JP2019054400A - Lens and compound eye lens - Google Patents

Lens and compound eye lens Download PDF

Info

Publication number
JP2019054400A
JP2019054400A JP2017177114A JP2017177114A JP2019054400A JP 2019054400 A JP2019054400 A JP 2019054400A JP 2017177114 A JP2017177114 A JP 2017177114A JP 2017177114 A JP2017177114 A JP 2017177114A JP 2019054400 A JP2019054400 A JP 2019054400A
Authority
JP
Japan
Prior art keywords
thin film
electromagnetic wave
obstacle
antenna
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017177114A
Other languages
Japanese (ja)
Other versions
JP6905191B2 (en
Inventor
貴寛 土屋
Takahiro Tsuchiya
貴寛 土屋
秀幸 坪井
Hideyuki Tsuboi
秀幸 坪井
白戸 裕史
Yushi Shirato
裕史 白戸
正孝 飯塚
Masataka Iizuka
正孝 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017177114A priority Critical patent/JP6905191B2/en
Publication of JP2019054400A publication Critical patent/JP2019054400A/en
Application granted granted Critical
Publication of JP6905191B2 publication Critical patent/JP6905191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

To provide a lens capable of preventing the communicable distance from being reduced.SOLUTION: A lens comprises multiple layers of thin films of refractive index nfor electromagnetic waves of wavelength λ propagating in a medium with refractive index n, which are arranged in layers, in which a part or all of the multiple thin films has almost the same shape as that of the convex lens shape, and n=(n×n). The thin film that has the largest area in the multiple thin films is in contact with the surface on which electromagnetic wave is incident on the surfaces of an obstacle which transmits the electromagnetic wave with a predetermined transmittance, in which the thickness in a direction perpendicular to the plane of the multiple films is an odd multiple of λ/(4×n).SELECTED DRAWING: Figure 2

Description

本発明は、レンズ及び複眼レンズに関する。   The present invention relates to a lens and a compound eye lens.

第5世代移動通信システム(以下「5G」という。)において、電波の届く範囲が広い基地局(以下「マクロセル基地局」という。)を展開することが検討されている。また、5Gにおいて、人が密集するエリアに対しては、マクロセル基地局だけでなく、電波の届く範囲が狭い基地局(以下「スモールセル基地局」という。)を展開することが検討されている。さらに、5Gにおいて、無線通信機能と各種の計測機能とを有するIoT(Internet of things)デバイスを街中に設置することと、スモール基地局のトラフィックをオフロードすることでスモール基地局の負荷を軽減するため、無線LAN(Local Area Network)アクセスポイントを設置することが検討されている。そのため、5Gにおいては、マイクロセル基地局及びスモールセル基地局だけでなく、多数のIoTデバイス及び無線LANアクセスポイントを設置する必要がある。以下、IoTデバイス、無線LANアクセスポイント等の無線通信に使用される装置をそれぞれ区別しない場合、無線装置という。   In a fifth generation mobile communication system (hereinafter referred to as “5G”), it is considered to develop a base station (hereinafter referred to as “macrocell base station”) having a wide range of radio waves. In addition, in 5G, for areas where people are crowded, it is considered to develop not only macro cell base stations but also base stations with a narrow radio wave reach (hereinafter referred to as “small cell base stations”). . Furthermore, in 5G, an IoT (Internet of things) device having a wireless communication function and various measurement functions is installed in the city, and the load on the small base station is reduced by offloading the traffic of the small base station. Therefore, the installation of a wireless LAN (Local Area Network) access point is being studied. Therefore, in 5G, it is necessary to install not only a micro cell base station and a small cell base station but also a large number of IoT devices and wireless LAN access points. Hereinafter, when devices used for wireless communication such as IoT devices and wireless LAN access points are not distinguished from each other, they are referred to as wireless devices.

図19は、従来のスモールセル基地局の使用例を示す図である。図19のようにビル800が立ち並ぶ通り(例えば、銀座の中央通り)にスモールセル基地局801を設置する場合、スモールセル基地局を設置する場所としては、ビル800の壁面の比較的高所(例えば、地上から20[m])が考えられる。ビル800の壁面の比較的高所にスモールセル基地局801を設置することで、歩道上にいるユーザーに無線通信サービスを提供することが可能になる。しかしながら、スモールセル基地局801や無線装置をビル壁面に多数設置する場合、通りの景観が損なわれる可能性がある。そこで、多くのビル800には比較的高所に看板802が設置されていることに着目し、看板802の看板面の内側(以下「看板内」という。)にスモールセル基地局801又は無線装置を設置することが提案されている。この場合、看板802は電磁波の伝搬を妨げる障害物となる。そのため、看板内にスモールセル基地局801及び無線装置を設置することで、景観を損なうことなく、ビルが立ち並ぶ通りにおける無線通信が可能になる。さらに、看板内にスモールセル基地局801又は無線装置を設置する場合、多くの看板802には電源用ケーブルは既に敷設されているため、新たに電源用ケーブルを敷設する工事が不要である。なお、スモールセル基地局801が受信したデータは、エントランス基地局803に送信され、マイクロ波や、光等で、基地局制御装置に送信される。そしてさらに光回線等により通信事業会社などの集約局804に送信される。   FIG. 19 is a diagram illustrating a usage example of a conventional small cell base station. As shown in FIG. 19, when the small cell base station 801 is installed on the street where the buildings 800 are lined up (for example, the central street of Ginza), the place where the small cell base station is installed is a relatively high place ( For example, 20 [m] from the ground is considered. By installing the small cell base station 801 at a relatively high place on the wall surface of the building 800, a wireless communication service can be provided to a user on the sidewalk. However, when a large number of small cell base stations 801 and wireless devices are installed on the building wall surface, the street scenery may be damaged. Therefore, paying attention to the fact that many buildings 800 are provided with signboards 802 at relatively high places, a small cell base station 801 or a wireless device is located inside the signboard surface of the signboard 802 (hereinafter referred to as “inside the signboard”). It has been proposed to install. In this case, the sign 802 becomes an obstacle that prevents propagation of electromagnetic waves. Therefore, by installing the small cell base station 801 and the wireless device in the signboard, wireless communication in a street where buildings are lined up is possible without deteriorating the scenery. Further, when the small cell base station 801 or the wireless device is installed in the signboard, a power supply cable is already laid on many signboards 802, so that a construction for newly laying the power supply cable is unnecessary. Note that the data received by the small cell base station 801 is transmitted to the entrance base station 803 and transmitted to the base station controller using microwaves, light, or the like. Further, the data is transmitted to an aggregation station 804 such as a communication company via an optical line or the like.

図20は、従来のスモールセル基地局の使用例を示す図である。スモールセル基地局を設置する場所としては、ビルが立ち並ぶ通り以外にも例えば、駅のコンコース、駅周辺の地下街又はデパート等が考えられる。このような場合には、天井、柱、壁等に無線装置を設置することが提案されている。しかしながら、この場合にも、景観を損ねる場合がある。そこで、図20のように、天井900、柱901、壁902等に既に照明機器903が設置されていることに着目し、照明機器903の筐体内部にスモールセル基地局及び無線装置904を設置することが提案されている。照明機器903においてはグローブが電磁波にとっての障害物である。そのため、照明機器903の内側にスモール基地局及び無線装置904を設置することで、景観が損なわれることなく、駅コンコース等での無線通信が可能になる。さらに、照明機器903には電源用管路が既に敷設されているため、新たに電源用管路を敷設する工事が不要である。なお、無線装置904が受信したデータは、ネットワーク接続ポイント905に送信され、イーサネット(登録商標)、光ファイバなどで、ゲートウェー装置906を介して(インターネット/イントラネットなどの)ネットワーク907へ送信される。
この図20に取り上げた無線装置904がIoTデバイスの場合、図20でハッチを施し示す領域(スモールセル基地局における「通信可能範囲」に相当)は、例えば、IoTデバイスが(焦電センサ・赤外線センサあるいは魚眼型の監視カメラなど)人感センサとするならば、屋内・室内・施設内に居たり、移動したりする状況の人を検知する事が可能な範囲を表す。他に、IoTデバイスが赤外線を利用し離れた所から高温な箇所を把握する熱感知センサや炎の光を高感度にキャッチする照度センサとするならば、火災の出火を捉えられることができる検出範囲とも云い換えられる。そして、これらの無線通信の機能を搭載した無線装置904は照明機器903の内側に設置することができる。
FIG. 20 is a diagram illustrating a usage example of a conventional small cell base station. As a place where the small cell base station is installed, in addition to a street where buildings are lined up, for example, a concourse of a station, an underground shopping center around a station, a department store, or the like can be considered. In such a case, it has been proposed to install a wireless device on the ceiling, pillar, wall or the like. However, in this case as well, the landscape may be damaged. Therefore, as shown in FIG. 20, paying attention to the fact that the lighting device 903 is already installed on the ceiling 900, the pillar 901, the wall 902, etc., the small cell base station and the wireless device 904 are installed inside the casing of the lighting device 903. It has been proposed to do. In the lighting device 903, the globe is an obstacle to electromagnetic waves. Therefore, by installing the small base station and the wireless device 904 inside the lighting device 903, wireless communication at a station concourse or the like is possible without damaging the scenery. Further, since the power supply pipeline is already laid in the lighting device 903, construction for newly laying the power supply pipeline is unnecessary. The data received by the wireless device 904 is transmitted to the network connection point 905, and is transmitted to the network 907 (such as the Internet / Intranet) via the gateway device 906 via Ethernet (registered trademark), an optical fiber, or the like. .
When the wireless apparatus 904 taken up in FIG. 20 is an IoT device, the area indicated by hatching in FIG. 20 (corresponding to the “communicable range” in the small cell base station) is, for example, the IoT device (pyroelectric sensor / infrared ray). If it is a human sensor (such as a sensor or a fish-eye type surveillance camera), it represents a range in which a person in an indoor / indoor / facility situation can be detected. In addition, if the IoT device is a heat detection sensor that grasps a high temperature location from a remote location using infrared rays, or an illuminance sensor that catches flame light with high sensitivity, detection that can catch a fire is detected It can be rephrased as a range. A wireless device 904 equipped with these wireless communication functions can be installed inside the lighting device 903.

このように、5Gを想定した上記の検討によれば、今後、看板や照明機器の内側に無線装置が設置される機会が増えていくと考えられる。   As described above, according to the above-described examination assuming 5G, it is considered that opportunities to install a wireless device inside a signboard or lighting equipment will increase in the future.

土屋 貴寛、後藤 和人、菅 瑞紀、黄 俊翔、坪井 秀幸、黒崎 聰、 太田 厚、飯塚 正孝、"75GHz 帯伝搬測定によるストリートスモールセル基地局向け無線エントランス環境の実験的評価"、信学技報 IEICE Technical Report RCS2017-74(2017-06)Takahiro Tsuchiya, Kazuto Goto, Miki Tsuji, Toshisho Huang, Hideyuki Tsuboi, Satoshi Kurosaki, Atsushi Ota, Masataka Iizuka, "Experimental Evaluation of Wireless Entrance Environment for Street Small Cell Base Station by 75GHz Band Propagation Measurement", Science and Technology IEICE Technical Report RCS2017-74 (2017-06)

しかしながら、無線装置を看板や照明機器等の構造物内に設置する場合、無線装置が出力した電磁波の一部が障害物によって反射される。そのため、反射波が生じることによって障害物を透過する電磁波の強度が減少するため、無線装置の通信可能距離が短くなるという問題があった。   However, when the wireless device is installed in a structure such as a signboard or a lighting device, part of the electromagnetic wave output from the wireless device is reflected by the obstacle. For this reason, the intensity of the electromagnetic wave that passes through the obstacle is reduced due to the generation of the reflected wave, which causes a problem that the communicable distance of the wireless device is shortened.

上記事情に鑑み、本発明は、通信可能距離が短くなることを抑制することができる技術を提供することを目的としている。   In view of the above circumstances, an object of the present invention is to provide a technique capable of suppressing a reduction in a communicable distance.

本発明の一態様は、屈折率がnである媒質を伝搬する波長λの電磁波に対する屈折率がnの複数の薄膜が層状に並び、前記複数の薄膜の一部又は全部が凸レンズの形状に略同一の形状を成し、n=(n×n1/2であって、前記複数の薄膜のうちの最も大きな面積を有する薄膜が、前記電磁波を所定の透過率で透過させる障害物が有する面のうち前記電磁波が入射する側の面に接し、前記複数の薄膜の前記面に垂直な方向の厚さが、λ/(4×n)の奇数倍である、レンズである。 One aspect of the present invention, a plurality of thin film of refractive index for electromagnetic radiation of wavelength λ having a refractive index propagates the medium is n 1 is n c is arranged in a layered shape part or all of the convex lens of said plurality of thin film , N c = (n 1 × n 2 ) 1/2 , and the thin film having the largest area among the plurality of thin films transmits the electromagnetic wave with a predetermined transmittance. A lens which is in contact with the surface on which the electromagnetic wave is incident among the surfaces of the obstacle to be made and whose thickness in the direction perpendicular to the surface of the plurality of thin films is an odd multiple of λ / (4 × n c ) It is.

本発明の一態様は、屈折率がnである媒質を伝搬する波長λの電磁波に対する屈折率がnの複数の薄膜が層状に並び、前記複数の薄膜の一部又は全部が凸レンズの形状に略同一の形状を成し、前記複数の薄膜のうちの最も大きな面積を有する薄膜が、前記電磁波を所定の透過率で透過させる障害物が有する面のうち前記電磁波が入射する側の面に接するレンズ状部材と、前記電磁波に対する屈折率がnであって、前記障害物が有する面のうち、前記屈折率がnの薄膜が接する面に平行であり、前記屈折率がnの薄膜が接する面の反対側に存在する面に接する薄膜状部材と、を備え、前記レンズ状部材の前記電磁波が入射する側の面に垂直な方向の厚さと、前記障害物の前記電磁波が入射する側の面に垂直な方向の厚さと、前記薄膜状部材の前記電磁波が入射する側の面に垂直な方向の厚さとの合計の厚さが、λ/(4×n)の奇数倍である、レンズである。 According to one embodiment of the present invention, a plurality of thin films having a refractive index of n 2 with respect to an electromagnetic wave having a wavelength λ propagating through a medium having a refractive index of n 1 are arranged in a layer shape, and a part or all of the plurality of thin films has a convex lens shape. The thin film having the substantially same shape and having the largest area among the plurality of thin films is formed on the surface on the side on which the electromagnetic wave is incident among the surfaces of the obstacle that transmits the electromagnetic wave with a predetermined transmittance. A lens-like member that is in contact with a refractive index with respect to the electromagnetic wave is n 2 , and is parallel to a surface with which the thin film with the refractive index of n 2 is in contact with the obstacle, and the refractive index is n 2 . A thin film-like member in contact with a surface existing on the opposite side of the surface in contact with the thin film, the thickness of the lens-like member in a direction perpendicular to the surface on which the electromagnetic wave is incident, and the electromagnetic wave of the obstacle is incident Thickness in the direction perpendicular to the surface on the side to be In the lens, the total thickness of the film member and the thickness in the direction perpendicular to the surface on which the electromagnetic wave is incident is an odd multiple of λ / (4 × n 2 ).

本発明の一態様は、上記のレンズであって、前記凸レンズの形状に略同一の形状を成す前記複数の薄膜と前記電磁波を放射する第一のアンテナとの距離dinが、前記第一のアンテナの開口の長さDと、din≧2D2/λである場合において、前記凸レンズの形状に略同一の形状は、前記第一のアンテナと前記電磁波を受信する第二のアンテナとの距離をdallとし、前記凸レンズの形状に略同一の形状を成す前記複数の薄膜の厚さの合計dとした場合に、R=(n−1)d、d=dall−(din+d)を満たす曲率半径Rの球面に接する形状である。 One aspect of the present invention is the above-described lens, wherein a distance d in between the plurality of thin films having substantially the same shape as the convex lens and the first antenna that radiates the electromagnetic wave is the first lens. In the case where the length D of the opening of the antenna and d in ≧ 2D2 / λ, the shape substantially the same as the shape of the convex lens is the distance between the first antenna and the second antenna that receives the electromagnetic wave. If the d all, that the sum d l of the thickness of said plurality of thin film having a substantially identical shape to the shape of the convex lens, R = (n c -1) d f, d f = d all - (d in + d l ) that is in contact with a spherical surface with a radius of curvature R.

本発明の一態様は、上記のレンズであって、前記凸レンズの形状に略同一の形状を成す前記複数の薄膜と前記電磁波を放射する第一のアンテナとの距離dinが、前記第一のアンテナの開口の長さDと、din<2D/λである場合において、前記凸レンズの形状に略同一の形状は、R=(n−1)dinを満たす曲率半径Rの球面に接する形状である。 One aspect of the present invention is the above-described lens, wherein a distance d in between the plurality of thin films having substantially the same shape as the convex lens and the first antenna that radiates the electromagnetic wave is the first lens. In the case where the length D of the antenna opening and d in <2D 2 / λ, the shape that is substantially the same as the shape of the convex lens is a spherical surface with a radius of curvature R that satisfies R = (n c −1) d in. It is a shape that touches.

本発明の一態様は、上記のレンズを複数備える複眼レンズである。   One embodiment of the present invention is a compound eye lens including a plurality of the above lenses.

本発明により、通信可能距離を伸ばすことが可能となる。   According to the present invention, a communicable distance can be extended.

従来の無線通信システム7の具体例を示す図。The figure which shows the specific example of the conventional radio | wireless communications system. 第一の実施形態の透過部材1の具体的な断面図を示す図。The figure which shows the specific sectional drawing of the permeable member 1 of 1st embodiment. 第一の実施形態の透過部材1を送信アンテナ701側から見た具体的な構成を示す図。The figure which shows the specific structure which looked at the transmissive member 1 of 1st embodiment from the transmission antenna 701 side. 第一の実施形態の透過部材1が送信アンテナ701に対して十分遠方にある場合における、曲率半径R1を説明する図。The figure explaining the curvature radius R1 in the case where the transmissive member 1 of the first embodiment is sufficiently far from the transmission antenna 701. 第一の実施形態の透過部材1が送信アンテナ701の近傍にある場合における、曲率半径R2を説明する図。The figure explaining the curvature radius R2 in case the transmissive member 1 of 1st embodiment exists in the vicinity of the transmission antenna 701. FIG. 第一の実施形態の透過部材1が反射波を抑制することができる原理を説明する図。The figure explaining the principle which the transmissive member 1 of 1st embodiment can suppress a reflected wave. 障害物702に接する第一の薄膜11が、曲率半径R1の円に接しない場合の具体例を示す図。The figure which shows the specific example in case the 1st thin film 11 which contact | connects the obstruction 702 does not contact | connect the circle | round | yen of curvature radius R1. 第二の実施形態の透過部材2の具体的な断面図を示す図。The figure which shows the specific sectional drawing of the permeation | transmission member 2 of 2nd embodiment. 図1の無線通信システム7における第二の実施形態の透過部材2の使用例を示す図。The figure which shows the usage example of the permeation | transmission member 2 of 2nd embodiment in the radio | wireless communications system 7 of FIG. 図9における、透過部材2の曲率半径R2と送信アンテナ701と受信アンテナ703との距離dallとの関係を示すシミュレーション結果の図。The figure of the simulation result which shows the relationship between the curvature radius R2 of the permeation | transmission member 2, and the distance dall of the transmitting antenna 701 and the receiving antenna 703 in FIG. 送信アンテナ701と障害物702との水平方向の距離din+dL2と透過部材2の曲率半径R2との関係を示す図。The figure which shows the relationship between horizontal distance din + dL2 of the transmission antenna 701 and the obstruction 702, and the curvature radius R2 of the transmissive member 2. FIG. 障害物702に接する第二の薄膜12が、曲率半径R2の円に接しない場合の具体例を示す図。The figure which shows the specific example in case the 2nd thin film 12 which contact | connects the obstruction 702 does not contact | connect the circle | round | yen of curvature radius R2. 変形例の透過部材1を正面から見た構成の具体例を示す図。The figure which shows the specific example of the structure which looked at the transparent member 1 of the modification from the front. 複数の透過部材1が障害物702に接する場合の透過部材1の具体的な配置を示す図。The figure which shows the specific arrangement | positioning of the permeable member 1 in case the some transmissive member 1 contacts the obstruction 702. FIG. 図13に示す変形例の透過部材1をYZ面内に複数の配置する場合の透過部材1の具体例な配置を示す図。The figure which shows the specific example arrangement | positioning of the transmissive member 1 in the case of arranging a plurality of transmissive members 1 of the modification shown in FIG. 13 in the YZ plane. 障害物702を伝搬する電磁波の経路を示す図。The figure which shows the path | route of the electromagnetic wave which propagates the obstruction 702. 透過部材1又は2が非近似成立システムにおいて使用される場合の具体的な例を示す図。The figure which shows the specific example in case the transmissive member 1 or 2 is used in a non-approximation formation system. 障害物702aを伝搬する電磁波の経路を示す図。The figure which shows the path | route of the electromagnetic wave which propagates the obstruction 702a. 従来のスモールセル基地局の使用例を示す図。The figure which shows the usage example of the conventional small cell base station. 従来のスモールセル基地局の使用例を示す図。The figure which shows the usage example of the conventional small cell base station.

(概略)
図1は、従来の無線通信システム7の具体例を示す図である。従来の無線通信システム7は、送信アンテナ701、障害物702及び受信アンテナ703を有する。図1において、直交座標系であるXYZ座標系のX軸は水平方向に平行な軸であり、Y軸は鉛直方向に平行な軸である。
(Outline)
FIG. 1 is a diagram illustrating a specific example of a conventional wireless communication system 7. The conventional wireless communication system 7 includes a transmission antenna 701, an obstacle 702, and a reception antenna 703. In FIG. 1, the X axis of the XYZ coordinate system which is an orthogonal coordinate system is an axis parallel to the horizontal direction, and the Y axis is an axis parallel to the vertical direction.

送信アンテナ701は、例えば、スモールセル基地局、IoTデバイス、無線LANアクセスポイント等に備えられる。送信アンテナ701は、開口径がDである。送信アンテナ701は、所定の位置を座標原点として自身の中心点の座標がhである位置に存在する。以下では、このような位置に存在することを、高さhの位置に存在する、と表現する。座標原点は、例えば、地表面であってもよい。 The transmission antenna 701 is provided, for example, in a small cell base station, an IoT device, a wireless LAN access point, or the like. The transmission antenna 701 has an opening diameter D. The transmission antenna 701 exists at a position where the coordinate of its center point is h 1 with a predetermined position as the coordinate origin. Hereinafter, the presence at such a position is expressed as being at the position of the height h 1 . The coordinate origin may be, for example, the ground surface.

障害物702は、入射した電磁波を所定の透過率で透過させる部材であって、例えば、看板面や、照明機器のグローブである。障害物702の厚さ(すなわち、X軸方向の幅)はdである。障害物702の波長λの電磁波に対する屈折率はnである。 The obstacle 702 is a member that transmits incident electromagnetic waves with a predetermined transmittance, and is, for example, a signboard surface or a glove of a lighting device. The thickness of the obstacle 702 (i.e., the width of the X-axis direction) is d b. The refractive index of the obstacle 702 with respect to the electromagnetic wave having the wavelength λ is n 2 .

受信アンテナ703は、例えば、エントランス基地局やネットワーク接続ポイントに備えられる。受信アンテナ703は、送信アンテナ701に対して、X軸方向に距離dall離れた場所に存在する。受信アンテナ703は、hよりもY軸正方向にH1だけ離れた高さhの位置に存在する。なお、受信アンテナ703と送信アンテナ701との鉛直方向の距離の差は、受信アンテナ703と送信アンテナ701との水平方向の距離の差よりも十分短い。すなわち、H1は、H1<<dallの関係を満たす。
送信アンテナ701、障害物702及び受信アンテナ703は、X軸方向に、送信アンテナ701、障害物702、受信アンテナ703の順番に配置される。
The reception antenna 703 is provided in, for example, an entrance base station or a network connection point. The receiving antenna 703 is present at a distance d all away from the transmitting antenna 701 in the X-axis direction. The receiving antenna 703 is present at a height h 2 that is H 1 away from h 1 in the positive Y-axis direction. Note that the difference in the vertical distance between the receiving antenna 703 and the transmitting antenna 701 is sufficiently shorter than the difference in the horizontal distance between the receiving antenna 703 and the transmitting antenna 701. That, H1 satisfies the relation of H1 << d all.
The transmission antenna 701, the obstacle 702, and the reception antenna 703 are arranged in the order of the transmission antenna 701, the obstacle 702, and the reception antenna 703 in the X-axis direction.

送信アンテナ701が放射した電磁波の一部は、屈折率がnの外気中を水平方向に対して角度θの方向に伝搬し、障害物702を透過する。障害物702を透過した電磁波は、屈折率nの外気中を水平方向に対して角度θの方向に伝搬し受信アンテナ703に到達する。なお、θは、tan(θ)=H1/dallの関係を満たす。 Some of the electromagnetic waves transmitting antenna 701 is radiated, the refractive index is propagated in the direction of the angle theta a to the outside air of n 1 with respect to the horizontal direction, transmitted through the obstacle 702. Electromagnetic waves transmitted through the obstacle 702, propagates in the direction of the angle theta a fresh air in the refractive index n 1 with respect to the horizontal direction reaches the receiving antenna 703. Note that θ a satisfies the relationship of tan (θ a ) = H1 / d all .

受信アンテナ703と送信アンテナ701との鉛直方向の距離の差H1は、受信アンテナ703と送信アンテナ701との水平方向の距離の差dallよりも十分短く、H1/dall≒0である。すなわち、θは、θ≒0の関係を満たす。このことは、電磁波の障害物702への入射角度が0degに近いことを意味し、電磁波の障害物702による屈折の屈折角を0と近似できることを意味する。 The difference H1 of the vertical distance between the receiving antenna 703 and transmitting antenna 701 is sufficiently shorter than the difference d all the horizontal distance between the receiving antenna 703 and transmitting antenna 701, a H1 / d all ≒ 0. That, theta a satisfy the relationship of θ a ≒ 0. This means that the incident angle of the electromagnetic wave on the obstacle 702 is close to 0 deg, and that the refraction angle of refraction by the electromagnetic wave obstacle 702 can be approximated to zero.

無線通信システム7において、障害物702内を通過する電磁波が、障害物702内で進む距離はd/cos(θ)である。また、無線通信システム7において、電磁波が障害物702内で進む距離はdに略同一の長さである。以下簡単のため、特にことわりがない限りは、θ≒0であり、無線通信システム7において、電磁波が障害物702内を進む距離はdであるとして説明する。 In the wireless communication system 7, the distance traveled by the electromagnetic wave passing through the obstacle 702 in the obstacle 702 is d b / cos (θ a ). In the wireless communication system 7, the distance the electromagnetic wave travels in the obstacle 702 are substantially the same length in the d b. For simplicity below, particularly unless otherwise specified, a theta a ≒ 0, in a wireless communication system 7, the distance electromagnetic waves traveling in the obstacle 702 will be described as a d b.

例えば、屋外のビルが立ち並ぶ通りは、無線通信システム7の使用シーンの一例である。この場合、送信アンテナ701は、例えば、ビル壁の看板の内側に設置されてもよく、この場合、例えば、送信アンテナ701と受信アンテナ703との高低差H1は7mであって、水平距離dallは70mであってもよい。また、例えば、駅のコンコースは、無線通信システム7の使用シーンの一例である。送信アンテナ701は、屋内の壁や柱に設置された照明機器内に設置されてもよい。この場合、例えば送信アンテナ701と受信アンテナ703(NW接続ポイント等)との高低差H1が3mであって、水平距離dallは30mであってもよい。これらの使用シーンにおいては、10≦dall/H1の関係と、θ<5.71degの関係とが満たされる。すなわち、この場合1/cos(θ)は約1.005であって、1に略同一である。 For example, streets lined with outdoor buildings are examples of scenes where the wireless communication system 7 is used. In this case, the transmission antenna 701 may be installed, for example, inside a billboard on the building wall. In this case, for example, the height difference H1 between the transmission antenna 701 and the reception antenna 703 is 7 m, and the horizontal distance d all May be 70 m. For example, a station concourse is an example of a usage scene of the wireless communication system 7. The transmission antenna 701 may be installed in a lighting device installed on an indoor wall or pillar. In this case, for example, the height difference H1 between the transmission antenna 701 and the reception antenna 703 (NW connection point or the like) may be 3 m, and the horizontal distance d all may be 30 m. In these usage scenes, the relationship of 10 ≦ d all / H1 and the relationship of θ a <5.71 deg are satisfied. That is, in this case, 1 / cos (θ a ) is about 1.005 and is substantially the same as 1.

なお、無線通信システム7はこのようなシステムに限られるものではなく、送信アンテナ701、障害物702及び受信アンテナ703が、θ≒0を満たすように送信アンテナ701、障害物702及び受信アンテナ703の順番に配置される無線通信システムであれば、どのような無線通信システムであってもよい。 The wireless communication system 7 is not limited to such a system, and the transmission antenna 701, the obstacle 702, and the reception antenna 703 are set so that the transmission antenna 701, the obstacle 702, and the reception antenna 703 satisfy θ a ≈0. Any wireless communication system may be used as long as the wireless communication systems are arranged in this order.

以下に説明する各実施形態は、図1に示す従来の無線通信システムの障害物702に、所定の条件を満たすように構成された透過部材を配置することにより、通信可能距離が短くなることを抑制する。   In each of the embodiments described below, it is possible to reduce the communicable distance by disposing a transmissive member configured to satisfy a predetermined condition on the obstacle 702 of the conventional wireless communication system shown in FIG. Suppress.

以下、実施形態の透過部材を、図面を参照して説明する。   Hereinafter, the transmissive member of the embodiment will be described with reference to the drawings.

(第一の実施形態)
図2は、第一の実施形態の透過部材1の具体的な断面図を示す図である。透過部材1は、図1の無線通信システム7における障害物702のYZ面に平行な表面のうち、送信アンテナ701側の表面に接する。透過部材1は、入射した電磁波の障害物702の表面における反射を抑制するとともに、その入射した電磁波を受信アンテナ703に集光する。なお、図2のXYZ座標は、図1のXYZ座標と同じである。
(First embodiment)
FIG. 2 is a diagram illustrating a specific cross-sectional view of the transmission member 1 according to the first embodiment. The transmitting member 1 is in contact with the surface on the transmitting antenna 701 side among the surfaces parallel to the YZ plane of the obstacle 702 in the wireless communication system 7 of FIG. The transmitting member 1 suppresses the reflection of the incident electromagnetic wave on the surface of the obstacle 702 and condenses the incident electromagnetic wave on the receiving antenna 703. Note that the XYZ coordinates in FIG. 2 are the same as the XYZ coordinates in FIG.

透過部材1は、第一の薄膜11−1〜5を備える。第一の薄膜11−1〜5は、厚さがds1であり、後述するように第一の薄膜11−1〜5を積層した合計の厚さはdL1であり、屈折率がnの誘電体の薄膜である。屈折率nは、
=(n×n1/2 ・・・(1)
を満たす。
合計の厚さdL1は、
L1=m×(λ/4×n) ・・・(2)
の関係を満たす。この式(2)において,mは奇数(m=1、3、5、・・・)であり、λは、透過部材1に入射する電磁波の真空中の波長である。第一の薄膜11−1〜5は、それぞれ同じ厚さds1及び屈折率nを有するものの、形状又は大きさが異なる。なお、第一の薄膜11−5は障害物702に接する。第一の薄膜11−5が、障害物702に接する面は、X軸正方向(すなわち、厚さ方向)に垂直な面である。
The transmissive member 1 includes first thin films 11-1 to 11-5. The first thin film 11-1~5 has a thickness of d s1, the thickness of the total formed by laminating a first film 11-1~5 as will be described later is d L1, the refractive index n c This is a dielectric thin film. Refractive index n c is
n c = (n 1 × n 2 ) 1/2 (1)
Meet.
The total thickness d L1 is
d L1 = m × (λ / 4 × n c ) (2)
Satisfy the relationship. In this formula (2), m is an odd number (m = 1, 3, 5,...), And λ is the wavelength of the electromagnetic wave incident on the transmissive member 1 in vacuum. The first thin film 11-1~5 Although each have the same thickness d s1 and refractive index n c, shape or size is different. The first thin film 11-5 is in contact with the obstacle 702. The surface where the first thin film 11-5 is in contact with the obstacle 702 is a surface perpendicular to the positive X-axis direction (that is, the thickness direction).

図3は、第一の実施形態の透過部材1を送信アンテナ701側から見た具体的な構成を示す図である。第一の薄膜11−1〜5は、YZ面において円形であり、第一の薄膜11−1、第一の薄膜11−2、第一の薄膜11−3、第一の薄膜11−4、第一の薄膜11−5の順番に半径が短い。   FIG. 3 is a diagram illustrating a specific configuration of the transmissive member 1 according to the first embodiment as viewed from the transmission antenna 701 side. The first thin films 11-1 to 11-5 are circular in the YZ plane, and the first thin film 11-1, the first thin film 11-2, the first thin film 11-3, the first thin film 11-4, The radius is short in the order of the first thin film 11-5.

図2の説明に戻る。第一の薄膜11−1〜5は、第一の薄膜11−1、第一の薄膜11−2、第一の薄膜11−3、第一の薄膜11−4、第一の薄膜11−5の順番に層状に重ねられる。より詳細には、第一の薄膜11−1〜5は、凸レンズ状の形状と略同一の形状を形成するように積層される。そのため、透過部材1は、入射した電磁波を集光する凸レンズとして機能する。なお、透過部材1のX軸方向の厚さdL1は、前述したように第一の薄膜11−1〜5を重ねた(積層した)厚さであって、この図2の例ではdL1=ds1×5の関係を満たす。従って、先の式(2)よりds1=(m/5)×(λ/4×n)となる。ここで、mは奇数である。 Returning to the description of FIG. The first thin films 11-1 to 11-5 are the first thin film 11-1, the first thin film 11-2, the first thin film 11-3, the first thin film 11-4, and the first thin film 11-5. Are layered in order. More specifically, the first thin films 11-1 to 11-5 are laminated so as to form substantially the same shape as the convex lens shape. Therefore, the transmissive member 1 functions as a convex lens that collects incident electromagnetic waves. The thickness d L1 of the X-axis direction of the transmission member 1, a superimposed first thin film 11-1~5 as previously described (stacked) thick, in the example of FIG. 2 d L1 = D s1 × 5 is satisfied. Therefore, d s1 = (m / 5) × (λ / 4 × n c ) from the previous equation (2). Here, m is an odd number.

第一の薄膜11−1〜5が形成する凸レンズ状の形状の曲率半径は長さR1である。すなわち、第一の薄膜11−1〜5の大きさは、曲率半径R1の円の境界に接するよう調整された大きさである。曲率半径R1は、送信アンテナ701、障害物702及び受信アンテナ703間の距離に基づいて、市販のレンズの曲率半径の長さの算出方法と同様の方法で算出される。   The radius of curvature of the convex lens shape formed by the first thin films 11-1 to 11-5 is the length R1. That is, the sizes of the first thin films 11-1 to 11-5 are adjusted so as to be in contact with the boundary of the circle having the curvature radius R1. The radius of curvature R1 is calculated by a method similar to the method of calculating the length of the radius of curvature of a commercially available lens based on the distances between the transmitting antenna 701, the obstacle 702, and the receiving antenna 703.

以下、屈折率が式(1)の関係を満たし、厚さが式(2)の関係を満たす薄膜を第一の薄膜11という。
なお、透過部材1は、必ずしも5枚の第一の薄膜11を備える必要はなく、mを奇数として、複数枚の積層した全体の厚さが物質内波長のm/4倍であれば何枚であってもよい。
また、実施形態の透過部材1は、必ずしも同じ厚さの第一の薄膜11によって構成される必要はなく、屈折率が(n×n1/2である複数枚の薄膜によって構成され、透過部材1の厚さ(すなわち、X軸方向の幅であり、図2におけるdL1)が物質内波長の1/4の奇数倍であって、透過部材1の形状が凸レンズに略同一の形状であれば、どのように構成されてもよい。
また、透過部材1は、第一の薄膜11をシールのように張り合わせることで形成されてもよいし、第一の薄膜11同士を接着剤で張り合わせることで形成されてもよい。
Hereinafter, the thin film whose refractive index satisfies the relationship of the formula (1) and whose thickness satisfies the relationship of the formula (2) is referred to as a first thin film 11.
Note that the transmission member 1 does not necessarily include the first thin film 11 of five sheets. If m is an odd number and the total thickness of a plurality of stacked layers is m / 4 times the wavelength within the substance, any number of sheets may be used. It may be.
In addition, the transmissive member 1 of the embodiment is not necessarily configured by the first thin film 11 having the same thickness, and is configured by a plurality of thin films having a refractive index of (n 1 × n 2 ) 1/2. The thickness of the transmissive member 1 (that is, the width in the X-axis direction, d L1 in FIG. 2) is an odd multiple of ¼ of the in-substance wavelength, and the shape of the transmissive member 1 is substantially the same as that of the convex lens. Any shape may be used as long as it has a shape.
Moreover, the transmissive member 1 may be formed by bonding the first thin film 11 like a seal, or may be formed by bonding the first thin films 11 together with an adhesive.

図4は、第一の実施形態の透過部材1が送信アンテナ701に対して十分遠方にある場合における、曲率半径R1を説明する図である。   FIG. 4 is a diagram illustrating the radius of curvature R1 when the transmissive member 1 of the first embodiment is sufficiently far from the transmission antenna 701. FIG.

図4において、送信アンテナ701、障害物702及び受信アンテナ703の配置は、図1の無線通信システム7と同様である。
また、図4において、透過部材1は送信アンテナ701に対して十分遠方にある。そのため、送信アンテナ701が放射する電磁波は、透過部材1の入射面において、近似的に平面波である。例えば、送信アンテナ701と透過部材1との間の距離をdinとすると、dinは、din≧2Dλの関係を満たす。
In FIG. 4, the arrangement of the transmission antenna 701, the obstacle 702, and the reception antenna 703 is the same as that of the wireless communication system 7 of FIG.
In FIG. 4, the transmissive member 1 is sufficiently far from the transmitting antenna 701. Therefore, the electromagnetic wave radiated from the transmission antenna 701 is approximately a plane wave on the incident surface of the transmissive member 1. For example, if the distance between the transmitting antenna 701 and the transmission member 1 and d in, d in satisfy the relation of d in ≧ 2D 2 λ.

一般に、自身に入射した平面波の電磁波を焦点距離fの焦点に集光する凸レンズの曲率半径の長さrは、外気の屈折率を1とし、自身の屈折率をnとして、r=(n−1)fの関係を満たす。
一方、図4における透過部材1は、送信アンテナ701が放射し、透過部材1に入射する平面波である電磁波を受信アンテナ703に集光する。
そのため、図4において焦点距離がdに略同一である透過部材1の曲率半径R1は、
R1=(n−1)d ・・・(3)
と表される。なお、dは、受信アンテナ703と障害物702の送信アンテナ701側の表面との水平距離である。すなわち、dは、図4においてはdoutとdとの和である。つまり、この図4に示す状況で透過部材1が送信アンテナ701に対して十分遠方にある場合、曲率半径を求める上記の式(3)はR1=(n−1)(dout+d)となる。なお、doutは、受信アンテナ703と、障害物702の受信アンテナ703側の表面との水平距離である。
In general, the length r 0 the radius of curvature of the convex lens for converging the focus of the focal length f 0 of the electromagnetic wave of a plane wave incident on itself, the refractive index of the outside air is 1, the refractive index of itself as n 0, r 0 = (N 0 −1) f 0 is satisfied.
On the other hand, the transmitting member 1 in FIG. 4 radiates from the transmitting antenna 701 and condenses the electromagnetic wave that is a plane wave incident on the transmitting member 1 on the receiving antenna 703.
Therefore, the radius of curvature R1 of the transmitting member 1 is the focal length is substantially the same in d f in Figure 4,
R1 = (n c −1) d f (3)
It is expressed. Incidentally, d f is the horizontal distance between the transmitting antenna 701 side of the surface of the receiving antenna 703 and the obstacle 702. That, d f is the sum of the d out and d b in FIG. That is, in the situation shown in FIG. 4, when the transmissive member 1 is sufficiently far from the transmitting antenna 701, the above equation (3) for obtaining the radius of curvature is R1 = (n c −1) (d out + d b ) It becomes. D out is a horizontal distance between the receiving antenna 703 and the surface of the obstacle 702 on the receiving antenna 703 side.

図5は、第一の実施形態の透過部材1が送信アンテナ701の近傍にある場合における、曲率半径R2を説明する図である。   FIG. 5 is a diagram illustrating the radius of curvature R <b> 2 when the transmissive member 1 of the first embodiment is in the vicinity of the transmission antenna 701.

図5において、送信アンテナ701、障害物702及び受信アンテナ703の配置は、図1の無線通信システム7と同様である。また、図5において、透過部材1は送信アンテナ701の近傍にある。そのため、送信アンテナ701が放射する電磁波は、透過部材1の入射面において、近似的に球面波である。例えば、送信アンテナ701と透過部材1との距離dinは、din<2Dλの関係を満たす。 In FIG. 5, the arrangement of the transmission antenna 701, the obstacle 702, and the reception antenna 703 is the same as that of the wireless communication system 7 of FIG. In FIG. 5, the transmissive member 1 is in the vicinity of the transmission antenna 701. Therefore, the electromagnetic wave radiated from the transmission antenna 701 is approximately a spherical wave on the incident surface of the transmissive member 1. For example, the distance d in between the transmission antenna 701 and the transmission member 1 satisfies the relationship d in <2D 2 λ.

図5において、送信アンテナ701上の点Pから放射された電磁波は、透過部材1を透過することで平面波となって外気を伝搬し、受信アンテナ703に到達する。
そのため、焦点距離がdinであり、図4における透過部材1の曲率半径R1は、
R1=(n−1)din ・・・(4)
の関係を満たす。
In FIG. 5, the electromagnetic wave radiated from the point P on the transmission antenna 701 is transmitted through the transmission member 1 to be a plane wave, propagates in the outside air, and reaches the reception antenna 703.
Therefore, a focal length d in, the curvature radius R1 of the transmitting member 1 in FIG. 4,
R1 = (n c −1) d in (4)
Satisfy the relationship.

なお、図5において、透過部材1を透過した電磁波は受信アンテナ703上の一点には集光しない。しかしながら、透過部材1を透過した電磁波は、拡散する球面波の電磁波が拡散しない平面波の電磁波に変換され受信アンテナ703によって受信される。以下、この場合についても、集光という。   In FIG. 5, the electromagnetic wave transmitted through the transmissive member 1 is not collected at one point on the receiving antenna 703. However, the electromagnetic wave that has passed through the transmissive member 1 is converted into a plane wave electromagnetic wave that is not diffused by the diffusing spherical wave electromagnetic wave and is received by the receiving antenna 703. Hereinafter, this case is also referred to as light collection.

図6は、第一の実施形態の透過部材1が反射波を抑制することができる原理を説明する図である。   FIG. 6 is a diagram for explaining the principle by which the transmissive member 1 of the first embodiment can suppress the reflected wave.

図6において、入射波L1と入射波L2とは同位相で外気を伝搬し透過部材1に入射する電磁波である。入射波L1は、透過部材1と障害物702との境界で反射され、反射波L1として障害物702を伝搬し外気に出射する。入射波L2は、外気と透過部材1との境界で反射され、反射波L2として外気を伝搬する。以下、入射波L1と反射波L1とを区別しない場合、電磁波L1という。また、以下、入射波L2と反射波L2とを区別しない場合、電磁波L2という。 In FIG. 6, the incident wave L i 1 and the incident wave L i 2 are electromagnetic waves that propagate in the outside air in the same phase and are incident on the transmission member 1. The incident wave L i 1 is reflected at the boundary between the transmission member 1 and the obstacle 702, propagates through the obstacle 702 as a reflected wave L R 1 and exits to the outside air. The incident wave L i 2 is reflected at the boundary between the outside air and the transmissive member 1 and propagates in the outside air as a reflected wave L R 2. Hereinafter, when there is no need to distinguish between the incident wave L i 1 and the reflected wave L R 1, referred to the electromagnetic wave L1. Hereinafter, when the incident wave L i 2 and the reflected wave L R 2 are not distinguished, they are referred to as an electromagnetic wave L2.

一般に、電磁波は屈折率が異なる物質が接する箇所において反射される。すなわち、屈折率が異なる物質が接する箇所に入射した電磁波によって反射波が生じる。しかしながら、複数箇所で反射された電磁波の反射波の位相差が180度の奇数倍である場合には、反射波同士が互いに打消し合う。そのため、反射波の発生は抑制される。   In general, electromagnetic waves are reflected at locations where substances having different refractive indexes come into contact. That is, a reflected wave is generated by an electromagnetic wave incident on a place where substances having different refractive indexes are in contact. However, when the phase difference between the reflected waves of the electromagnetic waves reflected at a plurality of locations is an odd multiple of 180 degrees, the reflected waves cancel each other. Therefore, the generation of reflected waves is suppressed.

透過部材1は、複数枚の薄膜を積層した構成であり、その積層した薄膜の全体の厚さが物質内波長(すなわち、λ/n)のm/4(m:奇数)を有する。そのため、透過部材1に入射する電磁波L1は、反射波L1として外部に出射されるまでに、電磁波L2と比較して半波長の奇数倍の距離だけ長く伝搬する。そのため、電磁波L1は伝搬によって180度の奇数倍に略同一な位相だけ余分に電磁波L2よりも位相が進む。 The transmissive member 1 has a configuration in which a plurality of thin films are stacked, and the total thickness of the stacked thin films has m / 4 (m: odd number) of the in-substance wavelength (that is, λ / n c ). Therefore, the electromagnetic wave L1 incident on the transmissive member 1 propagates longer than the electromagnetic wave L2 by an odd multiple of a half wavelength before being emitted to the outside as the reflected wave L R 1. For this reason, the phase of the electromagnetic wave L1 advances more than that of the electromagnetic wave L2 by propagation by an approximately identical phase to an odd multiple of 180 degrees.

また、透過部材1は、屈折率が(n×n1/2である第一の薄膜11を備える。第一の薄膜11の屈折率が満たすn=(n×n1/2の式は、光学素子の反射防止膜の屈折率を与える式として一般に知られた式である。透過部材1の屈折率がn=(n×n1/2の式を満たすため、電磁波L1が透過部材1から障害物702に入射し反射される時の位相のずれと、電磁波L2が外気から透過部材1に入射し反射される時の位相のずれとは略同一である。 Moreover, the transmissive member 1 includes a first thin film 11 having a refractive index of (n 1 × n 2 ) 1/2 . The equation of n c = (n 1 × n 2 ) 1/2 that the refractive index of the first thin film 11 satisfies is an equation that is generally known as an equation that gives the refractive index of the antireflection film of the optical element. Since the refractive index of the transmissive member 1 satisfies the formula n c = (n 1 × n 2 ) 1/2 , the phase shift when the electromagnetic wave L1 enters the obstacle 702 from the transmissive member 1 and is reflected, and the electromagnetic wave The phase shift when L2 is incident on the transmitting member 1 from the outside and reflected is substantially the same.

このように透過部材1は、屈折率が(n×n1/2であり、第一の薄膜11を層状に複数枚積層して備え、mを奇数として、全体の厚さが物質内波長のm/4であるため、電磁波L1の反射波L1と電磁波L2の反射波L2とは外気において互いに打消し合う。そのため、透過部材1は、反射波の発生を抑制する。 Thus, the transmissive member 1 has a refractive index of (n 1 × n 2 ) 1/2 , and includes a plurality of first thin films 11 stacked in layers, where m is an odd number, and the overall thickness is a substance. since the inner wavelength is of m / 4, cancel each other in the outside air and the reflected wave L R 2 of the reflected wave L R 1 and an electromagnetic wave L2 of the electromagnetic wave L1. Therefore, the transmissive member 1 suppresses the generation of reflected waves.

また、このように構成された透過部材1は、屈折率が(n×n1/2である第一の薄膜11を層状に複数枚積層して、mを奇数として、全体の厚さが物質内波長のm/4であるため、障害物702に入射する電磁波の反射波の発生を抑制するとともに、電磁波を受信アンテナ703に集光し、送信アンテナ701の通信可能距離を伸ばすことができる。特に、IoTデバイスのような小型の無線装置を使う場合には、利得があまり稼げず短い通信距離となるが、このように構成された透過部材1により通信可能距離を伸ばすことができる。
さらに、このように構成された透過部材1は、障害物702の表面に設置されるだけで、送信アンテナ701の通信可能距離を伸ばすことができる。そのため、例えば、利用するアンテナ口径の拡大や弱い信号の増幅に対応するアンプの高利得化などの方法と比較して、実施形態の透過部材1によれば通信可能距離を伸ばすための装置の大型化及び設置コストの増大を抑制しつつ、通信可能距離を伸ばすことができる。
Further, the transmissive member 1 configured as described above is formed by laminating a plurality of first thin films 11 having a refractive index of (n 1 × n 2 ) 1/2 and m is an odd number. Therefore, the generation of the reflected wave of the electromagnetic wave incident on the obstacle 702 is suppressed, and the electromagnetic wave is condensed on the receiving antenna 703 to extend the communicable distance of the transmitting antenna 701. Can do. In particular, when a small wireless device such as an IoT device is used, the gain is not so large and the communication distance is short, but the communicable distance can be extended by the transmissive member 1 configured in this way.
Furthermore, the transmissive member 1 configured as described above can extend the communicable distance of the transmission antenna 701 only by being installed on the surface of the obstacle 702. Therefore, for example, as compared with a method of increasing the gain of the amplifier corresponding to the expansion of the antenna aperture to be used or the amplification of weak signals, the transmission member 1 of the embodiment has a large apparatus for extending the communicable distance. It is possible to increase the communicable distance while suppressing increase in installation cost and installation cost.

(変形例)
図7は、障害物702に接する第一の薄膜11が、曲率半径R1の円に接しない場合の具体例を示す図である。図7の透過部材1は、図2の透過部材1における第一の薄膜11−1に代えて第一の薄膜11−6を備える。第一の薄膜11−6の屈折率及び厚さは、第一の薄膜11と同じである。第一の薄膜11−6は、第一の薄膜11−4と同じかそれよりも広い面積を有する(後述する図13や図14を参照)。第一の薄膜11−6は、障害物702に接し、曲率半径R1の円に接しない。第一の薄膜11−6は、第一の薄膜11−4と同じかそれよりも広い面積を有し、屈折率及び厚さが第一の薄膜11と同じ薄膜であって、曲率半径R1の円に接しない薄膜であればどのような薄膜であってもよい。例えば、第一の薄膜11−6は、自身が接する障害物702の面の全面を覆う形状であってもよい。この場合には、第一の薄膜11−6を曲率半径R1の円に接する形状に加工する必要がないため、透過部材1の作成を容易にする効果を奏する。また、ユーザーが第一の薄膜11−6を備えた透過部材1を障害物702に取り付ける際には、透過部材1が第一の薄膜11−6を備えるため、ユーザーは障害物702を覆うように透過部材1を取り付ければよい。そのため、このように構成された透過部材1は、ユーザーが透過部材1を障害物702に取り付けることを容易にするという効果を奏する。なお、第一の薄膜11の面積とは、第一の薄膜11のYZ面に平行な面の面積である。
(Modification)
FIG. 7 is a diagram illustrating a specific example in a case where the first thin film 11 in contact with the obstacle 702 does not contact a circle with a radius of curvature R1. The transmissive member 1 in FIG. 7 includes a first thin film 11-6 instead of the first thin film 11-1 in the transmissive member 1 in FIG. The refractive index and thickness of the first thin film 11-6 are the same as those of the first thin film 11. The first thin film 11-6 has the same area as or wider than the first thin film 11-4 (see FIGS. 13 and 14 described later). The first thin film 11-6 contacts the obstacle 702 and does not contact the circle having the curvature radius R1. The first thin film 11-6 has the same or larger area as the first thin film 11-4, and has the same refractive index and thickness as the first thin film 11, and has a radius of curvature R1. Any thin film may be used as long as it is not in contact with the circle. For example, the first thin film 11-6 may have a shape that covers the entire surface of the obstacle 702 that it contacts. In this case, since it is not necessary to process the first thin film 11-6 into a shape in contact with the circle having the curvature radius R1, the effect of facilitating the creation of the transmission member 1 is achieved. Further, when the user attaches the transmissive member 1 including the first thin film 11-6 to the obstacle 702, the transmissive member 1 includes the first thin film 11-6, so that the user covers the obstacle 702. What is necessary is just to attach the permeable member 1 to. Therefore, the transmissive member 1 configured as described above has an effect of making it easy for the user to attach the transmissive member 1 to the obstacle 702. The area of the first thin film 11 is an area of a plane parallel to the YZ plane of the first thin film 11.

(第二の実施形態)
図8は、第二の実施形態の透過部材2の具体的な断面図を示す図である。透過部材2は、図1の無線通信システム7における障害物702のYZ面に平行な表面に接する。透過部材2は、入射した電磁波の入射面における反射を抑制するとともに、その入射した電磁波を受信アンテナ703に集光させる。なお、図8のXYZ座標は、図1のXYZ座標と同じである。以下、図2〜5と同様のものに対しては、同じ符号を付して説明を省略する。
また、先の図6で説明した2つの反射波L1及びL2に関して、この図8においては、第三の薄膜13の表面での反射波(先のL1が第一の薄膜11−1であった点とは異なる)と、第二の薄膜12−5の表面での反射波(先のL2に相当)になる。
(Second embodiment)
FIG. 8 is a diagram illustrating a specific cross-sectional view of the transmission member 2 according to the second embodiment. The transmitting member 2 is in contact with a surface parallel to the YZ plane of the obstacle 702 in the wireless communication system 7 of FIG. The transmitting member 2 suppresses the reflection of the incident electromagnetic wave on the incident surface and condenses the incident electromagnetic wave on the receiving antenna 703. The XYZ coordinates in FIG. 8 are the same as the XYZ coordinates in FIG. In the following, the same components as those shown in FIGS.
Further, regarding the two reflected waves L1 and L2 described in FIG. 6, in FIG. 8, the reflected wave on the surface of the third thin film 13 (the previous L1 was the first thin film 11-1). And a reflected wave on the surface of the second thin film 12-5 (corresponding to L2 above).

透過部材2は、レンズ状部材21及び第三の薄膜13を備える。レンズ状部材21及び第三の薄膜13は屈折率nを有する。レンズ状部材21は、凸レンズ状の形状であって、障害物702の、送信アンテナ701側の面に接する。一方、第三の薄膜13は、障害物702の他方の面(すなわち、受信アンテナ703側の面)に接する。透過部材2のレンズ状部材21の厚さdL2と第三の薄膜13の厚さds3とは、障害物702の厚さをdとして、dL2+d+ds3=m×(λ/4×n)の関係を満たす厚さである。レンズ状部材21は、第二の薄膜12−1〜5を備える。第二の薄膜12−1〜5は、それぞれ同じ厚さds2及び屈折率nを有するものの、形状又は大きさが異なる。第二の薄膜12−1〜5は、YZ面において円形であり、第二の薄膜12−1、第二の薄膜12−2、第二の薄膜12−3、第二の薄膜12−4、第二の薄膜12−5の順番に半径が短い。第二の薄膜12は、第一の薄膜11と同様に、凸レンズ状の形状と略同一の形状を形成するように積層される。したがって、レンズ状部材21の形状は凸レンズに略同一の形状である。また、第二の薄膜12−1〜5は、第一の薄膜11−1〜5と同様に、曲率半径R2の円に接するように積層される。曲率半径R2は、曲率半径R1と同様の方法によって算出される。 The transmissive member 2 includes a lenticular member 21 and a third thin film 13. Lenticular member 21 and the third film 13 has a refractive index n 2. The lens-shaped member 21 has a convex lens shape and is in contact with the surface of the obstacle 702 on the transmission antenna 701 side. On the other hand, the third thin film 13 is in contact with the other surface of the obstacle 702 (that is, the surface on the receiving antenna 703 side). The thickness d L2 of the lens-like member 21 of the transmissive member 2 and the thickness d s3 of the third thin film 13 are expressed as d L2 + d b + d s3 = m × (λ / 4 × n 2 ). The lenticular member 21 includes second thin films 12-1 to 12-5. The second thin films 12-1 to 12-5 have the same thickness d s2 and refractive index n 2 , respectively, but are different in shape or size. The second thin films 12-1 to 12-5 are circular in the YZ plane, and the second thin film 12-1, the second thin film 12-2, the second thin film 12-3, the second thin film 12-4, The radius is shorter in the order of the second thin film 12-5. Similar to the first thin film 11, the second thin film 12 is laminated so as to form a shape substantially the same as the convex lens shape. Therefore, the shape of the lens-shaped member 21 is substantially the same as that of the convex lens. The second thin films 12-1 to 12-5 are laminated so as to be in contact with the circle having the curvature radius R2, similarly to the first thin films 11-1 to 11-5. The curvature radius R2 is calculated by the same method as the curvature radius R1.

以下、屈折率がnであり、厚さがds2である薄膜を第二の薄膜12という。
なお、透過部材2は、必ずしも5枚の第二の薄膜12を備える必要はなく、第三の薄膜13と障害物702の厚さを全て合せた全体の厚さが、mを奇数として、物質内波長のm/4倍であれば、どのような枚数の第二の薄膜12を備えてもよい。
また、実施形態のレンズ状部材21は、必ずしも同じ厚さの第二の薄膜12によって構成される必要はない。レンズ状部材21は、以下の3つの条件を満たすように構成されればどのように構成されてもよい。第一の条件は、自身の屈折率をnとして、自身の厚さと、屈折率nの障害物702の厚さと、屈折率nの第三の薄膜13の厚さとの合計の厚さが物質内波長の1/4の奇数倍の関係を満たす厚さであることである。第二の条件は、凸レンズに略同一の形状であることである。第三の条件は、屈折率がnの複数枚の薄膜によって構成されることである。
また、透過部材2は、第二の薄膜12をシールのように張り合わせることで形成されてもよいし、第二の薄膜12同士を接着剤で張り合わせることで形成されてもよい。
Hereinafter, a thin film having a refractive index of n 2 and a thickness of d s2 is referred to as a second thin film 12.
The transmission member 2 does not necessarily include the five second thin films 12, and the total thickness of all the third thin films 13 and the obstacles 702 is m, where m is an odd number. Any number of second thin films 12 may be provided as long as they are m / 4 times the inner wavelength.
Further, the lens-like member 21 of the embodiment does not necessarily need to be configured by the second thin film 12 having the same thickness. The lens-shaped member 21 may be configured in any way as long as it is configured to satisfy the following three conditions. The first condition, the total thickness of the refractive index of itself as n 2, and its thickness, the thickness of the obstacle 702 having a refractive index n 2, the thickness of the third thin film 13 having a refractive index n 2 Is a thickness satisfying an odd multiple of 1/4 of the wavelength within the substance. The second condition is that the convex lens has substantially the same shape. The third condition is that the thin film has a refractive index of n 2 .
Moreover, the transmissive member 2 may be formed by bonding the second thin film 12 like a seal, or may be formed by bonding the second thin films 12 with an adhesive.

第三の薄膜13は、障害物702を伝搬する電磁波が障害物702から外気に入射する場合に生じる反射波の発生を抑制する。
第三の薄膜13は、屈折率がnの薄膜であって、障害物702の有する表面のうち第二の薄膜12が接する表面とは反対側の表面に接する。なお、障害物702に接する第三の薄膜13の面は厚さ方向に垂直な面である。第三の薄膜の厚さds3は、dL2+d+ds3がλ/(4×n)の奇数倍となる厚さである。
すなわち、第三の薄膜の厚さds3は、
L2+d+ds3=λ/(4×n)×m(m:奇数) ・・・(5)
の関係を満たす。なお、dL2は、第二の薄膜12−1〜5を重ねた厚さであってdL2=ds2×5の関係を満たす。
第三の薄膜の厚さds3がλ/(4×n)の奇数倍であるため、図6と同様の物理現象によって、障害物702から外気に入射する電磁波の反射波の発生が抑制される。
第三の薄膜13は、自身が接する障害物702の表面の全体を覆ってもよいし、一部を覆ってもよい。
The third thin film 13 suppresses generation of a reflected wave that is generated when an electromagnetic wave propagating through the obstacle 702 enters the outside air from the obstacle 702.
The third thin film 13 is a thin film having a refractive index of n 2 and is in contact with the surface of the obstacle 702 opposite to the surface on which the second thin film 12 is in contact. Note that the surface of the third thin film 13 in contact with the obstacle 702 is a surface perpendicular to the thickness direction. The thickness d s3 of the third thin film is such that d L2 + d b + d s3 is an odd multiple of λ / (4 × n 2 ).
That is, the thickness d s3 of the third thin film is
d L2 + d b + d s3 = λ / (4 × n 2 ) × m (m: odd number) (5)
Satisfy the relationship. D L2 is the thickness of the second thin films 12-1 to 12-5 stacked, and satisfies the relationship d L2 = d s2 × 5.
Since the thickness d s3 of the third thin film is an odd multiple of λ / (4 × n 2 ), generation of reflected waves of electromagnetic waves incident on the outside air from the obstacle 702 is suppressed by the same physical phenomenon as in FIG. Is done.
The third thin film 13 may cover the entire surface of the obstacle 702 with which the third thin film 13 is in contact, or may cover a part thereof.

次に、図9〜11によって、第二の実施形態の透過部材2の曲率半径R2と、送信アンテナ701、障害物702及び受信アンテナ703の水平方向の配置との関係を説明する。   Next, the relationship between the radius of curvature R2 of the transmission member 2 of the second embodiment and the horizontal arrangement of the transmission antenna 701, the obstacle 702, and the reception antenna 703 will be described with reference to FIGS.

図9は、図1の無線通信システム7における第二の実施形態の透過部材2の使用例を示す図である。図9において、透過部材2と送信アンテナ701との距離をdinとして、dinは(din≧2D/λの関係を満たす。そのため、送信アンテナ701が放射した電磁波は、透過部材2の入射面において、近似的に平面波である。透過部材2は、入射した電磁波を受信アンテナ703に集光する。 FIG. 9 is a diagram illustrating a usage example of the transmissive member 2 of the second embodiment in the wireless communication system 7 of FIG. 1. 9, the distance between the transmission member 2 and the transmission antenna 701 is d in , and d in satisfies the relationship (d in ≧ 2D 2 / λ. Therefore, the electromagnetic waves radiated from the transmission antenna 701 are transmitted through the transmission member 2. The transmitting member 2 condenses the incident electromagnetic wave on the receiving antenna 703.

そのため、図9における透過部材2は、第一の実施形態の図4の説明と同様に、曲率半径R2が、
R2=(n−1)d ・・・(6)
の関係を満たす。前述したようにdは、受信アンテナ703と障害物702の送信アンテナ701側の表面との水平距離である。そのため、図9においては、d=dall−(din+dL2)であり、曲率半径を求める(6)式は、R2=(n−1){dall−(din+dL2)}となる。ここでdallは、送信アンテナ701と受信アンテナ703との水平方向の距離である。
Therefore, the radiating member 2 in FIG. 9 has the curvature radius R2 as in the description of FIG. 4 of the first embodiment.
R2 = (n c −1) d f (6)
Satisfy the relationship. D f As described above, the horizontal distance between the transmitting antenna 701 side of the surface of the receiving antenna 703 and the obstacle 702. Therefore, in FIG. 9, d f = d all - a (d in + d L2), obtains a curvature radius (6) is, R2 = (n c -1) {d all - (d in + d L2) }. Here, d all is the horizontal distance between the transmitting antenna 701 and the receiving antenna 703.

図10は、図9における、透過部材2の曲率半径R2と送信アンテナ701と受信アンテナ703との距離dallとの関係を示すシミュレーション結果の図である。なお、図10のシミュレーションにおいて、図9のdallは10≦dall/H1の関係を満たす。 また、図9において、送信アンテナ701の中心と受信アンテナ703の中心とを結ぶ直線と障害物702の表面とのなす角θは、とθ<5.71degの関係を満たす。
図10は、図9において、n=1.00、n=1.50、n=1.22、din=5cm、dL1=15λ/(4×n)=15×0.4/(4×1.22)≒1.23cmである場合に、周波数が75GHzの電磁波を受信アンテナ703に集光する透過部材2の曲率半径R2とdallとの関係を表す。ここで、din+dL2≒6.7cmが固定値であり、dallが0〜200mの範囲内の値である場合における曲率半径R2を求めて示す。なお、図10は、第二の薄膜12を積層し構成した透過部材2の全体の厚さdL2が45λ/(4×n)=45×0.4/(4×1.22)≒3.7cmとしたシミュレーションの結果である。図10のグラフは、dallが大きいほど曲率半径R2が大きいことを示す。
FIG. 10 is a diagram of a simulation result showing the relationship between the radius of curvature R2 of the transmission member 2 and the distance d all between the transmission antenna 701 and the reception antenna 703 in FIG. In the simulation of FIG. 10, d all in FIG. 9 satisfies the relationship of 10 ≦ d all / H1. In FIG. 9, an angle θ a formed by a straight line connecting the center of the transmission antenna 701 and the center of the reception antenna 703 and the surface of the obstacle 702 satisfies the relationship of θ a <5.71 deg.
10 is the same as FIG. 9 in that n 1 = 1.00, n 2 = 1.50, n c = 1.22, d in = 5 cm, d L1 = 15λ / (4 × n c ) = 15 × 0. If it is 4 / (4 × 1.22) ≒ 1.23cm, frequency representing the relationship between the radius of curvature R2 and d all of the transmitting member 2 to be focused on the receive antenna 703 electromagnetic waves of 75 GHz. Here, d in + d L2 ≈6.7 cm is a fixed value, and the curvature radius R2 in the case where d all is a value in the range of 0 to 200 m is obtained and shown. In FIG. 10, the entire thickness d L2 of the transmissive member 2 formed by laminating the second thin film 12 is 45λ / (4 × n c ) = 45 × 0.4 / (4 × 1.22) ≈ It is the result of the simulation set to 3.7 cm. Graph in Figure 10 shows that a large radius of curvature R2 as d all larger.

図11は、送信アンテナ701と障害物702との水平方向の距離din+dL2と透過部材2の曲率半径R2との関係を示す図である。なお、図11のシミュレーションにおいて、図9のdallは10≦dall/H1の関係を満たす。
図11のグラフは、図9において、n=1.00、n=1.50、n=1.22、dall=200mである場合に、周波数が75GHzの電磁波を受信アンテナ703に集光する透過部材2の曲率半径R2とdallとの関係を表す。ここで,dall=200mが固定値であり、din+dL2が0〜40cmの範囲内の値である場合における曲率半径R2のグラフを示す。曲率半径R2はdin+dL2が大きいほど小さい値である。
FIG. 11 is a diagram illustrating the relationship between the distance d in + d L2 in the horizontal direction between the transmitting antenna 701 and the obstacle 702 and the radius of curvature R2 of the transmissive member 2. In the simulation of FIG. 11, d all in FIG. 9 satisfies the relationship of 10 ≦ d all / H1.
The graph of FIG. 11 shows that an electromagnetic wave having a frequency of 75 GHz is applied to the receiving antenna 703 when n 1 = 1.00, n 2 = 1.50, n c = 1.22, d all = 200 m in FIG. The relationship between the curvature radius R2 of the condensing member 2 to condense and dall is represented. Here, a graph of the radius of curvature R2 when d all = 200 m is a fixed value and d in + d L2 is a value within the range of 0 to 40 cm is shown. The radius of curvature R2 is smaller as d in + d L2 is larger.

このように構成された透過部材2は、屈折率が障害物702と同じ屈折率であり、dL2+d+ds3がλ/(4n)の奇数倍の関係を満たす第二の薄膜12−1〜5及び第三の薄膜13を備えるため、障害物702を透過し外気に出力される電磁波の強度を、透過部材2がない場合と比較して増大することができる。また、このように構成された透過部材2は、複数枚の第二の薄膜12を凸レンズ状の形状を形成するように層状に積層して、mを奇数として全体の厚さが物質内波長のm/4とするため、電磁波を受信アンテナ703に集光することができる。また、このように構成された透過部材2は、障害物702と同じ屈折率を有するため、障害物702と同じ素材によって作製可能であり、透過部材の作製を容易にするという効果を奏する。
(変形例)
The transmissive member 2 configured in this manner has the same refractive index as that of the obstacle 702, and the second thin film 12− satisfying the relationship that d L2 + d b + d s3 is an odd multiple of λ / (4n 2 ). Since 1-5 and the 3rd thin film 13 are provided, the intensity | strength of the electromagnetic wave which permeate | transmits the obstruction 702 and is output to external air can be increased compared with the case where the transmissive member 2 is not provided. Further, the transmissive member 2 configured in this manner is formed by laminating a plurality of second thin films 12 so as to form a convex lens shape, m being an odd number, and the total thickness being the in-substance wavelength. Since m / 4 is set, electromagnetic waves can be collected on the receiving antenna 703. In addition, since the transmissive member 2 configured in this manner has the same refractive index as that of the obstacle 702, the transmissive member 2 can be produced using the same material as the obstacle 702, and the effect of facilitating the production of the transmissive member is achieved.
(Modification)

透過部材2は、必ずしも全ての第二の薄膜12が曲率半径R2の円に接する必要はなく、例えば、障害物702に接する第二の薄膜12が、障害物702の片面の全面を覆う広さであって、曲率半径R2の円に接しなくてもよい。   The transmission member 2 does not necessarily require that all the second thin films 12 be in contact with the circle having the radius of curvature R2. For example, the second thin film 12 that is in contact with the obstacle 702 covers the entire surface of one side of the obstacle 702. And it is not necessary to touch the circle of curvature radius R2.

図12は、障害物702に接する第二の薄膜12が、曲率半径R2の円に接しない場合の具体例を示す図である。図12の透過部材2は、図8の透過部材2における第二の薄膜12−1に代えて第二の薄膜12−6を備える。第二の薄膜12−6の屈折率及び厚さは、第二の薄膜12でと同じである。第二の薄膜12−6は、障害物702に接し、曲率半径R2の円に接しない。第二の薄膜12−6は例えば、障害物702の透過部材2に接する面の全面を覆う形状であってもよい。この場合には、第二の薄膜12−6を曲率半径R2の円に接する形状に加工する必要がないため、透過部材2の作成を容易にする効果を奏する。また、ユーザーにとって、第二の薄膜12−6を備えた透過部材2を障害物702に取り付けることは、第二の薄膜12−1を備えた透過部材2を障害物702に取り付ける場合と異なり、取り付け前に第二の薄膜12を曲率半径R2の円に接する形状に加工する手間が減少する。そのため、このように構成された透過部材1は、ユーザーが透過部材2を取り付けることを容易にするという効果を奏する。   FIG. 12 is a diagram showing a specific example when the second thin film 12 in contact with the obstacle 702 is not in contact with the circle having the curvature radius R2. The transmissive member 2 in FIG. 12 includes a second thin film 12-6 instead of the second thin film 12-1 in the transmissive member 2 in FIG. The refractive index and thickness of the second thin film 12-6 are the same as those of the second thin film 12. The second thin film 12-6 contacts the obstacle 702 and does not contact the circle having the curvature radius R2. For example, the second thin film 12-6 may have a shape that covers the entire surface of the obstacle 702 in contact with the transmission member 2. In this case, since it is not necessary to process the second thin film 12-6 into a shape in contact with the circle having the curvature radius R2, the effect of facilitating the creation of the transmissive member 2 is achieved. For the user, attaching the transmissive member 2 including the second thin film 12-6 to the obstacle 702 is different from attaching the transmissive member 2 including the second thin film 12-1 to the obstacle 702. Prior to mounting, the labor of processing the second thin film 12 into a shape in contact with the circle having the curvature radius R2 is reduced. Therefore, the transmissive member 1 configured as described above has an effect of making it easy for the user to attach the transmissive member 2.

なお、第二の薄膜12−6の形状及び面積は、第二の薄膜12−4と同じかそれよりも広い面積を有し、障害物702の有する表面の一部又は全部を覆う形状及び面積であればどのような形状及び面積であってもよい。   The shape and area of the second thin film 12-6 are the same as or wider than those of the second thin film 12-4, and the shape and area covering part or all of the surface of the obstacle 702 are included. Any shape and area may be used.

以下、図13〜図15によって、第一の実施形態の透過部材1と、第二の実施形態の透過部材2とに共通の変形例を説明する。ただし、簡単のため、透過部材が透過部材1であるとして説明を行う。なお、図13〜15における、かっこ内の数字は、その符号で表される部材であってもよいことを示す。すなわち、例えば、図13における、1(2)との符号は、透過部材1であってもよいし、2であってもよいことを示す。   Hereinafter, a modification common to the transmission member 1 of the first embodiment and the transmission member 2 of the second embodiment will be described with reference to FIGS. However, for the sake of simplicity, description will be made assuming that the transmissive member is the transmissive member 1. In addition, the number in parenthesis in FIGS. 13-15 shows that the member represented with the code | symbol may be sufficient. That is, for example, in FIG. 13, the reference numeral 1 (2) indicates that the transmissive member 1 or 2 may be used.

図13は、変形例の透過部材1を正面から見た構成の具体例を示す図である。透過部材1の第一の薄膜11は、必ずしも全ての第一の薄膜11がYZ面内で円形でなくてもよく、本図が示すように、YZ面内の形状が四角形や八角形等の非円形であってもよい。
また、図7に示したように、透過部材1の第一の薄膜11の一部は、障害物702を覆う面積を有する第一の薄膜11であってもよい。
FIG. 13 is a diagram illustrating a specific example of a configuration in which the transmissive member 1 according to the modification is viewed from the front. The first thin film 11 of the transmissive member 1 does not necessarily have to be all circular in the YZ plane, and as shown in this figure, the shape in the YZ plane is a quadrangle, octagon, or the like. It may be non-circular.
As shown in FIG. 7, a part of the first thin film 11 of the transmission member 1 may be the first thin film 11 having an area covering the obstacle 702.

変形例の透過部材1は、必ずしも障害物702に一つだけの透過部材1が接しなくてもよく、複数の透過部材1が障害物702に接してもよい。   In the transmissive member 1 of the modified example, only one transmissive member 1 may not necessarily contact the obstacle 702, and a plurality of transmissive members 1 may contact the obstacle 702.

図14は、複数の透過部材1が障害物702に接する場合の透過部材1の具体的な配置を示す図である。以下、実施形態の透過部材1を複数個備えた部材を第一の集合部材101という。第一の集合部材101において、透過部材1は、互いに外接するように配置されてもよい。この場合、第一の集合部材101における透過部材1の面内密度が高まる。そのため、第一の集合部材101は、障害物702への電磁波の照射面積が透過部材1の面積より広い場合には、透過部材1がひとつの場合よりも高効率に、電磁波を集光する効果を奏する。   FIG. 14 is a diagram illustrating a specific arrangement of the transmissive members 1 when the plurality of transmissive members 1 are in contact with the obstacle 702. Hereinafter, a member including a plurality of transmission members 1 according to the embodiment is referred to as a first aggregate member 101. In the first assembly member 101, the transmission members 1 may be arranged so as to circumscribe each other. In this case, the in-plane density of the transmission member 1 in the first assembly member 101 is increased. Therefore, when the irradiation area of the electromagnetic wave to the obstacle 702 is wider than the area of the transmissive member 1, the first aggregate member 101 has an effect of condensing the electromagnetic wave more efficiently than the case where the single transmissive member 1 is used. Play.

図15は、図13に示す変形例の透過部材1をYZ面内に複数の配置する場合の透過部材1の具体例な配置を示す図である。以下、変形例の透過部材1を複数個、備えた部材を第二の集合部材102という。第二の集合部材102において、変形例の透過部材1は、本図が示すように、YZ面内の形状が四角形や八角形等の非円形や円形である薄膜が、障害物702に、互いに接するように複数枚配置されてもよい。   FIG. 15 is a diagram showing a specific arrangement of the transmissive member 1 when a plurality of transmissive members 1 of the modification shown in FIG. 13 are arranged in the YZ plane. Hereinafter, a member including a plurality of the transmissive members 1 according to the modified examples is referred to as a second aggregate member 102. In the second assembly member 102, as shown in the drawing, the transmissive member 1 of the modified example has thin films having a non-circular or circular shape such as a quadrangle or octagon in the YZ plane. A plurality of sheets may be arranged so as to contact each other.

<θ≒0とみなせない場合について>
以下、送信アンテナ701、障害物702及び受信アンテナ703を無線通信システム7と同様の順番で備えるものの、θ≒0とみなせない無線通信システム(以下「非近似成立システム」という。)について説明する。非近似成立システムにおいては、透過部材1又は2は式(3)〜(6)においてそれぞれ、dをd/cos(θ)に置換し、dをd/cos(θ)に置換した以下の式(7)〜(10)を満たす。
R1=(n−1)d/cos(θ)・・・(7)
R1=(n−1)din/cos(θ)・・・(8)
(dL2+d+ds3)/cos(θ)=λ/(4×n)×m・・・(9)
R2=(n−1)d/cos(θ)・・・(10)
<About the case where θ a ≈0 cannot be considered>
Hereinafter, a wireless communication system (hereinafter referred to as a “non-approximate system”) in which the transmission antenna 701, the obstacle 702, and the reception antenna 703 are provided in the same order as the wireless communication system 7 but cannot be regarded as θ a ≈0 will be described. . In the non-approximation established system, each transmitting member 1 or 2 in the formula (3) to (6), replacing the d f to d f / cos (θ a) , a d b d b / cos (θ a) The following formulas (7) to (10) substituted with:
R1 = (n c −1) d f / cos (θ a ) (7)
R1 = (n c −1) d in / cos (θ a ) (8)
(D L2 + d b + d s3 ) / cos (θ a ) = λ / (4 × n 2 ) × m (9)
R2 = (n c −1) d f / cos (θ a ) (10)

なお、非近似成立システムの使用シーンの一例は、例えば、地上から10mの位置のビル壁の看板内に送信アンテナ701が設置され、30m幅の道路を挟んでそのビルと向き合うビルの屋上(地上から20m)に受信アンテナ703が設置された無線通信システムである。この場合、両アンテナ間の水平距離dallが30mで高低差H1が10mなので、10>dall/H1(=3)となり、10≦dall/H1の関係とθ<5.71degの関係とが満たされない。すなわち、θ≒0がみたされない。 An example of a use scene of the non-approximation system is, for example, a rooftop of a building where a transmitting antenna 701 is installed in a billboard on a building wall 10 m from the ground and faces the building across a 30 m wide road (on the ground) 20 m) to a radio communication system in which a receiving antenna 703 is installed. In this case, since the horizontal distance d all between the two antennas is 30 m and the height difference H1 is 10 m, 10> d all / H1 (= 3) and 10 ≦ d all / H1 and θ a <5.71 deg. And are not satisfied. That is, θ a ≈0 is not observed.

以下、非近似成立システムにおける電磁波の屈折を説明する。   Hereinafter, refraction of electromagnetic waves in a non-approximation system will be described.

図16は、障害物702を伝搬する電磁波の経路を示す図である。図16には、電磁波の経路を顕著にするため、図1における障害物702を拡大して記載してある。
送信アンテナ701が放射した電磁波は、障害物702に入射する。障害物702に入射した電磁波は屈折し、障害物702を伝搬する。障害物702から外気へ伝搬する境界においては,この境界へ入射角θで入射して、外気中に出射角θの方向に伝搬する。
電磁波が障害物702を通過する距離(以下「伝搬経路長」という。)をUとして、Uは、U=d/cos(θ)である。
FIG. 16 is a diagram illustrating a path of an electromagnetic wave propagating through the obstacle 702. FIG. 16 is an enlarged view of the obstacle 702 in FIG. 1 in order to make the path of the electromagnetic wave noticeable.
The electromagnetic wave radiated from the transmission antenna 701 enters the obstacle 702. The electromagnetic wave incident on the obstacle 702 is refracted and propagates through the obstacle 702. At the boundary where the obstacle 702 propagates to the outside air, the light enters the boundary at the incident angle θ b and propagates in the outside air in the direction of the emission angle θ a .
U is U = d b / cos (θ b ), where U is the distance (hereinafter referred to as “propagation path length”) through which the electromagnetic wave passes through the obstacle 702.

スネルの法則を考えると、n×sin(θ)=n×sin(θ)であるため、
θ=arcsin(n×sin(θ))/n …(11)
を満たす。
そのため、伝搬経路長Uは
U=d/cos{arcsin(n×sin(θ))/n} …(12)
である。
Considering Snell's law, n 1 × sin (θ b ) = n 2 × sin (θ a )
θ b = arcsin (n 1 × sin (θ a )) / n 2 (11)
Meet.
Therefore, the propagation path length U is U = d b / cos {arcsin (n 1 × sin (θ a )) / n 2 } (12)
It is.

式(11)及び(12)を用いて、障害物702による電磁波の屈折によって電磁波が到達する受信アンテナ703上の箇所がズレることと、その大きさとを具体的に示す。図16において、dall=30m、H1=10m、d=8mm、n=1.00及びn=1.50の場合を検討する。まず、dall=30m、H1=10mであるため、tan(θ)=H1/dall=10/30≒0.333である。またこの場合、θ=18.43degである。sin(θ)=0.316であるため、式(11)を用いて、
θ=arcsin(n×sin(θ))/n
=arcsin(1.00×0.316)/1.50
=18.43/1.50
=12.29deg
である。
そのため、tan(θ)=0.218であり、d{tan(θ)−tan(θ)}≒8×{0.333−0.218}=0.92mmである。したがって、H1=10mなので、0.92mm/10mは0.0001以下の非常に小さい値である。
このことは、非近似成立システムであっても、条件次第では無線通信システム7と略同一の経路を伝搬する電磁波が存在することを示す。さらに、このことは、非近似成立システムであっても条件次第では、透過部材1又は2は式(3)〜(10)を満たすことを示す。
Using Equations (11) and (12), the location on the receiving antenna 703 where the electromagnetic wave reaches due to the refraction of the electromagnetic wave by the obstacle 702 and the size thereof are specifically shown. In FIG. 16, the case where d all = 30 m, H 1 = 10 m, d b = 8 mm, n 1 = 1.00 and n 2 = 1.50 will be considered. First, since d all = 30 m and H1 = 10 m, tan (θ a ) = H1 / d all = 10 / 30≈0.333. In this case, θ a = 18.43 deg. Since sin (θ a ) = 0.316, using equation (11),
θ b = arcsin (n 1 × sin (θ a )) / n 2
= Arcsin (1.00 × 0.316) /1.50
= 18.43 / 1.50
= 12.29 deg
It is.
Therefore, tan (θ b ) = 0.218, and d b {tan (θ a ) −tan (θ b )} ≈8 × {0.333−0.218} = 0.92 mm. Therefore, since H1 = 10 m, 0.92 mm / 10 m is a very small value of 0.0001 or less.
This indicates that even in a non-approximation system, there is an electromagnetic wave that propagates through substantially the same path as the wireless communication system 7 depending on conditions. Further, this indicates that the transmission member 1 or 2 satisfies the expressions (3) to (10) depending on the conditions even in a non-approximation system.

なお、θ≒0とみなせないものの電磁波の障害物702による屈折を考慮しない場合(すなわち、伝搬経路長をd/cos(θ)とする場合)と、屈折を考慮する場合との伝搬経路長の差は次の通りである。屈折を考慮しない場合の伝搬経路長は、d/cos(θ)=8/0.989=8.09mmである。一方、屈折を考慮する場合の伝搬経路長は、d/cos(θ)=8/0.949=8.19mmである。これらの差(以下「式依存経路長差」という。)は0.24mmである。式依存経路長差は、屈折を考慮する場合の伝搬経路長の3%程度の大きさであり、屈折を考慮する場合の伝搬経路長と比較して小さな値である。また、式依存経路長差は障害物の厚さdと比較しても小さな値である。このことは、透過部材1又は2は、非近似成立システムにおいても条件次第では、式(3)〜(10)の一部又は全部をよい精度で満たすことを意味する。よい精度とは、式(3)〜(10)の一部又は全部を満足する透過部材1又は2は、式(11)及び(12)を満足する透過部材1又は2が集光する位置及び範囲に略同一の位置及び範囲に集光する、ことを意味する。 Incidentally, the propagation of when considering the case without consideration of the refraction by the electromagnetic obstacle 702 shall not be regarded as θ a ≒ 0 (i.e., if the propagation path length and d 2 / cos (θ a) ), the refractive The difference in path length is as follows. The propagation path length when refraction is not taken into account is d b / cos (θ a ) = 8 / 0.989 = 8.09 mm. On the other hand, the propagation path length when considering refraction is d b / cos (θ b ) = 8 / 0.949 = 8.19 mm. These differences (hereinafter referred to as “expression dependent path length differences”) are 0.24 mm. The equation-dependent path length difference is about 3% of the propagation path length when refraction is considered, and is a small value compared to the propagation path length when refraction is considered. Further, the formula depends path length difference is a small value as compared to the thickness d b of the obstacle. This means that the transmissive member 1 or 2 satisfies part or all of the equations (3) to (10) with good accuracy depending on the conditions even in the non-approximation system. The good accuracy means that the transmission member 1 or 2 satisfying part or all of the expressions (3) to (10) is a position where the transmission member 1 or 2 satisfying the expressions (11) and (12) is condensed and It means that light is condensed at a position and range substantially the same as the range.

図17は、透過部材1又は2が非近似成立システムにおいて使用される場合の具体的な例を示す図である。図1と同様の機能をもつものに対しては、同じ符号を付すことで説明を省略する。
図17において、直交座標系であるXYZ座標系のX軸は水平方向に平行な軸であり、Y軸は鉛直方向に平行な軸である。
FIG. 17 is a diagram illustrating a specific example when the transmissive member 1 or 2 is used in a non-approximation system. Components having the same functions as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
In FIG. 17, the X axis of the XYZ coordinate system, which is an orthogonal coordinate system, is an axis parallel to the horizontal direction, and the Y axis is an axis parallel to the vertical direction.

送信アンテナ701aは、例えば、屋内の天井に設置されたスモールセル基地局、IoTデバイス、無線LANアクセスポイント等である。送信アンテナ701aは、開口径がDである。送信アンテナ701aは、高さh(すなわち、Y座標がh)の位置に存在する。高さhの位置に存在するとは、自身の中心点のY座標がhであることを意味する。送信アンテナ701はY軸負方向であって、鉛直方向に対して角度θの方向に電磁波を放射する。角度θは送信アンテナ701aと受信アンテナ703aとの中心を結ぶ直線が鉛直方向となす角である。 The transmission antenna 701a is, for example, a small cell base station, an IoT device, a wireless LAN access point, or the like installed on an indoor ceiling. The transmission antenna 701a has an opening diameter D. The transmission antenna 701a exists at a position of height h 3 (that is, Y coordinate is h 3 ). Existence at the position of height h 3 means that the Y coordinate of its center point is h 3 . Transmitting antenna 701 is a Y-axis negative direction, radiating electromagnetic waves in the direction of the angle theta a with respect to the vertical direction. The angle theta a is a straight line in the vertical direction and an angle connecting the centers of the transmitting antenna 701a and the receiving antenna 703a.

障害物702aは、入射した電磁波を所定の透過率で透過させる部材であって、例えば、天井や、看板面や、照明機器のグローブである。障害物702aは、厚さ(すなわち、Y軸方向の幅)がdである。障害物702aの波長λの電磁波に対する屈折率はnである。 The obstacle 702a is a member that transmits incident electromagnetic waves with a predetermined transmittance, and is, for example, a ceiling, a signboard surface, or a glove of a lighting device. Obstacles 702a has a thickness (i.e., the width of the Y-axis direction) is d b. Refractive index for electromagnetic radiation of wavelength λ obstacle 702a is n 2.

受信アンテナ703aは、例えば、屋内の壁に設置されたエントランス基地局やネットワーク接続ポイントである。受信アンテナ703aは、送信アンテナ701aに対して、X軸方向に距離dall離れた場所に存在する。受信アンテナ703aは、hよりもY軸負方向にH2だけ離れた高さhに存在する。なお、H2は、H2<<dallの関係を満たさない。H2は例えば5mであって、dallは例えば、30mである。そして、この図17での屋内における天井の高さがh4であり,この高さh4には障害物702aも存在する。
送信アンテナ701a、障害物702a及び受信アンテナ703aは、Y軸負方向に、送信アンテナ701a、障害物702a、受信アンテナ703aの順番に配置される。
The reception antenna 703a is, for example, an entrance base station or a network connection point installed on an indoor wall. The receiving antenna 703a is present at a distance d all in the X-axis direction with respect to the transmitting antenna 701a. Receive antenna 703a is present at a height h 5 is also separated by H2 in Y-axis negative direction from h 3. Note that H2 does not satisfy the relationship of H2 << dall . H2 is 5 m, for example, and d all is 30 m, for example. The height of the indoor ceiling in FIG. 17 is h4, and an obstacle 702a also exists at the height h4.
The transmission antenna 701a, the obstacle 702a, and the reception antenna 703a are arranged in the order of the transmission antenna 701a, the obstacle 702a, and the reception antenna 703a in the negative Y-axis direction.

送信アンテナ701がY軸負方向であって、鉛直方向に対して角度θの方向に放射した電磁波は、障害物702aを透過する。障害物702aを通過した電磁波は、屈折率nの外気中を垂直方向に対して角度θの方向に伝搬し、受信アンテナ703aに到達する。角度θは、例えば、H2が5mであって、dallが30mである場合には、58.99degである。また、この場合、1/cos(θ)は、1.941に略同一である。 Transmitting antenna 701 is a Y-axis negative direction, the electromagnetic wave radiated in the direction of the angle theta a to the vertical direction is transmitted through the obstacle 702a. Electromagnetic waves passing through the obstacle 702a is the outside air in the refractive index n 1 propagates in the direction of the angle theta a to the vertical, and reaches the receiving antenna 703a. The angle θ a is, for example, 58.9 deg when H2 is 5 m and d all is 30 m. In this case, 1 / cos (θ a ) is substantially the same as 1.941.

図18は、障害物702aを伝搬する電磁波の経路を示す図である。図18には、電磁波の経路を顕著にするため、図17における障害物702aを拡大して記載してある。   FIG. 18 is a diagram illustrating a path of an electromagnetic wave propagating through the obstacle 702a. In FIG. 18, the obstacle 702 a in FIG. 17 is illustrated in an enlarged manner in order to make the path of electromagnetic waves noticeable.

送信アンテナ701aが放射した電磁波は、障害物702aに入射する。障害物702aに入射した電磁波は屈折し、障害物702aを伝搬する。障害物702aから外気へ伝搬する境界においては,この境界へ入射角θで入射して、外気中に出射角θの方向に伝搬する。出射した電磁波は受信アンテナ703aに入射する。 The electromagnetic wave radiated from the transmission antenna 701a enters the obstacle 702a. The electromagnetic wave incident on the obstacle 702a is refracted and propagates through the obstacle 702a. In the boundary propagating from the obstacle 702a to the outside air, and at an incident angle theta b to the boundary, propagates in the direction of the emission angle theta a to the outside air. The emitted electromagnetic wave enters the receiving antenna 703a.

図16と同様にして、角度θは、
θ=arcsin(n×sin(θ))/n・・・(13)
を満たす。また、図16と同様にして、dは、
/cosθ = d/cos{arcsin(n×sinθ)/n} ・・・(14)
を満たす。
そのため、図17及び18においては、透過部材1又は2は式(3)〜(6)においてそれぞれ、dをd/cos{arcsin(n×sinθ)/n}に置換し、dをd/cos{arcsin(n×sinθ)/n}に置換した式(7)〜(10)を満たす。
As in FIG. 16, the angle θ b is
θ b = arcsin (n 1 × sin (θ a )) / n 2 (13)
Meet. Further, in the same manner as in FIG. 16, d b is
d b / cosθ b = d b / cos {arcsin (n 1 × sinθ a) / n 2} ··· (14)
Meet.
Therefore, in FIGS. 17 and 18, transparent member 1 or 2 is substituted in equation (3), respectively to (6), the d f d f / cos {arcsin (n 1 × sinθ a) / n 2}, the d b d b / cos {arcsin (n 1 × sinθ a) / n 2} substituted expressions (7) satisfies to (10).

式(13)及び(14)を用いて、障害物702aによる電磁波の屈折によって電磁波が到達する受信アンテナ703a上の箇所がズレることと、その大きさとを具体的に示す。図18において、dall=30m、H2=5m、d=8mm、n=1.00及びn=1.50の場合を検討する。まず、dall=30m、H2=5mであるため、tan(θ)=H2/dall=5/30≒0.166である。またこの場合、θ=9.46degである。sin(θ)=0.164であるため、式(13)を用いて、
θ=arcsin(n×sin(θ))/n
=arcsin(1.00×0.164)/1.50
=9.46/1.50
=6.31deg
である。
そのため、tan(θ)=0.111であり、d{tan(θ)−tan(θ)}≒8×{0.166−0.111}=0.44mmである。したがって、このことは、H2=5mなので、アンテナ間の高低差に比べて、電磁波が集光される位置のズレは非常に小さいことを意味する。
このことは、図16と同様に、非近似成立システムであっても、条件次第では無線通信システム7と略同一の経路を伝搬する電磁波が存在することを示す。
Using Expressions (13) and (14), the location on the receiving antenna 703a where the electromagnetic wave reaches due to the refraction of the electromagnetic wave by the obstacle 702a and the size thereof are specifically shown. In Figure 18, d all = 30m, H2 = 5m, consider the case of d b = 8mm, n 1 = 1.00 and n 2 = 1.50. First, since d all = 30 m and H 2 = 5 m, tan (θ a ) = H 2 / d all = 5 / 30≈0.166. In this case, θ a = 9.46 deg. Since sin (θ a ) = 0.164, using equation (13),
θ b = arcsin (n 1 × sin (θ a )) / n 2
= Arcsin (1.00 × 0.164) /1.50
= 9.46 / 1.50
= 6.31deg
It is.
Therefore, tan (θ b ) = 0.111 and d b {tan (θ a ) −tan (θ b )} ≈8 × {0.166−0.111} = 0.44 mm. Therefore, since H2 = 5 m, this means that the deviation of the position where the electromagnetic waves are collected is very small compared to the height difference between the antennas.
This indicates that, even in a non-approximate system, as in FIG. 16, there is an electromagnetic wave that propagates through substantially the same path as the wireless communication system 7 depending on the conditions.

なお、透過部材は、レンズの一例である。なお、外気は媒質の一例である。なお、第三の薄膜13は、薄膜状部材の一例である。なお、第一の集合部材101及び第二の集合部材102は、複眼レンズの一例である。なお、図2における第一の薄膜11−1と、図7における第一の薄膜11−6と、図8における第二の薄膜12−1とは、前記複数の薄膜のうちの最も大きな面積を有する薄膜の一例である。送信アンテナ701は、第一のアンテナの一例である。受信アンテナ703は、第二のアンテナの一例である。   The transmitting member is an example of a lens. The outside air is an example of a medium. The third thin film 13 is an example of a thin film member. The first collective member 101 and the second collective member 102 are examples of compound eye lenses. The first thin film 11-1 in FIG. 2, the first thin film 11-6 in FIG. 7, and the second thin film 12-1 in FIG. 8 have the largest area among the plurality of thin films. It is an example of the thin film which has. The transmission antenna 701 is an example of a first antenna. The reception antenna 703 is an example of a second antenna.

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes designs and the like that do not depart from the gist of the present invention.

1…第一の実施形態の透過部材、2…第二の実施形態の透過部材、 11…第一の薄膜、12…第二の薄膜、13…第三の薄膜、21…レンズ状部材、701…送信アンテナ、702…障害物、703…受信アンテナ、101…第一の集合部材、102…第二の集合部材 DESCRIPTION OF SYMBOLS 1 ... Transmission member of 1st embodiment, 2 ... Transmission member of 2nd embodiment, 11 ... 1st thin film, 12 ... 2nd thin film, 13 ... 3rd thin film, 21 ... Lens-shaped member, 701 ... Transmitting antenna, 702 ... Obstacle, 703 ... Receiving antenna, 101 ... First assembly member, 102 ... Second assembly member

Claims (5)

屈折率がnである媒質を伝搬する波長λの電磁波に対する屈折率がnの複数の薄膜が層状に並び、前記複数の薄膜の一部又は全部が凸レンズの形状に略同一の形状を成し、
=(n×n1/2であって、
前記複数の薄膜のうちの最も大きな面積を有する薄膜が、前記電磁波を所定の透過率で透過させる障害物が有する面のうち前記電磁波が入射する側の面に接し、
前記複数の薄膜の前記面に垂直な方向の厚さがλ/(4×n)の奇数倍である、
レンズ。
Refractive index for electromagnetic radiation of wavelength λ having a refractive index propagates the medium is n 1 is arranged in a plurality of thin film layered n c, formed substantially the same shape part or all of the plurality of thin film in the shape of a convex lens And
n c = (n 1 × n 2 ) 1/2 ,
The thin film having the largest area among the plurality of thin films is in contact with the surface on which the electromagnetic wave is incident among the surfaces of the obstacle that transmits the electromagnetic wave with a predetermined transmittance,
The thickness of the plurality of thin films in the direction perpendicular to the surface is an odd multiple of λ / (4 × n c );
lens.
屈折率がnである媒質を伝搬する波長λの電磁波に対する屈折率がnの複数の薄膜が層状に並び、前記複数の薄膜の一部又は全部が凸レンズの形状に略同一の形状を成し、前記複数の薄膜のうちの最も大きな面積を有する薄膜が、前記電磁波を所定の透過率で透過させる障害物が有する面のうち前記電磁波が入射する側の面に接するレンズ状部材と、
前記電磁波に対する屈折率がnであって、前記障害物が有する面のうち、前記屈折率がnの薄膜が接する面に平行であり、前記屈折率がnの薄膜が接する面の反対側に存在する面に接する薄膜状部材と、
を備え、
前記レンズ状部材の前記電磁波が入射する側の面に垂直な方向の厚さと、前記障害物の前記電磁波が入射する側の面に垂直な方向の厚さと、前記薄膜状部材の前記電磁波が入射する側の面に垂直な方向の厚さとの合計の厚さが、
λ/(4×n)の奇数倍である、
レンズ。
A plurality of thin films having a refractive index of n 2 with respect to an electromagnetic wave having a wavelength λ propagating through a medium having a refractive index of n 1 are arranged in layers, and a part or all of the plurality of thin films form a shape substantially the same as that of a convex lens. A thin film having the largest area among the plurality of thin films, a lens-like member that is in contact with a surface on which the electromagnetic wave is incident among surfaces having an obstacle that transmits the electromagnetic wave with a predetermined transmittance;
Refractive index is an n 2 with respect to the electromagnetic wave, among the surfaces of the obstacle has, the refractive index is parallel to the plane on which the thin film is in contact for n 2, opposite to the surface where the refractive index is in contact thin film of n 2 A thin film member in contact with the surface present on the side;
With
The thickness of the lens-like member in the direction perpendicular to the surface on which the electromagnetic wave is incident, the thickness of the obstacle in the direction perpendicular to the surface on which the electromagnetic wave is incident, and the electromagnetic wave of the thin-film member are incident The total thickness with the thickness in the direction perpendicular to the surface to be
an odd multiple of λ / (4 × n 2 ),
lens.
前記凸レンズの形状に略同一の形状を成す前記複数の薄膜と前記電磁波を放射する第一のアンテナとの距離dinが、前記第一のアンテナの開口の長さDと、din≧2D/λである場合において、前記凸レンズの形状に略同一の形状は、前記第一のアンテナと前記電磁波を受信する第二のアンテナとの距離をdallとし、前記凸レンズの形状に略同一の形状を成す前記複数の薄膜の厚さの合計dとした場合に、R=(n−1)d、d=dall−(din+d)を満たす曲率半径Rの球面に接する形状である、
請求項1又は2に記載のレンズ。
The distance d in between the plurality of thin films having substantially the same shape as the convex lens and the first antenna that radiates the electromagnetic wave is the length D of the opening of the first antenna and d in ≧ 2D 2. / Λ is substantially the same shape as the shape of the convex lens, the distance between the first antenna and the second antenna that receives the electromagnetic wave is d all, and the shape is substantially the same as the shape of the convex lens. When the sum of the thicknesses of the plurality of thin films forming d 1 is d 1 , it touches a spherical surface with a radius of curvature R that satisfies R = (n c −1) d f , d f = d all − (d in + d l ) Shape,
The lens according to claim 1 or 2.
前記凸レンズの形状に略同一の形状を成す前記複数の薄膜と前記電磁波を放射する第一のアンテナとの距離dinが、前記第一のアンテナの開口の長さDと、din<2D/λである場合において、前記凸レンズの形状に略同一の形状は、R=(n−1)dinを満たす曲率半径Rの球面に接する形状である、
請求項1又は2に記載のレンズ。
The distance d in between the plurality of thin films having substantially the same shape as the convex lens and the first antenna that radiates the electromagnetic wave is the length D of the opening of the first antenna and d in <2D 2. / Λ, the shape that is substantially the same as the shape of the convex lens is a shape that touches a spherical surface with a radius of curvature R that satisfies R = (n c −1) d in .
The lens according to claim 1 or 2.
請求項1から4のいずれか一項に記載のレンズを複数備える、
複眼レンズ。
A plurality of lenses according to any one of claims 1 to 4,
Compound eye lens.
JP2017177114A 2017-09-14 2017-09-14 Lens and compound eye lens Active JP6905191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017177114A JP6905191B2 (en) 2017-09-14 2017-09-14 Lens and compound eye lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017177114A JP6905191B2 (en) 2017-09-14 2017-09-14 Lens and compound eye lens

Publications (2)

Publication Number Publication Date
JP2019054400A true JP2019054400A (en) 2019-04-04
JP6905191B2 JP6905191B2 (en) 2021-07-21

Family

ID=66015370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017177114A Active JP6905191B2 (en) 2017-09-14 2017-09-14 Lens and compound eye lens

Country Status (1)

Country Link
JP (1) JP6905191B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240035617A (en) 2021-09-13 2024-03-15 제이에프이 스틸 가부시키가이샤 Friction stir welding method for electrical steel strips and manufacturing method for electrical steel strips
KR20240058192A (en) 2021-11-30 2024-05-03 제이에프이 스틸 가부시키가이샤 Friction stir welding method of electronic steel strip and manufacturing method of electronic steel strip
KR20240058191A (en) 2021-11-30 2024-05-07 제이에프이 스틸 가부시키가이샤 Friction stir welding method of electronic steel strip, manufacturing method of electronic steel strip, friction stir welding device and manufacturing device of electronic steel strip

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123053A (en) * 1977-04-01 1978-10-27 Plessey Inc Method of testing electromagnetic unit and dielectric lens
US4218683A (en) * 1977-04-01 1980-08-19 Plessey, Incorporated Range focus lens
US5017939A (en) * 1989-09-26 1991-05-21 Hughes Aircraft Company Two layer matching dielectrics for radomes and lenses for wide angles of incidence
JPH10268046A (en) * 1997-03-15 1998-10-09 Robert Bosch Gmbh Device for directional transmitting of receiving, or both of them of electromagnetic wave
JP2002228697A (en) * 2001-01-30 2002-08-14 Mitsubishi Electric Corp Compact range
US6531989B1 (en) * 2001-11-14 2003-03-11 Raytheon Company Far field emulator for antenna calibration
JP2004006316A (en) * 2002-04-17 2004-01-08 Murata Mfg Co Ltd Composite dielectric material, composite dielectric molding, lens antenna using this, and surface mounted antenna using this
JP2005506264A (en) * 2001-10-03 2005-03-03 キネティック リミテッド Optical coupling technology
JP2012182435A (en) * 2011-02-09 2012-09-20 Canon Inc Photoelectric conversion element, photoelectric conversion device using the same, and imaging system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123053A (en) * 1977-04-01 1978-10-27 Plessey Inc Method of testing electromagnetic unit and dielectric lens
US4218683A (en) * 1977-04-01 1980-08-19 Plessey, Incorporated Range focus lens
US5017939A (en) * 1989-09-26 1991-05-21 Hughes Aircraft Company Two layer matching dielectrics for radomes and lenses for wide angles of incidence
JPH03119807A (en) * 1989-09-26 1991-05-22 Hughes Aircraft Co Two-layer matching dielectric for radome and lens for wide incident angle
JPH10268046A (en) * 1997-03-15 1998-10-09 Robert Bosch Gmbh Device for directional transmitting of receiving, or both of them of electromagnetic wave
US6028560A (en) * 1997-03-15 2000-02-22 Robert Bosch Gmbh Device for directional transmission and/or receiving of electromagnetic waves
JP2002228697A (en) * 2001-01-30 2002-08-14 Mitsubishi Electric Corp Compact range
JP2005506264A (en) * 2001-10-03 2005-03-03 キネティック リミテッド Optical coupling technology
US6531989B1 (en) * 2001-11-14 2003-03-11 Raytheon Company Far field emulator for antenna calibration
JP2004006316A (en) * 2002-04-17 2004-01-08 Murata Mfg Co Ltd Composite dielectric material, composite dielectric molding, lens antenna using this, and surface mounted antenna using this
JP2012182435A (en) * 2011-02-09 2012-09-20 Canon Inc Photoelectric conversion element, photoelectric conversion device using the same, and imaging system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240035617A (en) 2021-09-13 2024-03-15 제이에프이 스틸 가부시키가이샤 Friction stir welding method for electrical steel strips and manufacturing method for electrical steel strips
KR20240058192A (en) 2021-11-30 2024-05-03 제이에프이 스틸 가부시키가이샤 Friction stir welding method of electronic steel strip and manufacturing method of electronic steel strip
KR20240058191A (en) 2021-11-30 2024-05-07 제이에프이 스틸 가부시키가이샤 Friction stir welding method of electronic steel strip, manufacturing method of electronic steel strip, friction stir welding device and manufacturing device of electronic steel strip

Also Published As

Publication number Publication date
JP6905191B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
JP6905191B2 (en) Lens and compound eye lens
US10020844B2 (en) Method and apparatus for broadcast communication via guided waves
US8797211B2 (en) Millimeter-wave communications using a reflector
US6341223B1 (en) Radio wave propagation prediction method using urban canyon model
US10439675B2 (en) Method and apparatus for repeating guided wave communication signals
US10755542B2 (en) Method and apparatus for surveillance via guided wave communication
US10267675B2 (en) Multi-directional optical receiver
CN105721085B (en) A kind of modeling method of Terahertz indoor communications channel
US10359749B2 (en) Method and apparatus for utilities management via guided wave communication
WO2022091660A1 (en) Reflection unit and wireless transmission system
CN105609920A (en) Underwater visible light communication receiving antenna device
Zhan et al. Performance Analysis and Node Selection of Intelligent Reflecting Surface‐Aided Visible Light Communication for Parallel Vehicles
Gu et al. Three-dimensional indoor light positioning algorithm based on nonlinear estimation
Pal et al. Optical IRS aided B5G V2v solution for road safety applications
Feng et al. Beam tracking algorithm for marine applications using visible light communication
Esubonteng et al. Orientation of a diffuse reflector for improved coverage in ID-FSOC for vehicular communications
Ibraimov et al. The Integral distribution function of the kilometric attenuation of infrared radiation in the atmosphere Fergana Region of the Republic of Uzbekistan
JP2006170698A (en) Device for estimating azimuth of radio station, device for estimating azimuth of radio station and emitting radio wave, and method of estimating azimuth of radio station
Aguirre et al. Proposed energy based method for light receiver localization in underground mining
El-Garhy et al. Intelligent transportation system using wireless optical communication: a comparative study
Tan et al. Optimized configuration of visible light communication featured traffic control system
Li Research and Implementation of Indoor 3D Positioning Algorithm Based on LED Visible Light Communication and Corresponding Parameter Estimation
US10313025B2 (en) Information processing system using optically encoded signals
Kim et al. Novel location awareness technique for indoor LBS based on visible light communication
Irshad et al. An Indoor LOS & NON-LOS Propagation analysis using Visible Light Communication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6905191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150