and the hydrate formation temperature is about 8 ° C. in each case. The first hydrate is formed in the TBAB aqueous solution adjusted to 40 wt%, and the hydrate formation temperature is about 12 ° C.

上記背景技術の欄で述べたように、TBAB水溶液は、水和物生成温度より低い温度に冷却してもTBAB水和物が生成しない過冷却状態となりやすいという性質を有している。このため、本実施形態の蓄冷装置10では、蓄冷材貯蔵部11の蓄冷材に過冷却解除物質を予め添加することで、TBAB水溶液が過冷却状態になることを抑制している。 As described in the above background technology column, the TBAB aqueous solution has a property that it tends to be in a supercooled state in which TBAB hydrate is not produced even if it is cooled to a temperature lower than the hydrate formation temperature. Therefore, in the cold storage device 10 of the present embodiment, the supercooling release substance is added in advance to the cold storage material of the cold storage material storage unit 11 to prevent the TBAB aqueous solution from becoming supercooled.

次に、本実施形態の過冷却解除物質について説明する。「INTERNATIONAL JOURNAL OF REFRIGERATION 35 (2012) 1266-1274」では、過冷却状態のTBAB水溶液に電場を印加することで過冷却状態が解除されることが報告されている。 Next, the supercooled release substance of the present embodiment will be described. In "INTERNATIONAL JOURNAL OF REFRIGERATION 35 (2012) 1266-1274", it is reported that the supercooled state is released by applying an electric field to the supercooled TBAB aqueous solution.

このため、複数種類のハロゲン化テトラブチルアンモニウム水溶液(以下、TBAX水溶液ともいう)に電圧印加して得られた生成物をTBAB水溶液に添加し、過冷却解除試験を行った。以下、TBAX水溶液への電圧印加によって生成した生成物を「電圧印加生成物」とし、電圧印加生成物をTBAB水溶液に添加した後の生成物を「添加後生成物」とする。 Therefore, a product obtained by applying a voltage to a plurality of types of tetrabutylammonium halide aqueous solutions (hereinafter, also referred to as TBAX aqueous solution) was added to the TBAB aqueous solution, and a supercooling release test was conducted. Hereinafter, the product produced by applying a voltage to the TBAX aqueous solution is referred to as a “voltage application product”, and the product after the voltage application product is added to the TBAB aqueous solution is referred to as a “post-addition product”.

電圧印加生成物は、図3に示す電圧印加装置20によって生成した。図3に示すように、電圧印加装置20は、容器21、一対の電極22、23、直流電源24を備えている。容器21にはTBAX水溶液が充填され、直流電源24に接続された電極22、23によって電圧が印加される。一対の電極22、23は、先端同士が対向するように配置されており、電極間の距離を調整可能となっている。電極22、23としては、Agからなる金属電極を用いた。 The voltage application product was generated by the voltage application device 20 shown in FIG. As shown in FIG. 3, the voltage applying device 20 includes a container 21, a pair of electrodes 22, 23, and a DC power supply 24. The container 21 is filled with a TBAX aqueous solution, and a voltage is applied by electrodes 22 and 23 connected to a DC power supply 24. The pair of electrodes 22 and 23 are arranged so that their tips face each other, and the distance between the electrodes can be adjusted. As the electrodes 22 and 23, metal electrodes made of Ag were used.

電圧印加生成物を得るためのTBAX水溶液として、TBAF(フッ化テトラブチルアンモニウム)水溶液、TBACl(塩化テトラブチルアンモニウム)水溶液、TBAI(ヨウ化テトラブチルアンモニウム)水溶液を用いた。TBAF水溶液およびTBACl水溶液は10wt%に調整し、TBAI水溶液は2wt%に調整した。 As the TBAX aqueous solution for obtaining the voltage application product, a TBAF (tetrabutylammonium fluoride) aqueous solution, a TBACl (tetrabutylammonium chloride) aqueous solution, and a TBAI (tetrabutylammonium iodide) aqueous solution were used. The TBAF aqueous solution and the TBACl aqueous solution were adjusted to 10 wt%, and the TBAI aqueous solution was adjusted to 2 wt%.

容器21に30グラムのTBAX水溶液を入れ、電極22、23から20Vの電圧を3分間印加した。電圧印加によって得られた電圧印加生成物を含むTBAX水溶液を容器21から取り出し、以下の工程で電圧印加生成物を抽出した。 A 30 gram aqueous solution of TBAX was placed in the container 21, and a voltage of 20 V was applied from the electrodes 22 and 23 for 3 minutes. The TBAX aqueous solution containing the voltage application product obtained by applying the voltage was taken out from the container 21, and the voltage application product was extracted in the following steps.

まず、電圧印加生成物を含むTBAX水溶液をオムニポアメンブレンフィルター(メルクミリポア社製、孔径:0.45μm)を用いて吸引濾過し、水に不溶な物質を得た。この物質を、真空乾燥器を用いて乾燥処理を25℃で12時間行い、目的の電圧印加生成物を得た。 First, a TBAX aqueous solution containing a voltage-applied product was suction-filtered using an omnipore membrane filter (manufactured by Merck Millipore, pore size: 0.45 μm) to obtain a water-insoluble substance. This material was dried using a vacuum dryer at 25 ° C. for 12 hours to obtain the desired voltage-applied product.

次に、電圧印加生成物をTBAB水溶液に添加して過冷却解除試験を行った後、添加後生成物を含むTBAB水溶液から上述の抽出工程によって添加後生成物を得た。 Next, the voltage-applied product was added to the TBAB aqueous solution to perform a supercooling release test, and then the post-addition product was obtained from the TBAB aqueous solution containing the post-addition product by the above-mentioned extraction step.

ここで、TBAX水溶液の電圧印加生成物を添加物としてTBAB水溶液に添加して過冷却解除試験を行った結果を図4に基づいて説明する。過冷却解除試験では、20mL容器にあらかじめ40wt%に調整したTBAB水溶液10グラムと添加物を1ミリグラムを入れた試料を用いた。このとき、添加物の濃度は0.01wt%である。作製した試料を、内部の温度が11℃になるよう設定した恒温槽内に24時間静置した。24時間経過後、容器内部の水和物結晶の有無を目視で確認した。水和物結晶が確認できた場合は凝固したと判断し、水和物結晶が確認できなかった場合は恒温槽内部の温度を1℃下げ、同様の試験を実施した。恒温槽内部の設定温度が2℃になるまで、同試験を繰り返した。 Here, the result of performing the supercooling release test by adding the voltage application product of the TBAX aqueous solution to the TBAB aqueous solution as an additive will be described with reference to FIG. In the supercooling release test, a sample containing 10 grams of a TBAB aqueous solution adjusted to 40 wt% in advance and 1 milligram of an additive was used in a 20 mL container. At this time, the concentration of the additive is 0.01 wt%. The prepared sample was allowed to stand for 24 hours in a constant temperature bath set so that the internal temperature was 11 ° C. After 24 hours, the presence or absence of hydrate crystals inside the container was visually confirmed. If hydrate crystals could be confirmed, it was judged to be solidified, and if hydrate crystals could not be confirmed, the temperature inside the constant temperature bath was lowered by 1 ° C., and the same test was carried out. The same test was repeated until the set temperature inside the constant temperature bath reached 2 ° C.

過冷却解除試験は、各添加物のサンプル数Nを5とした。図4の丸で囲まれた数字は凝固が確認できたサンプル数を示している。 In the supercooling release test, the number of samples N of each additive was set to 5. The numbers circled in FIG. 4 indicate the number of samples for which solidification was confirmed.

TBAB水溶液に過冷却解除物質を添加しなかった場合の凝固温度は2℃未満である。このため、TBAB水溶液に添加物を添加した場合の凝固温度が2℃以上であれば、当該添加物はTBAB水溶液に対する過冷却解除効果を有していると判断できる。 The solidification temperature when the supercooling release substance is not added to the TBAB aqueous solution is less than 2 ° C. Therefore, if the coagulation temperature when the additive is added to the TBAB aqueous solution is 2 ° C. or higher, it can be determined that the additive has a supercooling release effect on the TBAB aqueous solution.

また、図4では図示を省略しているが、TBAB水溶液にAg電極で電圧印加して生成した電圧印加生成物をTBAB水溶液に添加した場合の凝固温度は約10℃である。このため、TBAB水溶液に添加物を添加した場合の凝固温度が10℃以上であれば、当該添加物はTBAB水溶液に対する高い過冷却解除効果を有していると判断できる。 Although not shown in FIG. 4, the solidification temperature when a voltage-applied product generated by applying a voltage to the TBAB aqueous solution with an Ag electrode is added to the TBAB aqueous solution is about 10 ° C. Therefore, if the coagulation temperature when the additive is added to the TBAB aqueous solution is 10 ° C. or higher, it can be determined that the additive has a high supercooling release effect on the TBAB aqueous solution.

図4に示すように、TBAF、TBACl、TBAIの各電圧印加生成物をTBAB水溶液に添加した場合は、それぞれ過冷却解除効果が確認できた。TBAF、TBAClの各電圧印加生成物は、凝固温度が11℃程度であり、TBAIの電圧印加生成物は、凝固温度が8〜9℃程度であった。このように、TBAF、TBAClの各電圧印加生成物では、高い過冷却解除効果が得られた。 As shown in FIG. 4, when each voltage application product of TBAF, TBACl, and TBAI was added to the TBAB aqueous solution, the supercooling release effect was confirmed. The voltage-applied products of TBAF and TBACl had a solidification temperature of about 11 ° C., and the voltage-applied products of TBAI had a solidification temperature of about 8 to 9 ° C. As described above, a high supercooling release effect was obtained in each voltage application product of TBAF and TBACl.

次に、TBAF、TBACl、TBAIの電圧印加生成物および添加後生成物を構成する物質について説明する。本実施形態では、電圧印加生成物および添加後生成物をX線回折によって分析した。X線回折は、株式会社リガクのX線回折装置SmartLabを用いて行った。線源はCu−Kα、管電圧は40kV、管電流は30mA、測定範囲は10.0〜90.0°、測定ステップは0.02degree、スキャン速度は10degree/minとした。 Next, the substances constituting the voltage-applied products and post-addition products of TBAF, TBACl, and TBAI will be described. In this embodiment, the voltage-applied product and the post-addition product were analyzed by X-ray diffraction. The X-ray diffraction was performed using the X-ray diffractometer SmartLab of Rigaku Co., Ltd. The radiation source was Cu-Kα, the tube voltage was 40 kV, the tube current was 30 mA, the measurement range was 10.0 to 90.0 °, the measurement step was 0.02 degree, and the scan speed was 10 degree / min.

図5はTBAF水溶液の電圧印加生成物等のX線回折パターンを示し、図6はTBACl水溶液の電圧印加生成物等のX線回折パターンを示し、図7はTBAI水溶液の電圧印加生成物等のX線回折パターンを示している。図8は、TBAF、TBACl、TBAIの電圧印加生成物および添加後生成物を構成する物質を一覧で示している。 FIG. 5 shows an X-ray diffraction pattern of a voltage-applied product of a TBAF aqueous solution, FIG. 6 shows an X-ray diffraction pattern of a voltage-applied product of a TBAC aqueous solution, and FIG. 7 shows a voltage-applied product of a TBAI aqueous solution. The X-ray diffraction pattern is shown. FIG. 8 lists the substances constituting the voltage-applied products and post-addition products of TBAF, TBACl, and TBAI.

まず、TBAF水溶液の電圧印加生成物および添加後生成物を構成する物質について図5を用いて説明する。図5では、比較のためにAg2O試薬、Ag試薬、(NH4)F、AgBr試薬のX線回折パターンを示している。(NH4)FのみデータベースのX線回折パターンを用いた。 First, the substances constituting the voltage-applied product and the post-addition product of the TBAF aqueous solution will be described with reference to FIG. FIG. 5 shows X-ray diffraction patterns of Ag 2 O reagent, Ag reagent, (NH 4) F, and Ag Br reagent for comparison. Only (NH 4 ) F used the X-ray diffraction pattern of the database.

図5に示すように、TBAF水溶液の電圧印加生成物のX線回折パターンには、Ag2O、Ag、(NH4)FのX線回折パターンが含まれている。また、TBAF水溶液の添加後生成物のX線回折パターンには、AgBr、AgのX線回折パターンが含まれている。このため、図8に示すように、TBAF水溶液の電圧印加生成物にはAg2O、Ag、(NH4)Fが含まれており、TBAF水溶液の添加後生成物にはAgBr、Agが含まれている。TBAF水溶液の添加後生成物に含まれるAgBrは、TBACl水溶液の電圧印加生成物に含まれるAg2OがTBAB水溶液に添加することで変化したものと考えられる。 As shown in FIG. 5, the X-ray diffraction pattern of the voltage-applied product of the TBAF aqueous solution includes the X-ray diffraction patterns of Ag 2 O, Ag, and (NH 4 ) F. Further, the X-ray diffraction pattern of the product after the addition of the TBAF aqueous solution includes the X-ray diffraction pattern of AgBr and Ag. Therefore, as shown in FIG. 8, the voltage-applied product of the TBAF aqueous solution contains Ag 2 O, Ag, and (NH 4 ) F, and the product after the addition of the TBAF aqueous solution contains AgBr and Ag. It has been. It is considered that the AgBr contained in the product after the addition of the TBAF aqueous solution was changed by adding Ag 2 O contained in the voltage-applied product of the TBACl aqueous solution to the TBAB aqueous solution.

次に、TBACl水溶液の電圧印加生成物および添加後生成物を構成する物質について図6を用いて説明する。図6では、比較のためにAgCl試薬、Ag試薬、AgBr試薬のX線回折結果を示している。 Next, the substances constituting the voltage-applied product and the post-addition product of the TBACl aqueous solution will be described with reference to FIG. FIG. 6 shows the X-ray diffraction results of the AgCl reagent, the Ag reagent, and the AgBr reagent for comparison.

図6に示すように、TBACl水溶液の電圧印加生成物のX線回折パターンには、AgCl、AgのX線回折パターンが含まれている。また、TBACl水溶液の添加後生成物のX線回折パターンには、AgBr、AgのX線回折パターンが含まれている。このため、図8に示すように、TBACl水溶液の電圧印加生成物にはAgCl、Agが含まれており、TBACl水溶液の添加後生成物にはAgBr、Agが含まれている。TBACl水溶液の添加後生成物に含まれるAgBrは、TBACl水溶液の電圧印加生成物に含まれるAgClがTBAB水溶液に添加することで変化したものと考えられる。 As shown in FIG. 6, the X-ray diffraction pattern of the voltage-applied product of the TBACl aqueous solution includes the X-ray diffraction pattern of AgCl and Ag. Further, the X-ray diffraction pattern of the product after the addition of the TBACl aqueous solution includes the X-ray diffraction pattern of AgBr and Ag. Therefore, as shown in FIG. 8, the voltage-applied product of the TBACl aqueous solution contains AgCl and Ag, and the product after the addition of the TBACl aqueous solution contains AgBr and Ag. It is considered that the AgBr contained in the product after the addition of the TBACl aqueous solution was changed by adding AgCl contained in the voltage-applied product of the TBACl aqueous solution to the TBAB aqueous solution.

次に、TBAI水溶液の電圧印加生成物および添加後生成物を構成する物質について図7を用いて説明する。図7では、比較のためにAgI試薬、Ag試薬、AgBr試薬のX線回折結果を示している。 Next, the substances constituting the voltage-applied product and the post-addition product of the TBAI aqueous solution will be described with reference to FIG. 7. FIG. 7 shows the X-ray diffraction results of the AgI reagent, the Ag reagent, and the AgBr reagent for comparison.

図7に示すように、TBAI水溶液の電圧印加生成物のX線回折パターンには、AgI、AgのX線回折パターンが含まれている。また、TBAI水溶液の添加後生成物のX線回折パターンには、AgI、AgのX線回折パターンが含まれている。このため、図8に示すように、TBAI水溶液の電圧印加生成物にはAgI、Agが含まれており、TBAI水溶液に基づく添加後生成物にはAgI、Agが含まれている。 As shown in FIG. 7, the X-ray diffraction pattern of the voltage-applied product of the TBAI aqueous solution includes the X-ray diffraction patterns of AgI and Ag. Further, the X-ray diffraction pattern of the product after the addition of the TBAI aqueous solution includes the X-ray diffraction pattern of AgI and Ag. Therefore, as shown in FIG. 8, the voltage-applied product of the TBAI aqueous solution contains AgI and Ag, and the post-addition product based on the TBAI aqueous solution contains AgI and Ag.

図8に示すように、過冷却解除効果が高いTBAF、TBAClの添加後生成物にはAgBrがそれぞれ共通して含まれている。このため、AgBr自体またはTBAB水溶液への添加後にAgBrを生成する物質がTBAB水溶液に対する過冷却解除効果を有していると考えられる。TBAB水溶液への添加後にAgBrを生成する物質として、TBAFの電圧印加生成物に含まれるAg2Oと、TBAClの電圧印加生成物に含まれるAgClを挙げることができる。 As shown in FIG. 8, AgBr is commonly contained in the products after addition of TBAF and TBACl, which have a high supercooling release effect. Therefore, it is considered that AgBr itself or a substance that produces AgBr after addition to the TBAB aqueous solution has a supercooling releasing effect on the TBAB aqueous solution. Examples of the substance that produces AgBr after addition to the TBAB aqueous solution include Ag 2 O contained in the voltage application product of TBAF and Ag Cl contained in the voltage application product of TBACl.

次に、Ag試薬、Ag2O試薬、AgBr試薬、AgCl試薬をTBAB水溶液に添加して過冷却解除試験を行った結果について説明する。 Next, the results of the supercooling release test by adding the Ag reagent, Ag 2 O reagent, Ag Br reagent, and Ag Cl reagent to the TBAB aqueous solution will be described.

図4に示すように、Ag試薬、Ag2O試薬、AgBr試薬、AgCl試薬をTBAB水溶液に添加した場合に、それぞれ過冷却解除効果が確認できた。AgBr試薬を添加した場合は、凝固温度が4〜6℃程度であり、Ag2O試薬を添加した場合とAgCl試薬を添加した場合は、凝固温度が10℃程度であった。このようにAg2O試薬とAgCl試薬は、高い過冷却解除効果が得られた。つまり、電圧印加生成物に含まれるAg2OやAgClと同様に、Ag2O試薬およびAgCl試薬を用いた場合でも過冷却解除効果が得られた。 As shown in FIG. 4, when the Ag reagent, Ag 2 O reagent, Ag Br reagent, and Ag Cl reagent were added to the TBAB aqueous solution, the supercooling release effect was confirmed. When the AgBr reagent was added, the coagulation temperature was about 4 to 6 ° C., and when the Ag 2 O reagent was added and when the AgCl reagent was added, the coagulation temperature was about 10 ° C. As described above, the Ag 2 O reagent and the Ag Cl reagent obtained a high supercooling release effect. In other words, as with Ag 2 O and AgCl included in voltage application product, supercooling release effect even when using Ag 2 O reagent and AgCl reagents were obtained.

次に、Ag試薬、Ag2O試薬、AgCl試薬をTBAB水溶液に添加する前後でX線回折により分析した結果について説明する。 Next, the results of analysis by X-ray diffraction before and after adding the Ag reagent, Ag 2 O reagent, and Ag Cl reagent to the TBAB aqueous solution will be described.

図9は、Ag試薬をTBAB水溶液に添加する前後におけるX線回折パターンを示している。図9では、比較のためにAgのX線回折パターンを示している。AgのX線回折パターンは、データベースを用いた。図9に示すように、Ag試薬のX線回折パターンはTBAB水溶液に添加した後も変化しなかった。つまり、Ag試薬はTBAB水溶液に添加した後もAgのままであり、AgBrを生成しなかった。 FIG. 9 shows an X-ray diffraction pattern before and after adding the Ag reagent to the TBAB aqueous solution. FIG. 9 shows the X-ray diffraction pattern of Ag for comparison. A database was used for the X-ray diffraction pattern of Ag. As shown in FIG. 9, the X-ray diffraction pattern of the Ag reagent did not change even after being added to the TBAB aqueous solution. That is, the Ag reagent remained Ag even after being added to the TBAB aqueous solution and did not produce AgBr.

図10は、Ag2O試薬をTBAB水溶液に添加する前後におけるX線回折パターンを示している。図10では、比較のためにAg2OおよびAgBr試薬のX線回折パターンを示している。Ag2OのX線回折パターンはデータベースを用いた。図10に示すように、Ag2O試薬はTBAB水溶液に添加した後、AgBr試薬と同じX線回折パターンを示した。 FIG. 10 shows the X-ray diffraction pattern before and after the addition of the Ag 2 O reagent to the TBAB aqueous solution. FIG. 10 shows the X-ray diffraction patterns of the Ag 2 O and Ag Br reagents for comparison. A database was used for the X-ray diffraction pattern of Ag 2 O. As shown in FIG. 10, the Ag 2 O reagent showed the same X-ray diffraction pattern as the Ag Br reagent after being added to the TBAB aqueous solution.

図11は、AgCl試薬をTBAB水溶液に添加する前後におけるX線回折パターンを示している。図11では、比較のためにAgClおよびAgBr試薬のX線回折パターンを示している。AgClのX線回折パターンはデータベースを用いた。図11に示すように、AgCl試薬はTBAB水溶液に添加した後、AgBr試薬と同じX線回折パターンを示した。 FIG. 11 shows an X-ray diffraction pattern before and after adding the AgCl reagent to the TBAB aqueous solution. FIG. 11 shows the X-ray diffraction patterns of AgCl and AgBr reagents for comparison. A database was used for the X-ray diffraction pattern of AgCl. As shown in FIG. 11, the AgCl reagent showed the same X-ray diffraction pattern as the AgBr reagent after being added to the TBAB aqueous solution.

図12に示すように、Ag2O試薬をTBAB水溶液に添加した場合にAgBrが生成した。また、AgCl試薬をTBAB水溶液に添加した場合にもAgBrが生成した。つまり、Ag2OおよびAgClからAgBrが生成することは、電圧印加生成物に特有の現象ではなく、試薬を用いた場合においても起きる現象であることが確認できた。 As shown in FIG. 12, AgBr was produced when the Ag 2 O reagent was added to the TBAB aqueous solution. AgBr was also produced when the AgCl reagent was added to the TBAB aqueous solution. That is, it was confirmed that the formation of AgBr from Ag 2 O and Ag Cl is not a phenomenon peculiar to the voltage-applied product, but a phenomenon that occurs even when a reagent is used.

上述したように、Ag2O試薬やAgCl試薬をTBAB水溶液に添加してAgBrが生成する場合の方がAgBr試薬をTBAB水溶液に添加した場合よりも過冷却解除効果が高い。そこで、AgBr試薬と、AgCl試薬をTBAB水溶液に添加して得られたAgBr(以下、「AgCl由来のAgBr」ともいう。)と、Ag2O試薬をTBAB水溶液に添加して得られたAgBr(以下、「Ag2O由来のAgBr」ともいう。)をそれぞれSEMで観察した。 As described above, supercooling release effect is higher than if the direction of the case of generating the AgBr was added Ag 2 O reagents or AgCl reagents aqueous TBAB solution was added to AgBr reagent TBAB aqueous solution. Therefore, AgBr obtained by adding the AgBr reagent and the AgCl reagent to the TBAB aqueous solution (hereinafter, also referred to as “AgCl-derived AgBr”) and AgBr obtained by adding the Ag 2 O reagent to the TBAB aqueous solution (hereinafter, also referred to as “AgCl-derived AgBr”) hereinafter also referred to as "AgBr from Ag 2 O".) it was observed by SEM, respectively.

図13は、AgBr試薬、AgCl由来のAgBr、Ag2O由来のAgBrのSEM画像、平均表面凹凸径等を示している。SEM観察は、あらかじめOsを蒸着した試料を株式会社日立ハイテクノロジーズ社製S−4800を用い、加速電圧15.0kV、倍率500〜10,000倍で実施した。また、表面凹凸径はSEM画像をもとに画像解析法により求めた。解析には株式会社ニレコ社製ルーゼックスAPを用い、解析パラメータには円形直径を用いた。300点の解析点の平均径を平均表面凹凸径とした。粒度分布測定は、レーザー解説散乱法により、JIS R 1622−1995およびR 1629−1997に基づき実施した。 FIG. 13 shows SEM images of AgBr reagent, AgBr derived from AgCl, AgBr derived from Ag 2 O, average surface unevenness diameter, and the like. The SEM observation was carried out using a sample in which Os was vapor-deposited in advance using S-4800 manufactured by Hitachi High-Technologies Corporation at an acceleration voltage of 15.0 kV and a magnification of 500 to 10,000 times. The surface unevenness diameter was determined by an image analysis method based on the SEM image. Luzex AP manufactured by Nireco Corporation was used for the analysis, and a circular diameter was used as the analysis parameter. The average diameter of 300 analysis points was defined as the average surface unevenness diameter. Particle size distribution measurements were performed based on JIS R 1622-1995 and R 1629-1997 by the laser commentary scattering method.

平均表面凹凸径は、AgBr試薬よりも、AgCl由来のAgBrおよびAg2O由来のAgBrの方が小さくなっている。平均表面凹凸径は、AgBr試薬が12μmであり、AgCl由来のAgBrが0.53μmであり、Ag2O由来のAgBrが0.80μmである。このように、Ag化合物をTBAB水溶液に浸漬することで生成したAgBrは、AgBr試薬よりも平均表面凹凸径が小さくなっている。これは、Ag化合物をTBAB水溶液に浸漬することで、微細な表面凹凸構造を有するAgBrが得られる可能性があることを示している。 The average surface unevenness diameter of AgBr derived from AgCl and AgBr derived from Ag 2 O is smaller than that of the AgBr reagent. The average surface unevenness diameter is 12 μm for the AgBr reagent, 0.53 μm for AgCl derived from AgCl, and 0.80 μm for AgBr derived from Ag 2 O. As described above, the AgBr produced by immersing the Ag compound in the TBAB aqueous solution has a smaller average surface unevenness diameter than the AgBr reagent. This indicates that by immersing the Ag compound in the TBAB aqueous solution, AgBr having a fine surface uneven structure may be obtained.

TBAB水溶液に対する過冷却解除効果(つまり凝固温度)は、AgBr試薬、AgCl由来のAgBr、Ag2O由来のAgBrのそれぞれの平均表面凹凸径によって異なっているものと考えられる。具体的には、AgBrの平均表面凹凸径が小さいほど、TBAB水溶液の凝固温度が高く、過冷却解除効果が高くなっている。このため、AgBrの平均表面凹凸径が12μm以下であればTBAB水溶液に対する過冷却解除効果を得ることができ、さらにAgBrの平均表面凹凸径が1μm以下であればTBAB水溶液に対する高い過冷却解除効果を得ることができる。 It is considered that the supercooling release effect (that is, the solidification temperature) on the TBAB aqueous solution differs depending on the average surface unevenness diameter of each of the AgBr reagent, AgBr derived from AgCl, and AgBr derived from Ag 2 O. Specifically, the smaller the average surface unevenness diameter of AgBr, the higher the solidification temperature of the TBAB aqueous solution and the higher the supercooling release effect. Therefore, if the average surface unevenness diameter of AgBr is 12 μm or less, the supercooling release effect on the TBAB aqueous solution can be obtained, and further, if the average surface unevenness diameter of AgBr is 1 μm or less, a high supercooling release effect on the TBAB aqueous solution can be obtained. Obtainable.

また、図13に示すように、粒度分布測定で得られた体積基準平均径は、AgBr試薬が75μmであり、AgCl由来のAgBrが127μmであり、Ag2O由来のAgBrが441μmである。体積基準平均径は分散状態における粒子径に相当している。つまり、TBAB水溶液に対する高い過冷却解除効果を得るためには、AgBrの粒子そのものが微小である必要はなく、AgBrの最表面に微細な凹凸構造が形成されていればよいことがわかる。 Further, as shown in FIG. 13, the volume-based average diameter obtained by the particle size distribution measurement is 75 μm for the AgBr reagent, 127 μm for AgBr derived from AgCl, and 441 μm for AgBr derived from Ag 2 O. The volume-based average diameter corresponds to the particle size in the dispersed state. That is, in order to obtain a high supercooling release effect on the TBAB aqueous solution, it is not necessary that the AgBr particles themselves are minute, and it is sufficient that a fine uneven structure is formed on the outermost surface of AgBr.

以上説明した本実施形態によれば、ハロゲン化アルキルアンモニウム水溶液に基づく電圧印加生成物および添加後生成物を分析することで、AgBrがTBAB水溶液に対する過冷却解除効果が高い物質であることを特定できた。 According to the present embodiment described above, by analyzing the voltage-applied product and the post-addition product based on the alkylammonium halide aqueous solution, it can be identified that AgBr is a substance having a high overcooling release effect on the TBAB aqueous solution. rice field.

また、AgBrでも過冷却解除効果が得られるが、TBAB水溶液への浸漬後にAgBrを生成するAg化合物を用いることで、より高い過冷却解除効果が得られることを確認した。TBAB水溶液への浸漬後にAgBrを生成するAg化合物は、例えばAg2OやAgClであり、これらのAg化合物の試薬を用いた場合でもTBAB水溶液に対する高い過冷却解除効果が得られる。これらのAg化合物の試薬は一般的に入手が容易な材料である。つまり、一般的に入手容易な材料を過冷却解除物質としてTBAB水溶液に添加した場合であっても、高い過冷却解除効果を得ることができた。 Further, although the supercooling release effect can be obtained with AgBr, it was confirmed that a higher supercooling release effect can be obtained by using an Ag compound that produces AgBr after immersion in the TBAB aqueous solution. The Ag compounds that produce AgBr after immersion in the TBAB aqueous solution are, for example, Ag 2 O and Ag Cl, and even when the reagents of these Ag compounds are used, a high overcooling release effect on the TBAB aqueous solution can be obtained. Reagents for these Ag compounds are generally readily available materials. That is, even when a generally easily available material was added to the TBAB aqueous solution as a supercooling release substance, a high supercooling release effect could be obtained.

(他の実施形態)
以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、各請求項に記載した範囲を逸脱しない限り、各請求項の記載文言に限定されず、当業者がそれらから容易に置き換えられる範囲にも及び、かつ、当業者が通常有する知識に基づく改良を適宜付加することができる。
(Other embodiments)
Although the embodiment of the present invention has been described above, the present invention is not limited to this, and is not limited to the wording described in each claim as long as it does not deviate from the scope described in each claim. Improvements based on the knowledge usually possessed by those skilled in the art can be added as appropriate to the extent that they can be easily replaced.

(1)上記実施形態では、蓄熱材としてTBAB水溶液を用いたが、TBAB水溶液以外のハロゲン化アルキルアンモニウム水溶液を蓄熱材として用いることができる。1種類のハロゲン化アルキルアンモニウム水溶液を単独で蓄熱材として用いてもよく、あるいは複数種類のハロゲン化アルキルアンモニウム水溶液を混合して蓄熱材として用いてもよい。 (1) In the above embodiment, the TBAB aqueous solution is used as the heat storage material, but an alkylammonium halide aqueous solution other than the TBAB aqueous solution can be used as the heat storage material. One kind of alkylammonium halide aqueous solution may be used alone as a heat storage material, or a plurality of kinds of alkylammonium halide aqueous solutions may be mixed and used as a heat storage material.

ハロゲン化アルキルアンモニウムを構成するアルキルアンモニウムとしては、例えばテトラブチルアンモニウム、トリブチルペンチルアンモニウム、テトライソペンチルアンモニウムを挙げることができる。また、ハロゲン化アルキルアンモニウムを構成するハロゲン元素としては、例えばBrを挙げることができる。 Examples of the alkylammonium constituting the alkylammonium halide include tetrabutylammonium, tributylpentylammonium, and tetraisopentylammonium. Further, as the halogen element constituting the alkylammonium halide, for example, Br can be mentioned.

(2)上記実施形態では、過冷却解除物質として用いることができるAg化合物としてAg2O、AgClおよびAgBrを例示したが、これに限らず、AgFあるいはAgIといったハロゲン化銀を用いることもできる。これらの酸化銀あるいはハロゲン化銀は、蓄冷材として用いるハロゲン化アルキルアンモニウム水溶液の種類によって適宜選択すればよい。 (2) In the above embodiment, Ag 2 O, Ag Cl and Ag Br have been exemplified as Ag compounds that can be used as the overcooling release substance, but the present invention is not limited to this, and silver halide such as AgF or AgI can also be used. These silver oxide or silver halide may be appropriately selected depending on the type of the alkylammonium halide aqueous solution used as the cold storage material.

10 蓄冷装置
11 蓄冷材貯蔵部
10 Cold storage device 11 Cold storage material storage

Claims (4)

水和物生成温度以下に冷却することで水和物を生成する1種類以上のハロゲン化アルキルアンモニウム水溶液を含んだ蓄冷材の過冷却状態を解除する過冷却解除物質であって、
Ag化合物を含んでおり、前記Ag化合物はAg 2 Oである過冷却解除物質。
A supercooling release substance that releases the supercooled state of a cold storage material containing one or more types of alkylammonium halide aqueous solutions that produce hydrates by cooling below the hydrate formation temperature.
Includes Ag compound, the Ag compound Ag 2 O der Ru supercooling release material.
前記ハロゲン化アルキルアンモニウムを構成するアルキルアンモニウムは、テトラブチルアンモニウム、トリブチルペンチルアンモニウムまたはテトライソペンチルアンモニウムのいずれかである請求項に記載の過冷却解除物質。 The supercooled release substance according to claim 1 , wherein the alkylammonium constituting the alkylammonium halide is any one of tetrabutylammonium, tributylpentylammonium and tetraisopentylammonium. 前記ハロゲン化アルキルアンモニウムを構成するハロゲン元素はBrである請求項1または2に記載の過冷却解除物質。 The supercooled release substance according to claim 1 or 2 , wherein the halogen element constituting the halogenated alkylammonium is Br. 前記ハロゲン化アルキルアンモニウムは臭化テトラブチルアンモニウムであり、前記Ag化合物は前記臭化テトラブチルアンモニウムに添加することでAgBrを生成する物質である請求項1ないしのいずれか1つに記載の過冷却解除物質。 The halogenated alkyl ammonium is tetrabutylammonium bromide, the Ag compound according to claims 1 is a substance which produces AgBr one of 3 by adding before Symbol tetrabutylammonium bromide Supercooling release substance.
JP2017088162A 2017-04-27 2017-04-27 Supercooled release substance Active JP6905386B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017088162A JP6905386B2 (en) 2017-04-27 2017-04-27 Supercooled release substance
PCT/JP2018/015658 WO2018198848A1 (en) 2017-04-27 2018-04-16 Super-cooling release substance and cold storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017088162A JP6905386B2 (en) 2017-04-27 2017-04-27 Supercooled release substance

Publications (2)

Publication Number Publication Date
JP2018184565A JP2018184565A (en) 2018-11-22
JP6905386B2 true JP6905386B2 (en) 2021-07-21

Family

ID=63918317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017088162A Active JP6905386B2 (en) 2017-04-27 2017-04-27 Supercooled release substance

Country Status (2)

Country Link
JP (1) JP6905386B2 (en)
WO (1) WO2018198848A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6601145B2 (en) * 2014-11-14 2019-11-06 株式会社デンソー Subcool release substance and method for producing the same
WO2019146390A1 (en) 2018-01-29 2019-08-01 パナソニック株式会社 Cold storage material
JP7182770B2 (en) * 2018-05-18 2022-12-05 国立研究開発法人産業技術総合研究所 Method for producing quaternary ammonium salt semi-clathrate hydrate and production accelerator
JP2020050846A (en) 2018-09-28 2020-04-02 日東電工株式会社 Conjugation and separation method of adherend
EP4357436A1 (en) * 2021-06-14 2024-04-24 Panasonic Holdings Corporation Cold storage material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3324392B2 (en) * 1996-04-25 2002-09-17 三菱電機株式会社 Heat storage material
JP5104636B2 (en) * 2008-08-06 2012-12-19 Jfeエンジニアリング株式会社 Aqueous solution for producing clathrate hydrate, heat storage agent, clathrate hydrate or manufacturing method thereof, slurry storage method, and method for preparing aqueous solution for generating latent heat storage agent or main component thereof
JP6226488B2 (en) * 2013-11-26 2017-11-08 シャープ株式会社 Heat storage material, heat storage member using the same, storage container, transport / storage container, building material, building
WO2016075941A1 (en) * 2014-11-14 2016-05-19 株式会社デンソー Super-cooling release material and method for producing same
JP6832117B2 (en) * 2016-10-06 2021-02-24 パナソニック株式会社 Heat storage method, heat storage device, and manufacturing method of heat storage device

Also Published As

Publication number Publication date
WO2018198848A1 (en) 2018-11-01
JP2018184565A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
JP6905386B2 (en) Supercooled release substance
Harikrishnan et al. Preparation and thermal energy storage behaviour of stearic acid–TiO2 nanofluids as a phase change material for solar heating systems
Kumar et al. Review of stability and thermal conductivity enhancements for salt hydrates
Liu et al. Form-stable phase change material based on Na2CO3· 10H2O-Na2HPO4· 12H2O eutectic hydrated salt/expanded graphite oxide composite: the influence of chemical structures of expanded graphite oxide
Chang et al. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres
Ouikhalfan et al. Preparation and characterization of nano‐enhanced myristic acid using metal oxide nanoparticles for thermal energy storage
JP6601145B2 (en) Subcool release substance and method for producing the same
Vijayakumar et al. Thermal characteristics studies on sintered wick heat pipe using CuO and Al2O3 nanofluids
JP2018505118A5 (en)
Harikrishnan et al. Experimental investigation of improved thermal characteristics of SiO2/myristic acid nanofluid as phase change material (PCM)
US20100243213A1 (en) Heat pipe type heat transfer device
Roelands et al. Preparation & characterization of sodium sulfide hydrates for application in thermochemical storage systems
Esmaily et al. Effect of rheocasting on corrosion of AM50 Mg alloy
Wang et al. Phase transition of neopentyl glycol in nanopores for thermal energy storage
Sriharan et al. Improved performance of composite phase change material for thermal energy storage
JP2018526463A (en) Composition for heat storage and heat transfer applications
Khan et al. Homogeneous condensation and thermophysical properties of R450A, R513A and R515A using molecular dynamics simulations
Rizvi et al. Heat capacity and viscosity of ternary carbonate nanofluids
Alagumalai et al. Nano-engineered pathways for advanced thermal energy storage systems
Barsk et al. Exceptionally high energy storage density for seasonal thermochemical energy storage by encapsulation of calcium chloride into hydrophobic nanosilica capsules
Privman et al. Kinetics modeling of nanoparticle growth on and evaporation off nanotubes
Rizvi et al. Investigation of time–temperature dependency of heat capacity enhancement in molten salt nanofluids
Liu et al. Materials for phase change material at high temperature
WO2016075941A1 (en) Super-cooling release material and method for producing same
Khan et al. Overview of nanofluids to ionanofluids: Applications and challenges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210625

R150 Certificate of patent or registration of utility model

Ref document number: 6905386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150