JP6905191B2 - Lens and compound eye lens - Google Patents

Lens and compound eye lens Download PDF

Info

Publication number
JP6905191B2
JP6905191B2 JP2017177114A JP2017177114A JP6905191B2 JP 6905191 B2 JP6905191 B2 JP 6905191B2 JP 2017177114 A JP2017177114 A JP 2017177114A JP 2017177114 A JP2017177114 A JP 2017177114A JP 6905191 B2 JP6905191 B2 JP 6905191B2
Authority
JP
Japan
Prior art keywords
thin film
obstacle
electromagnetic wave
antenna
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017177114A
Other languages
Japanese (ja)
Other versions
JP2019054400A (en
Inventor
貴寛 土屋
貴寛 土屋
秀幸 坪井
秀幸 坪井
白戸 裕史
裕史 白戸
正孝 飯塚
正孝 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017177114A priority Critical patent/JP6905191B2/en
Publication of JP2019054400A publication Critical patent/JP2019054400A/en
Application granted granted Critical
Publication of JP6905191B2 publication Critical patent/JP6905191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

本発明は、レンズ及び複眼レンズに関する。 The present invention relates to lenses and compound eye lenses.

第5世代移動通信システム(以下「5G」という。)において、電波の届く範囲が広い基地局(以下「マクロセル基地局」という。)を展開することが検討されている。また、5Gにおいて、人が密集するエリアに対しては、マクロセル基地局だけでなく、電波の届く範囲が狭い基地局(以下「スモールセル基地局」という。)を展開することが検討されている。さらに、5Gにおいて、無線通信機能と各種の計測機能とを有するIoT(Internet of things)デバイスを街中に設置することと、スモール基地局のトラフィックをオフロードすることでスモール基地局の負荷を軽減するため、無線LAN(Local Area Network)アクセスポイントを設置することが検討されている。そのため、5Gにおいては、マイクロセル基地局及びスモールセル基地局だけでなく、多数のIoTデバイス及び無線LANアクセスポイントを設置する必要がある。以下、IoTデバイス、無線LANアクセスポイント等の無線通信に使用される装置をそれぞれ区別しない場合、無線装置という。 In the 5th generation mobile communication system (hereinafter referred to as "5G"), it is considered to develop a base station having a wide range of radio waves (hereinafter referred to as "macrocell base station"). Further, in 5G, it is being considered to deploy not only macrocell base stations but also base stations with a narrow range of radio waves (hereinafter referred to as "small cell base stations") in areas where people are crowded. .. Furthermore, in 5G, the load on small base stations is reduced by installing IoT (Internet of things) devices that have wireless communication functions and various measurement functions in the city and offloading the traffic of small base stations. Therefore, it is being considered to install a wireless LAN (Local Area Network) access point. Therefore, in 5G, it is necessary to install not only microcell base stations and small cell base stations but also a large number of IoT devices and wireless LAN access points. Hereinafter, when a device used for wireless communication such as an IoT device and a wireless LAN access point is not distinguished, it is referred to as a wireless device.

図19は、従来のスモールセル基地局の使用例を示す図である。図19のようにビル800が立ち並ぶ通り(例えば、銀座の中央通り)にスモールセル基地局801を設置する場合、スモールセル基地局を設置する場所としては、ビル800の壁面の比較的高所(例えば、地上から20[m])が考えられる。ビル800の壁面の比較的高所にスモールセル基地局801を設置することで、歩道上にいるユーザーに無線通信サービスを提供することが可能になる。しかしながら、スモールセル基地局801や無線装置をビル壁面に多数設置する場合、通りの景観が損なわれる可能性がある。そこで、多くのビル800には比較的高所に看板802が設置されていることに着目し、看板802の看板面の内側(以下「看板内」という。)にスモールセル基地局801又は無線装置を設置することが提案されている。この場合、看板802は電磁波の伝搬を妨げる障害物となる。そのため、看板内にスモールセル基地局801及び無線装置を設置することで、景観を損なうことなく、ビルが立ち並ぶ通りにおける無線通信が可能になる。さらに、看板内にスモールセル基地局801又は無線装置を設置する場合、多くの看板802には電源用ケーブルは既に敷設されているため、新たに電源用ケーブルを敷設する工事が不要である。なお、スモールセル基地局801が受信したデータは、エントランス基地局803に送信され、マイクロ波や、光等で、基地局制御装置に送信される。そしてさらに光回線等により通信事業会社などの集約局804に送信される。 FIG. 19 is a diagram showing a usage example of a conventional small cell base station. When the small cell base station 801 is installed on the street where the buildings 800 are lined up as shown in FIG. 19 (for example, Chuo-dori in Ginza), the place where the small cell base station is installed is a relatively high place on the wall surface of the building 800 (for example,). For example, 20 [m]) from the ground can be considered. By installing the small cell base station 801 at a relatively high place on the wall surface of the building 800, it becomes possible to provide a wireless communication service to a user on the sidewalk. However, when a large number of small cell base stations 801 and wireless devices are installed on the wall surface of a building, the landscape of the street may be impaired. Therefore, paying attention to the fact that the signboard 802 is installed at a relatively high place in many buildings 800, the small cell base station 801 or the wireless device is located inside the signboard surface of the signboard 802 (hereinafter referred to as "inside the signboard"). It has been proposed to install. In this case, the signboard 802 becomes an obstacle that hinders the propagation of electromagnetic waves. Therefore, by installing the small cell base station 801 and the wireless device in the signboard, wireless communication on the street where the buildings are lined up becomes possible without spoiling the landscape. Further, when the small cell base station 801 or the wireless device is installed in the signboard, since the power supply cable has already been laid in many signboards 802, it is not necessary to newly lay the power supply cable. The data received by the small cell base station 801 is transmitted to the entrance base station 803, and is transmitted to the base station control device by microwave, light, or the like. Then, it is further transmitted to the aggregation station 804 of a telecommunications carrier or the like by an optical line or the like.

図20は、従来のスモールセル基地局の使用例を示す図である。スモールセル基地局を設置する場所としては、ビルが立ち並ぶ通り以外にも例えば、駅のコンコース、駅周辺の地下街又はデパート等が考えられる。このような場合には、天井、柱、壁等に無線装置を設置することが提案されている。しかしながら、この場合にも、景観を損ねる場合がある。そこで、図20のように、天井900、柱901、壁902等に既に照明機器903が設置されていることに着目し、照明機器903の筐体内部にスモールセル基地局及び無線装置904を設置することが提案されている。照明機器903においてはグローブが電磁波にとっての障害物である。そのため、照明機器903の内側にスモール基地局及び無線装置904を設置することで、景観が損なわれることなく、駅コンコース等での無線通信が可能になる。さらに、照明機器903には電源用管路が既に敷設されているため、新たに電源用管路を敷設する工事が不要である。なお、無線装置904が受信したデータは、ネットワーク接続ポイント905に送信され、イーサネット(登録商標)、光ファイバなどで、ゲートウェー装置906を介して(インターネット/イントラネットなどの)ネットワーク907へ送信される。
この図20に取り上げた無線装置904がIoTデバイスの場合、図20でハッチを施し示す領域(スモールセル基地局における「通信可能範囲」に相当)は、例えば、IoTデバイスが(焦電センサ・赤外線センサあるいは魚眼型の監視カメラなど)人感センサとするならば、屋内・室内・施設内に居たり、移動したりする状況の人を検知する事が可能な範囲を表す。他に、IoTデバイスが赤外線を利用し離れた所から高温な箇所を把握する熱感知センサや炎の光を高感度にキャッチする照度センサとするならば、火災の出火を捉えられることができる検出範囲とも云い換えられる。そして、これらの無線通信の機能を搭載した無線装置904は照明機器903の内側に設置することができる。
FIG. 20 is a diagram showing a usage example of a conventional small cell base station. As the place where the small cell base station is installed, in addition to the street where the buildings are lined up, for example, a concourse of a station, an underground shopping mall around the station, a department store, or the like can be considered. In such cases, it has been proposed to install wireless devices on ceilings, pillars, walls, and the like. However, even in this case, the landscape may be spoiled. Therefore, as shown in FIG. 20, paying attention to the fact that the lighting equipment 903 is already installed on the ceiling 900, the pillar 901, the wall 902, etc., the small cell base station and the wireless device 904 are installed inside the housing of the lighting equipment 903. It is proposed to do. In the lighting device 903, the glove is an obstacle to electromagnetic waves. Therefore, by installing the small base station and the wireless device 904 inside the lighting device 903, wireless communication at a station concourse or the like becomes possible without spoiling the landscape. Further, since the power supply line is already laid in the lighting equipment 903, it is not necessary to newly lay the power line. The data received by the wireless device 904 is transmitted to the network connection point 905, and is transmitted to the network 907 (such as the Internet / intranet) via the gateway device 906 via Ethernet (registered trademark), optical fiber, or the like. ..
When the wireless device 904 taken up in FIG. 20 is an IoT device, the area shown by hatching in FIG. 20 (corresponding to the “communicable range” in the small cell base station) is, for example, the IoT device (pyroelectric sensor / infrared ray). If it is a motion sensor (such as a sensor or a fish-eye type surveillance camera), it represents the range in which it is possible to detect a person who is indoors, indoors, in a facility, or moving. In addition, if the IoT device uses infrared rays to detect a hot spot from a distance, or if it is an illuminance sensor that catches the light of a flame with high sensitivity, it can detect the outbreak of a fire. It can also be called a range. Then, the wireless device 904 equipped with these wireless communication functions can be installed inside the lighting device 903.

このように、5Gを想定した上記の検討によれば、今後、看板や照明機器の内側に無線装置が設置される機会が増えていくと考えられる。 In this way, according to the above study assuming 5G, it is expected that the chances of installing wireless devices inside signboards and lighting equipment will increase in the future.

土屋 貴寛、後藤 和人、菅 瑞紀、黄 俊翔、坪井 秀幸、黒崎 聰、 太田 厚、飯塚 正孝、"75GHz 帯伝搬測定によるストリートスモールセル基地局向け無線エントランス環境の実験的評価"、信学技報 IEICE Technical Report RCS2017-74(2017-06)Takahiro Tsuchiya, Kazuto Goto, Mizuki Suga, Toshisho Huang, Hideyuki Tsuboi, Satoshi Kurosaki, Atsushi Ota, Masataka Iizuka, "Experimental Evaluation of Radio Entrance Environment for Street Small Cell Base Stations by 75GHz Band Propagation Measurement" IEICE Technical Report RCS2017-74 (2017-06)

しかしながら、無線装置を看板や照明機器等の構造物内に設置する場合、無線装置が出力した電磁波の一部が障害物によって反射される。そのため、反射波が生じることによって障害物を透過する電磁波の強度が減少するため、無線装置の通信可能距離が短くなるという問題があった。 However, when the wireless device is installed in a structure such as a signboard or a lighting device, a part of the electromagnetic wave output by the wireless device is reflected by an obstacle. Therefore, there is a problem that the communicable distance of the wireless device is shortened because the intensity of the electromagnetic wave transmitted through the obstacle is reduced due to the generation of the reflected wave.

上記事情に鑑み、本発明は、通信可能距離が短くなることを抑制することができる技術を提供することを目的としている。 In view of the above circumstances, an object of the present invention is to provide a technique capable of suppressing a decrease in the communicable distance.

本発明の一態様は、屈折率がnである媒質を伝搬する波長λの電磁波に対する屈折率がnの複数の薄膜が層状に並び、前記複数の薄膜の一部又は全部が凸レンズの形状に略同一の形状を成し、n=(n×n1/2であって、前記複数の薄膜のうちの最も大きな面積を有する薄膜が、前記電磁波を所定の透過率で透過させる障害物が有する面のうち前記電磁波が入射する側の面に接し、前記複数の薄膜の前記面に垂直な方向の厚さが、λ/(4×n)の奇数倍である、レンズである。 In one aspect of the present invention, a plurality of thin films having a refractive index of n c with respect to an electromagnetic wave having a wavelength λ propagating in a medium having a refractive index of n 1 are arranged in layers, and a part or all of the plurality of thin films has a convex lens shape. The thin film having substantially the same shape, n c = (n 1 × n 2 ) 1/2 , and having the largest area among the plurality of thin films transmits the electromagnetic waves at a predetermined transmittance. the electromagnetic wave of the surface obstacle to have the contact with the surface on the side where incident, thickness in a direction perpendicular to the surface of the plurality of thin film is an odd multiple of λ / (4 × n c) , the lens Is.

本発明の一態様は、屈折率がnである媒質を伝搬する波長λの電磁波に対する屈折率がnの複数の薄膜が層状に並び、前記複数の薄膜の一部又は全部が凸レンズの形状に略同一の形状を成し、前記複数の薄膜のうちの最も大きな面積を有する薄膜が、前記電磁波を所定の透過率で透過させる障害物が有する面のうち前記電磁波が入射する側の面に接するレンズ状部材と、前記電磁波に対する屈折率がnであって、前記障害物が有する面のうち、前記屈折率がnの薄膜が接する面に平行であり、前記屈折率がnの薄膜が接する面の反対側に存在する面に接する薄膜状部材と、を備え、前記レンズ状部材の前記電磁波が入射する側の面に垂直な方向の厚さと、前記障害物の前記電磁波が入射する側の面に垂直な方向の厚さと、前記薄膜状部材の前記電磁波が入射する側の面に垂直な方向の厚さとの合計の厚さが、λ/(4×n)の奇数倍である、レンズである。 In one aspect of the present invention, a plurality of thin films having a refractive index of n 2 with respect to an electromagnetic wave having a wavelength λ propagating in a medium having a refractive index of n 1 are arranged in layers, and a part or all of the plurality of thin films has a convex lens shape. The thin film having substantially the same shape and having the largest area among the plurality of thin films is on the surface of the obstacles that transmit the electromagnetic waves at a predetermined transmittance on the side on which the electromagnetic waves are incident. The lenticular member in contact and the surface of the obstacle having a refractive index of n 2 and having a refractive index of n 2 are parallel to the surface in contact with the thin film having a refractive index of n 2 . A thin film-like member in contact with a surface existing on the opposite side of the surface in contact with the thin film is provided, and the thickness of the lens-like member in a direction perpendicular to the surface on the side where the electromagnetic wave is incident and the electromagnetic wave of the obstacle are incident. The total thickness of the thickness in the direction perpendicular to the surface of the thin film member and the thickness of the thin film member in the direction perpendicular to the surface on which the electromagnetic wave is incident is an odd multiple of λ / (4 × n 2). Is a lens.

本発明の一態様は、上記のレンズであって、前記凸レンズの形状に略同一の形状を成す前記複数の薄膜と前記電磁波を放射する第一のアンテナとの距離dinが、前記第一のアンテナの開口の長さDと、din≧2D2/λである場合において、前記凸レンズの形状に略同一の形状は、前記第一のアンテナと前記電磁波を受信する第二のアンテナとの距離をdallとし、前記凸レンズの形状に略同一の形状を成す前記複数の薄膜の厚さの合計dとした場合に、R=(n−1)d、d=dall−(din+d)を満たす曲率半径Rの球面に接する形状である。 One aspect of the present invention is the above-described lens, the distance d in the first antenna for radiating said electromagnetic wave and said plurality of thin film having a substantially identical shape to the shape of the convex lens, the first When the opening length D of the antenna and d in ≧ 2D2 / λ, the shape substantially the same as the shape of the convex lens determines the distance between the first antenna and the second antenna that receives the electromagnetic wave. If the d all, that the sum d l of the thickness of said plurality of thin film having a substantially identical shape to the shape of the convex lens, R = (n c -1) d f, d f = d all - (d It is a shape in contact with a spherical surface having a radius of curvature R that satisfies in + d l).

本発明の一態様は、上記のレンズであって、前記凸レンズの形状に略同一の形状を成す前記複数の薄膜と前記電磁波を放射する第一のアンテナとの距離dinが、前記第一のアンテナの開口の長さDと、din<2D/λである場合において、前記凸レンズの形状に略同一の形状は、R=(n−1)dinを満たす曲率半径Rの球面に接する形状である。 One aspect of the present invention is the above-described lens, the distance d in the first antenna for radiating said electromagnetic wave and said plurality of thin film having a substantially identical shape to the shape of the convex lens, the first When the length D of the opening of the antenna and d in <2D 2 / λ, the shape substantially the same as the shape of the convex lens becomes a spherical surface having a radius of curvature R satisfying R = (n c -1) d in. It is a contacting shape.

本発明の一態様は、上記のレンズを複数備える複眼レンズである。 One aspect of the present invention is a compound eye lens including a plurality of the above lenses.

本発明により、通信可能距離を伸ばすことが可能となる。 According to the present invention, it is possible to extend the communicable distance.

従来の無線通信システム7の具体例を示す図。The figure which shows the specific example of the conventional wireless communication system 7. 第一の実施形態の透過部材1の具体的な断面図を示す図。The figure which shows the specific sectional view of the transmission member 1 of 1st Embodiment. 第一の実施形態の透過部材1を送信アンテナ701側から見た具体的な構成を示す図。The figure which shows the concrete structure which saw the transmission member 1 of 1st Embodiment from the transmission antenna 701 side. 第一の実施形態の透過部材1が送信アンテナ701に対して十分遠方にある場合における、曲率半径R1を説明する図。The figure explaining the radius of curvature R1 in the case where the transmission member 1 of 1st Embodiment is far enough away from a transmitting antenna 701. 第一の実施形態の透過部材1が送信アンテナ701の近傍にある場合における、曲率半径R2を説明する図。The figure explaining the radius of curvature R2 in the case where the transmission member 1 of 1st Embodiment is in the vicinity of transmission antenna 701. 第一の実施形態の透過部材1が反射波を抑制することができる原理を説明する図。The figure explaining the principle that the transmission member 1 of 1st Embodiment can suppress a reflected wave. 障害物702に接する第一の薄膜11が、曲率半径R1の円に接しない場合の具体例を示す図。The figure which shows the specific example in the case where the first thin film 11 which touches an obstacle 702 does not touch a circle of curvature radius R1. 第二の実施形態の透過部材2の具体的な断面図を示す図。The figure which shows the specific sectional view of the transmission member 2 of the 2nd Embodiment. 図1の無線通信システム7における第二の実施形態の透過部材2の使用例を示す図。The figure which shows the use example of the transmission member 2 of the 2nd Embodiment in the wireless communication system 7 of FIG. 図9における、透過部材2の曲率半径R2と送信アンテナ701と受信アンテナ703との距離dallとの関係を示すシミュレーション結果の図。FIG. 9 is a diagram of simulation results showing the relationship between the radius of curvature R2 of the transmitting member 2 and the distance dollar between the transmitting antenna 701 and the receiving antenna 703. 送信アンテナ701と障害物702との水平方向の距離din+dL2と透過部材2の曲率半径R2との関係を示す図。The figure which shows the relationship between the horizontal distance din + dL2 between a transmitting antenna 701 and an obstacle 702, and the radius of curvature R2 of a transmission member 2. 障害物702に接する第二の薄膜12が、曲率半径R2の円に接しない場合の具体例を示す図。The figure which shows the specific example in the case where the 2nd thin film 12 which touches an obstacle 702 does not touch a circle of radius of curvature R2. 変形例の透過部材1を正面から見た構成の具体例を示す図。The figure which shows the specific example of the structure which saw the transmission member 1 of the modification from the front. 複数の透過部材1が障害物702に接する場合の透過部材1の具体的な配置を示す図。The figure which shows the specific arrangement of the transmission member 1 when a plurality of transmission members 1 are in contact with an obstacle 702. 図13に示す変形例の透過部材1をYZ面内に複数の配置する場合の透過部材1の具体例な配置を示す図。FIG. 3 is a diagram showing a specific arrangement of the transparent members 1 when a plurality of transparent members 1 of the modified example shown in FIG. 13 are arranged in the YZ plane. 障害物702を伝搬する電磁波の経路を示す図。The figure which shows the path of the electromagnetic wave propagating the obstacle 702. 透過部材1又は2が非近似成立システムにおいて使用される場合の具体的な例を示す図。The figure which shows the specific example when the transmission member 1 or 2 is used in the non-approximate establishment system. 障害物702aを伝搬する電磁波の経路を示す図。The figure which shows the path of the electromagnetic wave propagating the obstacle 702a. 従来のスモールセル基地局の使用例を示す図。The figure which shows the use example of the conventional small cell base station. 従来のスモールセル基地局の使用例を示す図。The figure which shows the use example of the conventional small cell base station.

(概略)
図1は、従来の無線通信システム7の具体例を示す図である。従来の無線通信システム7は、送信アンテナ701、障害物702及び受信アンテナ703を有する。図1において、直交座標系であるXYZ座標系のX軸は水平方向に平行な軸であり、Y軸は鉛直方向に平行な軸である。
(Summary)
FIG. 1 is a diagram showing a specific example of the conventional wireless communication system 7. The conventional wireless communication system 7 has a transmitting antenna 701, an obstacle 702, and a receiving antenna 703. In FIG. 1, the X-axis of the XYZ coordinate system, which is a Cartesian coordinate system, is an axis parallel to the horizontal direction, and the Y-axis is an axis parallel to the vertical direction.

送信アンテナ701は、例えば、スモールセル基地局、IoTデバイス、無線LANアクセスポイント等に備えられる。送信アンテナ701は、開口径がDである。送信アンテナ701は、所定の位置を座標原点として自身の中心点の座標がhである位置に存在する。以下では、このような位置に存在することを、高さhの位置に存在する、と表現する。座標原点は、例えば、地表面であってもよい。 The transmitting antenna 701 is provided in, for example, a small cell base station, an IoT device, a wireless LAN access point, or the like. The transmitting antenna 701 has an aperture diameter of D. The transmitting antenna 701 exists at a position where the coordinates of its own center point are h 1 with a predetermined position as the coordinate origin. In the following, the presence in such a position, at the position of the height h 1, and expressed. The coordinate origin may be, for example, the ground surface.

障害物702は、入射した電磁波を所定の透過率で透過させる部材であって、例えば、看板面や、照明機器のグローブである。障害物702の厚さ(すなわち、X軸方向の幅)はdである。障害物702の波長λの電磁波に対する屈折率はnである。 The obstacle 702 is a member that transmits an incident electromagnetic wave at a predetermined transmittance, and is, for example, a signboard surface or a glove of a lighting device. The thickness of the obstacle 702 (i.e., the width of the X-axis direction) is d b. The refractive index of the obstacle 702 with respect to an electromagnetic wave having a wavelength λ is n 2 .

受信アンテナ703は、例えば、エントランス基地局やネットワーク接続ポイントに備えられる。受信アンテナ703は、送信アンテナ701に対して、X軸方向に距離dall離れた場所に存在する。受信アンテナ703は、hよりもY軸正方向にH1だけ離れた高さhの位置に存在する。なお、受信アンテナ703と送信アンテナ701との鉛直方向の距離の差は、受信アンテナ703と送信アンテナ701との水平方向の距離の差よりも十分短い。すなわち、H1は、H1<<dallの関係を満たす。
送信アンテナ701、障害物702及び受信アンテナ703は、X軸方向に、送信アンテナ701、障害物702、受信アンテナ703の順番に配置される。
The receiving antenna 703 is provided in, for example, an entrance base station or a network connection point. Receive antenna 703 to the transmitting antenna 701, exists at a distance d all away in the X-axis direction. The receiving antenna 703 exists at a height h 2 which is separated from h 1 by H 1 in the positive direction of the Y axis. The difference in the vertical distance between the receiving antenna 703 and the transmitting antenna 701 is sufficiently shorter than the difference in the horizontal distance between the receiving antenna 703 and the transmitting antenna 701. That, H1 satisfies the relation of H1 << d all.
The transmitting antenna 701, the obstacle 702, and the receiving antenna 703 are arranged in the order of the transmitting antenna 701, the obstacle 702, and the receiving antenna 703 in the X-axis direction.

送信アンテナ701が放射した電磁波の一部は、屈折率がnの外気中を水平方向に対して角度θの方向に伝搬し、障害物702を透過する。障害物702を透過した電磁波は、屈折率nの外気中を水平方向に対して角度θの方向に伝搬し受信アンテナ703に到達する。なお、θは、tan(θ)=H1/dallの関係を満たす。 A part of the electromagnetic wave radiated by the transmitting antenna 701 propagates in the outside air having a refractive index of n 1 in the direction of an angle θ a with respect to the horizontal direction, and passes through the obstacle 702. Electromagnetic waves transmitted through the obstacle 702, propagates in the direction of the angle theta a fresh air in the refractive index n 1 with respect to the horizontal direction reaches the receiving antenna 703. Note that θ a satisfies the relationship of tan (θ a ) = H1 / d all.

受信アンテナ703と送信アンテナ701との鉛直方向の距離の差H1は、受信アンテナ703と送信アンテナ701との水平方向の距離の差dallよりも十分短く、H1/dall≒0である。すなわち、θは、θ≒0の関係を満たす。このことは、電磁波の障害物702への入射角度が0degに近いことを意味し、電磁波の障害物702による屈折の屈折角を0と近似できることを意味する。 The difference H1 of the vertical distance between the receiving antenna 703 and transmitting antenna 701 is sufficiently shorter than the difference d all the horizontal distance between the receiving antenna 703 and transmitting antenna 701, a H1 / d all ≒ 0. That, theta a satisfy the relationship of θ a ≒ 0. This means that the angle of incidence of the electromagnetic wave on the obstacle 702 is close to 0 deg, and that the refraction angle of the refraction of the electromagnetic wave by the obstacle 702 can be approximated to 0.

無線通信システム7において、障害物702内を通過する電磁波が、障害物702内で進む距離はd/cos(θ)である。また、無線通信システム7において、電磁波が障害物702内で進む距離はdに略同一の長さである。以下簡単のため、特にことわりがない限りは、θ≒0であり、無線通信システム7において、電磁波が障害物702内を進む距離はdであるとして説明する。 In a wireless communication system 7, the electromagnetic wave passing through the obstacle 702, distance traveled in the obstacle 702 is d b / cos (θ a) . In the wireless communication system 7, the distance the electromagnetic wave travels in the obstacle 702 are substantially the same length in the d b. For simplicity below, particularly unless otherwise specified, a theta a ≒ 0, in a wireless communication system 7, the distance electromagnetic waves traveling in the obstacle 702 will be described as a d b.

例えば、屋外のビルが立ち並ぶ通りは、無線通信システム7の使用シーンの一例である。この場合、送信アンテナ701は、例えば、ビル壁の看板の内側に設置されてもよく、この場合、例えば、送信アンテナ701と受信アンテナ703との高低差H1は7mであって、水平距離dallは70mであってもよい。また、例えば、駅のコンコースは、無線通信システム7の使用シーンの一例である。送信アンテナ701は、屋内の壁や柱に設置された照明機器内に設置されてもよい。この場合、例えば送信アンテナ701と受信アンテナ703(NW接続ポイント等)との高低差H1が3mであって、水平距離dallは30mであってもよい。これらの使用シーンにおいては、10≦dall/H1の関係と、θ<5.71degの関係とが満たされる。すなわち、この場合1/cos(θ)は約1.005であって、1に略同一である。 For example, a street lined with outdoor buildings is an example of a usage scene of the wireless communication system 7. In this case, the transmitting antenna 701 may be installed inside a signboard on the building wall, for example. In this case, for example, the height difference H1 between the transmitting antenna 701 and the receiving antenna 703 is 7 m, and the horizontal distance is d all. May be 70 m. Further, for example, a station concourse is an example of a usage scene of the wireless communication system 7. The transmitting antenna 701 may be installed in a lighting device installed on an indoor wall or pillar. In this case, for example, the height difference H1 between the transmitting antenna 701 and the receiving antenna 703 (NW connection point or the like) may be 3 m, and the horizontal distance dall may be 30 m. In these usage scenes, the relationship of 10 ≦ d all / H1 and the relationship of θ a <5.71 deg are satisfied. That is, in this case, 1 / cos (θ a ) is about 1.005, which is substantially the same as 1.

なお、無線通信システム7はこのようなシステムに限られるものではなく、送信アンテナ701、障害物702及び受信アンテナ703が、θ≒0を満たすように送信アンテナ701、障害物702及び受信アンテナ703の順番に配置される無線通信システムであれば、どのような無線通信システムであってもよい。 The wireless communication system 7 is not limited to such a system, the transmitting antenna 701, the obstacle 702 and receiving antenna 703, transmits to meet theta a ≒ 0 antenna 701, the obstacle 702 and the receiving antenna 703 Any wireless communication system may be used as long as it is a wireless communication system arranged in the order of.

以下に説明する各実施形態は、図1に示す従来の無線通信システムの障害物702に、所定の条件を満たすように構成された透過部材を配置することにより、通信可能距離が短くなることを抑制する。 In each of the embodiments described below, the communicable distance is shortened by arranging the transmission member configured to satisfy a predetermined condition on the obstacle 702 of the conventional wireless communication system shown in FIG. Suppress.

以下、実施形態の透過部材を、図面を参照して説明する。 Hereinafter, the transparent member of the embodiment will be described with reference to the drawings.

(第一の実施形態)
図2は、第一の実施形態の透過部材1の具体的な断面図を示す図である。透過部材1は、図1の無線通信システム7における障害物702のYZ面に平行な表面のうち、送信アンテナ701側の表面に接する。透過部材1は、入射した電磁波の障害物702の表面における反射を抑制するとともに、その入射した電磁波を受信アンテナ703に集光する。なお、図2のXYZ座標は、図1のXYZ座標と同じである。
(First Embodiment)
FIG. 2 is a diagram showing a specific cross-sectional view of the transmission member 1 of the first embodiment. The transmission member 1 is in contact with the surface on the transmitting antenna 701 side of the surfaces parallel to the YZ plane of the obstacle 702 in the wireless communication system 7 of FIG. The transmitting member 1 suppresses the reflection of the incident electromagnetic wave on the surface of the obstacle 702, and collects the incident electromagnetic wave on the receiving antenna 703. The XYZ coordinates in FIG. 2 are the same as the XYZ coordinates in FIG.

透過部材1は、第一の薄膜11−1〜5を備える。第一の薄膜11−1〜5は、厚さがds1であり、後述するように第一の薄膜11−1〜5を積層した合計の厚さはdL1であり、屈折率がnの誘電体の薄膜である。屈折率nは、
=(n×n1/2 ・・・(1)
を満たす。
合計の厚さdL1は、
L1=m×λ/(4×n) ・・・(2)
の関係を満たす。この式(2)において,mは奇数(m=1、3、5、・・・)であり、λは、透過部材1に入射する電磁波の真空中の波長である。第一の薄膜11−1〜5は、それぞれ同じ厚さds1及び屈折率nを有するものの、形状又は大きさが異なる。なお、第一の薄膜11−5は障害物702に接する。第一の薄膜11−5が、障害物702に接する面は、X軸正方向(すなわち、厚さ方向)に垂直な面である。
The transmission member 1 includes a first thin film 11-1 to 11. The first thin films 11-1 to 5 have a thickness of d s1 , and as will be described later, the total thickness of the first thin films 11-1 to 5 laminated is d L1 and the refractive index is n c. It is a thin film of a dielectric of. The refractive index n c is
n c = (n 1 x n 2 ) 1/2 ... (1)
Meet.
The total thickness d L1 is
d L1 = m × λ / ( 4 × n c ) ・ ・ ・ (2)
Satisfy the relationship. In this equation (2), m is an odd number (m = 1, 3, 5, ...), And λ is the wavelength of the electromagnetic wave incident on the transmitting member 1 in vacuum. The first thin film 11-1~5 Although each have the same thickness d s1 and refractive index n c, shape or size is different. The first thin film 11-5 is in contact with the obstacle 702. The surface of the first thin film 11-5 in contact with the obstacle 702 is a surface perpendicular to the X-axis positive direction (that is, the thickness direction).

図3は、第一の実施形態の透過部材1を送信アンテナ701側から見た具体的な構成を示す図である。第一の薄膜11−1〜5は、YZ面において円形であり、第一の薄膜11−1、第一の薄膜11−2、第一の薄膜11−3、第一の薄膜11−4、第一の薄膜11−5の順番に半径が短い。 FIG. 3 is a diagram showing a specific configuration of the transmission member 1 of the first embodiment as viewed from the transmission antenna 701 side. The first thin films 11-1 to 11-5 are circular in the YZ plane, and the first thin film 11-1, the first thin film 11-2, the first thin film 11-3, the first thin film 11-4, The radius is shorter in the order of the first thin film 11-5.

図2の説明に戻る。第一の薄膜11−1〜5は、第一の薄膜11−1、第一の薄膜11−2、第一の薄膜11−3、第一の薄膜11−4、第一の薄膜11−5の順番に層状に重ねられる。より詳細には、第一の薄膜11−1〜5は、凸レンズ状の形状と略同一の形状を形成するように積層される。そのため、透過部材1は、入射した電磁波を集光する凸レンズとして機能する。なお、透過部材1のX軸方向の厚さdL1は、前述したように第一の薄膜11−1〜5を重ねた(積層した)厚さであって、この図2の例ではdL1=ds1×5の関係を満たす。従って、先の式(2)よりds1=(m/5)×λ/(4×n)となる。ここで、mは奇数である。 Returning to the description of FIG. The first thin films 11-1 to 5 are the first thin film 11-1, the first thin film 11-2, the first thin film 11-3, the first thin film 11-4, and the first thin film 11-5. It is layered in the order of. More specifically, the first thin films 11-1 to 11-5 are laminated so as to form substantially the same shape as the convex lens shape. Therefore, the transmission member 1 functions as a convex lens that collects the incident electromagnetic wave. The thickness d L1 of the transmissive member 1 in the X-axis direction is the thickness of the first thin films 11-1 to 11-5 stacked (laminated) as described above, and in the example of FIG. 2, d L1 The relationship of = d s1 × 5 is satisfied. Therefore, from the above equation (2), d s1 = (m / 5) × λ / ( 4 × n c ). Here, m is an odd number.

第一の薄膜11−1〜5が形成する凸レンズ状の形状の曲率半径は長さR1である。すなわち、第一の薄膜11−1〜5の大きさは、曲率半径R1の円の境界に接するよう調整された大きさである。曲率半径R1は、送信アンテナ701、障害物702及び受信アンテナ703間の距離に基づいて、市販のレンズの曲率半径の長さの算出方法と同様の方法で算出される。 The radius of curvature of the convex lens-like shape formed by the first thin films 11-1 to 11-5 is length R1. That is, the size of the first thin films 11-1 to 5 is a size adjusted so as to be in contact with the boundary of a circle having a radius of curvature R1. The radius of curvature R1 is calculated by the same method as the method for calculating the length of the radius of curvature of a commercially available lens, based on the distance between the transmitting antenna 701, the obstacle 702, and the receiving antenna 703.

以下、屈折率が式(1)の関係を満たし、厚さが式(2)の関係を満たす薄膜を第一の薄膜11という。
なお、透過部材1は、必ずしも5枚の第一の薄膜11を備える必要はなく、mを奇数として、複数枚の積層した全体の厚さが物質内波長のm/4倍であれば何枚であってもよい。
また、実施形態の透過部材1は、必ずしも同じ厚さの第一の薄膜11によって構成される必要はなく、屈折率が(n×n1/2である複数枚の薄膜によって構成され、透過部材1の厚さ(すなわち、X軸方向の幅であり、図2におけるdL1)が物質内波長の1/4の奇数倍であって、透過部材1の形状が凸レンズに略同一の形状であれば、どのように構成されてもよい。
また、透過部材1は、第一の薄膜11をシールのように張り合わせることで形成されてもよいし、第一の薄膜11同士を接着剤で張り合わせることで形成されてもよい。
Hereinafter, a thin film having a refractive index satisfying the relation of the formula (1) and a thickness satisfying the relation of the formula (2) is referred to as a first thin film 11.
The transmissive member 1 does not necessarily have to include the five first thin films 11, and if m is an odd number and the total thickness of the plurality of laminated members is m / 4 times the wavelength in the substance, how many sheets are there. It may be.
Further, the transmission member 1 of the embodiment does not necessarily have to be composed of the first thin film 11 having the same thickness, but is composed of a plurality of thin films having a refractive index of (n 1 × n 2 ) 1/2. , The thickness of the transmissive member 1 (that is, the width in the X-axis direction, d L1 in FIG. 2) is an odd multiple of 1/4 of the wavelength in the substance, and the shape of the transmissive member 1 is substantially the same as that of the convex lens. Any shape may be used as long as it has a shape.
Further, the transmission member 1 may be formed by laminating the first thin films 11 like a seal, or may be formed by laminating the first thin films 11 with each other with an adhesive.

図4は、第一の実施形態の透過部材1が送信アンテナ701に対して十分遠方にある場合における、曲率半径R1を説明する図である。 FIG. 4 is a diagram illustrating a radius of curvature R1 when the transmission member 1 of the first embodiment is sufficiently far from the transmitting antenna 701.

図4において、送信アンテナ701、障害物702及び受信アンテナ703の配置は、図1の無線通信システム7と同様である。
また、図4において、透過部材1は送信アンテナ701に対して十分遠方にある。そのため、送信アンテナ701が放射する電磁波は、透過部材1の入射面において、近似的に平面波である。例えば、送信アンテナ701と透過部材1との間の距離をdinとすると、dinは、din≧2Dλの関係を満たす。
In FIG. 4, the arrangement of the transmitting antenna 701, the obstacle 702, and the receiving antenna 703 is the same as that of the wireless communication system 7 of FIG.
Further, in FIG. 4, the transmission member 1 is sufficiently far from the transmitting antenna 701. Therefore, the electromagnetic wave radiated by the transmitting antenna 701 is approximately a plane wave on the incident surface of the transmitting member 1. For example, if the distance between the transmitting antenna 701 and the transmission member 1 and d in, d in satisfy the relation of d in ≧ 2D 2 λ.

一般に、自身に入射した平面波の電磁波を焦点距離fの焦点に集光する凸レンズの曲率半径の長さrは、外気の屈折率を1とし、自身の屈折率をnとして、r=(n−1)fの関係を満たす。
一方、図4における透過部材1は、送信アンテナ701が放射し、透過部材1に入射する平面波である電磁波を受信アンテナ703に集光する。
そのため、図4において焦点距離がdに略同一である透過部材1の曲率半径R1は、
R1=(n−1)d ・・・(3)
と表される。なお、dは、受信アンテナ703と障害物702の送信アンテナ701側の表面との水平距離である。すなわち、dは、図4においてはdoutとdとの和である。つまり、この図4に示す状況で透過部材1が送信アンテナ701に対して十分遠方にある場合、曲率半径を求める上記の式(3)はR1=(n−1)(dout+d)となる。なお、doutは、受信アンテナ703と、障害物702の受信アンテナ703側の表面との水平距離である。
In general, the length r 0 the radius of curvature of the convex lens for converging the focus of the focal length f 0 of the electromagnetic wave of a plane wave incident on itself, the refractive index of the outside air is 1, the refractive index of itself as n 0, r 0 = (N 0-1 ) f 0 relationship is satisfied.
On the other hand, the transmitting member 1 in FIG. 4 collects electromagnetic waves, which are plane waves radiated by the transmitting antenna 701 and incident on the transmitting member 1, to the receiving antenna 703.
Therefore, in FIG. 4, the radius of curvature R1 of the transmissive member 1 whose focal length is substantially the same as d f is
R1 = (n c -1) d f ... (3)
It is expressed as. Note that d f is the horizontal distance between the receiving antenna 703 and the surface of the obstacle 702 on the transmitting antenna 701 side. That, d f is the sum of the d out and d b in FIG. That is, when transmitting member 1 in the situation shown in FIG. 4 is sufficient distant to the transmitting antenna 701, the above equation for the radius of curvature (3) R1 = (n c -1) ( d out + d b) It becomes. Note that d out is the horizontal distance between the receiving antenna 703 and the surface of the obstacle 702 on the receiving antenna 703 side.

図5は、第一の実施形態の透過部材1が送信アンテナ701の近傍にある場合における、曲率半径R2を説明する図である。 FIG. 5 is a diagram illustrating a radius of curvature R2 when the transmitting member 1 of the first embodiment is in the vicinity of the transmitting antenna 701.

図5において、送信アンテナ701、障害物702及び受信アンテナ703の配置は、図1の無線通信システム7と同様である。また、図5において、透過部材1は送信アンテナ701の近傍にある。そのため、送信アンテナ701が放射する電磁波は、透過部材1の入射面において、近似的に球面波である。例えば、送信アンテナ701と透過部材1との距離dinは、din<2Dλの関係を満たす。 In FIG. 5, the arrangement of the transmitting antenna 701, the obstacle 702, and the receiving antenna 703 is the same as that of the wireless communication system 7 of FIG. Further, in FIG. 5, the transmission member 1 is in the vicinity of the transmitting antenna 701. Therefore, the electromagnetic wave radiated by the transmitting antenna 701 is approximately a spherical wave on the incident surface of the transmitting member 1. For example, the distance d in between the transmitting antenna 701 and the transmitting member 1 satisfies the relationship of di in <2D 2 λ.

図5において、送信アンテナ701上の点Pから放射された電磁波は、透過部材1を透過することで平面波となって外気を伝搬し、受信アンテナ703に到達する。
そのため、焦点距離がdinであり、図4における透過部材1の曲率半径R1は、
R1=(n−1)din ・・・(4)
の関係を満たす。
In FIG. 5, the electromagnetic wave radiated from the point P on the transmitting antenna 701 passes through the transmitting member 1 to become a plane wave, propagates in the outside air, and reaches the receiving antenna 703.
Therefore, a focal length d in, the curvature radius R1 of the transmitting member 1 in FIG. 4,
R1 = (n c -1) d in ... (4)
Satisfy the relationship.

なお、図5において、透過部材1を透過した電磁波は受信アンテナ703上の一点には集光しない。しかしながら、透過部材1を透過した電磁波は、拡散する球面波の電磁波が拡散しない平面波の電磁波に変換され受信アンテナ703によって受信される。以下、この場合についても、集光という。 In FIG. 5, the electromagnetic wave transmitted through the transmitting member 1 is not focused on one point on the receiving antenna 703. However, the electromagnetic wave transmitted through the transmitting member 1 is converted into a plane wave electromagnetic wave in which the diffused spherical wave electromagnetic wave is not diffused and received by the receiving antenna 703. Hereinafter, this case is also referred to as light collection.

図6は、第一の実施形態の透過部材1が反射波を抑制することができる原理を説明する図である。 FIG. 6 is a diagram for explaining the principle that the transmitting member 1 of the first embodiment can suppress the reflected wave.

図6において、入射波L1と入射波L2とは同位相で外気を伝搬し透過部材1に入射する電磁波である。入射波L1は、透過部材1と障害物702との境界で反射され、反射波L1として障害物702を伝搬し外気に出射する。入射波L2は、外気と透過部材1との境界で反射され、反射波L2として外気を伝搬する。以下、入射波L1と反射波L1とを区別しない場合、電磁波L1という。また、以下、入射波L2と反射波L2とを区別しない場合、電磁波L2という。 In FIG. 6, the incident wave Li 1 and the incident wave Li 2 are electromagnetic waves that propagate in the outside air in the same phase and are incident on the transmitting member 1. The incident wave Li 1 is reflected at the boundary between the transmitting member 1 and the obstacle 702, propagates through the obstacle 702 as the reflected wave LR 1, and is emitted to the outside air. The incident wave Li 2 is reflected at the boundary between the outside air and the transmitting member 1, and propagates in the outside air as the reflected wave LR 2. Hereinafter, when the incident wave Li 1 and the reflected wave L R 1 are not distinguished, they are referred to as an electromagnetic wave L1. Further, hereinafter, when the incident wave Li 2 and the reflected wave LR 2 are not distinguished, it is referred to as an electromagnetic wave L2.

一般に、電磁波は屈折率が異なる物質が接する箇所において反射される。すなわち、屈折率が異なる物質が接する箇所に入射した電磁波によって反射波が生じる。しかしながら、複数箇所で反射された電磁波の反射波の位相差が180度の奇数倍である場合には、反射波同士が互いに打消し合う。そのため、反射波の発生は抑制される。 Generally, electromagnetic waves are reflected at points where substances having different refractive indexes come into contact with each other. That is, a reflected wave is generated by an electromagnetic wave incident on a portion where substances having different refractive indexes are in contact with each other. However, when the phase difference of the reflected waves of the electromagnetic waves reflected at the plurality of locations is an odd multiple of 180 degrees, the reflected waves cancel each other out. Therefore, the generation of reflected waves is suppressed.

透過部材1は、複数枚の薄膜を積層した構成であり、その積層した薄膜の全体の厚さが物質内波長(すなわち、λ/n)のm/4(m:奇数)を有する。そのため、透過部材1に入射する電磁波L1は、反射波L1として外部に出射されるまでに、電磁波L2と比較して半波長の奇数倍の距離だけ長く伝搬する。そのため、電磁波L1は伝搬によって180度の奇数倍に略同一な位相だけ余分に電磁波L2よりも位相が進む。 The transmission member 1 has a structure in which a plurality of thin films are laminated, and the total thickness of the laminated thin films has a wavelength in the substance (that is, λ / n c ) of m / 4 (m: odd number). Therefore, the electromagnetic wave L1 incident on the transparent member 1, before it is emitted to the outside as a reflected wave L R 1, is as long propagation distance to a half wavelength of the odd multiple compared with the electromagnetic wave L2. Therefore, the electromagnetic wave L1 has a phase that is substantially the same as that of the electromagnetic wave L2 by an odd multiple of 180 degrees due to propagation.

また、透過部材1は、屈折率が(n×n1/2である第一の薄膜11を備える。第一の薄膜11の屈折率が満たすn=(n×n1/2の式は、光学素子の反射防止膜の屈折率を与える式として一般に知られた式である。透過部材1の屈折率がn=(n×n1/2の式を満たすため、電磁波L1が透過部材1から障害物702に入射し反射される時の位相のずれと、電磁波L2が外気から透過部材1に入射し反射される時の位相のずれとは略同一である。 Further, the transmission member 1 includes a first thin film 11 having a refractive index of (n 1 × n 2 ) 1/2. The formula of n c = (n 1 × n 2 ) 1/2 satisfied by the refractive index of the first thin film 11 is a formula generally known as a formula for giving the refractive index of the antireflection film of the optical element. Since the refractive index of the transmitting member 1 satisfies the equation of n c = (n 1 × n 2 ) 1/2 , the phase shift when the electromagnetic wave L1 is incident on the obstacle 702 from the transmitting member 1 and reflected, and the electromagnetic wave It is substantially the same as the phase shift when L2 is incident on the transmitting member 1 from the outside air and reflected.

このように透過部材1は、屈折率が(n×n1/2であり、第一の薄膜11を層状に複数枚積層して備え、mを奇数として、全体の厚さが物質内波長のm/4であるため、電磁波L1の反射波L1と電磁波L2の反射波L2とは外気において互いに打消し合う。そのため、透過部材1は、反射波の発生を抑制する。 As described above, the transmissive member 1 has a refractive index of (n 1 × n 2 ) 1/2 , is provided with a plurality of first thin films 11 laminated in layers, and m is an odd number, and the total thickness is a substance. since the inner wavelength is of m / 4, they cancel each other in the outside air and the reflected wave L R 2 of the reflected wave L R 1 and an electromagnetic wave L2 of the electromagnetic wave L1. Therefore, the transmitting member 1 suppresses the generation of reflected waves.

また、このように構成された透過部材1は、屈折率が(n×n1/2である第一の薄膜11を層状に複数枚積層して、mを奇数として、全体の厚さが物質内波長のm/4であるため、障害物702に入射する電磁波の反射波の発生を抑制するとともに、電磁波を受信アンテナ703に集光し、送信アンテナ701の通信可能距離を伸ばすことができる。特に、IoTデバイスのような小型の無線装置を使う場合には、利得があまり稼げず短い通信距離となるが、このように構成された透過部材1により通信可能距離を伸ばすことができる。
さらに、このように構成された透過部材1は、障害物702の表面に設置されるだけで、送信アンテナ701の通信可能距離を伸ばすことができる。そのため、例えば、利用するアンテナ口径の拡大や弱い信号の増幅に対応するアンプの高利得化などの方法と比較して、実施形態の透過部材1によれば通信可能距離を伸ばすための装置の大型化及び設置コストの増大を抑制しつつ、通信可能距離を伸ばすことができる。
Further, in the transmission member 1 configured in this way , a plurality of first thin films 11 having a refractive index of (n 1 × n 2 ) 1/2 are laminated in layers, and m is an odd number, and the total thickness is set. Since the wavelength is m / 4 in the substance, the generation of the reflected wave of the electromagnetic wave incident on the obstacle 702 is suppressed, and the electromagnetic wave is focused on the receiving antenna 703 to extend the communicable distance of the transmitting antenna 701. Can be done. In particular, when a small wireless device such as an IoT device is used, the gain cannot be earned so much and the communication distance becomes short, but the communication possible distance can be extended by the transmission member 1 configured in this way.
Further, the transmission member 1 configured in this way can extend the communicable distance of the transmitting antenna 701 only by being installed on the surface of the obstacle 702. Therefore, for example, according to the transmission member 1 of the embodiment, the size of the device for extending the communicable distance is large as compared with the method of increasing the gain of the amplifier corresponding to the expansion of the antenna diameter to be used and the amplification of the weak signal. It is possible to extend the communicable distance while suppressing the increase in installation costs.

(変形例)
図7は、障害物702に接する第一の薄膜11が、曲率半径R1の円に接しない場合の具体例を示す図である。図7の透過部材1は、図2の透過部材1における第一の薄膜11−1に代えて第一の薄膜11−6を備える。第一の薄膜11−6の屈折率及び厚さは、第一の薄膜11と同じである。第一の薄膜11−6は、第一の薄膜11−4と同じかそれよりも広い面積を有する(後述する図13や図14を参照)。第一の薄膜11−6は、障害物702に接し、曲率半径R1の円に接しない。第一の薄膜11−6は、第一の薄膜11−4と同じかそれよりも広い面積を有し、屈折率及び厚さが第一の薄膜11と同じ薄膜であって、曲率半径R1の円に接しない薄膜であればどのような薄膜であってもよい。例えば、第一の薄膜11−6は、自身が接する障害物702の面の全面を覆う形状であってもよい。この場合には、第一の薄膜11−6を曲率半径R1の円に接する形状に加工する必要がないため、透過部材1の作成を容易にする効果を奏する。また、ユーザーが第一の薄膜11−6を備えた透過部材1を障害物702に取り付ける際には、透過部材1が第一の薄膜11−6を備えるため、ユーザーは障害物702を覆うように透過部材1を取り付ければよい。そのため、このように構成された透過部材1は、ユーザーが透過部材1を障害物702に取り付けることを容易にするという効果を奏する。なお、第一の薄膜11の面積とは、第一の薄膜11のYZ面に平行な面の面積である。
(Modification example)
FIG. 7 is a diagram showing a specific example in the case where the first thin film 11 in contact with the obstacle 702 does not contact the circle having the radius of curvature R1. The transmission member 1 of FIG. 7 includes a first thin film 11-6 in place of the first thin film 11-1 of the transmission member 1 of FIG. The refractive index and thickness of the first thin film 11-6 are the same as those of the first thin film 11. The first thin film 11-6 has the same area as or larger than that of the first thin film 11-4 (see FIGS. 13 and 14 described later). The first thin film 11-6 touches the obstacle 702 and does not touch the circle with radius of curvature R1. The first thin film 11-6 has an area equal to or larger than that of the first thin film 11-4, has the same refractive index and thickness as the first thin film 11, and has a radius of curvature R1. Any thin film that does not touch the circle may be used. For example, the first thin film 11-6 may have a shape that covers the entire surface of the obstacle 702 in contact with the first thin film 11-6. In this case, since it is not necessary to process the first thin film 11-6 into a shape tangent to the circle having a radius of curvature R1, the effect of facilitating the production of the transparent member 1 is obtained. Further, when the user attaches the transmission member 1 provided with the first thin film 11-6 to the obstacle 702, the transmission member 1 includes the first thin film 11-6, so that the user covers the obstacle 702. The transparent member 1 may be attached to the. Therefore, the transparent member 1 configured in this way has an effect of facilitating the user to attach the transparent member 1 to the obstacle 702. The area of the first thin film 11 is the area of the surface of the first thin film 11 parallel to the YZ plane.

(第二の実施形態)
図8は、第二の実施形態の透過部材2の具体的な断面図を示す図である。透過部材2は、図1の無線通信システム7における障害物702のYZ面に平行な表面に接する。透過部材2は、入射した電磁波の入射面における反射を抑制するとともに、その入射した電磁波を受信アンテナ703に集光させる。なお、図8のXYZ座標は、図1のXYZ座標と同じである。以下、図2〜5と同様のものに対しては、同じ符号を付して説明を省略する。
また、先の図6で説明した2つの反射波L1及びL2に関して、この図8においては、第三の薄膜13の表面での反射波(先のL1が第一の薄膜11−1であった点とは異なる)と、第二の薄膜12−5の表面での反射波(先のL2に相当)になる。
(Second embodiment)
FIG. 8 is a diagram showing a specific cross-sectional view of the transmission member 2 of the second embodiment. The transmission member 2 is in contact with a surface parallel to the YZ plane of the obstacle 702 in the wireless communication system 7 of FIG. The transmitting member 2 suppresses the reflection of the incident electromagnetic wave on the incident surface, and collects the incident electromagnetic wave on the receiving antenna 703. The XYZ coordinates in FIG. 8 are the same as the XYZ coordinates in FIG. Hereinafter, the same components as those in FIGS. 2 to 5 are designated by the same reference numerals and the description thereof will be omitted.
Further, regarding the two reflected waves L1 and L2 described in FIG. 6, in FIG. 8, the reflected wave on the surface of the third thin film 13 (the former L1 was the first thin film 11-1). (Different from the point), it becomes a reflected wave (corresponding to the previous L2) on the surface of the second thin film 12-5.

透過部材2は、レンズ状部材21及び第三の薄膜13を備える。レンズ状部材21及び第三の薄膜13は屈折率nを有する。レンズ状部材21は、凸レンズ状の形状であって、障害物702の、送信アンテナ701側の面に接する。一方、第三の薄膜13は、障害物702の他方の面(すなわち、受信アンテナ703側の面)に接する。透過部材2のレンズ状部材21の厚さdL2と第三の薄膜13の厚さds3とは、障害物702の厚さをdとして、dL2+d+ds3=m×λ/(4×n)の関係を満たす厚さである。レンズ状部材21は、第二の薄膜12−1〜5を備える。第二の薄膜12−1〜5は、それぞれ同じ厚さds2及び屈折率nを有するものの、形状又は大きさが異なる。第二の薄膜12−1〜5は、YZ面において円形であり、第二の薄膜12−1、第二の薄膜12−2、第二の薄膜12−3、第二の薄膜12−4、第二の薄膜12−5の順番に半径が短い。第二の薄膜12は、第一の薄膜11と同様に、凸レンズ状の形状と略同一の形状を形成するように積層される。したがって、レンズ状部材21の形状は凸レンズに略同一の形状である。また、第二の薄膜12−1〜5は、第一の薄膜11−1〜5と同様に、曲率半径R2の円に接するように積層される。曲率半径R2は、曲率半径R1と同様の方法によって算出される。 The transmission member 2 includes a lens-shaped member 21 and a third thin film 13. The lenticular member 21 and the third thin film 13 have a refractive index n 2 . The lens-shaped member 21 has a convex lens-like shape and is in contact with the surface of the obstacle 702 on the transmitting antenna 701 side. On the other hand, the third thin film 13 is in contact with the other surface of the obstacle 702 (that is, the surface on the receiving antenna 703 side). The thickness d L2 of the lens-shaped member 21 of the transmission member 2 and the thickness d s3 of the third thin film 13, the thickness of the obstacle 702 as d b, d L2 + d b + d s3 = m × λ / ( It is a thickness that satisfies the relationship of 4 × n 2). The lens-shaped member 21 includes a second thin film 12-1 to 5. The second thin film 12-1~5 Although each have the same thickness d s2 and refractive index n 2, the shape or size is different. The second thin films 12-1 to 5 are circular in the YZ plane, and the second thin film 12-1, the second thin film 12-2, the second thin film 12-3, the second thin film 12-4, The radius is shorter in the order of the second thin film 12-5. Like the first thin film 11, the second thin film 12 is laminated so as to form a shape substantially the same as the convex lens shape. Therefore, the shape of the lens-shaped member 21 is substantially the same as that of the convex lens. Further, the second thin films 12-1 to 5 are laminated so as to be in contact with a circle having a radius of curvature R2, similarly to the first thin films 11-1 to 11. The radius of curvature R2 is calculated by the same method as the radius of curvature R1.

以下、屈折率がnであり、厚さがds2である薄膜を第二の薄膜12という。
なお、透過部材2は、必ずしも5枚の第二の薄膜12を備える必要はなく、第三の薄膜13と障害物702の厚さを全て合せた全体の厚さが、mを奇数として、物質内波長のm/4倍であれば、どのような枚数の第二の薄膜12を備えてもよい。
また、実施形態のレンズ状部材21は、必ずしも同じ厚さの第二の薄膜12によって構成される必要はない。レンズ状部材21は、以下の3つの条件を満たすように構成されればどのように構成されてもよい。第一の条件は、自身の屈折率をnとして、自身の厚さと、屈折率nの障害物702の厚さと、屈折率nの第三の薄膜13の厚さとの合計の厚さが物質内波長の1/4の奇数倍の関係を満たす厚さであることである。第二の条件は、凸レンズに略同一の形状であることである。第三の条件は、屈折率がnの複数枚の薄膜によって構成されることである。
また、透過部材2は、第二の薄膜12をシールのように張り合わせることで形成されてもよいし、第二の薄膜12同士を接着剤で張り合わせることで形成されてもよい。
Hereinafter, a refractive index of n 2, the thin film thickness of d s2 of the second thin film 12.
The transmissive member 2 does not necessarily have to include five second thin films 12, and the total thickness of the third thin film 13 and the obstacle 702, where m is an odd number, is a substance. Any number of second thin films 12 may be provided as long as the internal wavelength is m / 4 times.
Further, the lens-shaped member 21 of the embodiment does not necessarily have to be composed of the second thin film 12 having the same thickness. The lens-shaped member 21 may be configured in any way as long as it is configured to satisfy the following three conditions. The first condition, the total thickness of the refractive index of itself as n 2, and its thickness, the thickness of the obstacle 702 having a refractive index n 2, the thickness of the third thin film 13 having a refractive index n 2 Is a thickness that satisfies the relationship of an odd multiple of 1/4 of the wavelength in the substance. The second condition is that the convex lens has substantially the same shape. The third condition is that it is composed of a plurality of thin films having a refractive index of n 2.
Further, the transmission member 2 may be formed by laminating the second thin films 12 like a seal, or may be formed by laminating the second thin films 12 with each other with an adhesive.

第三の薄膜13は、障害物702を伝搬する電磁波が障害物702から外気に入射する場合に生じる反射波の発生を抑制する。
第三の薄膜13は、屈折率がnの薄膜であって、障害物702の有する表面のうち第二の薄膜12が接する表面とは反対側の表面に接する。なお、障害物702に接する第三の薄膜13の面は厚さ方向に垂直な面である。第三の薄膜の厚さds3は、dL2+d+ds3がλ/(4×n)の奇数倍となる厚さである。
すなわち、第三の薄膜の厚さds3は、
L2+d+ds3=λ/(4×n)×m(m:奇数) ・・・(5)
の関係を満たす。なお、dL2は、第二の薄膜12−1〜5を重ねた厚さであってdL2=ds2×5の関係を満たす。
第三の薄膜の厚さds3がλ/(4×n)の奇数倍であるため、図6と同様の物理現象によって、障害物702から外気に入射する電磁波の反射波の発生が抑制される。
第三の薄膜13は、自身が接する障害物702の表面の全体を覆ってもよいし、一部を覆ってもよい。
The third thin film 13 suppresses the generation of reflected waves generated when an electromagnetic wave propagating through the obstacle 702 is incident on the outside air from the obstacle 702.
The third thin film 13 is a thin film having a refractive index of n 2 , and is in contact with the surface of the obstacle 702 opposite to the surface with which the second thin film 12 is in contact. The surface of the third thin film 13 in contact with the obstacle 702 is a surface perpendicular to the thickness direction. The thickness d s3 of the third thin film is a thickness that d L2 + d b + d s3 is an odd multiple of λ / (4 × n 2) .
That is, the thickness d s3 of the third thin film is
d L2 + d b + d s3 = λ / (4 × n 2) × m (m: an odd number) (5)
Satisfy the relationship. Note that d L2 is the thickness of the second thin films 12-1 to 5 stacked and satisfies the relationship of d L2 = d s2 × 5.
Since the thickness d s3 of the third thin film is an odd multiple of λ / (4 × n 2 ), the generation of reflected waves of electromagnetic waves incident on the outside air from the obstacle 702 is suppressed by the same physical phenomenon as in FIG. Will be done.
The third thin film 13 may cover the entire surface of the obstacle 702 in contact with the third thin film 13, or may cover a part of the surface.

次に、図9〜11によって、第二の実施形態の透過部材2の曲率半径R2と、送信アンテナ701、障害物702及び受信アンテナ703の水平方向の配置との関係を説明する。 Next, the relationship between the radius of curvature R2 of the transmission member 2 of the second embodiment and the horizontal arrangement of the transmitting antenna 701, the obstacle 702, and the receiving antenna 703 will be described with reference to FIGS. 9 to 11.

図9は、図1の無線通信システム7における第二の実施形態の透過部材2の使用例を示す図である。図9において、透過部材2と送信アンテナ701との距離をdinとして、dinは(din≧2D/λの関係を満たす。そのため、送信アンテナ701が放射した電磁波は、透過部材2の入射面において、近似的に平面波である。透過部材2は、入射した電磁波を受信アンテナ703に集光する。 FIG. 9 is a diagram showing an example of using the transmission member 2 of the second embodiment in the wireless communication system 7 of FIG. 9, the distance between the transmitting member 2 and the transmitting antenna 701 as d in, d in satisfy the relation of (d in ≧ 2D 2 / λ . Therefore, an electromagnetic wave transmitting antenna 701 is radiated, the transmitting member 2 On the incident surface, it is approximately a plane wave. The transmitting member 2 collects the incident electromagnetic wave on the receiving antenna 703.

そのため、図9における透過部材2は、第一の実施形態の図4の説明と同様に、曲率半径R2が、
R2=(n−1)d ・・・(6)
の関係を満たす。前述したようにdは、受信アンテナ703と障害物702の送信アンテナ701側の表面との水平距離である。そのため、図9においては、d=dall−(din+dL2)であり、曲率半径を求める(6)式は、R2=(n−1){dall−(din+dL2)}となる。ここでdallは、送信アンテナ701と受信アンテナ703との水平方向の距離である。
Therefore, the transmission member 2 in FIG. 9 has a radius of curvature R2, as in the description of FIG. 4 of the first embodiment.
R2 = (n c -1) d f ... (6)
Satisfy the relationship. D f As described above, the horizontal distance between the transmitting antenna 701 side of the surface of the receiving antenna 703 and the obstacle 702. Therefore, in FIG. 9, d f = d all − (d in + d L2 ), and the equation (6) for obtaining the radius of curvature is R2 = (n c -1) {d all − (d in + d L2 ). }. Here, d all is the horizontal distance between the transmitting antenna 701 and the receiving antenna 703.

図10は、図9における、透過部材2の曲率半径R2と送信アンテナ701と受信アンテナ703との距離dallとの関係を示すシミュレーション結果の図である。なお、図10のシミュレーションにおいて、図9のdallは10≦dall/H1の関係を満たす。 また、図9において、送信アンテナ701の中心と受信アンテナ703の中心とを結ぶ直線と障害物702の表面とのなす角θ は、θ <5.71degの関係を満たす。
図10は、図9において、n=1.00、n=1.50、n=1.22、din=5cm、dL1=15λ/(4×n)=15×0.4/(4×1.22)≒1.23cmである場合に、周波数が75GHzの電磁波を受信アンテナ703に集光する透過部材2の曲率半径R2とdallとの関係を表す。ここで、din+dL2≒6.7cmが固定値であり、dallが0〜200mの範囲内の値である場合における曲率半径R2を求めて示す。なお、図10は、第二の薄膜12を積層し構成した透過部材2の全体の厚さdL2が45λ/(4×n)=45×0.4/(4×1.22)≒3.7cmとしたシミュレーションの結果である。図10のグラフは、dallが大きいほど曲率半径R2が大きいことを示す。
10, in FIG. 9 is a simulation result graph illustrating a relationship between the distance d all of the curvature radius R2 of the transmitting member 2 and the transmitting antenna 701 and receiving antenna 703. In the simulation of FIG. 10, d all in FIG. 9 satisfies the relationship of 10 ≦ d all / H1. Further, in FIG. 9, the angle θ a formed by the straight line connecting the center of the transmitting antenna 701 and the center of the receiving antenna 703 and the surface of the obstacle 702 satisfies the relationship of θ a <5.71 deg.
In FIG. 9, in FIG. 9, n 1 = 1.00, n 2 = 1.50, n c = 1.22, di in = 5 cm, d L1 = 15λ / (4 × n c ) = 15 × 0. If it is 4 / (4 × 1.22) ≒ 1.23cm, frequency representing the relationship between the radius of curvature R2 and d all of the transmitting member 2 to be focused on the receive antenna 703 electromagnetic waves of 75 GHz. Here, the radius of curvature R2 is obtained and shown when d in + d L2 ≈6.7 cm is a fixed value and d all is a value within the range of 0 to 200 m. In addition, in FIG. 10, the total thickness d L2 of the transmission member 2 formed by laminating the second thin film 12 is 45λ / (4 × n c ) = 45 × 0.4 / (4 × 1.22) ≈ This is the result of the simulation with 3.7 cm. The graph of FIG. 10 shows that the larger the d all , the larger the radius of curvature R2.

図11は、送信アンテナ701と障害物702との水平方向の距離din+dL2と透過部材2の曲率半径R2との関係を示す図である。なお、図11のシミュレーションにおいて、図9のdallは10≦dall/H1の関係を満たす。
図11のグラフは、図9において、n=1.00、n=1.50、n=1.22、dall=200mである場合に、周波数が75GHzの電磁波を受信アンテナ703に集光する透過部材2の曲率半径R2とdallとの関係を表す。ここで,dall=200mが固定値であり、din+dL2が0〜40cmの範囲内の値である場合における曲率半径R2のグラフを示す。曲率半径R2はdin+dL2が大きいほど小さい値である。
FIG. 11 is a diagram showing the relationship between the horizontal distance d in + d L2 between the transmitting antenna 701 and the obstacle 702 and the radius of curvature R2 of the transmitting member 2. In the simulation of FIG. 11, d all in FIG. 9 satisfies the relationship of 10 ≦ d all / H1.
The graph of FIG. 11 shows that when n 1 = 1.00, n 2 = 1.50, n c = 1.22, and d all = 200 m in FIG. 9, an electromagnetic wave having a frequency of 75 GHz is transmitted to the receiving antenna 703. representing the relationship between the radius of curvature R2 and d all of the transmitting member 2 to be condensed. Here, a graph of the radius of curvature R2 is shown when d all = 200 m is a fixed value and d in + d L2 is a value within the range of 0 to 40 cm. The radius of curvature R2 is a smaller value as d in + d L2 is larger.

このように構成された透過部材2は、屈折率が障害物702と同じ屈折率であり、dL2+d+ds3がλ/(4n)の奇数倍の関係を満たす第二の薄膜12−1〜5及び第三の薄膜13を備えるため、障害物702を透過し外気に出力される電磁波の強度を、透過部材2がない場合と比較して増大することができる。また、このように構成された透過部材2は、複数枚の第二の薄膜12を凸レンズ状の形状を形成するように層状に積層して、mを奇数として全体の厚さが物質内波長のm/4とするため、電磁波を受信アンテナ703に集光することができる。また、このように構成された透過部材2は、障害物702と同じ屈折率を有するため、障害物702と同じ素材によって作製可能であり、透過部材の作製を容易にするという効果を奏する。
(変形例)
Transmitting member 2 configured in this way, the refractive index is the same refractive index as the obstacle 702, the second thin film d L2 + d b + d s3 is satisfying an odd multiple of the λ / (4n 2) 12- Since the thin films 13 1 to 5 and the third thin film 13 are provided, the intensity of the electromagnetic wave transmitted through the obstacle 702 and output to the outside air can be increased as compared with the case where the transmitting member 2 is not provided. Further, in the transmission member 2 configured in this way, a plurality of second thin films 12 are laminated in layers so as to form a convex lens-like shape, and m is an odd number and the total thickness is the wavelength in the substance. Since it is m / 4, electromagnetic waves can be focused on the receiving antenna 703. Further, since the transmission member 2 configured in this way has the same refractive index as the obstacle 702, it can be manufactured by the same material as the obstacle 702, and has an effect of facilitating the production of the transmission member.
(Modification example)

透過部材2は、必ずしも全ての第二の薄膜12が曲率半径R2の円に接する必要はなく、例えば、障害物702に接する第二の薄膜12が、障害物702の片面の全面を覆う広さであって、曲率半径R2の円に接しなくてもよい。 In the transmission member 2, not all the second thin films 12 need to be in contact with the circle having the radius of curvature R2. For example, the second thin film 12 in contact with the obstacle 702 covers the entire surface of one side of the obstacle 702. Therefore, it does not have to touch a circle having a radius of curvature R2.

図12は、障害物702に接する第二の薄膜12が、曲率半径R2の円に接しない場合の具体例を示す図である。図12の透過部材2は、図8の透過部材2における第二の薄膜12−1に代えて第二の薄膜12−6を備える。第二の薄膜12−6の屈折率及び厚さは、第二の薄膜12でと同じである。第二の薄膜12−6は、障害物702に接し、曲率半径R2の円に接しない。第二の薄膜12−6は例えば、障害物702の透過部材2に接する面の全面を覆う形状であってもよい。この場合には、第二の薄膜12−6を曲率半径R2の円に接する形状に加工する必要がないため、透過部材2の作成を容易にする効果を奏する。また、ユーザーにとって、第二の薄膜12−6を備えた透過部材2を障害物702に取り付けることは、第二の薄膜12−1を備えた透過部材2を障害物702に取り付ける場合と異なり、取り付け前に第二の薄膜12を曲率半径R2の円に接する形状に加工する手間が減少する。そのため、このように構成された透過部材1は、ユーザーが透過部材2を取り付けることを容易にするという効果を奏する。 FIG. 12 is a diagram showing a specific example in the case where the second thin film 12 in contact with the obstacle 702 does not contact the circle having the radius of curvature R2. The transmission member 2 of FIG. 12 includes a second thin film 12-6 in place of the second thin film 12-1 of the transmission member 2 of FIG. The refractive index and thickness of the second thin film 12-6 are the same as those of the second thin film 12. The second thin film 12-6 touches the obstacle 702 and does not touch the circle with radius of curvature R2. The second thin film 12-6 may have a shape that covers the entire surface of the obstacle 702 in contact with the transmission member 2. In this case, since it is not necessary to process the second thin film 12-6 into a shape tangent to the circle having a radius of curvature R2, the effect of facilitating the production of the transmission member 2 is obtained. Further, for the user, attaching the transmission member 2 provided with the second thin film 12-6 to the obstacle 702 is different from attaching the transmission member 2 provided with the second thin film 12-1 to the obstacle 702. The time and effort required to process the second thin film 12 into a shape tangent to a circle having a radius of curvature R2 before mounting is reduced. Therefore, the transparent member 1 configured in this way has an effect of facilitating the user to attach the transparent member 2.

なお、第二の薄膜12−6の形状及び面積は、第二の薄膜12−4と同じかそれよりも広い面積を有し、障害物702の有する表面の一部又は全部を覆う形状及び面積であればどのような形状及び面積であってもよい。 The shape and area of the second thin film 12-6 has the same or larger area as that of the second thin film 12-4, and the shape and area covering a part or all of the surface of the obstacle 702. Any shape and area may be used as long as it is used.

以下、図13〜図15によって、第一の実施形態の透過部材1と、第二の実施形態の透過部材2とに共通の変形例を説明する。ただし、簡単のため、透過部材が透過部材1であるとして説明を行う。なお、図13〜15における、かっこ内の数字は、その符号で表される部材であってもよいことを示す。すなわち、例えば、図13における、1(2)との符号は、透過部材1であってもよいし、2であってもよいことを示す。 Hereinafter, modifications common to the transmission member 1 of the first embodiment and the transmission member 2 of the second embodiment will be described with reference to FIGS. 13 to 15. However, for the sake of simplicity, the transmission member will be described as the transmission member 1. The numbers in parentheses in FIGS. 13 to 15 indicate that the members may be represented by the reference numerals. That is, for example, the reference numeral 1 (2) in FIG. 13 indicates that the transparent member 1 or 2 may be used.

図13は、変形例の透過部材1を正面から見た構成の具体例を示す図である。透過部材1の第一の薄膜11は、必ずしも全ての第一の薄膜11がYZ面内で円形でなくてもよく、本図が示すように、YZ面内の形状が四角形や八角形等の非円形であってもよい。
また、図7に示したように、透過部材1の第一の薄膜11の一部は、障害物702を覆う面積を有する第一の薄膜11であってもよい。
FIG. 13 is a diagram showing a specific example of the configuration in which the transparent member 1 of the modified example is viewed from the front. In the first thin film 11 of the transmission member 1, not all the first thin films 11 are necessarily circular in the YZ plane, and as shown in this figure, the shape in the YZ plane is quadrangular, octagonal, or the like. It may be non-circular.
Further, as shown in FIG. 7, a part of the first thin film 11 of the transmission member 1 may be the first thin film 11 having an area covering the obstacle 702.

変形例の透過部材1は、必ずしも障害物702に一つだけの透過部材1が接しなくてもよく、複数の透過部材1が障害物702に接してもよい。 In the transmission member 1 of the modified example, only one transmission member 1 does not necessarily come into contact with the obstacle 702, and a plurality of transmission members 1 may come into contact with the obstacle 702.

図14は、複数の透過部材1が障害物702に接する場合の透過部材1の具体的な配置を示す図である。以下、実施形態の透過部材1を複数個備えた部材を第一の集合部材101という。第一の集合部材101において、透過部材1は、互いに外接するように配置されてもよい。この場合、第一の集合部材101における透過部材1の面内密度が高まる。そのため、第一の集合部材101は、障害物702への電磁波の照射面積が透過部材1の面積より広い場合には、透過部材1がひとつの場合よりも高効率に、電磁波を集光する効果を奏する。 FIG. 14 is a diagram showing a specific arrangement of the transparent members 1 when a plurality of transparent members 1 are in contact with the obstacle 702. Hereinafter, a member including a plurality of transparent members 1 of the embodiment is referred to as a first collective member 101. In the first assembly member 101, the transmission members 1 may be arranged so as to circumscribe each other. In this case, the in-plane density of the transparent member 1 in the first collective member 101 is increased. Therefore, the first collective member 101 has an effect of condensing electromagnetic waves more efficiently when the area of irradiation of the electromagnetic wave on the obstacle 702 is larger than the area of the transmitting member 1 as compared with the case where the transmitting member 1 is one. Play.

図15は、図13に示す変形例の透過部材1をYZ面内に複数の配置する場合の透過部材1の具体例な配置を示す図である。以下、変形例の透過部材1を複数個、備えた部材を第二の集合部材102という。第二の集合部材102において、変形例の透過部材1は、本図が示すように、YZ面内の形状が四角形や八角形等の非円形や円形である薄膜が、障害物702に、互いに接するように複数枚配置されてもよい。 FIG. 15 is a diagram showing a specific arrangement of the transparent members 1 when a plurality of transparent members 1 of the modified example shown in FIG. 13 are arranged in the YZ plane. Hereinafter, a member including a plurality of transmission members 1 of a modified example will be referred to as a second collective member 102. In the second collective member 102, as shown in this figure, in the transmission member 1 of the modified example, thin films having a non-circular or circular shape in the YZ plane such as a quadrangle or an octagon are formed on the obstacle 702 with each other. A plurality of sheets may be arranged so as to be in contact with each other.

<θ≒0とみなせない場合について>
以下、送信アンテナ701、障害物702及び受信アンテナ703を無線通信システム7と同様の順番で備えるものの、θ≒0とみなせない無線通信システム(以下「非近似成立システム」という。)について説明する。非近似成立システムにおいては、透過部材1又は2は式(3)〜(6)においてそれぞれ、dをd/cos(θ)に置換し、dをd/cos(θ)に置換した以下の式(7)〜(10)を満たす。
R1=(n−1)d/cos(θ)・・・(7)
R1=(n−1)din/cos(θ)・・・(8)
(dL2+d+ds3)/cos(θ)=λ/(4×n)×m・・・(9)
R2=(n−1)d/cos(θ)・・・(10)
<When θ a ≒ 0 cannot be regarded as>
Hereinafter, a wireless communication system (hereinafter referred to as “non-approximate establishment system”) which is provided with the transmitting antenna 701, the obstacle 702, and the receiving antenna 703 in the same order as the wireless communication system 7 but cannot be regarded as θ a ≈ 0 will be described. .. In the non-approximation established system, each transmitting member 1 or 2 in the formula (3) to (6), replacing the d f to d f / cos (θ a) , a d b d b / cos (θ a) The following equations (7) to (10) replaced with are satisfied.
R1 = (n c -1) d f / cos (θ a ) ... (7)
R1 = (n c -1) d in / cos (θ a ) ... (8)
(D L2 + d b + d s3) / cos (θ a) = λ / (4 × n 2) × m ··· (9)
R2 = (n c -1) d f / cos (θ a ) ... (10)

なお、非近似成立システムの使用シーンの一例は、例えば、地上から10mの位置のビル壁の看板内に送信アンテナ701が設置され、30m幅の道路を挟んでそのビルと向き合うビルの屋上(地上から20m)に受信アンテナ703が設置された無線通信システムである。この場合、両アンテナ間の水平距離dallが30mで高低差H1が10mなので、10>dall/H1(=3)となり、10≦dall/H1の関係とθ<5.71degの関係とが満たされない。すなわち、θ≒0がみたされない。 As an example of the usage scene of the non-approximate establishment system, for example, a transmitting antenna 701 is installed in a signboard on a building wall located 10 m from the ground, and the rooftop of a building facing the building across a 30 m wide road (ground). It is a wireless communication system in which the receiving antenna 703 is installed at 20 m). In this case, since the horizontal distance d all between the two antennas is 30 m and the height difference H1 is 10 m, 10> d all / H1 (= 3), and the relationship between 10 ≦ d all / H1 and θ a <5.71 deg. And are not satisfied. That is, θ a ≈ 0 is not satisfied.

以下、非近似成立システムにおける電磁波の屈折を説明する。 Hereinafter, the refraction of electromagnetic waves in the non-approximate establishment system will be described.

図16は、障害物702を伝搬する電磁波の経路を示す図である。図16には、電磁波の経路を顕著にするため、図1における障害物702を拡大して記載してある。
送信アンテナ701が放射した電磁波は、障害物702に入射する。障害物702に入射した電磁波は屈折し、障害物702を伝搬する。障害物702から外気へ伝搬する境界においては,この境界へ入射角θで入射して、外気中に出射角θの方向に伝搬する。
電磁波が障害物702を通過する距離(以下「伝搬経路長」という。)をUとして、Uは、U=d/cos(θ)である。
FIG. 16 is a diagram showing a path of an electromagnetic wave propagating through the obstacle 702. In FIG. 16, the obstacle 702 in FIG. 1 is enlarged and shown in order to make the path of the electromagnetic wave remarkable.
The electromagnetic wave radiated by the transmitting antenna 701 enters the obstacle 702. The electromagnetic wave incident on the obstacle 702 is refracted and propagates through the obstacle 702. At the boundary that propagates from the obstacle 702 to the outside air, it is incident on this boundary at an incident angle θ b and propagates into the outside air in the direction of the exit angle θ a.
Distance an electromagnetic wave passing through the obstacle 702 (hereinafter referred to as "propagation path length".) As a U, U is U = d b / cos (θ b).

スネルの法則を考えると、n×sin(θ)=n×sin(θ)であるため、
θ=arcsin(n×sin(θ))/n …(11)
を満たす。
そのため、伝搬経路長Uは
U=d/cos{arcsin(n×sin(θ))/n} …(12)
である。
Considering Snell's law, n 1 × sin (θ b ) = n 2 × sin (θ a ).
θ b = arcsin (n 1 × sin (θ a )) / n 2 … (11)
Meet.
Therefore, propagation path length U is U = d b / cos {arcsin (n 1 × sin (θ a)) / n 2} ... (12)
Is.

式(11)及び(12)を用いて、障害物702による電磁波の屈折によって電磁波が到達する受信アンテナ703上の箇所がズレることと、その大きさとを具体的に示す。図16において、dall=30m、H1=10m、d=8mm、n=1.00及びn=1.50の場合を検討する。まず、dall=30m、H1=10mであるため、tan(θ)=H1/dall=10/30≒0.333である。またこの場合、θ=18.43degである。sin(θ)=0.316であるため、式(11)を用いて、
θ=arcsin(n×sin(θ))/n
=arcsin(1.00×0.316)/1.50
=18.43/1.50
=12.29deg
である。
そのため、tan(θ)=0.218であり、d{tan(θ)−tan(θ)}≒8×{0.333−0.218}=0.92mmである。したがって、H1=10mなので、0.92mm/10mは0.0001以下の非常に小さい値である。
このことは、非近似成立システムであっても、条件次第では無線通信システム7と略同一の経路を伝搬する電磁波が存在することを示す。さらに、このことは、非近似成立システムであっても条件次第では、透過部材1又は2は式(3)〜(10)を満たすことを示す。
Equations (11) and (12) are used to specifically show the displacement of the location on the receiving antenna 703 on which the electromagnetic wave reaches due to the refraction of the electromagnetic wave by the obstacle 702, and the magnitude thereof. In Figure 16, d all = 30m, H1 = 10m, consider the case of d b = 8mm, n 1 = 1.00 and n 2 = 1.50. First, since d all = 30 m and H1 = 10 m, tan (θ a ) = H1 / d all = 10/30 ≈ 0.333. In this case, θ a = 18.43 deg. Since sin (θ a ) = 0.316, using equation (11),
θ b = arcsin (n 1 × sin (θ a )) / n 2
= Arcsin (1.00 x 0.316) /1.50
= 18.43 / 1.50
= 12.29deg
Is.
Therefore, tan (θ b) = a 0.218, d b {tan (θ a) -tan (θ b)} is ≒ 8 × {0.333-0.218} = 0.92mm . Therefore, since H1 = 10 m, 0.92 mm / 10 m is a very small value of 0.0001 or less.
This indicates that even in a non-approximate system, there is an electromagnetic wave propagating in substantially the same path as the wireless communication system 7 depending on the conditions. Further, this indicates that the transmission member 1 or 2 satisfies the equations (3) to (10) depending on the conditions even in the non-approximate establishment system.

なお、θ≒0とみなせないものの電磁波の障害物702による屈折を考慮しない場合(すなわち、伝搬経路長をd/cos(θ)とする場合)と、屈折を考慮する場合との伝搬経路長の差は次の通りである。屈折を考慮しない場合の伝搬経路長は、d/cos(θ)=8/0.989=8.09mmである。一方、屈折を考慮する場合の伝搬経路長は、d/cos(θ)=8/0.949=8.19mmである。これらの差(以下「式依存経路長差」という。)は0.24mmである。式依存経路長差は、屈折を考慮する場合の伝搬経路長の3%程度の大きさであり、屈折を考慮する場合の伝搬経路長と比較して小さな値である。また、式依存経路長差は障害物の厚さdと比較しても小さな値である。このことは、透過部材1又は2は、非近似成立システムにおいても条件次第では、式(3)〜(10)の一部又は全部をよい精度で満たすことを意味する。よい精度とは、式(3)〜(10)の一部又は全部を満足する透過部材1又は2は、式(11)及び(12)を満足する透過部材1又は2が集光する位置及び範囲に略同一の位置及び範囲に集光する、ことを意味する。 Propagation between the case where the refraction of the electromagnetic wave due to the obstacle 702 is not considered (that is, the case where the propagation path length is d 2 / cos (θ a )) and the case where the refraction is considered, although it cannot be regarded as θ a ≈ 0. The difference in path length is as follows. Propagation path length that does not consider refraction, d b / cos (θ a ) a = 8 / 0.989 = 8.09mm. On the other hand, the propagation path length when considering refractive is d b / cos (θ b) = 8 / 0.949 = 8.19mm. These differences (hereinafter referred to as “formula-dependent path length differences”) are 0.24 mm. The formula-dependent path length difference is about 3% of the propagation path length when refraction is taken into consideration, and is a small value as compared with the propagation path length when refraction is taken into consideration. Further, the formula depends path length difference is a small value as compared to the thickness d b of the obstacle. This means that the transmission member 1 or 2 satisfies a part or all of the equations (3) to (10) with good accuracy even in the non-approximate establishment system depending on the conditions. Good accuracy means that the transmission member 1 or 2 satisfying a part or all of the formulas (3) to (10) is the position where the transmission member 1 or 2 satisfying the formulas (11) and (12) collects light. It means that the light is focused on the same position and range as the range.

図17は、透過部材1又は2が非近似成立システムにおいて使用される場合の具体的な例を示す図である。図1と同様の機能をもつものに対しては、同じ符号を付すことで説明を省略する。
図17において、直交座標系であるXYZ座標系のX軸は水平方向に平行な軸であり、Y軸は鉛直方向に平行な軸である。
FIG. 17 is a diagram showing a specific example when the transmission member 1 or 2 is used in a non-approximate establishment system. The same reference numerals are given to those having the same functions as those in FIG. 1, and the description thereof will be omitted.
In FIG. 17, the X-axis of the XYZ coordinate system, which is a Cartesian coordinate system, is an axis parallel to the horizontal direction, and the Y-axis is an axis parallel to the vertical direction.

送信アンテナ701aは、例えば、屋内の天井に設置されたスモールセル基地局、IoTデバイス、無線LANアクセスポイント等である。送信アンテナ701aは、開口径がDである。送信アンテナ701aは、高さh(すなわち、Y座標がh)の位置に存在する。高さhの位置に存在するとは、自身の中心点のY座標がhであることを意味する。送信アンテナ701はY軸負方向であって、鉛直方向に対して角度θの方向に電磁波を放射する。角度θは送信アンテナ701aと受信アンテナ703aとの中心を結ぶ直線が鉛直方向となす角である。 The transmitting antenna 701a is, for example, a small cell base station installed on an indoor ceiling, an IoT device, a wireless LAN access point, or the like. The transmitting antenna 701a has an aperture diameter of D. The transmitting antenna 701a exists at a height h 3 (that is, the Y coordinate is h 3). Being present at a height h 3 means that the Y coordinate of its own center point is h 3. The transmitting antenna 701 is in the negative direction of the Y-axis and emits electromagnetic waves in the direction of an angle θ a with respect to the vertical direction. The angle θ a is an angle formed by a straight line connecting the centers of the transmitting antenna 701a and the receiving antenna 703a in the vertical direction.

障害物702aは、入射した電磁波を所定の透過率で透過させる部材であって、例えば、天井や、看板面や、照明機器のグローブである。障害物702aは、厚さ(すなわち、Y軸方向の幅)がdである。障害物702aの波長λの電磁波に対する屈折率はnである。 The obstacle 702a is a member that transmits an incident electromagnetic wave with a predetermined transmittance, and is, for example, a ceiling, a signboard surface, or a glove of a lighting device. Obstacles 702a has a thickness (i.e., the width of the Y-axis direction) is d b. The refractive index of the obstacle 702a with respect to an electromagnetic wave having a wavelength λ is n 2 .

受信アンテナ703aは、例えば、屋内の壁に設置されたエントランス基地局やネットワーク接続ポイントである。受信アンテナ703aは、送信アンテナ701aに対して、X軸方向に距離dall離れた場所に存在する。受信アンテナ703aは、hよりもY軸負方向にH2だけ離れた高さhに存在する。なお、H2は、H2<<dallの関係を満たさない。H2は例えば5mであって、dallは例えば、30mである。そして、この図17での屋内における天井の高さがh4であり,この高さh4には障害物702aも存在する。
送信アンテナ701a、障害物702a及び受信アンテナ703aは、Y軸負方向に、送信アンテナ701a、障害物702a、受信アンテナ703aの順番に配置される。
The receiving antenna 703a is, for example, an entrance base station or a network connection point installed on an indoor wall. Receive antenna 703a, to the transmitting antenna 701a, present at a distance d all away in the X-axis direction. The receiving antenna 703a exists at a height h 5 which is separated from h 3 by H 2 in the negative direction of the Y axis. It should be noted that H2 does not satisfy the relationship of H2 << dall. H2 is an example 5 m, d all is, for example, 30 m. The height of the ceiling indoors in FIG. 17 is h4, and an obstacle 702a also exists at this height h4.
The transmitting antenna 701a, the obstacle 702a, and the receiving antenna 703a are arranged in the negative direction of the Y axis in the order of the transmitting antenna 701a, the obstacle 702a, and the receiving antenna 703a.

送信アンテナ701がY軸負方向であって、鉛直方向に対して角度θの方向に放射した電磁波は、障害物702aを透過する。障害物702aを通過した電磁波は、屈折率nの外気中を垂直方向に対して角度θの方向に伝搬し、受信アンテナ703aに到達する。角度θは、例えば、H2が5mであって、dallが30mである場合には、58.99degである。また、この場合、1/cos(θ)は、1.941に略同一である。 An electromagnetic wave radiated in a direction of an angle θ a with respect to the vertical direction when the transmitting antenna 701 is in the negative direction of the Y axis passes through the obstacle 702 a. Electromagnetic waves passing through the obstacle 702a is the outside air in the refractive index n 1 propagates in the direction of the angle theta a to the vertical, and reaches the receiving antenna 703a. Angle theta a, for example, H2 is a 5 m, if d all is 30m is 58.99Deg. Further, in this case, 1 / cos (θ a ) is substantially the same as 1.941.

図18は、障害物702aを伝搬する電磁波の経路を示す図である。図18には、電磁波の経路を顕著にするため、図17における障害物702aを拡大して記載してある。 FIG. 18 is a diagram showing a path of an electromagnetic wave propagating through the obstacle 702a. In FIG. 18, the obstacle 702a in FIG. 17 is enlarged and shown in order to make the path of the electromagnetic wave remarkable.

送信アンテナ701aが放射した電磁波は、障害物702aに入射する。障害物702aに入射した電磁波は屈折し、障害物702aを伝搬する。障害物702aから外気へ伝搬する境界においては,この境界へ入射角θで入射して、外気中に出射角θの方向に伝搬する。出射した電磁波は受信アンテナ703aに入射する。 The electromagnetic wave radiated by the transmitting antenna 701a is incident on the obstacle 702a. The electromagnetic wave incident on the obstacle 702a is refracted and propagates through the obstacle 702a. At the boundary where the obstacle 702a propagates to the outside air, the boundary is incident at an incident angle θ b and propagates into the outside air in the direction of the exit angle θ a. The emitted electromagnetic wave is incident on the receiving antenna 703a.

図16と同様にして、角度θは、
θ=arcsin(n×sin(θ))/n・・・(13)
を満たす。また、図16と同様にして、dは、
/cosθ = d/cos{arcsin(n×sinθ)/n} ・・・(14)
を満たす。
そのため、図17及び18においては、透過部材1又は2は式(3)〜(6)においてそれぞれ、dをd/cos{arcsin(n×sinθ)/n}に置換し、dをd/cos{arcsin(n×sinθ)/n}に置換した式(7)〜(10)を満たす。
Similar to FIG. 16, the angle θ b is
θ b = arcsin (n 1 × sin (θ a )) / n 2 ... (13)
Meet. Further, in the same manner as in FIG. 16, d b is
d b / cos θ b = d b / cos {arcsin (n 1 × sin θ a ) / n 2 } ・ ・ ・ (14)
Meet.
Therefore, in FIGS. 17 and 18, transparent member 1 or 2 is substituted in equation (3), respectively to (6), the d f d f / cos {arcsin (n 1 × sinθ a) / n 2}, the d b d b / cos {arcsin (n 1 × sinθ a) / n 2} substituted expressions (7) satisfies to (10).

式(13)及び(14)を用いて、障害物702aによる電磁波の屈折によって電磁波が到達する受信アンテナ703a上の箇所がズレることと、その大きさとを具体的に示す。図18において、dall=30m、H2=5m、d=8mm、n=1.00及びn=1.50の場合を検討する。まず、dall=30m、H2=5mであるため、tan(θ)=H2/dall=5/30≒0.166である。またこの場合、θ=9.46degである。sin(θ)=0.164であるため、式(13)を用いて、
θ=arcsin(n×sin(θ))/n
=arcsin(1.00×0.164)/1.50
=9.46/1.50
=6.31deg
である。
そのため、tan(θ)=0.111であり、d{tan(θ)−tan(θ)}≒8×{0.166−0.111}=0.44mmである。したがって、このことは、H2=5mなので、アンテナ間の高低差に比べて、電磁波が集光される位置のズレは非常に小さいことを意味する。
このことは、図16と同様に、非近似成立システムであっても、条件次第では無線通信システム7と略同一の経路を伝搬する電磁波が存在することを示す。
Equations (13) and (14) are used to specifically show the displacement of the location on the receiving antenna 703a to which the electromagnetic wave reaches due to the refraction of the electromagnetic wave by the obstacle 702a, and the magnitude thereof. In Figure 18, d all = 30m, H2 = 5m, consider the case of d b = 8mm, n 1 = 1.00 and n 2 = 1.50. First, since d all = 30 m and H2 = 5 m, tan (θ a ) = H2 / d all = 5/30 ≈0.166. In this case, θ a = 9.46 deg. Since sin (θ a ) = 0.164, using equation (13),
θ b = arcsin (n 1 × sin (θ a )) / n 2
= Arcsin (1.00 x 0.164) /1.50
= 9.46 / 1.50
= 6.31deg
Is.
Therefore, tan (θ b) = a 0.111, d b {tan (θ a) -tan (θ b)} is ≒ 8 × {0.166-0.111} = 0.44mm . Therefore, this means that since H2 = 5 m, the deviation of the position where the electromagnetic wave is collected is very small compared to the height difference between the antennas.
This indicates that, as in FIG. 16, even in the non-approximate establishment system, there is an electromagnetic wave propagating in substantially the same route as the wireless communication system 7 depending on the conditions.

なお、透過部材は、レンズの一例である。なお、外気は媒質の一例である。なお、第三の薄膜13は、薄膜状部材の一例である。なお、第一の集合部材101及び第二の集合部材102は、複眼レンズの一例である。なお、図2における第一の薄膜11−1と、図7における第一の薄膜11−6と、図8における第二の薄膜12−1とは、前記複数の薄膜のうちの最も大きな面積を有する薄膜の一例である。送信アンテナ701は、第一のアンテナの一例である。受信アンテナ703は、第二のアンテナの一例である。 The transmissive member is an example of a lens. The outside air is an example of a medium. The third thin film 13 is an example of a thin film member. The first collecting member 101 and the second collecting member 102 are examples of compound eye lenses. The first thin film 11-1 in FIG. 2, the first thin film 11-6 in FIG. 7, and the second thin film 12-1 in FIG. 8 have the largest area among the plurality of thin films. This is an example of a thin film having. The transmitting antenna 701 is an example of the first antenna. The receiving antenna 703 is an example of the second antenna.

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes designs and the like within a range that does not deviate from the gist of the present invention.

1…第一の実施形態の透過部材、2…第二の実施形態の透過部材、 11…第一の薄膜、12…第二の薄膜、13…第三の薄膜、21…レンズ状部材、701…送信アンテナ、702…障害物、703…受信アンテナ、101…第一の集合部材、102…第二の集合部材 1 ... Transmission member of the first embodiment, 2 ... Transmission member of the second embodiment, 11 ... First thin film, 12 ... Second thin film, 13 ... Third thin film, 21 ... Lens-like member, 701 ... transmitting antenna, 702 ... obstacle, 703 ... receiving antenna, 101 ... first collective member, 102 ... second collective member

Claims (5)

屈折率がnである媒質を伝搬する波長λの電磁波に対する屈折率がnの複数の薄膜が層状に並び、前記複数の薄膜の一部又は全部が凸レンズの形状に略同一の形状を成し、前記複数の薄膜のうちの最も大きな面積を有する薄膜が、前記電磁波に対する屈折率がn であって、前記電磁波を所定の透過率で透過させる障害物が有する面のうち一方の面に接し、
=(n ×n 1/2 であり、前記複数の薄膜の前記一方の面に垂直な方向の厚さがλ/(4×n)の奇数倍である、
レンズ。
A plurality of thin films having a refractive index of n c for an electromagnetic wave having a wavelength λ propagating in a medium having a refractive index of n 1 are arranged in layers, and a part or all of the plurality of thin films form substantially the same shape as a convex lens. and, most thin film having a large area, the refractive index with respect to the electromagnetic wave is a n 2, one of the surfaces of obstacles that transmits the electromagnetic wave at a predetermined transmittance with out prior Symbol plurality of thin film In contact with
n c = (n 1 × n 2 ) 1/2 , and the thickness of the plurality of thin films in the direction perpendicular to one surface is an odd multiple of λ / (4 × n c).
lens.
屈折率がnである媒質を伝搬する波長λの電磁波に対する屈折率がnの複数の薄膜が層状に並び、前記複数の薄膜の一部又は全部が凸レンズの形状に略同一の形状を成し、前記複数の薄膜のうちの最も大きな面積を有する薄膜が、前記電磁波に対する屈折率がn であって、前記電磁波を所定の透過率で透過させる障害物が有する面のうち一方の面に接するレンズ状部材と、
前記電磁波に対する屈折率がnであって、前記障害物が有する面のうち、前記レンズ状部材が接する面に平行であり、前記レンズ状部材が接する面の反対側に存在する面に接する薄膜状部材と、
を備え、
前記レンズ状部材の前記一方の面に垂直な方向の厚さと、前記障害物の前記一方の面に垂直な方向の厚さと、前記薄膜状部材の前記一方の面に垂直な方向の厚さとの合計の厚さが、
λ/(4×n)の奇数倍である、
レンズ。
A plurality of thin films having a refractive index of n 2 with respect to an electromagnetic wave having a wavelength λ propagating in a medium having a refractive index of n 1 are arranged in layers, and a part or all of the plurality of thin films form substantially the same shape as a convex lens. and a thin film having the largest area among the plurality of the thin film, the refractive index with respect to the electromagnetic wave is a n 2, on one of the surfaces of obstacles that transmits the electromagnetic wave at a predetermined transmittance with With the lenticular member in contact,
A thin film having a refractive index of n 2 with respect to the electromagnetic wave, parallel to the surface of the obstacle that is in contact with the lens-shaped member , and in contact with the surface that exists on the opposite side of the surface that the lens-shaped member is in contact with. Shape member and
With
The thickness of the lenticular member in the direction perpendicular to the one surface, the thickness of the obstacle in the direction perpendicular to the one surface, and the thickness of the thin film member in the direction perpendicular to the one surface. The total thickness is
It is an odd multiple of λ / (4 × n 2),
lens.
記複数の薄膜と、前記障害物の前記一方の面の側に配置され前記電磁波を放射する第一のアンテナとの距離dinが、前記第一のアンテナの開口の長さDとして、din≧2D/λである場合において、前記凸レンズの形状に略同一の形状は、前記第一のアンテナと、前記障害物の前記一方の面の反対側に配置され前記電磁波を受信する第二のアンテナとの距離をdallとし、前記複数の薄膜の厚さの合計とした場合に、R=(n−1)d、d=dall−(din+d)を満たす曲率半径Rの球面に接する形状である、
請求項に記載のレンズ。
Before SL and a plurality of thin films, the distance d in the first antenna is arranged on the side of the one surface of the obstacle to emit the electromagnetic waves, the length of the opening of the first antenna and D When d in ≧ 2D 2 / λ, the shape substantially the same as the shape of the convex lens is arranged on the opposite side of the first antenna and the one surface of the obstacle to receive the electromagnetic wave. the distance between the second antenna and d all, the sum of the previous SL thickness of the plurality of thin film when the d l which, R = (n c -1) d f, d f = d all - (d It is a shape in contact with a spherical surface having a radius of curvature R that satisfies in + d l).
The lens according to claim 1.
記複数の薄膜と、前記障害物の前記一方の面の側に配置され前記電磁波を放射する第一のアンテナとの距離dinが、前記第一のアンテナの開口の長さDとして、din<2D/λである場合において、前記凸レンズの形状に略同一の形状は、R=(n−1)dinを満たす曲率半径Rの球面に接する形状である、
請求項に記載のレンズ。
Before SL and a plurality of thin films, the distance d in the first antenna is arranged on the side of the one surface of the obstacle to emit the electromagnetic waves, the length of the opening of the first antenna and D When d in <2D 2 / λ, the shape substantially the same as the shape of the convex lens is a shape in contact with a spherical surface having a radius of curvature R satisfying R = (n c -1) d in.
The lens according to claim 1.
請求項1から4のいずれか一項に記載のレンズを複数備える、
複眼レンズ。
A plurality of lenses according to any one of claims 1 to 4 are provided.
Compound eye lens.
JP2017177114A 2017-09-14 2017-09-14 Lens and compound eye lens Active JP6905191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017177114A JP6905191B2 (en) 2017-09-14 2017-09-14 Lens and compound eye lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017177114A JP6905191B2 (en) 2017-09-14 2017-09-14 Lens and compound eye lens

Publications (2)

Publication Number Publication Date
JP2019054400A JP2019054400A (en) 2019-04-04
JP6905191B2 true JP6905191B2 (en) 2021-07-21

Family

ID=66015370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017177114A Active JP6905191B2 (en) 2017-09-14 2017-09-14 Lens and compound eye lens

Country Status (1)

Country Link
JP (1) JP6905191B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240035617A (en) 2021-09-13 2024-03-15 제이에프이 스틸 가부시키가이샤 Friction stir welding method for electrical steel strips and manufacturing method for electrical steel strips
KR20240058192A (en) 2021-11-30 2024-05-03 제이에프이 스틸 가부시키가이샤 Friction stir welding method of electronic steel strip and manufacturing method of electronic steel strip
KR20240058191A (en) 2021-11-30 2024-05-07 제이에프이 스틸 가부시키가이샤 Friction stir welding method of electronic steel strip, manufacturing method of electronic steel strip, friction stir welding device and manufacturing device of electronic steel strip

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2733015A1 (en) * 1977-04-01 1978-10-12 Plessey Inc ELECTROMAGNETIC TEST ARRANGEMENT, IN PARTICULAR ANTENNA TEST FIELD
CA1100625A (en) * 1977-04-01 1981-05-05 Leland H. Hemming Plane wave lens
US5017939A (en) * 1989-09-26 1991-05-21 Hughes Aircraft Company Two layer matching dielectrics for radomes and lenses for wide angles of incidence
DE19710811B4 (en) * 1997-03-15 2006-06-01 Robert Bosch Gmbh Device for directionally emitting and / or picking up electromagnetic waves
JP2002228697A (en) * 2001-01-30 2002-08-14 Mitsubishi Electric Corp Compact range
GB0123731D0 (en) * 2001-10-03 2001-11-21 Qinetiq Ltd Optical bonding technique
US6531989B1 (en) * 2001-11-14 2003-03-11 Raytheon Company Far field emulator for antenna calibration
JP4020000B2 (en) * 2002-04-17 2007-12-12 株式会社村田製作所 Composite dielectric material, composite dielectric molding, lens antenna using the same, and surface mount antenna using the same
JP5274678B2 (en) * 2011-02-09 2013-08-28 キヤノン株式会社 Photoelectric conversion element, photoelectric conversion device using the same, and imaging system

Also Published As

Publication number Publication date
JP2019054400A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP6905191B2 (en) Lens and compound eye lens
US10433185B2 (en) Terahertz communication method and system
US6341223B1 (en) Radio wave propagation prediction method using urban canyon model
US10267675B2 (en) Multi-directional optical receiver
CN106961724B (en) Mobile target real-time positioning method based on visible light communication
CN110133592B (en) Indoor two-point positioning method based on visible light communication
Elkarim et al. Exploring the performance of indoor localization systems based on VLC-RSSI, including the effect of NLOS components using two light-emitting diode lighting systems
CN112955786A (en) Laser radar, control method thereof and equipment with laser radar
WO2022091660A1 (en) Reflection unit and wireless transmission system
CN112840231B (en) Laser radar and device with laser radar
CN101339248A (en) Method and system for enlarging ultrasound signal and infrared signal receiving angle and distance
CN105609920A (en) Underwater visible light communication receiving antenna device
Esubonteng et al. Orientation of a diffuse reflector for improved coverage in ID-FSOC for vehicular communications
CN109597155B (en) Square concave-down stepped retro-reflector and array thereof
JP2006170698A (en) Device for estimating azimuth of radio station, device for estimating azimuth of radio station and emitting radio wave, and method of estimating azimuth of radio station
US20230094505A1 (en) Methods and systems for provisioning of telecommunications signals in moving trains
Pal et al. Optical IRS aided B5G V2v solution for road safety applications
Aguirre et al. Proposed energy based method for light receiver localization in underground mining
WO2021233026A1 (en) Bendable resin having patterned elements for improving penetration of wireless communication signals
Bassey et al. Modeling of Radio Waves Transmission in Buildings Located Around Niger Delta Urban Microcell Environment Using “Ray Tracing Techniques”
JP6846977B2 (en) Wireless device installation method and housing
US10313025B2 (en) Information processing system using optically encoded signals
WO2023120470A1 (en) Radio-wave focusing body and window glass
Irshad et al. An Indoor LOS & NON-LOS Propagation analysis using Visible Light Communication
Tan et al. Optimized configuration of visible light communication featured traffic control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6905191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150