WO2016075941A1 - Super-cooling release material and method for producing same - Google Patents
Super-cooling release material and method for producing same Download PDFInfo
- Publication number
- WO2016075941A1 WO2016075941A1 PCT/JP2015/005644 JP2015005644W WO2016075941A1 WO 2016075941 A1 WO2016075941 A1 WO 2016075941A1 JP 2015005644 W JP2015005644 W JP 2015005644W WO 2016075941 A1 WO2016075941 A1 WO 2016075941A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- supercooling
- supercooling release
- storage material
- cold storage
- hydrate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/62—Quaternary ammonium compounds
- C07C211/63—Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/06—Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
Definitions
- This disclosure relates to a supercooling release substance that releases supercooling of a regenerator material and a manufacturing method thereof.
- Inclusion hydrates such as TBAB hydrate produced by cooling an aqueous solution of TBAB (tetrabutylammonium bromide) have a large heat density and are known to be used as a cold storage material.
- TBAB tetrabutylammonium bromide
- Such clathrate hydrate can be used alone as a heat storage material, or one kind of clathrate hydrate can be used as a heat storage material by mixing multiple types of clathrate hydrate (patent) Reference 1).
- an aqueous solution that generates clathrate hydrate tends to be in a supercooled state in which no hydrate is generated even when cooled to below the hydrate formation temperature, and is difficult to use stably as a cold storage material.
- Non-Patent Document 1 a technique for releasing the supercooled state by applying an electric field to the supercooled TBAB aqueous solution has been reported (see Non-Patent Document 1).
- the supercooling release material is generated in the part where the electric field is applied in the TBAB aqueous solution, and the supercooling release material assists the generation of crystal nuclei, and the supercooling is released. It is assumed that TBAB hydrate grows through crystal growth.
- Non-Patent Document 1 the details of the supercooling release substance generated when an electric field is applied to the TBAB aqueous solution are unknown, and what kind of substance causes the supercooling of the TBAB aqueous solution to be released. There are no reported cases.
- This disclosure is intended to provide a supercooling release material that can release supercooling of a regenerator material and a method for manufacturing the same.
- the substance includes alkylammonium ions contained in the regenerator material and metal halide ions having a halogen element contained in the regenerator material as a constituent element.
- the supercooling release material can be generated not only by voltage application but also by organic synthesis.
- release which cancels
- the method for producing a substance comprises applying a voltage to the alkyl ammonium halide aqueous solution.
- the supercooling release substance includes alkylammonium ions contained in the cold storage material and metal halide ions having a halogen element contained in the cold storage material as a constituent element.
- the supercooled state of the regenerator material can be reliably released.
- the supercooling release substance can be generated not only by voltage application but also by organic synthesis.
- a supercooling release material that releases a supercooled state of a cold storage material containing one or more aqueous alkylammonium halide solutions that form a hydrate by cooling to a hydrate formation temperature or lower
- the manufacturing method includes adding at least any single metal of Ag, Cu, Fe, or Zn to the cold storage material.
- the supercooling release substance includes alkylammonium ions contained in the cold storage material and metal halide ions having a halogen element contained in the cold storage material as a constituent element.
- the supercooled state of the regenerator material can be reliably released.
- the supercooling release substance can be generated not only by voltage application but also by organic synthesis.
- FIG. 1 is a conceptual diagram showing the overall configuration of the cold storage device of the first embodiment
- FIG. 2 is a conceptual diagram showing the configuration of the electrodes of the voltage application unit
- FIG. 3 is a graph showing the relationship between the concentration of an aqueous TBAB solution and the hydrate formation temperature.
- FIG. 4 is a flowchart showing the supercooling release control process.
- FIG. 5 is a diagram showing a mass spectrum that is an analysis result of the supercooled release substance
- FIG. 6 is a diagram illustrating a supercooling release rate when the electrode material of the voltage application unit is changed in the second embodiment.
- FIG. 1 is a conceptual diagram showing the overall configuration of the cold storage device of the first embodiment
- FIG. 2 is a conceptual diagram showing the configuration of the electrodes of the voltage application unit
- FIG. 3 is a graph showing the relationship between the concentration of an aqueous TBAB solution and the hydrate formation temperature.
- FIG. 4 is a flowchart showing the supercooling release control process.
- FIG. 7 is a diagram showing a mass spectrum which is an analysis result of a supercooling release material generated when a Zn electrode is used
- FIG. 8 is a diagram showing a mass spectrum which is an analysis result of a supercooling release substance generated when an Ag electrode is used
- FIG. 9 is a conceptual diagram showing the overall configuration of the cold storage device of the third embodiment
- FIG. 10 is a diagram showing a supercooling release effect when various additives are added to the TBAB aqueous solution in the third embodiment
- FIG. 11 is a diagram showing a supercooling release effect when various additives are added to the TBAB aqueous solution in the sixth embodiment.
- the regenerator 1 of this embodiment includes a supercooling release substance generation unit 10, a regenerator storage unit 15, a cold heat supply unit 22, a control unit 28, and the like.
- a regenerator material is stored.
- an alkylammonium halide aqueous solution that forms a hydrate by cooling to a hydrate formation temperature or lower is used.
- a TBAB (tetrabutylammonium bromide) aqueous solution is used as the alkylammonium halide aqueous solution.
- a TBAB aqueous solution adjusted to 20 wt% is used as the cold storage material.
- the TBAB aqueous solution can be suitably used as a cold storage material that cools heat by generating TBAB hydrate in the aqueous solution by cooling.
- the supercooling release substance generation unit 10 is provided to generate a supercooling release substance for releasing supercooling of the TBAB aqueous solution.
- the supercooling release substance will be described later in detail.
- the supercooling release substance generation unit 10 is provided with a voltage application unit 12.
- the voltage application part 12 is provided in order to apply a voltage to a cool storage material, For example, it can be set as the structure which sends an electric current between a pair of electrodes provided at predetermined intervals.
- a voltage to the regenerator material By applying a voltage to the regenerator material by the voltage application unit 12, a subcool release material is generated in the regenerator material of the subcool release material generation unit 10.
- the voltage application unit 12 of this embodiment includes an electrode interval adjustment mechanism.
- the voltage application unit 12 includes a pair of electrodes 12a and 12b, a fixing member 12c, and a motor 12d.
- the pair of electrodes 12a and 12b is composed of a fixed electrode 12a and a movable electrode 12b, and these tips are provided so that their tips are opposed to each other.
- a male screw portion is formed on the shaft portion of the movable electrode 12b, and a female screw portion corresponding to the male screw portion of the movable electrode 12b is formed on the fixed member 12c.
- the movable electrode 12b is an electrode connected to the positive side of a DC power source (not shown), and the fixed electrode 12a is an electrode connected to the negative side of the DC power source. Further, a metal is used as an electrode material constituting the electrodes 12a and 12b, and a metal electrode made of Cu is used in this embodiment.
- the movable electrode 12b is rotated by operating the motor 12d, and the movable electrode 12b can be moved in a direction toward or away from the fixed electrode 12a. Thereby, the voltage application part 12 can adjust the space
- the cool storage material storage unit 15 stores the cool storage material therein.
- the cold storage material storage unit 15 communicates with the supercooling release material generation unit 10 via the cold storage material pipe 14, and the cold storage material can flow between the supercooling release material generation unit 10 and the cold storage material storage unit 15. It has become.
- the cool storage material storage part 15 is arrange
- the cold storage material storage unit 15 is configured to store cold by cooling the cold storage material and generating a hydrate.
- the cold energy stored in the cold storage material in the cold storage material storage unit 15 can be used for cooling the air conditioner, for example.
- the cold storage material storage unit 15 includes a plurality (three in this embodiment) of storage units 15a, 15b, and 15c. Each storage part 15a, 15b, 15c is connected with the supercooling release substance production
- Each of the storage units 15a, 15b, 15c is provided with temperature sensors 16, 17, 18 for detecting the temperature of the internal cold storage material.
- Each of the storage units 15a, 15b, and 15c is provided with supercooling detection units 19, 20, and 21 for detecting the occurrence of a supercooling state in the internal regenerator material.
- the supercooling detection units 19, 20, and 21 include a light emitting element and a light receiving element, and a configuration for detecting the transmittance of light reaching the light receiving element from the light emitting element, and a structure for detecting scattered light by the light receiving element. can do.
- the regenerator material When the regenerator material is cooled and the proportion of hydrate increases, the light transmittance decreases. Therefore, if the light transmittance exceeds the reference value at a temperature lower than the hydrate formation temperature, it is in a supercooled state. If the light transmittance is below the reference value, it can be determined that the supercooling state is not established.
- the regenerator material is cooled and the hydrate ratio increases, light from the light-emitting element scatters. Therefore, if the scattered light cannot be detected at a temperature lower than the hydrate formation temperature, it is determined that the supercooled state is reached. If the scattered light can be detected, it can be determined that the supercooling state is not established.
- the supercooling detectors 19, 20, and 21 may detect the viscosity of the regenerator material. In this case, if the viscosity of the regenerator material is lower than the reference value at a temperature lower than the hydrate formation temperature, it can be determined that the supercooled state is present, and if the viscosity of the regenerator material exceeds the reference value, the subcoolant is It can be determined that it is not in a state.
- thermocouples may be used as the subcooling detection units 19, 20, and 21 to detect the differential heat.
- the differential heat detected by the supercooling detectors 19, 20, and 21 is below the reference value, it can be determined that the supercooling state is present, and the differential heat detected by the supercooling detectors 19, 20, and 21 is detected. If the value exceeds the reference value, it can be determined that the supercooling state has not occurred.
- the cold heat supply unit 22 is configured to supply a low-temperature refrigerant to the first heat exchanger 24 via the refrigerant pipe 23 to cool the cold storage material storage unit 15.
- the cold heat supply unit 22 is configured as a known refrigeration cycle including, for example, a compressor, a condenser, an expansion valve, and the like, and the first heat exchanger 24 can be an evaporator of the refrigeration cycle.
- the first heat exchanger 24 is in thermal contact with the cold storage material storage unit 15, and exchanges heat between the low-temperature refrigerant supplied from the cold heat supply unit 22 and the cold storage material storage unit 15, thereby the cold storage material.
- the regenerator material stored in the storage unit 15 can be cooled. That is, the cold heat supply part 22, the 1st heat exchanger 24, and the refrigerant
- the first heat exchanger 24 is disposed on the upper part of the cold storage material storage unit 15. Since the heat storage material that has not solidified in the cold storage material storage unit 15 is considered to gather above the inside of the cold storage material storage unit 15, the heat storage material is efficiently condensed by cooling from the upper part of the cold storage material storage unit 15. Can be made.
- the apparatus for supplying cold from the cold supply unit 22 to the first heat exchanger 24 may be performed using the refrigerant pipe 23 described above, or a fluid such as wind having cold from the cold supply unit 22. May be directly introduced into the first heat exchanger 24.
- the cold energy stored in the cold storage material of the cold storage material storage unit 15 is supplied to the cold energy utilization unit 25 via a heat medium.
- the cold heat utilization unit 25 can be an air conditioner, for example, and water can be used as the heat medium, for example.
- the 2nd heat exchanger 26 is provided in the downward direction of the cool storage material storage part 15 so that it may contact thermally, and the 2nd heat exchanger 26 heat-exchanges between the cool storage material storage part 15 and a heat medium. .
- the heat medium that has received the cold flows to the cold energy utilization unit 25 through the heat medium pipe 27, whereby the cold energy stored in the cold storage material of the cold storage material storage unit 15 can be supplied to the cold energy utilization unit 25.
- the cold energy utilization unit 25, the second heat exchanger 26, and the heat medium pipe 27 correspond to the “cold energy utilization device”.
- the hydrate crystals of the heat storage material have a higher specific gravity than water, it is considered that the heat storage material gathers below in the cold storage material storage unit 15. For this reason, by providing the 2nd heat exchanger 26 under the cool storage material storage part 15, the cold energy stored in the cool storage material of the cool storage material storage part 15 can be utilized efficiently.
- the apparatus for supplying cold from the second heat exchanger 26 to the cold heat utilization unit 25 may be performed using the heat medium pipe 27 described above, or the wind having cold from the second heat exchanger 26 may be used. Such a fluid may be directly introduced into the cold heat utilization unit 25.
- the control unit 28 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits, and performs various calculations and processes based on an air conditioning control program stored in the ROM. Sensor signals from the temperature sensors 13, 16, 17, 18 and the supercooling detection units 19, 20, 21 are input to the control unit 28, and control signals are sent to the temperature adjustment unit 11, the voltage application unit 12, and the cooling / heating supply unit 22. Is configured to output.
- the TBAB aqueous solution used as a cold storage material in this embodiment will be described.
- two types of typical TBAB hydrates a first hydrate having a hydration degree of about 26 and a second hydrate having a hydration degree of about 38, have been reported. Yes.
- the hydrate formation temperature varies depending on the type of hydrate and the concentration of the TBAB aqueous solution. In the TBAB aqueous solution adjusted to 20 wt%, both the first hydrate and the second hydrate may be formed, and the hydrate formation temperature is about 8 ° C. in either case. In the TBAB aqueous solution adjusted to 40 wt%, the first hydrate is formed, and the hydrate formation temperature is about 12 ° C.
- the TBAB aqueous solution has a property that even when cooled to a temperature lower than the hydrate formation temperature, it tends to be in a supercooled state in which TBAB hydrate is not generated. For this reason, in the cool storage device 1 of the present embodiment, the supercooling release substance is generated, and the supercooling release substance is uniformly supplied to the desired portion, thereby suppressing the TBAB aqueous solution from being supercooled. Yes.
- the supercooling release material generated by the supercooling release material generation unit 10 is supplied in a branched manner to each of the plurality of storage units 15a, 15b, and 15c via the cold storage material pipe 14. It is configured. As a result, the supercooling release material generated in the supercooling release material generation unit 10 is uniformly diffused and supplied to each of the storage units 15 a, 15 b, and 15 c without being biased toward a specific location of the cold storage material storage unit 15. be able to.
- the cold storage material storage unit 15 is cooled by supplying a low-temperature refrigerant from the cold heat supply unit 22 to the first heat exchanger 24 (S11). Then, based on the sensor signals from the temperature sensors 16 to 18, it is determined whether or not the cold storage material temperature of the cold storage material storage unit 15 is lower than the hydrate generation temperature (S12).
- the regenerator material storage unit 15 stores the regenerator based on the sensor signals from the supercooling detectors 19, 20, and 21. It is determined whether or not the material is in a supercooled state (S13).
- the voltage application unit 12 applies a voltage to the regenerator material of the subcool release material generating unit 10 (S14). Thereby, the supercooling release substance is generated inside the supercooling release substance generation unit 10. Then, the supercooling release material is supplied to the cold storage material of the cold storage material storage unit 15 via the cold storage material pipe 14.
- generation part 10 of this embodiment is demonstrated.
- the supercooling release substance is extracted from the TBAB aqueous solution containing the supercooling release substance generated by the supercooling release substance generation unit 10 by voltage application by the voltage application unit 12 in the following steps.
- a TBAB aqueous solution containing a supercooling release substance generated by applying a voltage is taken out from the supercooling release substance generating unit 10, and suction filtered using an omnipore membrane filter (manufactured by Merck Millipore, pore size: 0.45 ⁇ m). Insoluble material was obtained. The material was dried using a vacuum dryer at 25 ° C. for 12 hours. Here, AVO-200NB manufactured by AS ONE was used as the dryer, and GLD-051 manufactured by ULVAC was used as the vacuum pump.
- the chemical structure of the supercooled release material obtained in the above extraction process was identified by mass spectrometry using matrix-assisted laser desorption / ionization as follows.
- MALDI-TOF MASS (BRUKER DALTONICS, autoflex) was used. Measurement conditions were such that an N 2 laser (wavelength: 337 nm) was used as the laser light source, the measurement mass range was 20-3000 (m / z), and the number of integrations was 1000 times.
- the supercooling release substance contains tetrabutylammonium ion (TBA + ) represented by the general formula (1) as a cation.
- TAA + tetrabutylammonium ion
- This tetrabutylammonium ion is derived from TBAB (tetrabutylammonium bromide) which is a cold storage material.
- the cation contained in the supercooling release material may be an alkylammonium ion having at least 4 hydrocarbon groups having 1 to 7 carbon atoms.
- the four hydrocarbon groups may be the same or different.
- the supercooling release material contains at least a copper bromide ion represented by the general formula (2) as an anion.
- the anions contained in the supercooling release substance are [Br ⁇ , Cu + ], [Br ⁇ , Cu 2+ ].
- the copper bromide ion containing at least any combination of [Br ⁇ - >, Cu ⁇ + >, Cu ⁇ 2+ >] should just be included.
- Cu contained in these copper bromide ions is derived from the Cu electrode, and Br contained in the copper bromide ions is derived from TBAB (tetrabutylammonium bromide) which is a cold storage material.
- TBAB tetrabutylammonium bromide
- anions made of combinations of these metal ions and halide ions are collectively referred to as metal halide ions.
- the valence and number of ions constituting them and the valence of the whole anion are not limited.
- the supercooling release substance contains the substance represented by the general formula (3).
- a voltage is applied to the cold storage material of the supercooling release substance generation unit 10 by the voltage application unit 12.
- the supercooling release material generating unit 10 can generate the supercooling release material as necessary, and the cold storage material storage unit 15 communicating with the supercooling release material generating unit 10 hydrates the cold storage material.
- the chemical structure of a substance that is one of a plurality of constituent components of the supercooled release substance that is generated by applying a voltage to the TBAB aqueous solution can be specified. As a result, it was possible to clarify what kind of substance can cancel the supercooling of the TBAB aqueous solution.
- the 1st heat exchanger 24 for cooling the heat storage material of the cool storage material storage part 15 is arrange
- the 2nd heat exchanger 26 for receiving the cold of the heat storage material of the cool storage material storage part 15 is arrange
- the second embodiment a plurality of types of materials are used as the electrode material of the voltage application unit 12, and the supercooling release processing of the TBAB aqueous solution is repeatedly performed on each electrode material.
- the supercooling release processing was performed according to the procedure described with reference to the flowchart of FIG. 4 in the first embodiment. And the frequency
- Cu, Zn, Ag, and C are used as the electrode material of the voltage application unit 12. Moreover, the cooling temperature of a cool storage material is 5 degreeC.
- the supercooling release rate when the Cu electrode is used is 97%
- the supercooling release rate when the Zn electrode is used is 100%
- the supercooling when the Ag electrode is used was 100%. That is, when any metal electrode of Cu, Zn, or Ag was used, a high supercooling release effect was obtained.
- the overcooling release rate was 20%, and the overcooling release effect was low.
- the supercooling release substance contains tetrabutylammonium ion (TBA + ) represented by the above general formula (1) as a cation.
- TSA + tetrabutylammonium ion
- the supercooling release material contains zinc bromide ions represented by [Zn 2+ , Br ⁇ , Br ⁇ , Br ⁇ ] as anions. From these combinations, it can be seen that the supercooled release material contains a Zn complex.
- the supercooled release substance includes tetrabutylammonium ion (TBA + ) represented by the above general formula (1) as a cation and Ag + (or [Ag + , Br ⁇ ,. .., Ag + ]) is included. Further, it can be seen from the mass spectrum in the lower part of FIG. 8 that the supercooling release substance contains Br ⁇ (or [Br ⁇ , Ag + ,..., Br ⁇ ]) as anions.
- the supercooling release substance contains an Ag complex.
- the supercooling release material containing TBA + as a cation and copper bromide ion as an anion has been described.
- silver bromide as an anion. It was shown that even when metal bromide ions other than copper bromide ions such as ions and zinc bromide ions are contained, the effect of releasing the supercooling of the TBAB aqueous solution may be obtained.
- the substance generated in the TBAB aqueous solution is analyzed by mass spectrometry. A mass peak derived from bromide was confirmed. Further, from the cation, TBA + which is an ammonium ion contained in the TBAB aqueous solution was detected. From this result, it is conceivable that the compound composed of metal bromide ions and alkylammonium ions generated by voltage application at the voltage application unit 12 has a supercooling release effect on the TBAB aqueous solution.
- the d-orbital state of a metal element in a complex is called structure selection energy and is known to be closely related to the coordination structure of the complex. Therefore, materials with similar d-orbital states often have similar physical and chemical properties.
- the metal element that has been confirmed to form a complex having a subcooling release effect may become a closed shell state in which the d orbital is filled with 10 electrons when it becomes an ion.
- Such elements include Cd and Au in addition to Cu, Ag and Zn.
- the state in which five electrons enter the d orbit is called a semi-closed shell, and it is known that it has characteristics very similar to the closed shell state.
- Such elements include Fe, Cr, Mn, Co, Ni, Mo, Tc, Ru, Rh, Re, Os, Ir, and Pt. Therefore, in addition to the complex confirmed this time, a complex composed of bromide ions and tetrabutylammonium ions of these metal elements is highly likely to have a supercooling release effect on the TBAB aqueous solution.
- a metal element constituting the supercooling release material a metal whose d orbital can be in a closed shell state when it becomes an ion, or a metal whose d orbital can be in a semi-closed shell state when it becomes an ion.
- a metal element constituting the supercooling release material a metal whose d orbital can be in a closed shell state when it becomes an ion, or a metal whose d orbital can be in a semi-closed shell state when it becomes an ion.
- Cu, Ag, Zn, Cd, Au, Cr, Mn, Fe, Co, Ni, Mo, Tc, Ru, Rh, Re, Os, Ir At least one metal element of Pt can be used.
- the voltage application unit 12 applies a voltage to the TBAB aqueous solution and inputs electric energy from the outside, thereby promoting the chemical reaction that generates the supercooling release substance. That is, even if no voltage is applied to the TBAB aqueous solution, it is considered that the target substance can be obtained by adding a simple metal constituting the supercooling release substance to the cold storage material in advance.
- the regenerator 1 is configured to generate a supercooling release substance inside the supercooling release substance generation unit 10 by applying a voltage to the TBAB aqueous solution in the supercooling release substance generation unit 10. .
- the supercooling release substance is generated in advance outside the regenerator 1.
- the cool storage device 1 of the third embodiment includes a cool storage material storage unit 15, a cold energy supply unit 22, a control unit 28, and the like.
- the supercooling release substance generation unit 10 is not provided in the regenerator 1 of the third embodiment.
- the cool storage material storage part 15 of this 3rd Embodiment is comprised as one container, and is filled with TBAB aqueous solution as a cool storage material inside.
- generated outside the cool storage apparatus 1 is added to the cool storage material.
- the supercooling release substance is generated by an external voltage application device (not shown).
- the external voltage application device has the same configuration as the supercooling release substance generation unit 10 provided in the cold storage device 1 of the first and second embodiments.
- the voltage application device is provided with an electrode for applying a voltage to the cold storage material. By applying voltage to the regenerator material with the voltage application device, the supercooling release substance is generated.
- the supercooling release effect was evaluated when an externally generated supercooling release substance was added to the regenerator material.
- a TBAB aqueous solution adjusted to 40 wt% was used as the cold storage material.
- the hydrate formation temperature of the aqueous TBAB solution adjusted to 40 wt% is about 12 ° C.
- each product in the case of using Cu, Ag, Zn as an electrode material with an external voltage application device was used as an external voltage application device.
- the product by voltage application was extracted by the procedure described in the first and second embodiments. In FIG. 10, the product when the voltage is applied by the Cu electrode is “Cu product”, the product when the voltage is applied by the Ag electrode is “Ag product”, and the product when the voltage is applied by the Zn electrode is “Zn product”.
- the regenerator material becomes supercooled by adding a subcool release material that has been generated in advance by applying voltage to the regenerator material,
- the generation of nuclei larger than the critical crystal nucleus diameter can be expected in a short time.
- the supercooled state of the regenerator material can be reliably released.
- the supercooling release substance generated by voltage application outside the cold storage device 1 is added to the cold storage material in advance. For this reason, in the cool storage apparatus 1 of this 3rd Embodiment, it is not necessary to provide the voltage application part 12 like the said 1st Embodiment, and it can cancel
- the fourth embodiment is different from the third embodiment in that the supercooling release substance is generated by organic synthesis or the like.
- the cool storage device 1 of the fourth embodiment has the same configuration as the cool storage device 1 of the third embodiment shown in FIG.
- the supercooling release material generated in advance by organic synthesis or the like is added to the cold storage material of the cold storage material storage unit 15.
- the supercooling release substance of the fourth embodiment is a substance having a chemical structure represented by the general formula (3) of the first embodiment (that is, a compound composed of copper bromide ions and tetrabutylammonium ions). Acta Chemica Scandinavica B37 (1983), p.57-62 ”.
- the supercooling release substance having the above chemical structure was organically synthesized by the method described in “Acta Chemica Scandinavica B36 (1982), p. 125-126”. It was confirmed by mass spectrometry that the target substance was obtained.
- a TBAB aqueous solution adjusted to 20 wt% was used as a cold storage material.
- the hydrate formation temperature of the aqueous TBAB solution adjusted to 20 wt% is about 8 ° C.
- a solution obtained by adding 0.01 wt% of the supercooling release material obtained by synthesis to the cold storage material was allowed to stand in a thermostat set to 1 ° C., and the supercooling release effect was evaluated. Hydrate crystals were visible within 24 hours after the start of cooling. On the other hand, when no compound was added, hydrate crystals could not be confirmed. As a result, it was confirmed that the synthesized compound had a supercooling release effect.
- the supercooling release material having the chemical structure represented by the general formula (3) when added to the cold storage material in advance, the cold storage material is in a supercooled state.
- the supercooling release material helps to generate crystal nuclei and can be expected to generate nuclei larger than the critical crystal nucleus diameter in a short time. As a result, the supercooled state of the regenerator material can be reliably released.
- the supercooling release substance generated by organic synthesis or the like is added to the cold storage material in advance. For this reason, in the cool storage apparatus 1 of this 4th Embodiment, it is not necessary to provide the voltage application part 12 like the said 1st Embodiment, and it can cancel
- the fifth embodiment is different from the fourth embodiment in the type of supercooling release material to be synthesized.
- a compound composed of silver bromide ions and tetrabutylammonium ions was synthesized by the following procedure.
- the precipitated single yellow powder was filtered through a 0.5 ⁇ m membrane filter and washed with EtOH to obtain 245 mg of a single yellow powder (yield: 9.8%). It was confirmed by mass spectrometry that the target substance was obtained.
- a TBAB aqueous solution adjusted to 40 wt% was used as a cold storage material.
- the hydrate formation temperature of the aqueous TBAB solution adjusted to 40 wt% is about 12 ° C.
- a solution obtained by adding 0.01 wt% of a substance synthesized with respect to the cold storage material was allowed to stand in a thermostat set to 9 ° C., and the effect of canceling the supercooling was evaluated. Hydrate crystals were visible within 24 hours after the start of cooling. On the other hand, when no compound was added, hydrate crystals could not be confirmed. As a result, it was confirmed that the synthesized compound had a supercooling release effect.
- the cool storage device 1 of the sixth embodiment has the same configuration as the cool storage device of the third embodiment shown in FIG.
- a supercooling release material made of any single metal of Zn, Fe, Cu, or Ag is added to the regenerator material of the regenerator material storage unit 15.
- these simple metals and, as comparative examples, SiO 2 and zeolite were added to the regenerator material, and the supercooling release effect was evaluated.
- a TBAB aqueous solution adjusted to 20 wt% was used as the cold storage material.
- the hydrate formation temperature of the aqueous TBAB solution adjusted to 20 wt% is about 8 ° C.
- Additives to the regenerator material include Zn with a particle size of less than 75 ⁇ m and 75 to 150 ⁇ m, Fe with a particle size of 45 ⁇ m, Cu with a particle size of 350 nm, Ag with a particle size of 150 nm, SiO 2 with a particle size of 5 to 15 nm, and a particle size of 75 ⁇ m. Zeolite) was used.
- FIG. 11 The result of having left the solution which added 0.01 wt% of the said additive with respect to the cool storage material in the thermostat set to 1 degreeC is shown in FIG. In FIG. 11, the case where the hydrate crystals were visible within 24 hours after the start of cooling was indicated by “ ⁇ ”, and the case where the crystals were not visible was indicated by “X”.
- the cool storage material is supercooled by adding in advance to the cool storage material a supercool release material made of any single metal of Cu, Ag, Zn, or Fe.
- a supercool release material made of any single metal of Cu, Ag, Zn, or Fe.
- an aqueous solution of alkylammonium halide made of TBAB (tetrabutylammonium bromide) is used alone as the heat storage material.
- a plurality of types of aqueous solutions of alkylammonium halide are mixed. It is used as a heat storage material (hereinafter also referred to as a mixed cold storage material).
- the supercooling release material is added to the mixed regenerator material to release the supercooled state of the mixed regenerator material.
- the supercooling release material used for the mixed regenerator material only needs to have a supercooling release effect with respect to at least one alkylammonium halide aqueous solution contained in the mixed regenerator material. If the supercooled state of a part of the alkylammonium halide aqueous solution contained in the mixed regenerator material can be released and solidified, the solidified alkylammonium halide hydrate induces solidification of other alkylammonium halide aqueous solutions. It is considered that the entire mixed regenerator material can be solidified.
- the cool storage device 1 of the seventh embodiment has the same configuration as the cool storage device of the third embodiment shown in FIG.
- a tri-n-butyl-n-pentylammonium bromide (TBPAB) aqueous solution adjusted to 34 wt% and a tetrabutylammonium bromide (TBAB) aqueous solution adjusted to 40 wt% are prepared as cold storage materials. did.
- the hydrate formation temperature of the TBPAB aqueous solution adjusted to 34 wt% is about 6 ° C.
- the hydrate generation temperature of the TBAB aqueous solution adjusted to 40 wt% is about 12 ° C. Therefore, the hydrate formation temperature of the cold storage material can be adjusted by mixing these two types of aqueous solutions.
- an aqueous solution in which the above-described TBPAB aqueous solution and TBAB aqueous solution are mixed at a weight ratio of 9: 1 is used as a mixed cold storage material.
- the Ag product described in the third embodiment was used as an additive.
- the Ag product is a product obtained by applying a voltage using an Ag electrode.
- Evaluation was performed by allowing a solution obtained by adding 0.01 wt% of the above additive to the mixed regenerator material to stand in a thermostatic bath set at 5 ° C.
- the Ag product was added to the mixed cold storage material, the entire sample solidified within 24 hours after the start of cooling.
- the Ag product was not added to the mixed cold storage material, hydrate crystals could not be confirmed even after 24 hours had passed since the start of cooling. Since the Ag product has a supercooling release effect on the TBAB aqueous solution, the crystallization of TBAB hydrate induces the crystallization of TBPAB hydrate. As a result, the mixed regenerator material is solidified. Conceivable.
- the TBAB aqueous solution is used as the heat storage material
- the TBAB aqueous solution and the TBPAB aqueous solution are mixed and used as the heat storage material, but other than the TBAB aqueous solution and the TBPAB aqueous solution are used.
- Alkyl ammonium halide aqueous solution can be used as a heat storage material. Each of these alkylammonium halide aqueous solutions may be used alone as a heat storage material, or a plurality of types of alkylammonium halide aqueous solutions may be mixed and used as a heat storage material.
- the voltage application part 12 has been arrange
- generation part 10 The voltage application unit 12 may be disposed in the heat storage material storage unit 15 without providing the above.
- the supercooling release substance is added to the cold storage material of the cold storage material storage unit 15.
- the present invention is not limited to this.
- a supercooling release material may be provided, and then the cold storage material may be put into the cold storage material storage unit 15.
- the present invention is not limited thereto, and at least the metal electrode may be used as the movable electrode 12b.
- this point will be described.
- an oxidation-reduction reaction occurs at the electrodes 12a and 12b.
- an oxidation reaction occurs at the movable electrode 12b connected to the positive side of the DC power supply.
- a metal is used as the electrode material of the movable electrode 12b, the metal becomes ions and dissolves in the aqueous solution. Since this metal ion is a constituent element of the supercooling release substance, it is necessary to use metal for at least the movable electrode 12b in order to generate the supercooling release substance by applying a voltage.
- the fixed electrode 12a connected to the negative side of the DC power source does not need to be a metal electrode because ionization of the metal constituting the electrode does not occur.
- each section is expressed as S10, for example.
- each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section.
- each section configured in this manner can be referred to as a device, module, or means.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
A supercooling release material for releasing the supercooled state of a cold-storage material including one or more types of halogenated alkyl ammonium aqueous solution for producing a hydrate by cooling to the hydrate-formation temperature or below, the supercooling release material including an alkyl ammonium ion included in the cold-storage material, and a metal halide ion having as a constituent element a halogen element included in the cold storage material. Using a supercooling release material provided with such a configuration makes it possible to reliably release the supercooled state of a cold-storage material.
Description
本出願は、2014年11月14日に出願された日本特許出願番号2014-231287号および2015年5月25日に出願された日本特許出願番号2015―105672号および2015年10月23日に出願された日本特許出願番号2015―209259号に基づくもので、ここにその記載内容を援用する。
This application is filed on Japanese Patent Application No. 2014-231287 filed on November 14, 2014 and Japanese Patent Application No. 2015-105672 filed on May 25, 2015 and on October 23, 2015. Japanese Patent Application No. 2015-209259, which is incorporated herein by reference.
本開示は、蓄冷材の過冷却を解除する過冷却解除物質およびその製造方法に関するものである。
This disclosure relates to a supercooling release substance that releases supercooling of a regenerator material and a manufacturing method thereof.
TBAB(臭化テトラブチルアンモニウム)水溶液を冷却して生成するTBAB水和物等の包接水和物は、大きな熱密度を有しており、蓄冷材として用いることが知られている。このような包接水和物は、1種類の包接水和物を単独で蓄熱材として用いることもでき、複数種類の包接水和物を混合して蓄熱材として用いることもできる(特許文献1参照)。ところが、包接水和物を生成する水溶液は、水和物生成温度以下に冷却しても水和物が生成しない過冷却状態となりやすく、蓄冷材として安定的に使用することが難しい。
Inclusion hydrates such as TBAB hydrate produced by cooling an aqueous solution of TBAB (tetrabutylammonium bromide) have a large heat density and are known to be used as a cold storage material. Such clathrate hydrate can be used alone as a heat storage material, or one kind of clathrate hydrate can be used as a heat storage material by mixing multiple types of clathrate hydrate (patent) Reference 1). However, an aqueous solution that generates clathrate hydrate tends to be in a supercooled state in which no hydrate is generated even when cooled to below the hydrate formation temperature, and is difficult to use stably as a cold storage material.
これに対し、過冷却状態のTBAB水溶液に電場を印加することで過冷却状態を解除する技術が報告されている(非特許文献1参照)。この方法では、TBAB水溶液における電場を印加した部分で過冷却解除物質が生成し、過冷却解除物質によって結晶核の生成が助けられることで過冷却の解除が起こり、その部分から徐々に過冷却解除が進行してTBAB水和物が結晶成長するメカニズムが想定される。
In contrast, a technique for releasing the supercooled state by applying an electric field to the supercooled TBAB aqueous solution has been reported (see Non-Patent Document 1). In this method, the supercooling release material is generated in the part where the electric field is applied in the TBAB aqueous solution, and the supercooling release material assists the generation of crystal nuclei, and the supercooling is released. It is assumed that TBAB hydrate grows through crystal growth.
しかしながら、非特許文献1に記載の方法において、TBAB水溶液に電場を印加した場合に生成する過冷却解除物質の詳細は不明であり、どのような物質によってTBAB水溶液の過冷却が解除されるのかについての報告事例は存在しない。
However, in the method described in Non-Patent Document 1, the details of the supercooling release substance generated when an electric field is applied to the TBAB aqueous solution are unknown, and what kind of substance causes the supercooling of the TBAB aqueous solution to be released. There are no reported cases.
本開示は、蓄冷材の過冷却を解除することができる過冷却解除物質およびその製造方法を提供することを目的とする。
This disclosure is intended to provide a supercooling release material that can release supercooling of a regenerator material and a method for manufacturing the same.
本開示の第一の態様において、水和物生成温度以下に冷却することで水和物を生成する1種類以上のハロゲン化アルキルアンモニウム水溶液を含んだ蓄冷材の過冷却状態を解除する過冷却解除物質は、前記蓄冷材に含まれるアルキルアンモニウムイオンと、前記蓄冷材に含まれるハロゲン元素を構成要素とする金属ハロゲン化物イオンと、を含んでいる。
1st aspect of this indication WHEREIN: The supercooling cancellation | release which cancels | releases the supercooling state of the cool storage material containing the 1 or more types of alkylammonium halide aqueous solution which produces | generates a hydrate by cooling below hydrate formation temperature The substance includes alkylammonium ions contained in the regenerator material and metal halide ions having a halogen element contained in the regenerator material as a constituent element.
このような構成を備える過冷却解除物質を用いることで、蓄冷材の過冷却状態を確実に解除することが可能となる。この過冷却解除物質の構成を特定することで、電圧印加のみならず、有機合成によっても過冷却解除物質を生成することができる。
It is possible to reliably release the supercooling state of the regenerator material by using the supercooling release material having such a configuration. By specifying the structure of the supercooling release substance, the supercooling release substance can be generated not only by voltage application but also by organic synthesis.
本開示の第二の態様において、水和物生成温度以下に冷却することで水和物を生成する1種類以上のハロゲン化アルキルアンモニウム水溶液を含んだ蓄冷材料の過冷却状態を解除する過冷却解除物質の製造方法は、前記ハロゲン化アルキルアンモニウム水溶液に電圧を印加することを備える。前記過冷却解除物質は、前記蓄冷材に含まれるアルキルアンモニウムイオンと、前記蓄冷材に含まれるハロゲン元素を構成要素とする金属ハロゲン化物イオンと、を含んでいる。
2nd aspect of this indication WHEREIN: The supercooling cancellation | release which cancels | releases the supercooling state of the cool storage material containing 1 or more types of alkylammonium halide aqueous solution which produces | generates a hydrate by cooling below hydrate formation temperature The method for producing a substance comprises applying a voltage to the alkyl ammonium halide aqueous solution. The supercooling release substance includes alkylammonium ions contained in the cold storage material and metal halide ions having a halogen element contained in the cold storage material as a constituent element.
このような構成を備える過冷却解除物質の製造方法では、蓄冷材の過冷却状態を確実に解除することが可能となる。この過冷却解除物質の構成を特定することで、電圧印加のみならず、有機合成によっても過冷却解除物質を生成することができる。
In the method for producing a supercooling release material having such a configuration, the supercooled state of the regenerator material can be reliably released. By specifying the structure of the supercooling release substance, the supercooling release substance can be generated not only by voltage application but also by organic synthesis.
本開示の第三態様において、水和物生成温度以下に冷却することで水和物を生成する1種類以上のハロゲン化アルキルアンモニウム水溶液を含んだ蓄冷材料の過冷却状態を解除する過冷却解除物質の製造方法は、少なくともAg、Cu、FeまたはZnのいずれかの単体金属を前記蓄冷材に添加することを備える。前記過冷却解除物質は、前記蓄冷材に含まれるアルキルアンモニウムイオンと、前記蓄冷材に含まれるハロゲン元素を構成要素とする金属ハロゲン化物イオンと、を含んでいる。
In the third aspect of the present disclosure, a supercooling release material that releases a supercooled state of a cold storage material containing one or more aqueous alkylammonium halide solutions that form a hydrate by cooling to a hydrate formation temperature or lower The manufacturing method includes adding at least any single metal of Ag, Cu, Fe, or Zn to the cold storage material. The supercooling release substance includes alkylammonium ions contained in the cold storage material and metal halide ions having a halogen element contained in the cold storage material as a constituent element.
このような構成を備える過冷却解除物質の製造方法では、蓄冷材の過冷却状態を確実に解除することが可能となる。この過冷却解除物質の構成を特定することで、電圧印加のみならず、有機合成によっても過冷却解除物質を生成することができる。
In the method for producing a supercooling release material having such a configuration, the supercooled state of the regenerator material can be reliably released. By specifying the structure of the supercooling release substance, the supercooling release substance can be generated not only by voltage application but also by organic synthesis.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の蓄冷装置の全体構成を示す概念図であり、
図2は、電圧印加部の電極の構成を示す概念図であり、
図3は、TBAB水溶液の濃度と水和物生成温度との関係を示すグラフであり、
図4は、過冷却解除制御処理を示すフローチャートであり、
図5は、過冷却解除物質の分析結果である質量スペクトルを示す図であり、
図6は、第2実施形態において、電圧印加部の電極材料を変化させた場合の過冷却解除率を示す図であり、
図7は、Zn電極を用いた場合に生成した過冷却解除物質の分析結果である質量スペクトルを示す図であり、
図8は、Ag電極を用いた場合に生成した過冷却解除物質の分析結果である質量スペクトルを示す図であり、
図9は、第3実施形態の蓄冷装置の全体構成を示す概念図であり、
図10は、第3実施形態において、TBAB水溶液に各種添加物を添加した場合の過冷却解除効果を示す図であり、
図11は、第6実施形態において、TBAB水溶液に各種添加物を添加した場合の過冷却解除効果を示す図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a conceptual diagram showing the overall configuration of the cold storage device of the first embodiment, FIG. 2 is a conceptual diagram showing the configuration of the electrodes of the voltage application unit, FIG. 3 is a graph showing the relationship between the concentration of an aqueous TBAB solution and the hydrate formation temperature. FIG. 4 is a flowchart showing the supercooling release control process. FIG. 5 is a diagram showing a mass spectrum that is an analysis result of the supercooled release substance, FIG. 6 is a diagram illustrating a supercooling release rate when the electrode material of the voltage application unit is changed in the second embodiment. FIG. 7 is a diagram showing a mass spectrum which is an analysis result of a supercooling release material generated when a Zn electrode is used, FIG. 8 is a diagram showing a mass spectrum which is an analysis result of a supercooling release substance generated when an Ag electrode is used, FIG. 9 is a conceptual diagram showing the overall configuration of the cold storage device of the third embodiment, FIG. 10 is a diagram showing a supercooling release effect when various additives are added to the TBAB aqueous solution in the third embodiment. FIG. 11 is a diagram showing a supercooling release effect when various additives are added to the TBAB aqueous solution in the sixth embodiment.
(第1実施形態)
以下、本開示の第1実施形態について図1~図5に基づいて説明する。 (First embodiment)
Hereinafter, a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 5.
以下、本開示の第1実施形態について図1~図5に基づいて説明する。 (First embodiment)
Hereinafter, a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 5.
図1に示すように、本実施形態の蓄冷装置1は、過冷却解除物質生成部10、蓄冷材貯蔵部15、冷熱供給部22、制御部28等を備えている。
As shown in FIG. 1, the regenerator 1 of this embodiment includes a supercooling release substance generation unit 10, a regenerator storage unit 15, a cold heat supply unit 22, a control unit 28, and the like.
過冷却解除物質生成部10には、内部に蓄冷材が貯蔵されている。蓄冷材として、水和物生成温度以下に冷却することで水和物を生成するハロゲン化アルキルアンモニウム水溶液を用いている。本実施形態では、ハロゲン化アルキルアンモニウム水溶液としてTBAB(臭化テトラブチルアンモニウム)水溶液を用いている。なお、本実施形態では、蓄冷材として、20wt%に調整したTBAB水溶液を使用している。
In the supercooling release substance generation unit 10, a regenerator material is stored. As the cold storage material, an alkylammonium halide aqueous solution that forms a hydrate by cooling to a hydrate formation temperature or lower is used. In this embodiment, a TBAB (tetrabutylammonium bromide) aqueous solution is used as the alkylammonium halide aqueous solution. In this embodiment, a TBAB aqueous solution adjusted to 20 wt% is used as the cold storage material.
TBAB水溶液は、冷却することで水溶液中にTBAB水和物が生成し、冷熱を蓄える蓄冷材として好適に用いることができる。過冷却解除物質生成部10は、TBAB水溶液の過冷却を解除するための過冷却解除物質を生成するために設けられている。過冷却解除物質については、後で詳細に説明する。
The TBAB aqueous solution can be suitably used as a cold storage material that cools heat by generating TBAB hydrate in the aqueous solution by cooling. The supercooling release substance generation unit 10 is provided to generate a supercooling release substance for releasing supercooling of the TBAB aqueous solution. The supercooling release substance will be described later in detail.
過冷却解除物質生成部10には、電圧印加部12が設けられている。電圧印加部12は、蓄冷材に電圧を印加するために設けられており、例えば所定間隔で設けられた一対の電極間に電流を流す構成とすることができる。電圧印加部12で蓄冷材に電圧を印加することで、過冷却解除物質生成部10の蓄冷材に過冷却解除物質が生成する。本実施形態の電圧印加部12は、電極間隔調整機構を備えている。
The supercooling release substance generation unit 10 is provided with a voltage application unit 12. The voltage application part 12 is provided in order to apply a voltage to a cool storage material, For example, it can be set as the structure which sends an electric current between a pair of electrodes provided at predetermined intervals. By applying a voltage to the regenerator material by the voltage application unit 12, a subcool release material is generated in the regenerator material of the subcool release material generation unit 10. The voltage application unit 12 of this embodiment includes an electrode interval adjustment mechanism.
図2に示すように、電圧印加部12は、一対の電極12a、12b、固定部材12c、モータ12dを備えている。一対の電極12a、12bは、固定電極12aと可動電極12bとから構成され、これらは先端同士が対向するように設けられている。可動電極12bの軸部には雄ネジ部が形成され、固定部材12cには可動電極12bの雄ネジ部に対応する雌ネジ部が形成されている。
As shown in FIG. 2, the voltage application unit 12 includes a pair of electrodes 12a and 12b, a fixing member 12c, and a motor 12d. The pair of electrodes 12a and 12b is composed of a fixed electrode 12a and a movable electrode 12b, and these tips are provided so that their tips are opposed to each other. A male screw portion is formed on the shaft portion of the movable electrode 12b, and a female screw portion corresponding to the male screw portion of the movable electrode 12b is formed on the fixed member 12c.
本実施形態では、可動電極12bが図示しない直流電源のプラス側に接続された電極となっており、固定電極12aが直流電源のマイナス側に接続された電極となっている。また、電極12a、12bを構成する電極材料として金属を用いており、本実施形態ではCuからなる金属電極を用いている。
In this embodiment, the movable electrode 12b is an electrode connected to the positive side of a DC power source (not shown), and the fixed electrode 12a is an electrode connected to the negative side of the DC power source. Further, a metal is used as an electrode material constituting the electrodes 12a and 12b, and a metal electrode made of Cu is used in this embodiment.
モータ12dを作動させることで可動電極12bが回転し、可動電極12bを固定電極12aに対して近づく方向または遠ざかる方向に移動させることができる。これにより、電圧印加部12は、固定電極12aと可動電極12bとの間隔を調整することができる。また、固定電極12aと可動電極12bとの距離は、例えばこれらの電極12a、12b間の抵抗を測定することで検出することができる。
The movable electrode 12b is rotated by operating the motor 12d, and the movable electrode 12b can be moved in a direction toward or away from the fixed electrode 12a. Thereby, the voltage application part 12 can adjust the space | interval of the fixed electrode 12a and the movable electrode 12b. Further, the distance between the fixed electrode 12a and the movable electrode 12b can be detected, for example, by measuring the resistance between the electrodes 12a and 12b.
図1に戻り、蓄冷材貯蔵部15は、内部に蓄冷材が貯蔵されている。蓄冷材貯蔵部15は、蓄冷材配管14を介して過冷却解除物質生成部10と連通しており、過冷却解除物質生成部10と蓄冷材貯蔵部15との間で蓄冷材が流通可能となっている。また、蓄冷材貯蔵部15は、過冷却解除物質生成部10から隔離されて配置されており、互いに与える熱の影響をできるだけ抑えるようになっている。
Referring back to FIG. 1, the cool storage material storage unit 15 stores the cool storage material therein. The cold storage material storage unit 15 communicates with the supercooling release material generation unit 10 via the cold storage material pipe 14, and the cold storage material can flow between the supercooling release material generation unit 10 and the cold storage material storage unit 15. It has become. Moreover, the cool storage material storage part 15 is arrange | positioned isolated from the supercooling cancellation | release substance production | generation part 10, and suppresses the influence of the heat which mutually gives as much as possible.
蓄冷材貯蔵部15では、蓄冷材を冷却して水和物を生成することで蓄冷するように構成されている。蓄冷材貯蔵部15にて、蓄冷材に蓄えられた冷熱は、例えば空調装置の冷房に利用することができる。
The cold storage material storage unit 15 is configured to store cold by cooling the cold storage material and generating a hydrate. The cold energy stored in the cold storage material in the cold storage material storage unit 15 can be used for cooling the air conditioner, for example.
蓄冷材貯蔵部15は、複数(本実施形態では3つ)の貯蔵部15a、15b、15cから構成されている。各貯蔵部15a、15b、15cは、蓄冷材配管14を介してそれぞれ過冷却解除物質生成部10と接続されている。
The cold storage material storage unit 15 includes a plurality (three in this embodiment) of storage units 15a, 15b, and 15c. Each storage part 15a, 15b, 15c is connected with the supercooling release substance production | generation part 10 via the cool storage material piping 14, respectively.
各貯蔵部15a、15b、15cには、内部の蓄冷材の温度を検出するための温度センサ16、17、18がそれぞれ設けられている。また、各貯蔵部15a、15b、15cには、内部の蓄冷材での過冷却状態の発生を検出するための過冷却検出部19、20、21がそれぞれ設けられている。
Each of the storage units 15a, 15b, 15c is provided with temperature sensors 16, 17, 18 for detecting the temperature of the internal cold storage material. Each of the storage units 15a, 15b, and 15c is provided with supercooling detection units 19, 20, and 21 for detecting the occurrence of a supercooling state in the internal regenerator material.
過冷却検出部19、20、21としては、例えば発光素子および受光素子を備え、発光素子から受光素子に到達する光の透過率を検出する構成や、受光素子にて散乱光を検出する構成とすることができる。蓄冷材が冷却され水和物の割合が増加すると、光の透過率が低下するので、水和物生成温度より低い温度において、光の透過率が基準値を上回っていれば過冷却状態であると判断でき、光の透過率が基準値を下回っていれば過冷却状態でないと判断できる。また、蓄冷材が冷却され水和物の割合が増加すると、発光素子からの光が散乱するので、水和物生成温度より低い温度において、散乱光を検出できなければ過冷却状態であると判断でき、散乱光を検出できれば過冷却状態でないと判断できる。
For example, the supercooling detection units 19, 20, and 21 include a light emitting element and a light receiving element, and a configuration for detecting the transmittance of light reaching the light receiving element from the light emitting element, and a structure for detecting scattered light by the light receiving element. can do. When the regenerator material is cooled and the proportion of hydrate increases, the light transmittance decreases. Therefore, if the light transmittance exceeds the reference value at a temperature lower than the hydrate formation temperature, it is in a supercooled state. If the light transmittance is below the reference value, it can be determined that the supercooling state is not established. In addition, when the regenerator material is cooled and the hydrate ratio increases, light from the light-emitting element scatters. Therefore, if the scattered light cannot be detected at a temperature lower than the hydrate formation temperature, it is determined that the supercooled state is reached. If the scattered light can be detected, it can be determined that the supercooling state is not established.
あるいは、蓄冷材が冷却され水和物の割合が増加すると蓄冷材の粘度が高くなるので、過冷却検出部19、20、21によって蓄冷材の粘度を検出するようにしてもよい。この場合には、水和物生成温度より低い温度において、蓄冷材の粘度が基準値を下回っていれば過冷却状態であると判断でき、蓄冷材の粘度が基準値を上回っていれば過冷却状態でないと判断できる。
Or, since the viscosity of the regenerator material increases when the regenerator material is cooled and the proportion of hydrate increases, the supercooling detectors 19, 20, and 21 may detect the viscosity of the regenerator material. In this case, if the viscosity of the regenerator material is lower than the reference value at a temperature lower than the hydrate formation temperature, it can be determined that the supercooled state is present, and if the viscosity of the regenerator material exceeds the reference value, the subcoolant is It can be determined that it is not in a state.
あるいは、蓄冷材が冷却され水和物が生成すると相変化による熱量変化が生じるので、過冷却検出部19、20、21として例えば熱電対を用い、示差熱を検出するようにしてもよい。この場合には、過冷却検出部19、20、21で検出した示差熱が基準値を下回っていれば過冷却状態であると判断でき、過冷却検出部19、20、21で検出した示差熱が基準値を上回っていれば過冷却状態でないと判断できる。
Alternatively, when the regenerator material is cooled and hydrates are generated, the amount of heat changes due to the phase change. Therefore, for example, thermocouples may be used as the subcooling detection units 19, 20, and 21 to detect the differential heat. In this case, if the differential heat detected by the supercooling detectors 19, 20, and 21 is below the reference value, it can be determined that the supercooling state is present, and the differential heat detected by the supercooling detectors 19, 20, and 21 is detected. If the value exceeds the reference value, it can be determined that the supercooling state has not occurred.
冷熱供給部22は、冷媒配管23を介して第1熱交換器24に低温冷媒を供給し、蓄冷材貯蔵部15を冷却するように構成されている。冷熱供給部22は、例えば圧縮機、凝縮器、膨張弁等を備える周知の冷凍サイクルとして構成し、第1熱交換器24は冷凍サイクルの蒸発器とすることができる。第1熱交換器24は、蓄冷材貯蔵部15に熱的に接触しており、冷熱供給部22から供給される低温冷媒と蓄冷材貯蔵部15との間で熱交換することで、蓄冷材貯蔵部15に貯蔵された蓄冷材を冷却することができる。つまり、冷熱供給部22、第1熱交換器24、冷媒配管23が「冷却装置」を構成している。
The cold heat supply unit 22 is configured to supply a low-temperature refrigerant to the first heat exchanger 24 via the refrigerant pipe 23 to cool the cold storage material storage unit 15. The cold heat supply unit 22 is configured as a known refrigeration cycle including, for example, a compressor, a condenser, an expansion valve, and the like, and the first heat exchanger 24 can be an evaporator of the refrigeration cycle. The first heat exchanger 24 is in thermal contact with the cold storage material storage unit 15, and exchanges heat between the low-temperature refrigerant supplied from the cold heat supply unit 22 and the cold storage material storage unit 15, thereby the cold storage material. The regenerator material stored in the storage unit 15 can be cooled. That is, the cold heat supply part 22, the 1st heat exchanger 24, and the refrigerant | coolant piping 23 comprise the "cooling device."
図1に示すように、第1熱交換器24は、蓄冷材貯蔵部15の上部に配置されている。蓄冷材貯蔵部15内で凝固していない蓄熱材は、蓄冷材貯蔵部15の内部における上方に集まると考えられるので、蓄冷材貯蔵部15の上部から冷却することで、蓄熱材を効率よく凝結させることができる。
As shown in FIG. 1, the first heat exchanger 24 is disposed on the upper part of the cold storage material storage unit 15. Since the heat storage material that has not solidified in the cold storage material storage unit 15 is considered to gather above the inside of the cold storage material storage unit 15, the heat storage material is efficiently condensed by cooling from the upper part of the cold storage material storage unit 15. Can be made.
なお、冷熱供給部22から第1熱交換器24に冷熱を供給する装置は、上記に述べた冷媒配管23を用いて行っても良いし、あるいは冷熱供給部22から冷熱を有する風などの流体を第1熱交換器24に直接導入しても良い。
The apparatus for supplying cold from the cold supply unit 22 to the first heat exchanger 24 may be performed using the refrigerant pipe 23 described above, or a fluid such as wind having cold from the cold supply unit 22. May be directly introduced into the first heat exchanger 24.
蓄冷材貯蔵部15の蓄冷材に蓄えられた冷熱は、熱媒体を介して冷熱利用部25に供給される。冷熱利用部25は例えば空調装置とすることができ、熱媒体としては例えば水を用いることができる。蓄冷材貯蔵部15の下方に、第2熱交換器26が熱的に接触するように設けられており、第2熱交換器26は蓄冷材貯蔵部15と熱媒体との間で熱交換する。冷熱を受け取った熱媒体が熱媒体配管27を介して冷熱利用部25に流れることで、蓄冷材貯蔵部15の蓄冷材に蓄えられた冷熱を冷熱利用部25に供給することができる。なお、冷熱利用部25、第2熱交換器26、熱媒体配管27が「冷熱利用装置」に対応している。
The cold energy stored in the cold storage material of the cold storage material storage unit 15 is supplied to the cold energy utilization unit 25 via a heat medium. The cold heat utilization unit 25 can be an air conditioner, for example, and water can be used as the heat medium, for example. The 2nd heat exchanger 26 is provided in the downward direction of the cool storage material storage part 15 so that it may contact thermally, and the 2nd heat exchanger 26 heat-exchanges between the cool storage material storage part 15 and a heat medium. . The heat medium that has received the cold flows to the cold energy utilization unit 25 through the heat medium pipe 27, whereby the cold energy stored in the cold storage material of the cold storage material storage unit 15 can be supplied to the cold energy utilization unit 25. The cold energy utilization unit 25, the second heat exchanger 26, and the heat medium pipe 27 correspond to the “cold energy utilization device”.
また、蓄熱材の水和物結晶は水よりも比重が大きいため、蓄冷材貯蔵部15の内部における下方に集まると考えられる。このため、第2熱交換器26を蓄冷材貯蔵部15の下方に設けることで、蓄冷材貯蔵部15の蓄冷材に蓄えられた冷熱を効率よく利用することができる。
Moreover, since the hydrate crystals of the heat storage material have a higher specific gravity than water, it is considered that the heat storage material gathers below in the cold storage material storage unit 15. For this reason, by providing the 2nd heat exchanger 26 under the cool storage material storage part 15, the cold energy stored in the cool storage material of the cool storage material storage part 15 can be utilized efficiently.
なお、第2熱交換器26から冷熱利用部25に冷熱を供給する装置は、上記に述べた熱媒体配管27を用いて行っても良いし、あるいは第2熱交換器26から冷熱を有する風などの流体を冷熱利用部25に直接導入しても良い。
The apparatus for supplying cold from the second heat exchanger 26 to the cold heat utilization unit 25 may be performed using the heat medium pipe 27 described above, or the wind having cold from the second heat exchanger 26 may be used. Such a fluid may be directly introduced into the cold heat utilization unit 25.
制御部28は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、ROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行う。制御部28には、温度センサ13、16、17、18、過冷却検出部19、20、21からのセンサ信号が入力し、温度調整部11、電圧印加部12、冷熱供給部22に制御信号を出力するように構成されている。
The control unit 28 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits, and performs various calculations and processes based on an air conditioning control program stored in the ROM. Sensor signals from the temperature sensors 13, 16, 17, 18 and the supercooling detection units 19, 20, 21 are input to the control unit 28, and control signals are sent to the temperature adjustment unit 11, the voltage application unit 12, and the cooling / heating supply unit 22. Is configured to output.
ここで、本実施形態で蓄冷材として用いられるTBAB水溶液について説明する。図3に示すように、代表的なTBABの水和物として、水和度が約26の第1水和物と、水和度が約38の第2水和物の2種類が報告されている。水和物生成温度は、水和物の種類やTBAB水溶液の濃度によって異なっている。20wt%に調整したTBAB水溶液では、第1水和物と第2水和物のどちらもできる可能性があり、水和物生成温度はいずれの場合でも約8℃である。40wt%に調整したTBAB水溶液では第1水和物ができ、水和物生成温度は約12℃である。
Here, the TBAB aqueous solution used as a cold storage material in this embodiment will be described. As shown in FIG. 3, two types of typical TBAB hydrates, a first hydrate having a hydration degree of about 26 and a second hydrate having a hydration degree of about 38, have been reported. Yes. The hydrate formation temperature varies depending on the type of hydrate and the concentration of the TBAB aqueous solution. In the TBAB aqueous solution adjusted to 20 wt%, both the first hydrate and the second hydrate may be formed, and the hydrate formation temperature is about 8 ° C. in either case. In the TBAB aqueous solution adjusted to 40 wt%, the first hydrate is formed, and the hydrate formation temperature is about 12 ° C.
上記従来技術の欄で述べたように、TBAB水溶液は、水和物生成温度より低い温度に冷却してもTBAB水和物が生成しない過冷却状態となりやすいという性質を有している。このため、本実施形態の蓄冷装置1では、過冷却解除物質を発生させ、さらに過冷却解除物質を所望する部位に均一に供給することで、TBAB水溶液が過冷却状態になることを抑制している。
As described in the above-mentioned section of the prior art, the TBAB aqueous solution has a property that even when cooled to a temperature lower than the hydrate formation temperature, it tends to be in a supercooled state in which TBAB hydrate is not generated. For this reason, in the cool storage device 1 of the present embodiment, the supercooling release substance is generated, and the supercooling release substance is uniformly supplied to the desired portion, thereby suppressing the TBAB aqueous solution from being supercooled. Yes.
本実施形態では、過冷却解除物質生成部10にて生成された過冷却解除物質は、蓄冷材配管14を介して、複数の貯蔵部15a、15b、15cのそれぞれに枝分かれして供給されるように構成されている。これにより、過冷却解除物質生成部10にて生成された過冷却解除物質は、蓄冷材貯蔵部15の特定箇所に偏ることなく、各貯蔵部15a、15b、15cに均一に拡散して供給することができる。
In the present embodiment, the supercooling release material generated by the supercooling release material generation unit 10 is supplied in a branched manner to each of the plurality of storage units 15a, 15b, and 15c via the cold storage material pipe 14. It is configured. As a result, the supercooling release material generated in the supercooling release material generation unit 10 is uniformly diffused and supplied to each of the storage units 15 a, 15 b, and 15 c without being biased toward a specific location of the cold storage material storage unit 15. be able to.
次に、上記構成の蓄冷装置1による過冷却解除制御処理を図4のフローチャートに基づいて説明する。
Next, the supercooling release control process by the regenerator 1 having the above configuration will be described based on the flowchart of FIG.
図4に示すように、まず、電圧印加部12によって過冷却解除物質生成部10の蓄冷材に電圧を印加する(S10)。これにより、過冷却解除物質生成部10の内部で過冷却解除物質が生成される。そして、蓄冷材配管14を介して蓄冷材貯蔵部15の蓄冷材に過冷却解除物質が供給される。
As shown in FIG. 4, first, a voltage is applied to the regenerator material of the supercooling release substance generating unit 10 by the voltage applying unit 12 (S10). Thereby, the supercooling release substance is generated inside the supercooling release substance generation unit 10. Then, the supercooling release material is supplied to the cold storage material of the cold storage material storage unit 15 via the cold storage material pipe 14.
次に、冷熱供給部22から第1熱交換器24に低温冷媒を供給することで、蓄冷材貯蔵部15を冷却する(S11)。そして、温度センサ16~18からのセンサ信号に基づいて蓄冷材貯蔵部15の蓄冷材温度が水和物生成温度以下になったか否かを判定する(S12)。
Next, the cold storage material storage unit 15 is cooled by supplying a low-temperature refrigerant from the cold heat supply unit 22 to the first heat exchanger 24 (S11). Then, based on the sensor signals from the temperature sensors 16 to 18, it is determined whether or not the cold storage material temperature of the cold storage material storage unit 15 is lower than the hydrate generation temperature (S12).
この結果、蓄冷材温度が水和物生成温度以下になっていないと判定された場合には(S12:NO)、S11の処理に戻る。一方、蓄冷材温度が水和物生成温度以下になったと判定された場合には(S12:YES)、過冷却検出部19、20、21からのセンサ信号に基づいて蓄冷材貯蔵部15の蓄冷材が過冷却状態になっているか否かを判定する(S13)。
As a result, when it is determined that the regenerator temperature is not lower than the hydrate formation temperature (S12: NO), the process returns to S11. On the other hand, when it is determined that the temperature of the regenerator material is equal to or lower than the hydrate formation temperature (S12: YES), the regenerator material storage unit 15 stores the regenerator based on the sensor signals from the supercooling detectors 19, 20, and 21. It is determined whether or not the material is in a supercooled state (S13).
この結果、蓄冷材が過冷却状態になっていると判定された場合には(S13:YES)、電圧印加部12によって過冷却解除物質生成部10の蓄冷材に電圧を印加する(S14)。これにより、過冷却解除物質生成部10の内部で過冷却解除物質が生成される。そして、蓄冷材配管14を介して蓄冷材貯蔵部15の蓄冷材に過冷却解除物質が供給される。
As a result, when it is determined that the regenerator material is in a supercooled state (S13: YES), the voltage application unit 12 applies a voltage to the regenerator material of the subcool release material generating unit 10 (S14). Thereby, the supercooling release substance is generated inside the supercooling release substance generation unit 10. Then, the supercooling release material is supplied to the cold storage material of the cold storage material storage unit 15 via the cold storage material pipe 14.
また、S13の判定処理の結果、蓄冷材が過冷却状態になっていないと判定された場合には(S13:NO)、過冷却解除制御処理を終了する。
Further, as a result of the determination process of S13, when it is determined that the regenerator material is not in the supercooled state (S13: NO), the supercooling release control process is terminated.
ここで、本実施形態の過冷却解除物質生成部10で生成される過冷却解除物質について説明する。本実施形態では、電圧印加部12による電圧印加によって過冷却解除物質生成部10で生成した過冷却解除物質を含むTBAB水溶液から、以下の工程で過冷却解除物質を抽出した。
Here, the supercooling cancellation | release substance produced | generated in the supercooling cancellation | release substance production | generation part 10 of this embodiment is demonstrated. In the present embodiment, the supercooling release substance is extracted from the TBAB aqueous solution containing the supercooling release substance generated by the supercooling release substance generation unit 10 by voltage application by the voltage application unit 12 in the following steps.
まず、電圧印加によって生成した過冷却解除物質を含むTBAB水溶液を過冷却解除物質生成部10から取り出し、オムニポアメンブレンフィルター(メルクミリポア社製、孔径:0.45μm)を用いて吸引濾過し、水に不溶な物質を得た。この物質を、真空乾燥器を用いて乾燥処理を25℃で12時間行った。ここで、乾燥器にはAS ONE社製 AVO-200NBを用い、真空ポンプにはULVAC社製 GLD-051を用いた。
First, a TBAB aqueous solution containing a supercooling release substance generated by applying a voltage is taken out from the supercooling release substance generating unit 10, and suction filtered using an omnipore membrane filter (manufactured by Merck Millipore, pore size: 0.45 μm). Insoluble material was obtained. The material was dried using a vacuum dryer at 25 ° C. for 12 hours. Here, AVO-200NB manufactured by AS ONE was used as the dryer, and GLD-051 manufactured by ULVAC was used as the vacuum pump.
次に、乾燥処理後の物質をクロロホルムと混合・撹拌した後、再度オムニポアメンブレンフィルタ(メルクミリポア社製、孔径:0.45μm)を用いて吸引濾過し、クロロホルムに不溶な物質を得た。この物質を、真空乾燥器を用いて乾燥処理を25℃で12時間行い、目的の過冷却解除物質を得た。
Next, after the dried material was mixed and stirred with chloroform, it was suction filtered again using an omnipore membrane filter (manufactured by Merck Millipore, pore size: 0.45 μm) to obtain a substance insoluble in chloroform. This material was dried using a vacuum dryer at 25 ° C. for 12 hours to obtain the desired supercooling release material.
以上の抽出工程で得た過冷却解除物質の化学構造を、マトリックス支援レーザー脱離イオン化法を用いた質量分析によって以下のように特定した。
The chemical structure of the supercooled release material obtained in the above extraction process was identified by mass spectrometry using matrix-assisted laser desorption / ionization as follows.
分析装置として、MALDI-TOF MASS(BRUKER DALTONICS,autoflex)を用いた。測定条件は、レーザー光源としてN2レーザー(波長:337nm)を用い、測定質量範囲を20-3000(m/z)とし、積算回数を1000回とした。
As an analyzer, MALDI-TOF MASS (BRUKER DALTONICS, autoflex) was used. Measurement conditions were such that an N 2 laser (wavelength: 337 nm) was used as the laser light source, the measurement mass range was 20-3000 (m / z), and the number of integrations was 1000 times.
分析の結果、図5の上段に示す陽イオンの質量スペクトルと、図5の下段に示す陰イオンの質量スペクトルが得られた。
As a result of the analysis, the mass spectrum of the cation shown in the upper part of FIG. 5 and the mass spectrum of the anion shown in the lower part of FIG. 5 were obtained.
図5上段の質量スペクトルから、過冷却解除物質には、陽イオンとして一般式(1)で示されるテトラブチルアンモニウムイオン(TBA+)が含まれていることがわかる。このテトラブチルアンモニウムイオンは、蓄冷材であるTBAB(臭化テトラブチルアンモニウム)に由来している。
From the mass spectrum in the upper part of FIG. 5, it can be seen that the supercooling release substance contains tetrabutylammonium ion (TBA + ) represented by the general formula (1) as a cation. This tetrabutylammonium ion is derived from TBAB (tetrabutylammonium bromide) which is a cold storage material.
また、図5下段の質量スペクトルから、過冷却解除物質には、陰イオンとして少なくとも一般式(2)で示される銅臭化物イオンが含まれていることがわかる。
Further, from the mass spectrum in the lower part of FIG. 5, it is found that the supercooling release material contains at least a copper bromide ion represented by the general formula (2) as an anion.
または[Br-,Cu+,Cu2+]の少なくとも何れかの組み合わせを含んだ銅臭化物イオンを含んでいればよい。これら銅臭化物イオンに含まれるCuは、Cu電極に由来しており、銅臭化物イオンに含まれるBrは、蓄冷材であるTBAB(臭化テトラブチルアンモニウム)に由来している。以降、これら金属イオンとハロゲン化物イオンの組み合わせからなる陰イオンを総称して金属ハロゲン化物イオンと呼ぶ。ただし、それらを構成するイオンの価数や数、および陰イオン全体としての価数は問わない。
Or the copper bromide ion containing at least any combination of [Br < - >, Cu < + >, Cu < 2+ >] should just be included. Cu contained in these copper bromide ions is derived from the Cu electrode, and Br contained in the copper bromide ions is derived from TBAB (tetrabutylammonium bromide) which is a cold storage material. Hereinafter, anions made of combinations of these metal ions and halide ions are collectively referred to as metal halide ions. However, the valence and number of ions constituting them and the valence of the whole anion are not limited.
以上のことから、過冷却解除物質には、一般式(3)で示される物質が含有されていることが特定できる。
From the above, it can be specified that the supercooling release substance contains the substance represented by the general formula (3).
また、本実施形態では、TBAB水溶液に電圧を印加することで生成する過冷却解除物質において、その複数の構成成分の一つである物質の化学構造を特定することができた。これにより、どのような物質によってTBAB水溶液の過冷却を解除できるのかを明らかにすることができた。
In the present embodiment, the chemical structure of a substance that is one of a plurality of constituent components of the supercooled release substance that is generated by applying a voltage to the TBAB aqueous solution can be specified. As a result, it was possible to clarify what kind of substance can cancel the supercooling of the TBAB aqueous solution.
また、本実施形態では、蓄冷材貯蔵部15の蓄熱材を冷却するための第1熱交換器24を蓄冷材貯蔵部15の上部に配置している。これにより、蓄冷材貯蔵部15内で凝固することなく上方に集まっている蓄熱材を、蓄冷材貯蔵部15の上部から冷却して、効率よく凝結させることができる。
Moreover, in this embodiment, the 1st heat exchanger 24 for cooling the heat storage material of the cool storage material storage part 15 is arrange | positioned in the upper part of the cool storage material storage part 15. FIG. Thereby, the heat storage material gathered upward without solidifying in the cold storage material storage part 15 can be cooled from the upper part of the cold storage material storage part 15, and can be condensed efficiently.
また、本実施形態では、蓄冷材貯蔵部15の蓄熱材の冷熱を受け取るための第2熱交換器26を蓄冷材貯蔵部15の下部に配置している。これにより、蓄冷材貯蔵部15内で凝固して下方に集まっている蓄熱材の冷熱を、蓄冷材貯蔵部15の下部から効率よく受け取ることができる。
Moreover, in this embodiment, the 2nd heat exchanger 26 for receiving the cold of the heat storage material of the cool storage material storage part 15 is arrange | positioned in the lower part of the cool storage material storage part 15. FIG. Thereby, the cold energy of the heat storage material solidified in the cold storage material storage unit 15 and gathered downward can be efficiently received from the lower part of the cold storage material storage unit 15.
(第2実施形態)
次に、本開示の第2実施形態について説明する。本第2実施形態では、上記第1実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。 (Second Embodiment)
Next, a second embodiment of the present disclosure will be described. In the second embodiment, description of the same parts as in the first embodiment will be omitted, and only different parts will be described.
次に、本開示の第2実施形態について説明する。本第2実施形態では、上記第1実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。 (Second Embodiment)
Next, a second embodiment of the present disclosure will be described. In the second embodiment, description of the same parts as in the first embodiment will be omitted, and only different parts will be described.
本第2実施形態では、電圧印加部12の電極材料として複数種類の材料を用い、各電極材料でTBAB水溶液の過冷却解除処理を繰り返し行った。過冷却解除処理は、上記第1実施形態で図4のフローチャートを用いて説明した手順で行った。そして、電極材料毎に過冷却解除処理によってTBAB水溶液が凝固した回数を測定し、電極材料毎の過冷却解除率を算出した。本第2実施形態では、電圧印加部12の電極材料として、Cu、Zn、Ag、Cを用いた。また、蓄冷材の冷却温度は5℃である。
In the second embodiment, a plurality of types of materials are used as the electrode material of the voltage application unit 12, and the supercooling release processing of the TBAB aqueous solution is repeatedly performed on each electrode material. The supercooling release processing was performed according to the procedure described with reference to the flowchart of FIG. 4 in the first embodiment. And the frequency | count that the TBAB aqueous solution solidified by the subcooling cancellation | release process for every electrode material was measured, and the subcooling cancellation | release rate for every electrode material was computed. In the second embodiment, Cu, Zn, Ag, and C are used as the electrode material of the voltage application unit 12. Moreover, the cooling temperature of a cool storage material is 5 degreeC.
図6に示すように、Cu電極を用いた場合の過冷却解除率は97%であり、Zn電極を用いた場合の過冷却解除率は100%であり、Ag電極を用いた場合の過冷却解除率は100%であった。つまり、Cu、ZnまたはAgの何れかの金属電極を用いた場合には、高い過冷却解除効果が得られた。一方、非金属電極であるC電極を用いた場合の過冷却解除率は20%であり、過冷却解除効果は低かった。
As shown in FIG. 6, the supercooling release rate when the Cu electrode is used is 97%, the supercooling release rate when the Zn electrode is used is 100%, and the supercooling when the Ag electrode is used. The release rate was 100%. That is, when any metal electrode of Cu, Zn, or Ag was used, a high supercooling release effect was obtained. On the other hand, when the C electrode, which is a non-metallic electrode, was used, the overcooling release rate was 20%, and the overcooling release effect was low.
Cu電極による電圧印加によってTBAB水溶液中で生成した物質の分析結果は、図5を用いて上記第1実施形態で説明したので、本第2実施形態ではZn電極、Ag電極による電圧印加でTBAB水溶液中で生成した物質の分析結果について説明する。質量分析は、上記第1実施形態と同様の手順で行っている。
The analysis result of the substance generated in the TBAB aqueous solution by the voltage application by the Cu electrode has been described in the first embodiment with reference to FIG. 5. Therefore, in the second embodiment, the TBAB aqueous solution is applied by the voltage application by the Zn electrode and the Ag electrode. The analysis result of the substance produced in the inside will be described. Mass spectrometry is performed in the same procedure as in the first embodiment.
まず、Zn電極による電圧印加でTBAB水溶液中で生成した物質を質量分析によって分析した結果を図7に基づいて説明する。
First, the result of analyzing a substance generated in a TBAB aqueous solution by applying voltage with a Zn electrode by mass spectrometry will be described with reference to FIG.
図7上段の質量スペクトルから、過冷却解除物質には、陽イオンとして上述の一般式(1)で示されるテトラブチルアンモニウムイオン(TBA+)が含まれていることがわかる。また、図7下段の質量スペクトルから、過冷却解除物質には、陰イオンとして[Zn2+,Br-,Br-,Br-]で示される亜鉛臭化物イオンが含まれていることがわかる。
これらの組み合わせから、過冷却解除物質中にはZn錯体が含まれていることがわかる。 From the mass spectrum in the upper part of FIG. 7, it is understood that the supercooling release substance contains tetrabutylammonium ion (TBA + ) represented by the above general formula (1) as a cation. Moreover, it can be seen from the mass spectrum in the lower part of FIG. 7 that the supercooling release material contains zinc bromide ions represented by [Zn 2+ , Br − , Br − , Br − ] as anions.
From these combinations, it can be seen that the supercooled release material contains a Zn complex.
これらの組み合わせから、過冷却解除物質中にはZn錯体が含まれていることがわかる。 From the mass spectrum in the upper part of FIG. 7, it is understood that the supercooling release substance contains tetrabutylammonium ion (TBA + ) represented by the above general formula (1) as a cation. Moreover, it can be seen from the mass spectrum in the lower part of FIG. 7 that the supercooling release material contains zinc bromide ions represented by [Zn 2+ , Br − , Br − , Br − ] as anions.
From these combinations, it can be seen that the supercooled release material contains a Zn complex.
次に、Ag電極による電圧印加でTBAB水溶液中で生成した物質を質量分析によって分析した結果を図8に基づいて説明する。
Next, the result of analyzing the substance generated in the TBAB aqueous solution by applying voltage with the Ag electrode by mass spectrometry will be described with reference to FIG.
図8上段の質量スペクトルから、過冷却解除物質には、陽イオンとして上述の一般式(1)で示されるテトラブチルアンモニウムイオン(TBA+)と、Ag+(または[Ag+,Br-,・・・,Ag+])が含まれていることがわかる。また、図8下段の質量スペクトルから、過冷却解除物質には、陰イオンとしてBr-(または[Br-,Ag+,・・・,Br-])が含まれていることがわかる。陽イオンがテトラブチルアンモニウムイオン(TBA+)、陰イオンが[Br-,Ag+,・・・,Br-]で示される銀臭化物イオンの組み合わせから、過冷却解除物質中にはAg錯体が含まれていることがわかる。
From the mass spectrum in the upper part of FIG. 8, the supercooled release substance includes tetrabutylammonium ion (TBA + ) represented by the above general formula (1) as a cation and Ag + (or [Ag + , Br − ,. .., Ag + ]) is included. Further, it can be seen from the mass spectrum in the lower part of FIG. 8 that the supercooling release substance contains Br − (or [Br − , Ag + ,..., Br − ]) as anions. From the combination of silver bromide ions in which the cation is tetrabutylammonium ion (TBA + ) and the anion is [Br − , Ag + ,..., Br − ], the supercooling release substance contains an Ag complex. You can see that
以上説明した本第2実施形態によれば、電圧印加部12の電極材料として、Cu、Zn、Agの何れかの金属を用いた場合に、高い過冷却解除効果を得ることができた。
According to the second embodiment described above, when any metal of Cu, Zn, and Ag is used as the electrode material of the voltage application unit 12, a high overcooling release effect can be obtained.
また、本第2実施形態では、電圧印加部12の電極材料を異ならせることで、生成する過冷却解除物質の構成が変化することが示された。例えば、Cu電極を用いた場合には、陽イオンとしてテトラブチルアンモニウムイオン(TBA+)が含まれ、陰イオンとして銅臭化物イオンが含まれる過冷却解除物質が生成した。また、Zn電極を用いた場合には、陽イオンとしてTBA+が含まれ、陰イオンとして亜鉛臭化物イオンが含まれる過冷却解除物質が生成した。また、Ag電極を用いた場合には、陽イオンとしてTBA+が含まれ、陰イオンとして銀臭化物イオンが含まれる過冷却解除物質が生成した。
Moreover, in this 2nd Embodiment, it was shown by changing the electrode material of the voltage application part 12 that the structure of the subcooling cancellation | release substance to produce | generate changes. For example, when a Cu electrode was used, a supercooling release material containing tetrabutylammonium ions (TBA + ) as cations and copper bromide ions as anions was generated. In addition, when a Zn electrode was used, a supercooling release material containing TBA + as a cation and zinc bromide ion as an anion was generated. In addition, when an Ag electrode was used, a supercooling release material containing TBA + as a cation and silver bromide ion as an anion was generated.
つまり、上記第1実施形態では、陽イオンとしてTBA+が含まれ、陰イオンとして銅臭化物イオンが含まれる過冷却解除物質について説明したが、本第2実施形態によれば、陰イオンとして銀臭化物イオンや亜鉛臭化物イオンのような銅臭化物イオン以外の金属臭化物イオンが含まれている場合であっても、TBAB水溶液の過冷却解除効果が得られる場合があることが示された。
That is, in the first embodiment, the supercooling release material containing TBA + as a cation and copper bromide ion as an anion has been described. However, according to the second embodiment, silver bromide as an anion. It was shown that even when metal bromide ions other than copper bromide ions such as ions and zinc bromide ions are contained, the effect of releasing the supercooling of the TBAB aqueous solution may be obtained.
また、上述のように、電圧印加部12の電極材料としてCu、Zn、Agの何れかの金属を用いた場合に、TBAB水溶液中で生成した物質を質量分析によって分析した結果、陰イオンとして金属臭化物に由来する質量ピークが確認できた。また、陽イオンからは、TBAB水溶液中に含まれるアンモニウムイオンであるTBA+が検出された。この結果から、電圧印加部12での電圧印加によって生じた金属臭化物イオンと、アルキルアンモニウムイオンからなる化合物に、TBAB水溶液に対する過冷却解除効果があることが考えられる。
In addition, as described above, when any one of Cu, Zn, and Ag is used as the electrode material of the voltage applying unit 12, the substance generated in the TBAB aqueous solution is analyzed by mass spectrometry. A mass peak derived from bromide was confirmed. Further, from the cation, TBA + which is an ammonium ion contained in the TBAB aqueous solution was detected. From this result, it is conceivable that the compound composed of metal bromide ions and alkylammonium ions generated by voltage application at the voltage application unit 12 has a supercooling release effect on the TBAB aqueous solution.
一般に、錯体中の金属元素のd軌道の状態は構造選択エネルギーと呼ばれ、錯体の配位構造と密接な関係があることが知られている。したがって、d軌道の状態が似通った物質は、その物理的性質や化学的性質が似通っていることが多い。
Generally, the d-orbital state of a metal element in a complex is called structure selection energy and is known to be closely related to the coordination structure of the complex. Therefore, materials with similar d-orbital states often have similar physical and chemical properties.
本第2実施形態において、過冷却解除効果のある錯体を作ることが確認できた金属元素には、イオンになった際に、d軌道が10個の電子で満たされた閉殻状態になる場合があるという特徴がある。そのような元素には、Cu、Ag、Znの他に、Cd、Auが挙げられる。
In the second embodiment, the metal element that has been confirmed to form a complex having a subcooling release effect may become a closed shell state in which the d orbital is filled with 10 electrons when it becomes an ion. There is a feature that there is. Such elements include Cd and Au in addition to Cu, Ag and Zn.
また、d軌道に電子が5つ入った状態は半閉殻と呼ばれ、閉殻状態とよく似た特性があることが知られている。そのような元素には、Fe、Cr、Mn、Co、Ni、Mo、Tc、Ru、Rh、Re、Os、Ir、Ptが挙げられる。したがって、今回確認できた錯体以外にも、これら金属元素の臭化物イオンとテトラブチルアンモニウムイオンからなる錯体は、TBAB水溶液に対して過冷却解除効果を有している可能性が高い。
Also, the state in which five electrons enter the d orbit is called a semi-closed shell, and it is known that it has characteristics very similar to the closed shell state. Such elements include Fe, Cr, Mn, Co, Ni, Mo, Tc, Ru, Rh, Re, Os, Ir, and Pt. Therefore, in addition to the complex confirmed this time, a complex composed of bromide ions and tetrabutylammonium ions of these metal elements is highly likely to have a supercooling release effect on the TBAB aqueous solution.
以上のことから、過冷却解除物質を構成する金属元素として、イオンになった際にd軌道が閉殻状態になり得る金属、またはイオンになった際にd軌道が半閉殻状態になり得る金属を用いることができる。具体的には、過冷却解除物質を構成する金属元素として、Cu、Ag、Zn、Cd、Au、Cr、Mn、Fe、Co、Ni、Mo、Tc、Ru、Rh、Re、Os、Ir、Ptの少なくともいずれかの金属元素を用いることができる。
From the above, as a metal element constituting the supercooling release material, a metal whose d orbital can be in a closed shell state when it becomes an ion, or a metal whose d orbital can be in a semi-closed shell state when it becomes an ion. Can be used. Specifically, Cu, Ag, Zn, Cd, Au, Cr, Mn, Fe, Co, Ni, Mo, Tc, Ru, Rh, Re, Os, Ir, At least one metal element of Pt can be used.
また、本第2実施形態では、電圧印加部12によってTBAB水溶液に電圧印加を行い、外部から電気的なエネルギーを投入することで、過冷却解除物質を生成する化学反応を促進した。つまり、TBAB水溶液に電圧を印加しなくても、過冷却解除物質を構成する金属の単体をあらかじめ蓄冷材に添加しておくことで、目的とする物質が得られると考えられる。
In the second embodiment, the voltage application unit 12 applies a voltage to the TBAB aqueous solution and inputs electric energy from the outside, thereby promoting the chemical reaction that generates the supercooling release substance. That is, even if no voltage is applied to the TBAB aqueous solution, it is considered that the target substance can be obtained by adding a simple metal constituting the supercooling release substance to the cold storage material in advance.
また、本第2実施形態では、テトラブチルアンモニウムイオン(TBA+)を含む蓄冷材に対して電圧を印加した結果、テトラブチルアンモニウムイオンを含む化合物が得られた。テトラブチルアンモニウムイオンと異なるアンモニウムイオンを含む蓄冷材に対して同様の操作をした場合には、当該アンモニウムイオンを含む化合物が生じ、その物質に過冷却解除効果があると考えられる。
Moreover, in this 2nd Embodiment, as a result of applying a voltage with respect to the cool storage material containing tetrabutylammonium ion (TBA <+> ), the compound containing tetrabutylammonium ion was obtained. When the same operation is performed on a regenerator material containing ammonium ions different from tetrabutylammonium ions, a compound containing the ammonium ions is generated, and it is considered that the substance has a supercooling release effect.
(第3実施形態)
次に、本開示の第3実施形態について説明する。本第3実施形態では、上記各実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。 (Third embodiment)
Next, a third embodiment of the present disclosure will be described. In the third embodiment, the description of the same parts as those in the above embodiments will be omitted, and only different parts will be described.
次に、本開示の第3実施形態について説明する。本第3実施形態では、上記各実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。 (Third embodiment)
Next, a third embodiment of the present disclosure will be described. In the third embodiment, the description of the same parts as those in the above embodiments will be omitted, and only different parts will be described.
上記第1実施形態の蓄冷装置1では、過冷却解除物質生成部10でTBAB水溶液に電圧を印加することで、過冷却解除物質生成部10の内部で過冷却解除物質を生成するように構成した。これに対し、本第3実施形態では、蓄冷装置1の外部で過冷却解除物質を予め生成している。
The regenerator 1 according to the first embodiment is configured to generate a supercooling release substance inside the supercooling release substance generation unit 10 by applying a voltage to the TBAB aqueous solution in the supercooling release substance generation unit 10. . On the other hand, in the third embodiment, the supercooling release substance is generated in advance outside the regenerator 1.
図9に示すように、本第3実施形態の蓄冷装置1は、蓄冷材貯蔵部15、冷熱供給部22、制御部28等を備えている。本第3実施形態の蓄冷装置1には、過冷却解除物質生成部10が設けられていない。本第3実施形態の蓄冷材貯蔵部15は1つの容器として構成されており、内部に蓄冷材としてTBAB水溶液が充填されている。蓄冷材には、蓄冷装置1の外部で生成された過冷却解除物質が添加されている。
As shown in FIG. 9, the cool storage device 1 of the third embodiment includes a cool storage material storage unit 15, a cold energy supply unit 22, a control unit 28, and the like. The supercooling release substance generation unit 10 is not provided in the regenerator 1 of the third embodiment. The cool storage material storage part 15 of this 3rd Embodiment is comprised as one container, and is filled with TBAB aqueous solution as a cool storage material inside. The supercooling release substance produced | generated outside the cool storage apparatus 1 is added to the cool storage material.
過冷却解除物質は、図示しない外部の電圧印加装置で生成される。外部の電圧印加装置は、上記第1、第2実施形態の蓄冷装置1に設けられた過冷却解除物質生成部10と同様の構成である。電圧印加装置には、蓄冷材に電圧を印加するための電極が設けられている。電圧印加装置で蓄冷材に電圧印加を行うことで、過冷却解除物質を生成する。
The supercooling release substance is generated by an external voltage application device (not shown). The external voltage application device has the same configuration as the supercooling release substance generation unit 10 provided in the cold storage device 1 of the first and second embodiments. The voltage application device is provided with an electrode for applying a voltage to the cold storage material. By applying voltage to the regenerator material with the voltage application device, the supercooling release substance is generated.
本第3実施形態では、外部で生成した過冷却解除物質を蓄冷材に添加した場合における過冷却解除効果の評価を行った。蓄冷材として、40wt%に調整したTBAB水溶液を使用した。40wt%に調整したTBAB水溶液の水和物生成温度は約12℃である。蓄冷材への添加物として、外部の電圧印加装置でCu、Ag、Znを電極材料として用いた場合の各生成物を用いた。電圧印加による生成物は、上記第1、第2実施形態に記載の手順で抽出した。図10では、Cu電極による電圧印加での生成物を「Cu生成物」とし、Ag電極による電圧印加での生成物を「Ag生成物」とし、Zn電極による電圧印加での生成物を「Zn生成物」としている。
In the third embodiment, the supercooling release effect was evaluated when an externally generated supercooling release substance was added to the regenerator material. As the cold storage material, a TBAB aqueous solution adjusted to 40 wt% was used. The hydrate formation temperature of the aqueous TBAB solution adjusted to 40 wt% is about 12 ° C. As an additive to the regenerator material, each product in the case of using Cu, Ag, Zn as an electrode material with an external voltage application device was used. The product by voltage application was extracted by the procedure described in the first and second embodiments. In FIG. 10, the product when the voltage is applied by the Cu electrode is “Cu product”, the product when the voltage is applied by the Ag electrode is “Ag product”, and the product when the voltage is applied by the Zn electrode is “Zn product”. Product ".
蓄冷材に対して上記添加剤を0.01wt%添加した溶液を、5℃に設定した恒温槽内に静置して、過冷却解除効果の評価を行った。図10では、冷却開始後、24時間以内に水和物の結晶が目視出来た場合を「○」で示し、目視出来なかった場合を「×」で示した。
A solution obtained by adding 0.01 wt% of the above additive to the cold storage material was allowed to stand in a thermostatic bath set at 5 ° C. to evaluate the effect of releasing the supercooling. In FIG. 10, the case where the hydrate crystals can be visually observed within 24 hours after the start of cooling is indicated by “◯”, and the case where the crystals are not visually observed is indicated by “X”.
図10に示すように、蓄冷材にCu生成物、Ag生成物、Zn生成物を添加した場合には、それぞれ蓄冷材が凝固し、いずれの生成物も添加していない場合では蓄冷材が凝固しなかった。このため、TBAB水溶液への電圧印加によって生成した物質に過冷却解除効果があることが確認できた。
As shown in FIG. 10, when a Cu product, an Ag product, and a Zn product are added to the cold storage material, the cold storage material is solidified, and when no product is added, the cold storage material is solidified. I did not. For this reason, it has confirmed that the substance produced | generated by the voltage application to TBAB aqueous solution had a supercooling cancellation | release effect.
本第3実施形態の構成によれば、蓄冷材への電圧印加によって予め生成しておいた過冷却解除物質を蓄冷材に添加することで、蓄冷材が過冷却状態になった場合に結晶核の生成を助け、短時間に臨界結晶核径以上の核を生成することが期待できる。この結果、蓄冷材の過冷却状態を確実に解除することができる。
According to the configuration of the third embodiment, when the regenerator material becomes supercooled by adding a subcool release material that has been generated in advance by applying voltage to the regenerator material, The generation of nuclei larger than the critical crystal nucleus diameter can be expected in a short time. As a result, the supercooled state of the regenerator material can be reliably released.
また、本第3実施形態では、蓄冷装置1の外部で電圧印加によって生成した過冷却解除物質を予め蓄冷材に添加している。このため、本第3実施形態の蓄冷装置1では、上記第1実施形態のような電圧印加部12を設ける必要がなく、簡易な構成で蓄冷材の過冷却状態を確実に解除することができる。
Further, in the third embodiment, the supercooling release substance generated by voltage application outside the cold storage device 1 is added to the cold storage material in advance. For this reason, in the cool storage apparatus 1 of this 3rd Embodiment, it is not necessary to provide the voltage application part 12 like the said 1st Embodiment, and it can cancel | release the supercooled state of a cool storage material reliably with a simple structure. .
(第4実施形態)
次に、本開示の第4実施形態について説明する。本第4実施形態では、上記各実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。 (Fourth embodiment)
Next, a fourth embodiment of the present disclosure will be described. In the fourth embodiment, the description of the same parts as those in the above embodiments will be omitted, and only different parts will be described.
次に、本開示の第4実施形態について説明する。本第4実施形態では、上記各実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。 (Fourth embodiment)
Next, a fourth embodiment of the present disclosure will be described. In the fourth embodiment, the description of the same parts as those in the above embodiments will be omitted, and only different parts will be described.
本第4実施形態では、上記第3実施形態と比較して、過冷却解除物質を有機合成などによって生成する点が異なっている。本第4実施形態の蓄冷装置1は、図9で示した上記第3実施形態の蓄冷装置1と同一の構成となっている。
The fourth embodiment is different from the third embodiment in that the supercooling release substance is generated by organic synthesis or the like. The cool storage device 1 of the fourth embodiment has the same configuration as the cool storage device 1 of the third embodiment shown in FIG.
本第4実施形態では、有機合成などによって予め生成された過冷却解除物質が蓄冷材貯蔵部15の蓄冷材に添加されている。本第4実施形態の過冷却解除物質は、上記第1実施形態の一般式(3)で示した化学構造を備える物質(すなわち、銅臭化物イオンとテトラブチルアンモニウムイオンからなる化合物)であり、「Acta Chemica Scandinavica B37(1983), p.57-62」にて報告されている。
In the fourth embodiment, the supercooling release material generated in advance by organic synthesis or the like is added to the cold storage material of the cold storage material storage unit 15. The supercooling release substance of the fourth embodiment is a substance having a chemical structure represented by the general formula (3) of the first embodiment (that is, a compound composed of copper bromide ions and tetrabutylammonium ions). Acta Chemica Scandinavica B37 (1983), p.57-62 ”.
本第4実施形態では、上記化学構造を備える過冷却解除物質を、「Acta Chemica Scandinavica B36(1982), p.125-126」に記載された方法で有機合成した。質量分析により、目的の物質が得られていることを確認した。
In the fourth embodiment, the supercooling release substance having the above chemical structure was organically synthesized by the method described in “Acta Chemica Scandinavica B36 (1982), p. 125-126”. It was confirmed by mass spectrometry that the target substance was obtained.
また、蓄冷材として、20wt%に調整したTBAB水溶液を使用した。20wt%に調整したTBAB水溶液の水和物生成温度は約8℃である。蓄冷材に対して合成で得た過冷却解除物質を0.01wt%添加した溶液を、1℃に設定した恒温槽内に静置して、過冷却解除効果の評価を行った。冷却開始後、24時間以内に水和物の結晶が目視出来た。一方、化合物を添加しない場合では、水和物結晶は確認できなかった。これにより、合成した化合物には過冷却解除効果があることを確認した。
Also, a TBAB aqueous solution adjusted to 20 wt% was used as a cold storage material. The hydrate formation temperature of the aqueous TBAB solution adjusted to 20 wt% is about 8 ° C. A solution obtained by adding 0.01 wt% of the supercooling release material obtained by synthesis to the cold storage material was allowed to stand in a thermostat set to 1 ° C., and the supercooling release effect was evaluated. Hydrate crystals were visible within 24 hours after the start of cooling. On the other hand, when no compound was added, hydrate crystals could not be confirmed. As a result, it was confirmed that the synthesized compound had a supercooling release effect.
本第4実施形態の構成によれば、一般式(3)で示した化学構造を備える過冷却解除物質を予め蓄冷材に添加しておくことで、蓄冷材が過冷却状態になった場合に過冷却解除物質によって結晶核の生成を助け、短時間に臨界結晶核径以上の核を生成することが期待できる。この結果、蓄冷材の過冷却状態を確実に解除することができる。
According to the configuration of the fourth embodiment, when the supercooling release material having the chemical structure represented by the general formula (3) is added to the cold storage material in advance, the cold storage material is in a supercooled state. The supercooling release material helps to generate crystal nuclei and can be expected to generate nuclei larger than the critical crystal nucleus diameter in a short time. As a result, the supercooled state of the regenerator material can be reliably released.
また、本第4実施形態では、有機合成などによって生成した過冷却解除物質を予め蓄冷材に添加している。このため、本第4実施形態の蓄冷装置1では、上記第1実施形態のような電圧印加部12を設ける必要がなく、簡易な構成で蓄冷材の過冷却状態を確実に解除することができる。
In the fourth embodiment, the supercooling release substance generated by organic synthesis or the like is added to the cold storage material in advance. For this reason, in the cool storage apparatus 1 of this 4th Embodiment, it is not necessary to provide the voltage application part 12 like the said 1st Embodiment, and it can cancel | release the supercooled state of a cool storage material reliably with a simple structure. .
(第5実施形態)
次に、本開示の第5実施形態について説明する。本第5実施形態では、上記各実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。 (Fifth embodiment)
Next, a fifth embodiment of the present disclosure will be described. In the fifth embodiment, the description of the same parts as those of the above embodiments will be omitted, and only different parts will be described.
次に、本開示の第5実施形態について説明する。本第5実施形態では、上記各実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。 (Fifth embodiment)
Next, a fifth embodiment of the present disclosure will be described. In the fifth embodiment, the description of the same parts as those of the above embodiments will be omitted, and only different parts will be described.
本第5実施形態では、上記第4実施形態と比較して、合成する過冷却解除物質の種類が異なっている。本第5実施形態では、下記の手順で銀臭化物イオンとテトラブチルアンモニウムイオンからなる化合物を合成した。
The fifth embodiment is different from the fourth embodiment in the type of supercooling release material to be synthesized. In the fifth embodiment, a compound composed of silver bromide ions and tetrabutylammonium ions was synthesized by the following procedure.
まず、90mLのDMF(ジメチルホルムアミド)に0.36g(つまり、3mmol)のKBrを入れ撹拌した。これに暗室で0.56g(つまり、3mmol)のAgBrを加え、30分間撹拌した。不溶物を0.5μmのメンブレンフィルタでろ過し、ろ液を得た。100mLのEtOHに1.93g(つまり、6mmol)のTBABを溶解した溶液を別途調整した。これらのろ液と溶液を混合した。
First, 0.36 g (that is, 3 mmol) of KBr was added to 90 mL of DMF (dimethylformamide) and stirred. To this, 0.56 g (that is, 3 mmol) of AgBr was added in a dark room and stirred for 30 minutes. Insoluble matter was filtered through a 0.5 μm membrane filter to obtain a filtrate. A solution prepared by dissolving 1.93 g (that is, 6 mmol) of TBAB in 100 mL of EtOH was separately prepared. These filtrates and solutions were mixed.
析出した単黄色粉末を0.5μmのメンブレンフィルタでろ取し、EtOH洗浄し、245mgの単黄色粉末を得た(収率:9.8%)。質量分析により、目的の物質が得られていることを確認した。
The precipitated single yellow powder was filtered through a 0.5 μm membrane filter and washed with EtOH to obtain 245 mg of a single yellow powder (yield: 9.8%). It was confirmed by mass spectrometry that the target substance was obtained.
蓄冷材として、40wt%に調整したTBAB水溶液を使用した。40wt%に調整したTBAB水溶液の水和物生成温度は約12℃である。蓄冷材に対して合成した物質を0.01wt%添加した溶液を、9℃に設定した恒温槽内に静置して、過冷却解除効果の評価を行った。冷却開始後、24時間以内に水和物の結晶が目視出来た。一方、化合物を添加しない場合では、水和物結晶は確認できなかった。これにより、合成した化合物には過冷却解除効果があることを確認した。
A TBAB aqueous solution adjusted to 40 wt% was used as a cold storage material. The hydrate formation temperature of the aqueous TBAB solution adjusted to 40 wt% is about 12 ° C. A solution obtained by adding 0.01 wt% of a substance synthesized with respect to the cold storage material was allowed to stand in a thermostat set to 9 ° C., and the effect of canceling the supercooling was evaluated. Hydrate crystals were visible within 24 hours after the start of cooling. On the other hand, when no compound was added, hydrate crystals could not be confirmed. As a result, it was confirmed that the synthesized compound had a supercooling release effect.
以上説明した本第5実施形態においても、上記第4実施形態と同様の効果を得ることができる。
In the fifth embodiment described above, the same effects as in the fourth embodiment can be obtained.
(第6実施形態)
次に、本開示の第6実施形態について説明する。本第6実施形態では、上記各実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。 (Sixth embodiment)
Next, a sixth embodiment of the present disclosure will be described. In the sixth embodiment, description of the same parts as those in the above embodiments will be omitted, and only different parts will be described.
次に、本開示の第6実施形態について説明する。本第6実施形態では、上記各実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。 (Sixth embodiment)
Next, a sixth embodiment of the present disclosure will be described. In the sixth embodiment, description of the same parts as those in the above embodiments will be omitted, and only different parts will be described.
本第6実施形態の蓄冷装置1は、図9で示した第3実施形態の蓄冷装置と同一の構成となっている。また、本第6実施形態では、Zn、Fe、CuまたはAgの何れかの単体金属からなる過冷却解除物質を蓄冷材貯蔵部15の蓄冷材に添加する。
The cool storage device 1 of the sixth embodiment has the same configuration as the cool storage device of the third embodiment shown in FIG. In the sixth embodiment, a supercooling release material made of any single metal of Zn, Fe, Cu, or Ag is added to the regenerator material of the regenerator material storage unit 15.
本第6実施形態では、これらの単体金属と、比較例としてSiO2、ゼオライトを蓄冷材に添加して、過冷却解除効果の評価を行った。蓄冷材として、20wt%に調整したTBAB水溶液を使用した。20wt%に調整したTBAB水溶液の水和物生成温度は約8℃である。蓄冷材への添加物として、粒径75μm未満および75~150μmのZn、粒径45μmのFe、粒径350nmのCu、粒径150nmのAg、粒径5~15nmのSiO2、粒径75μmのゼオライト)を用いた。
In the sixth embodiment, these simple metals and, as comparative examples, SiO 2 and zeolite were added to the regenerator material, and the supercooling release effect was evaluated. As the cold storage material, a TBAB aqueous solution adjusted to 20 wt% was used. The hydrate formation temperature of the aqueous TBAB solution adjusted to 20 wt% is about 8 ° C. Additives to the regenerator material include Zn with a particle size of less than 75 μm and 75 to 150 μm, Fe with a particle size of 45 μm, Cu with a particle size of 350 nm, Ag with a particle size of 150 nm, SiO 2 with a particle size of 5 to 15 nm, and a particle size of 75 μm. Zeolite) was used.
蓄冷材に対して上記添加剤を0.01wt%添加した溶液を、1℃に設定した恒温槽内に静置した結果を図11に示している。図11では、冷却開始後、24時間以内に水和物の結晶が目視出来た場合を「○」で示し、目視出来なかった場合を「×」で示した。
The result of having left the solution which added 0.01 wt% of the said additive with respect to the cool storage material in the thermostat set to 1 degreeC is shown in FIG. In FIG. 11, the case where the hydrate crystals were visible within 24 hours after the start of cooling was indicated by “◯”, and the case where the crystals were not visible was indicated by “X”.
図11に示すように、Zn、Fe、Cu、Agでは、蓄冷材に対して単体金属を添加した場合でも、過冷却解除効果が確認された。なお、これらの金属と同程度の粒径を有するSiO2、ゼオライトでは過冷却解除効果が見られなかったことから、単純な微粒子を添加したことによる効果ではないことは明らかである。
As shown in FIG. 11, in the case of Zn, Fe, Cu, and Ag, even when a single metal was added to the cold storage material, the effect of canceling the supercooling was confirmed. It should be noted that SiO 2 and zeolite having the same particle size as these metals did not show the effect of releasing the supercooling, so that it is clear that the effect is not due to the addition of simple fine particles.
上記第1、第2実施形態において、電圧印加部12で電圧を印加した場合から類推し、これらの単体金属を添加した場合では、溶液中で過冷却解除物質を生じる反応が進み、その結果過冷却解除効果が得られたと考えられる。つまり、単体金属は、蓄冷材であるTBAB水溶液に含まれるBrとともに金属臭化物イオンとなり、この金属臭化物イオンが蓄冷材であるTBAB水溶液に含まれるTBA+とともに過冷却解除物質として機能すると考えられる。
In the first and second embodiments, by analogy with the case where a voltage is applied by the voltage application unit 12, when these single metals are added, a reaction that generates a supercooling release substance proceeds in the solution. It is considered that the cooling release effect was obtained. That is, it is considered that the single metal becomes a metal bromide ion together with Br contained in the TBAB aqueous solution serving as the cold storage material, and this metal bromide ion functions as a supercooling release material together with TBA + contained in the TBAB aqueous solution serving as the cold storage material.
以上説明した本第6実施形態の構成によれば、Cu、Ag、ZnまたはFeの何れかの単体金属からなる過冷却解除物質を予め蓄冷材に添加しておくことで、蓄冷材が過冷却状態になった場合に過冷却解除物質によって結晶核の生成を助け、短時間に臨界結晶核径以上の核を生成することが期待できる。この結果、入手容易な単体金属からなる過冷却解除物質を用いて、蓄冷材の過冷却状態を確実に解除することができる。
According to the configuration of the sixth embodiment described above, the cool storage material is supercooled by adding in advance to the cool storage material a supercool release material made of any single metal of Cu, Ag, Zn, or Fe. In this state, it can be expected that the supercooling release material helps the generation of crystal nuclei and that nuclei having a critical crystal nucleus diameter or more are generated in a short time. As a result, it is possible to reliably release the supercooled state of the regenerator material by using the easily obtained supercooling release material made of a single metal.
(第7実施形態)
次に、本開示の第7実施形態について説明する。本第7実施形態では、上記各実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。 (Seventh embodiment)
Next, a seventh embodiment of the present disclosure will be described. In the seventh embodiment, the description of the same parts as those in the above embodiments will be omitted, and only different parts will be described.
次に、本開示の第7実施形態について説明する。本第7実施形態では、上記各実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。 (Seventh embodiment)
Next, a seventh embodiment of the present disclosure will be described. In the seventh embodiment, the description of the same parts as those in the above embodiments will be omitted, and only different parts will be described.
上記各実施形態では、蓄熱材としてTBAB(臭化テトラブチルアンモニウム)からなるハロゲン化アルキルアンモニウムの水溶液を単独で用いたが、本第7実施形態では、複数種類のハロゲン化アルキルアンモニウム水溶液を混合して蓄熱材(以下、混合蓄冷材ともいう)として用いている。
In each of the above embodiments, an aqueous solution of alkylammonium halide made of TBAB (tetrabutylammonium bromide) is used alone as the heat storage material. However, in the seventh embodiment, a plurality of types of aqueous solutions of alkylammonium halide are mixed. It is used as a heat storage material (hereinafter also referred to as a mixed cold storage material).
このように複数種類のハロゲン化アルキルアンモニウム水溶液を混合して混合蓄熱材として用いる場合には、混合蓄熱材に含まれる一部のハロゲン化アルキルアンモニウム水和物が先行して結晶化することにより、他のハロゲン化アルキルアンモニウムの結晶化が誘発され、混合蓄冷材全体が凝固すると考えられる。
When a plurality of types of alkylammonium halide aqueous solutions are mixed and used as a mixed heat storage material, a portion of the alkylammonium halide hydrate contained in the mixed heat storage material crystallizes in advance, It is believed that crystallization of other alkyl ammonium halides is induced and the entire mixed regenerator is solidified.
ところが、混合蓄冷材のうち先行して結晶化することが期待されるハロゲン化アルキルアンモニウム水和物が過冷却状態になると過冷却解除効果を発揮せず、混合蓄冷材全体が過冷却状態になる可能性がある。この場合、蓄冷材の性能が全く発揮できない状況が起こりうる。そこで、本第7実施形態では、混合蓄冷材に過冷却解除物質を添加し、混合蓄冷材の過冷却状態を解除する。
However, when the alkylammonium halide hydrate, which is expected to be crystallized in advance in the mixed regenerator material, is in a supercooled state, the supercooling release effect is not exhibited, and the entire mixed regenerator material is in a supercooled state. there is a possibility. In this case, a situation may occur in which the performance of the regenerator material cannot be exhibited at all. Therefore, in the seventh embodiment, the supercooling release material is added to the mixed regenerator material to release the supercooled state of the mixed regenerator material.
混合蓄冷材に対して用いられる過冷却解除物質は、混合蓄冷材に含まれる少なくとも一種類のハロゲン化アルキルアンモニウム水溶液に対して過冷却解除効果があればよい。混合蓄冷材に含まれる一部のハロゲン化アルキルアンモニウム水溶液の過冷却状態を解除して凝固させることができれば、凝固したハロゲン化アルキルアンモニウム水和物が他のハロゲン化アルキルアンモニウム水溶液の凝固を誘起し、混合蓄冷材全体を凝固させることができると考えられる。
The supercooling release material used for the mixed regenerator material only needs to have a supercooling release effect with respect to at least one alkylammonium halide aqueous solution contained in the mixed regenerator material. If the supercooled state of a part of the alkylammonium halide aqueous solution contained in the mixed regenerator material can be released and solidified, the solidified alkylammonium halide hydrate induces solidification of other alkylammonium halide aqueous solutions. It is considered that the entire mixed regenerator material can be solidified.
本第7実施形態の蓄冷装置1は、図9で示した第3実施形態の蓄冷装置と同一の構成となっている。本第7実施形態では、蓄冷材として、34wt%に調整した臭化トリ-n-ブチル-n-ペンチルアンモニウム(TBPAB)水溶液、および40wt%に調整した臭化テトラブチルアンモニウム(TBAB)水溶液を用意した。
The cool storage device 1 of the seventh embodiment has the same configuration as the cool storage device of the third embodiment shown in FIG. In the seventh embodiment, a tri-n-butyl-n-pentylammonium bromide (TBPAB) aqueous solution adjusted to 34 wt% and a tetrabutylammonium bromide (TBAB) aqueous solution adjusted to 40 wt% are prepared as cold storage materials. did.
34wt%に調整したTBPAB水溶液の水和物生成温度は約6℃であり、40wt%に調整したTBAB水溶液の水和物生成温度は約12℃である。したがって、これら2種類の水溶液を混合することで、蓄冷材の水和物生成温度を調整することができる。
The hydrate formation temperature of the TBPAB aqueous solution adjusted to 34 wt% is about 6 ° C., and the hydrate generation temperature of the TBAB aqueous solution adjusted to 40 wt% is about 12 ° C. Therefore, the hydrate formation temperature of the cold storage material can be adjusted by mixing these two types of aqueous solutions.
本第7実施形態では、前述のTBPAB水溶液とTBAB水溶液を、重量比9:1で混合した水溶液を混合蓄冷材として用いた。また、添加物として、上記第3実施形態の記載のAg生成物を用いた。Ag生成物は、Ag電極を用いた電圧印加による生成物である。
In the seventh embodiment, an aqueous solution in which the above-described TBPAB aqueous solution and TBAB aqueous solution are mixed at a weight ratio of 9: 1 is used as a mixed cold storage material. Moreover, the Ag product described in the third embodiment was used as an additive. The Ag product is a product obtained by applying a voltage using an Ag electrode.
混合蓄冷材に対して上記添加物を0.01wt%添加した溶液を、5℃に設定した恒温槽内に静置して、評価を行った。Ag生成物を混合蓄冷材に添加した場合は、冷却開始後、24時間以内に試料全体が凝固した。一方、Ag生成物を混合蓄冷材に添加しなかった場合は、冷却開始後から24時間が経過しても水和物結晶は確認できなかった。Ag生成物はTBAB水溶液に対し過冷却解除効果があることから、TBAB水和物が結晶化したことで、TBPAB水和物の結晶化を誘発し、この結果、混合蓄冷材全体が凝固したと考えられる。
Evaluation was performed by allowing a solution obtained by adding 0.01 wt% of the above additive to the mixed regenerator material to stand in a thermostatic bath set at 5 ° C. When the Ag product was added to the mixed cold storage material, the entire sample solidified within 24 hours after the start of cooling. On the other hand, when the Ag product was not added to the mixed cold storage material, hydrate crystals could not be confirmed even after 24 hours had passed since the start of cooling. Since the Ag product has a supercooling release effect on the TBAB aqueous solution, the crystallization of TBAB hydrate induces the crystallization of TBPAB hydrate. As a result, the mixed regenerator material is solidified. Conceivable.
(他の実施形態)
例えば、上記第1~第6実施形態では、蓄熱材としてTBAB水溶液を用い、本第7実施形態では、蓄熱材としてTBAB水溶液とTBPAB水溶液を混合して用いたが、TBAB水溶液とTBPAB水溶液以外のハロゲン化アルキルアンモニウム水溶液を蓄熱材として用いることができる。これらのハロゲン化アルキルアンモニウム水溶液は、それぞれ単独で蓄熱材として用いてもよく、あるいは複数種類のハロゲン化アルキルアンモニウム水溶液を混合して蓄熱材として用いてもよい。 (Other embodiments)
For example, in the first to sixth embodiments, the TBAB aqueous solution is used as the heat storage material, and in the seventh embodiment, the TBAB aqueous solution and the TBPAB aqueous solution are mixed and used as the heat storage material, but other than the TBAB aqueous solution and the TBPAB aqueous solution are used. Alkyl ammonium halide aqueous solution can be used as a heat storage material. Each of these alkylammonium halide aqueous solutions may be used alone as a heat storage material, or a plurality of types of alkylammonium halide aqueous solutions may be mixed and used as a heat storage material.
例えば、上記第1~第6実施形態では、蓄熱材としてTBAB水溶液を用い、本第7実施形態では、蓄熱材としてTBAB水溶液とTBPAB水溶液を混合して用いたが、TBAB水溶液とTBPAB水溶液以外のハロゲン化アルキルアンモニウム水溶液を蓄熱材として用いることができる。これらのハロゲン化アルキルアンモニウム水溶液は、それぞれ単独で蓄熱材として用いてもよく、あるいは複数種類のハロゲン化アルキルアンモニウム水溶液を混合して蓄熱材として用いてもよい。 (Other embodiments)
For example, in the first to sixth embodiments, the TBAB aqueous solution is used as the heat storage material, and in the seventh embodiment, the TBAB aqueous solution and the TBPAB aqueous solution are mixed and used as the heat storage material, but other than the TBAB aqueous solution and the TBPAB aqueous solution are used. Alkyl ammonium halide aqueous solution can be used as a heat storage material. Each of these alkylammonium halide aqueous solutions may be used alone as a heat storage material, or a plurality of types of alkylammonium halide aqueous solutions may be mixed and used as a heat storage material.
また、上記第1実施形態では、蓄熱材貯蔵部15と離隔して設けられた過冷却解除物質生成部10に電圧印加部12を配置したが、これに限らず、過冷却解除物質生成部10を設けずに、蓄熱材貯蔵部15に電圧印加部12を配置してもよい。
Moreover, in the said 1st Embodiment, although the voltage application part 12 has been arrange | positioned in the supercooling cancellation | release substance production | generation part 10 provided apart from the thermal storage material storage part 15, it is not restricted to this, The supercooling cancellation | release substance production | generation part 10 The voltage application unit 12 may be disposed in the heat storage material storage unit 15 without providing the above.
また、上記第3~第7実施形態では、過冷却解除物質を蓄冷材貯蔵部15の蓄冷材に添加しておくようにしたが、これに限らず、例えば蓄冷材貯蔵部15の内壁面に過冷却解除物質を設けておき、その後に蓄冷材貯蔵部15に蓄冷材を入れるようにしてもよい。
In the third to seventh embodiments, the supercooling release substance is added to the cold storage material of the cold storage material storage unit 15. However, the present invention is not limited to this. A supercooling release material may be provided, and then the cold storage material may be put into the cold storage material storage unit 15.
また、上記第2実施形態では、電圧印加部12の電極材料として、Cu、ZnまたはAgの何れかの金属を用いた例について説明したが、これら以外の金属を電圧印加部12の電極材料として用いてもよい。
Moreover, although the said 2nd Embodiment demonstrated the example using any metal of Cu, Zn, or Ag as an electrode material of the voltage application part 12, metal other than these was used as an electrode material of the voltage application part 12 It may be used.
また、上記各実施形態では、電圧印加部12の一対の電極12a、12bを同種の金属電極によって構成した例について説明したが、これに限らず、少なくとも可動電極12bに金属電極を用いればよい。以下、この点について説明する。
Further, in each of the above embodiments, the example in which the pair of electrodes 12a and 12b of the voltage application unit 12 is configured by the same type of metal electrode has been described. However, the present invention is not limited thereto, and at least the metal electrode may be used as the movable electrode 12b. Hereinafter, this point will be described.
電圧印加部12によってTBAB水溶液に電圧を印加すると、電極12a、12bで酸化還元反応が起きる。これらの電極12a、12bのうち、直流電源のプラス側に接続された可動電極12bでは酸化反応が起きる。可動電極12bの電極材料として金属を用いると、この金属がイオンになって水溶液中に溶け出す。この金属イオンが過冷却解除物質の構成要素となることから、電圧印加により過冷却解除物質を生成するためには、少なくとも可動電極12bには金属を用いることが必要である。一方、直流電源のマイナス側に接続された固定電極12aでは、電極を構成する金属のイオン化は起きないため、金属電極である必要はない。
When a voltage is applied to the TBAB aqueous solution by the voltage application unit 12, an oxidation-reduction reaction occurs at the electrodes 12a and 12b. Among these electrodes 12a and 12b, an oxidation reaction occurs at the movable electrode 12b connected to the positive side of the DC power supply. When a metal is used as the electrode material of the movable electrode 12b, the metal becomes ions and dissolves in the aqueous solution. Since this metal ion is a constituent element of the supercooling release substance, it is necessary to use metal for at least the movable electrode 12b in order to generate the supercooling release substance by applying a voltage. On the other hand, the fixed electrode 12a connected to the negative side of the DC power source does not need to be a metal electrode because ionization of the metal constituting the electrode does not occur.
ここで、この出願に記載されるフローチャート、あるいは、フローチャートの処理は、複数のセクション(あるいはステップと言及される)から構成され、各セクションは、たとえば、S10と表現される。さらに、各セクションは、複数のサブセクションに分割されることができる、一方、複数のセクションが合わさって一つのセクションにすることも可能である。さらに、このように構成される各セクションは、デバイス、モジュール、ミーンズとして言及されることができる。
Here, the flowchart described in this application or the process of the flowchart is configured by a plurality of sections (or referred to as steps), and each section is expressed as S10, for example. Further, each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section. Further, each section configured in this manner can be referred to as a device, module, or means.
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
Claims (11)
- 水和物生成温度以下に冷却することで水和物を生成する1種類以上のハロゲン化アルキルアンモニウム水溶液を含んだ蓄冷材の過冷却状態を解除する過冷却解除物質であって、
前記蓄冷材に含まれるアルキルアンモニウムイオンと、
前記蓄冷材に含まれるハロゲン元素を構成要素とする金属ハロゲン化物イオンと、
を含んでいる過冷却解除物質。 A supercooling release material that releases a supercooling state of a regenerator material containing one or more alkylammonium halide aqueous solutions that form a hydrate by cooling to a hydrate formation temperature or below,
Alkylammonium ions contained in the cold storage material;
A metal halide ion comprising a halogen element contained in the cold storage material as a constituent element;
Containing supercooling release material. - 前記金属ハロゲン化物イオンに含まれる金属元素は、Cu、Ag、Zn、Cd、Au、Cr、Mn、Fe、Co、Ni、Mo、Tc、Ru、Rh、Re、Os、Ir、Ptの少なくともいずれかである請求項1に記載の過冷却解除物質。 The metal element contained in the metal halide ion is at least one of Cu, Ag, Zn, Cd, Au, Cr, Mn, Fe, Co, Ni, Mo, Tc, Ru, Rh, Re, Os, Ir, and Pt. The supercooling release material according to claim 1.
- 前記アルキルアンモニウムイオンは、一般式[N(CnH2n+1)4]+で表され、nは、1から7のいずれかである請求項1または2に記載の過冷却解除物質。 The alkylammonium ion is represented by the general formula is represented by [N (C n H 2n + 1) 4] +, n is supercooling release material according to claim 1 or 2 is either from 1 to 7.
- 前記金属ハロゲン化物イオンを構成するハロゲン元素はBrである請求項1ないし3のいずれか1つに記載の過冷却解除物質。 The supercooling release substance according to any one of claims 1 to 3, wherein the halogen element constituting the metal halide ion is Br.
- 前記ハロゲン化アルキルアンモニウムには、臭化テトラブチルアンモニウムが含まれている請求項1ないし4のいずれか1つに記載の過冷却解除物質。 The supercooling release material according to any one of claims 1 to 4, wherein the alkylammonium halide contains tetrabutylammonium bromide.
- 水和物生成温度以下に冷却することで水和物を生成する1種類以上のハロゲン化アルキルアンモニウム水溶液を含んだ蓄冷材料の過冷却状態を解除する過冷却解除物質の製造方法であって、
前記過冷却解除物質は、前記蓄冷材に含まれるアルキルアンモニウムイオンと、前記蓄冷材に含まれるハロゲン元素を構成要素とする金属ハロゲン化物イオンと、を含んでおり、
前記ハロゲン化アルキルアンモニウム水溶液に電圧を印加することを備える過冷却解除物質の製造方法。 A method for producing a supercooling release material for releasing a supercooling state of a cold storage material containing one or more alkylammonium halide aqueous solutions that form a hydrate by cooling to a hydrate formation temperature or below,
The supercooling release material includes alkylammonium ions contained in the regenerator material, and metal halide ions having a halogen element contained in the regenerator material as a constituent element,
A method for producing a supercooling release material, comprising applying a voltage to the alkylammonium halide aqueous solution. - 前記電圧の印加では、一対の電極によって前記ハロゲン化アルキルアンモニウム水溶液に電圧を印加するようになっており、
前記電極材料は、Cu、Ag、Zn、Cd、Au、Cr、Mn、Fe、Co、Ni、Mo、Tc、Ru、Rh、Re、Os、Ir、Ptのいずれかである請求項6に記載の過冷却解除物質の製造方法。 In the application of the voltage, a voltage is applied to the aqueous alkylammonium halide solution by a pair of electrodes,
The electrode material is any one of Cu, Ag, Zn, Cd, Au, Cr, Mn, Fe, Co, Ni, Mo, Tc, Ru, Rh, Re, Os, Ir, and Pt. Of producing a supercooling release substance. - 水和物生成温度以下に冷却することで水和物を生成する1種類以上のハロゲン化アルキルアンモニウム水溶液を含んだ蓄冷材料の過冷却状態を解除する過冷却解除物質の製造方法であって、
前記過冷却解除物質は、前記蓄冷材に含まれるアルキルアンモニウムイオンと、前記蓄冷材に含まれるハロゲン元素を構成要素とする金属ハロゲン化物イオンと、を含んでおり、
少なくともAg、Cu、FeまたはZnのいずれかの単体金属を前記蓄冷材に添加することを備える過冷却解除物質の製造方法。 A method for producing a supercooling release material for releasing a supercooling state of a cold storage material containing one or more alkylammonium halide aqueous solutions that form a hydrate by cooling to a hydrate formation temperature or below,
The supercooling release material includes alkylammonium ions contained in the regenerator material, and metal halide ions having a halogen element contained in the regenerator material as a constituent element,
A method for producing a supercooling release material comprising adding at least a single metal of Ag, Cu, Fe, or Zn to the cold storage material. - 前記アルキルアンモニウムイオンは、一般式[N(CnH2n+1)4]+で表され、nは、1から7のいずれかである請求項6ないし8のいずれか1つに記載の過冷却解除物質の製造方法。 The alkylammonium ion is represented by the general formula [N (C n H 2n + 1 ) 4 ] + , and n is any one of 1 to 7, A method for producing a cooling release substance.
- 前記金属ハロゲン化物イオンを構成するハロゲン元素はBrである請求項6ないし9のいずれか1つに記載の過冷却解除物質の製造方法。 The method for producing a supercooling release material according to any one of claims 6 to 9, wherein the halogen element constituting the metal halide ion is Br.
- 前記ハロゲン化アルキルアンモニウムには、臭化テトラブチルアンモニウムが含まれている請求項6ないし10のいずれか1つに記載の過冷却解除物質の製造方法。 The method for producing a supercooling release substance according to any one of claims 6 to 10, wherein the alkylammonium halide contains tetrabutylammonium bromide.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/520,172 US10392547B2 (en) | 2014-11-14 | 2015-11-12 | Super-cooling release material and method for producing same |
CN201580061056.0A CN107001920B (en) | 2014-11-14 | 2015-11-12 | Supercooling-relieving substance and method for producing same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-231287 | 2014-11-14 | ||
JP2014231287 | 2014-11-14 | ||
JP2015105672 | 2015-05-25 | ||
JP2015-105672 | 2015-05-25 | ||
JP2015209259A JP6601145B2 (en) | 2014-11-14 | 2015-10-23 | Subcool release substance and method for producing the same |
JP2015-209259 | 2015-10-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016075941A1 true WO2016075941A1 (en) | 2016-05-19 |
Family
ID=55954043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/005644 WO2016075941A1 (en) | 2014-11-14 | 2015-11-12 | Super-cooling release material and method for producing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016075941A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018198848A1 (en) * | 2017-04-27 | 2018-11-01 | 株式会社デンソー | Super-cooling release substance and cold storage device |
WO2019146390A1 (en) * | 2018-01-29 | 2019-08-01 | パナソニック株式会社 | Cold storage material |
WO2019151492A1 (en) * | 2018-02-02 | 2019-08-08 | シャープ株式会社 | Latent heat storage material, and cold storage tool, logistic packaging container, transportation method, human body refrigeration tool and cold storage tool for beverages each using same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002060739A (en) * | 2000-08-17 | 2002-02-26 | Nkk Corp | Method for transporting cold heat, system therefor and method for operating the same |
JP2005036060A (en) * | 2003-07-17 | 2005-02-10 | Jfe Engineering Kk | Cold heat transportation medium |
JP2005126728A (en) * | 2004-12-20 | 2005-05-19 | Jfe Engineering Kk | Cold storage method, cold storage system, cold storage agent, and method for taking out cold |
WO2008108409A1 (en) * | 2007-03-06 | 2008-09-12 | Jfe Engineering Corporation | Inclusion hydrate having quaternary ammonium salt as guest compound |
-
2015
- 2015-11-12 WO PCT/JP2015/005644 patent/WO2016075941A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002060739A (en) * | 2000-08-17 | 2002-02-26 | Nkk Corp | Method for transporting cold heat, system therefor and method for operating the same |
JP2005036060A (en) * | 2003-07-17 | 2005-02-10 | Jfe Engineering Kk | Cold heat transportation medium |
JP2005126728A (en) * | 2004-12-20 | 2005-05-19 | Jfe Engineering Kk | Cold storage method, cold storage system, cold storage agent, and method for taking out cold |
WO2008108409A1 (en) * | 2007-03-06 | 2008-09-12 | Jfe Engineering Corporation | Inclusion hydrate having quaternary ammonium salt as guest compound |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018198848A1 (en) * | 2017-04-27 | 2018-11-01 | 株式会社デンソー | Super-cooling release substance and cold storage device |
JP2018184565A (en) * | 2017-04-27 | 2018-11-22 | 株式会社デンソー | Overcooling canceling material |
WO2019146390A1 (en) * | 2018-01-29 | 2019-08-01 | パナソニック株式会社 | Cold storage material |
JP6590127B1 (en) * | 2018-01-29 | 2019-10-16 | パナソニック株式会社 | Cold storage material |
US11028302B2 (en) | 2018-01-29 | 2021-06-08 | Panasonic Corporation | Cold storage medium |
WO2019151492A1 (en) * | 2018-02-02 | 2019-08-08 | シャープ株式会社 | Latent heat storage material, and cold storage tool, logistic packaging container, transportation method, human body refrigeration tool and cold storage tool for beverages each using same |
CN111670239A (en) * | 2018-02-02 | 2020-09-15 | 夏普株式会社 | Latent heat storage material, and cold insulation tool, physical distribution packaging container, transportation method, human body cooling tool, and beverage cold insulation tool using same |
JPWO2019151492A1 (en) * | 2018-02-02 | 2021-02-12 | シャープ株式会社 | Latent heat storage material and cold insulation equipment using it, distribution packing container, transportation method, human body cooling equipment and beverage cooling equipment |
CN111670239B (en) * | 2018-02-02 | 2022-02-01 | 夏普株式会社 | Latent heat storage material, and cooling tool and cooling method using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6601145B2 (en) | Subcool release substance and method for producing the same | |
Bermúdez-García et al. | Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn (dca) 3] perovskite under easily accessible pressures | |
WO2016075941A1 (en) | Super-cooling release material and method for producing same | |
WO2018198848A1 (en) | Super-cooling release substance and cold storage device | |
Suresh Kumar et al. | Experimental investigations on the thermophysical properties of CuO-palmitic acid phase change material for heating applications | |
BR102018006673A2 (en) | metal-organic structure and manufacturing method | |
Vander Hoogerstraete et al. | Crystal structures of low-melting ionic transition-metal complexes with N-alkylimidazole ligands | |
Yang et al. | Small nickel nanoparticle arrays from long chain imidazolium ionic liquids | |
US20200332167A1 (en) | Process and device of refrigeration induced by an external stimulus on a caloric organic-inorganic- hybrid material | |
Salgado-Beceiro et al. | Multifunctional properties and multi-energy storage in the [(CH 3) 3 S][FeCl 4] plastic crystal | |
Tang et al. | Enhanced thermoelectric performance of Cu12Sb4S13− δ tetrahedrite via nickel doping | |
Maiti et al. | Solvent-assisted growth of Sb 2 Se 3 nanocompounds from a single-source precursor under mild reaction conditions | |
Drzewowska et al. | Different Approach to Thermodynamic Description of Bi-Te Binary System | |
US10465950B2 (en) | Guanidinium-based ionic liquids in absorption chillers | |
Premović et al. | Experimental investigation and thermodynamic prediction of the Ag–Ge–Sb phase diagram | |
Rizvi et al. | Investigation of time–temperature dependency of heat capacity enhancement in molten salt nanofluids | |
JP6550922B2 (en) | Cold storage device | |
Wu et al. | Crystalline chalcogenidometalate-based compounds from uncommon reaction media | |
Iwai et al. | Thermophysical Properties of Ionic Semiclathrate Hydrate Formed with Tetrabutylphosphonium Malonate | |
Liu et al. | Multisequential reversible phase transition materials with semiconducting and fluorescence properties:(C 8 H 18 BrN) 2 SnBr 6 | |
Rodionova et al. | Calorimetric and PXRD studies of ionic clathrate hydrates of tetrabutylammonium carboxylates in binary (C 4 H 9) 4 NC n H 2n+ 1 CO 2–H 2 O (n= 0–3) systems | |
Hosokawa et al. | Ionic liquids from cationic palladium (II) chelate complexes: preparation, thermal properties, and crystal structures | |
Korchemkin et al. | Synthesis of sodium nickel phosphate and its crystallographic, spectroscopic, and temperature-controlled X-ray diffraction study | |
US10168080B2 (en) | Eutectic mixtures of ionic liquids in absorption chillers | |
Litsis et al. | Preparation, crystal structure, and luminescent properties of CAPh containing lanthanide (III) complexes with various amounts of coordinated solvent molecules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15858731 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15520172 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15858731 Country of ref document: EP Kind code of ref document: A1 |