JP6904620B1 - Manufacturing method of ground improvement material - Google Patents

Manufacturing method of ground improvement material Download PDF

Info

Publication number
JP6904620B1
JP6904620B1 JP2020142405A JP2020142405A JP6904620B1 JP 6904620 B1 JP6904620 B1 JP 6904620B1 JP 2020142405 A JP2020142405 A JP 2020142405A JP 2020142405 A JP2020142405 A JP 2020142405A JP 6904620 B1 JP6904620 B1 JP 6904620B1
Authority
JP
Japan
Prior art keywords
reducing agent
insolubilizing
ash
test body
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020142405A
Other languages
Japanese (ja)
Other versions
JP2022038097A (en
Inventor
清水 誠
誠 清水
松岡 実
実 松岡
Original Assignee
株式会社ダイセン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセン filed Critical 株式会社ダイセン
Priority to JP2020142405A priority Critical patent/JP6904620B1/en
Application granted granted Critical
Publication of JP6904620B1 publication Critical patent/JP6904620B1/en
Publication of JP2022038097A publication Critical patent/JP2022038097A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

【課題】焼却灰に含まれる有害物質を十分に不溶化し、かつ、効果的に強度を向上させることができる地盤改良材の製造方法を提供すること。【解決手段】地盤改良材の製造方法は、焼却灰と、CaMg(CO3)2、CaCO3及びMgOのうち1種又は2種以上を含む不溶化材と、を撹拌して混合し、中間材を得る第1の工程と、中間材と、酸性硫酸塩を含む還元剤と、水と、を撹拌して混合し、造粒固化した地盤改良材を得る第2の工程と、を含む。【選択図】なしPROBLEM TO BE SOLVED: To provide a method for producing a ground improving material capable of sufficiently insolubilizing harmful substances contained in incinerator ash and effectively improving the strength. SOLUTION: In a method for producing a ground improving material, incinerated ash and an insolubilizing material containing one or more of CaMg (CO3) 2, CaCO3 and MgO are stirred and mixed to obtain an intermediate material. The first step includes a second step of stirring and mixing an intermediate material, a reducing agent containing an acidic sulfate, and water to obtain a granulated and solidified ground improving material. [Selection diagram] None

Description

本発明は、地盤改良材の製造方法に関する。 The present invention relates to a method for producing a ground improving material.

近年、地球環境の保全、環境型社会の構築等の観点から、産業廃棄物の削減や再資源化が強く求められている。例えば、一般ごみ、汚泥、石炭、草木等を焼却したときに発生する各種焼却灰を地盤改良材等として再資源化することが検討されている。 In recent years, there has been a strong demand for reduction and recycling of industrial waste from the viewpoints of preserving the global environment and building an environmentally friendly society. For example, it is being considered to recycle various incinerated ash generated when general waste, sludge, coal, vegetation, etc. are incinerated as ground improvement materials.

従来、焼却灰を地盤改良材として再利用するために、焼却灰に含まれる重金属等の有害物質が溶出しないように不溶化すると共に、地盤改良材として必要な強度を確保するために焼却灰を造粒固化する技術が提案されている(特許文献1参照)。 Conventionally, in order to reuse incinerator ash as a ground improvement material, incinerator ash is made in order to insolubilize harmful substances such as heavy metals contained in the incineration ash so as not to elute, and to secure the strength required as a ground improvement material. A technique for solidifying grains has been proposed (see Patent Document 1).

特願2013−233535号公報Japanese Patent Application No. 2013-233535

しかしながら、上述したような、焼却灰を不溶化し、かつ造粒固化する技術は知られているものの、焼却灰の不溶化及び造粒固化を組み合わせ、その両方の効果を有効に発揮できる技術が十分に確立されているとは言えなかった。 However, although the above-mentioned techniques for insolubilizing incinerator ash and granulating and solidifying are known, there are sufficient techniques that can effectively exert both effects by combining incinerator ash insolubilization and granulation and solidification. It could not be said that it was established.

本発明は、焼却灰に含まれる有害物質を十分に不溶化し、かつ、効果的に強度を向上させることができる地盤改良材の製造方法を提供する。 The present invention provides a method for producing a ground improving material capable of sufficiently insolubilizing harmful substances contained in incinerator ash and effectively improving the strength.

本発明の一の態様である地盤改良材の製造方法は、焼却灰と、CaMg(CO、CaCO及びMgOのうち1種又は2種以上を含む不溶化材と、を撹拌して混合し、中間材を得る第1の工程と、中間材と、酸性硫酸塩を含む還元剤と、水と、を撹拌して混合し、造粒固化した地盤改良材を得る第2の工程と、を含む。 In the method for producing a ground improvement material according to one aspect of the present invention, incinerated ash and an insolubilizing material containing one or more of CaMg (CO 3 ) 2 , CaCO 3 and MgO are stirred and mixed. Then, the first step of obtaining the intermediate material, the second step of obtaining the ground improvement material which has been granulated and solidified by stirring and mixing the intermediate material, the reducing agent containing an acidic sulfate, and water. including.

上記地盤改良材の製造方法において、第2の工程では、中間材と、還元剤と水とを混合した還元剤水溶液と、を撹拌して混合するようにしてもよい。 In the method for producing the ground improving material, in the second step, the intermediate material and the reducing agent aqueous solution in which the reducing agent and water are mixed may be stirred and mixed.

また、焼却灰は、木質系焼却灰であってもよい。 Further, the incinerator ash may be a wood-based incinerator ash.

また、第1の工程では、焼却灰と、不溶化材と、固化材と、を撹拌して混合するようにしてもよい。 Further, in the first step, the incinerator ash, the insolubilizing material, and the solidifying material may be stirred and mixed.

また、固化材は、不洗砂を含んでいてもよい。 Further, the solidifying material may contain non-washed sand.

上記地盤改良材の製造方法によれば、焼却灰に含まれる有害物質を十分に不溶化し、かつ、効果的に強度を向上させることができる地盤改良材を製造することができる。 According to the above-mentioned method for producing a ground improvement material, it is possible to produce a ground improvement material capable of sufficiently insolubilizing harmful substances contained in incinerator ash and effectively improving the strength.

以下、本発明の実施形態について説明する。
本発明の地盤改良材の製造方法は、焼却灰と、CaMg(CO、CaCO及びMgOのうち1種又は2種以上を含む不溶化材と、を撹拌して混合し、中間材を得る第1の工程と、中間材と、酸性硫酸塩を含む還元剤と、水と、を撹拌して混合し、造粒固化した地盤改良材を得る第2の工程と、を含む。
Hereinafter, embodiments of the present invention will be described.
In the method for producing a ground improving material of the present invention, incinerated ash and an insolubilizing material containing one or more of CaMg (CO 3 ) 2 , CaCO 3 and MgO are stirred and mixed to prepare an intermediate material. The first step of obtaining, and the second step of obtaining a ground improvement material which has been granulated and solidified by stirring and mixing an intermediate material, a reducing agent containing an acidic sulfate, and water are included.

第1の工程において、焼却灰と不溶化材とを撹拌して混合することにより、焼却灰に含まれる(残存している)水分と不溶化材とが反応し、不溶化材に含まれるカルシウム(Ca)やマグネシウム(Mg)がイオンとして溶出する。溶出したカルシウムやマグネシウムのイオンは、焼却灰に含まれる有害物質である重金属等と反応し、水和物となって析出する。そのため、焼却灰に含まれる重金属等の有害物質を不溶化できる。 In the first step, by stirring and mixing the incinerator ash and the insolubilizing material, the (residual) water contained in the incineration ash reacts with the insolubilizing material, and calcium (Ca) contained in the insolubilizing material. And magnesium (Mg) are eluted as ions. The eluted calcium and magnesium ions react with heavy metals and the like, which are harmful substances contained in incineration ash, and precipitate as hydrates. Therefore, harmful substances such as heavy metals contained in incineration ash can be insolubilized.

次に、第2の工程において、中間材と還元剤と水とを撹拌して混合することにより、中間材に含まれる不溶化材と水とが反応し、不溶化材に含まれるカルシウムやマグネシウムがイオンとして溶出する。溶出したカルシウムやマグネシウムのイオンは、焼却灰に含まれる有害物質である重金属等と反応し、水和物となって析出する。そのため、焼却灰に含まれる重金属等の有害物質を不溶化できる。第2の工程では、第1の工程とは異なり、積極的な加水により、上述した水和反応が促進され、不溶化効果をさらに高めることができる。 Next, in the second step, by stirring and mixing the intermediate material, the reducing agent, and water, the insolubilizing material contained in the intermediate material reacts with water, and calcium and magnesium contained in the insolubilizing material are ionized. Elute as. The eluted calcium and magnesium ions react with heavy metals and the like, which are harmful substances contained in incineration ash, and precipitate as hydrates. Therefore, harmful substances such as heavy metals contained in incineration ash can be insolubilized. In the second step, unlike the first step, the above-mentioned hydration reaction is promoted by active water addition, and the insolubilization effect can be further enhanced.

また、第2の工程において、還元剤に含まれる酸性硫酸塩が水と反応して水酸化する。そして、水酸化による電子イオンが浮遊して電位移動により、焼却灰に含まれる有害物質である重金属等が無害な重金属(溶出しにくい金属)等に変換される。さらに、硫酸塩が重金属等と結合し、不溶水和物を形成する。これにより、焼却灰に含まれる重金属等の有害物質を不溶化できる。 Further, in the second step, the acidic sulfate contained in the reducing agent reacts with water to hydroxylate. Then, the electron ions due to hydroxylation are suspended and the potential is transferred, so that heavy metals and the like, which are harmful substances contained in the incineration ash, are converted into harmless heavy metals (metals that are difficult to elute) and the like. Further, the sulfate bond with a heavy metal or the like to form an insoluble hydrate. This makes it possible to insolubilize harmful substances such as heavy metals contained in incineration ash.

また、上述したように、第1の工程と第2の工程との2段階による不溶化により、焼却灰に含まれる重金属等の有害物質の不溶化を効率良く行うことができる。すなわち、第1の工程において、一般的にアルカリ性を有する焼却灰に不溶化材を撹拌して混合することにより、アルカリ側において水和物形成による不溶化を行う。また、第2の工程において、酸性硫酸塩を含む還元剤を撹拌して混合することにより、PH調整をしてアルカリ側から中性域に移行した状態で、電位移動及び水和物形成による不溶化を行う。このような2段階による不溶化により、不溶化効果をより一層高めることができる。 Further, as described above, the insolubilization of harmful substances such as heavy metals contained in the incineration ash can be efficiently performed by the insolubilization by the two steps of the first step and the second step. That is, in the first step, the incinerator is mixed with the incinerator ash, which is generally alkaline, by stirring, so that the incinerator is insolubilized by forming hydrates on the alkaline side. Further, in the second step, a reducing agent containing an acidic sulfate is stirred and mixed to adjust the pH and insolubilize by potential transfer and hydrate formation in a state of shifting from the alkaline side to the neutral region. I do. By insolubilizing by such two steps, the insolubilizing effect can be further enhanced.

また、第1の工程において焼却灰と不溶化材とを均一に混合することにより、第1の工程における不溶化を効率良く行うことができる。また、第2の工程において、第1の工程で事前に均一に混合した中間材に還元剤と水とを混合することにより、第2の工程における不溶化を効率良く行うことができる。これにより、2段階による不溶化を効率良く行うことができる。 Further, by uniformly mixing the incinerator ash and the insolubilizing material in the first step, insolubilization in the first step can be efficiently performed. Further, in the second step, by mixing the reducing agent and water with the intermediate material uniformly mixed in advance in the first step, insolubilization in the second step can be efficiently performed. This makes it possible to efficiently perform insolubilization in two steps.

また、第2の工程において、不溶化材から溶出したカルシウムやマグネシウムのイオンは、還元剤に含まれる酸性硫酸塩から溶出した硫酸イオンと反応し、二水石膏やマグネシウム六水和物等の水和物となって析出する。そのため、焼却灰の含水率を低減させ、強度向上効果を有効に発揮することができる。 Further, in the second step, the calcium and magnesium ions eluted from the insolubilizer react with the sulfate ions eluted from the acidic sulfate contained in the reducing agent to hydrate dihydrate gypsum, magnesium hexahydrate and the like. It becomes a substance and precipitates. Therefore, the water content of the incinerator ash can be reduced and the strength improving effect can be effectively exhibited.

また、第2の工程における加水により、焼却灰の粒子を結合して団粒化を促進することができる。これにより、焼却灰の造粒効果を高めることができると共に、焼却灰を固化して強度を向上させることができる。 In addition, the addition of water in the second step can combine the particles of the incinerator ash to promote agglomeration. As a result, the granulation effect of the incinerator ash can be enhanced, and the incinerator ash can be solidified to improve the strength.

特に、粉粒状の焼却灰では、塑性限界付近で造粒する特性を持っている。そのため、第2の工程において加水しながら塑性限界付近で撹拌して混合することにより、毛管吸引作用を利用しながら、造粒効果を高めることができる。 In particular, powdered and granular incinerated ash has the property of granulating near the plastic limit. Therefore, by stirring and mixing in the vicinity of the plastic limit while adding water in the second step, the granulation effect can be enhanced while utilizing the capillary suction action.

このような造粒工程において、加水直後の造粒初期段階では、局部的に塑性限界付近に達した部分が点在的に発生する。造粒中期段階になると、点在的に発生している単粒子が撹拌作用により単粒子周辺のまだ塑性限界に達していない粉体や単粒子と結合していく。造粒後期段階になると、単粒子から表面浸出した水分により、さらに別の単粒子と結合して造粒が促進される。 In such a granulation step, in the initial stage of granulation immediately after water addition, portions that locally reach the vicinity of the plastic limit are scatteredly generated. In the middle stage of granulation, the scattered single particles are combined with the powder and the single particles around the single particles that have not reached the plastic limit yet by the stirring action. In the late stage of granulation, the water leached from the surface of a single particle binds to another single particle to promote granulation.

また、第2の工程において混合する還元剤に含まれる酸性硫酸塩は、無機凝集剤としての効果を有すると考えられる。そのため、焼却灰の細粒分を電気的に凝集させて団粒化しやすくし、造粒固化効果を高めることができる。これにより、得られる土壌改良材は、土壌を締め固めやすくする効果を有するものとなる。 Further, the acidic sulfate contained in the reducing agent mixed in the second step is considered to have an effect as an inorganic flocculant. Therefore, the fine particles of the incinerator ash can be electrically aggregated to facilitate agglomeration, and the granulation and solidification effect can be enhanced. As a result, the obtained soil conditioner has the effect of facilitating compaction of the soil.

上記地盤改良材の製造方法において、地盤改良材の原料となる焼却灰としては、例えば、ごみ焼却灰、ペーパースラッジ、石炭灰、木質焼却灰(草木灰)等を用いることができる。焼却灰に含まれる有害物質としては、例えば、ヒ素、六価クロム等の重金属等が挙げられる。 In the above method for producing a ground improvement material, as the incineration ash used as a raw material for the ground improvement material, for example, waste incineration ash, paper sludge, coal ash, wood incineration ash (wood ash) and the like can be used. Examples of harmful substances contained in incineration ash include heavy metals such as arsenic and hexavalent chromium.

第1の工程において混合する不溶化材は、焼却灰に含まれる重金属等の有害物質を不溶化(溶出しないように)するための材料であり、CaMg(CO、CaCO及びMgOのうち1種又は2種以上を含む。不溶化材としては、例えば、CaMg(CO、CaCO3、MgOを主成分とする焼成ドロマイト(半焼成ドロマイト:MgO・CaCO、軽焼ドロマイト:CaO・MgO等を含む)、CaMg(COを主成分とするドロマイト等のドロマイト系化合物、炭酸カルシウム(CaCO)、酸化マグネシウム(MgO)等が挙げられる。不溶化材としては、上述した材料以外の各種不溶化材が含まれていてもよい。 The insolubilizing material mixed in the first step is a material for insolubilizing (preventing elution) harmful substances such as heavy metals contained in incineration ash, and is one of CaMg (CO 3 ) 2 , CaCO 3 and MgO. Includes species or two or more. Examples of the insolubilizing material include calcined dolomite containing CaMg (CO 3 ) 2 , CaCO 3, and MgO as main components (including semi-firing dolomite: MgO / CaCO 3 , lightly calcined dolomite: CaO / MgO, etc.), CaMg (CO). 3 ) Examples thereof include dolomite-based compounds such as dolomite containing 2 as a main component, calcium carbonate (CaCO 3 ), magnesium oxide (MgO) and the like. The insolubilizing material may include various insolubilizing materials other than the above-mentioned materials.

上述した不溶化材のうち、特にドロマイトを焼成してなる焼成ドロマイトは、ドロマイトを焼成したときに「CaMg(CO→MgO+CaCO+CO」で表される熱分解によって多くの細孔が形成される。そのため、焼却灰中に含まれる重金属等を細孔内に効率良く吸着させることができ、不溶化効果をより一層発揮することができる。 Among the above-mentioned insolubilizing materials, in particular, the calcined dolomite formed by calcining dolomite has many pores formed by thermal decomposition represented by "CaMg (CO 3 ) 2 → MgO + CaCO 3 + CO 2" when the dolomite is calcined. Will be done. Therefore, heavy metals and the like contained in the incinerated ash can be efficiently adsorbed in the pores, and the insolubilization effect can be further exhibited.

第1の工程において、焼却灰に対する不溶化材の混合量は、焼却灰の種類等によって適宜調整することができるが、例えば、焼却灰を100質量%とした場合に、不溶化材を5〜15質量%とすることができる。 In the first step, the mixing amount of the incinerator with respect to the incinerator ash can be appropriately adjusted depending on the type of incinerator, etc. For example, when the incinerator ash is 100% by mass, the incinerator is 5 to 15 mass by mass. Can be%.

第2の工程において混合する還元剤は、高い還元作用により、焼却灰に含まれる重金属等の有害物質を不溶化(溶出しないように)する効果を発揮する材料であり、酸性硫酸塩を含む。酸性硫酸塩としては、例えば、硫酸第一鉄、硫酸アルミニウム等が挙げられ、これらのうち1種又は2種以上を用いることができる。還元剤としては、上述した酸性硫酸塩以外の各種還元剤が含まれていてもよい。 The reducing agent mixed in the second step is a material that exerts an effect of insolubilizing (preventing elution) harmful substances such as heavy metals contained in incineration ash by a high reducing action, and contains an acidic sulfate. Examples of the acidic sulfate include ferrous sulfate, aluminum sulfate and the like, and one or more of these can be used. As the reducing agent, various reducing agents other than the above-mentioned acidic sulfate may be contained.

例えば、酸性硫酸塩として硫酸第一鉄を用いた場合、第2の工程において、硫酸第一鉄が水と反応して水酸化硫酸鉄となる。そして、水酸化による電子イオンが浮遊して電位移動により、焼却灰に含まれる有害物質である重金属等が無害な重金属(溶出しにくい金属)等に変換される。さらに、硫酸及び鉄が重金属等と結合し、不溶水和物(水酸化硫酸鉄)を形成する。これにより、焼却灰に含まれる重金属等の有害物質を不溶化できる。 For example, when ferrous sulfate is used as the acidic sulfate, ferrous sulfate reacts with water to become iron hydroxide sulfate in the second step. Then, the electron ions due to hydroxylation are suspended and the potential is transferred, so that heavy metals and the like, which are harmful substances contained in the incineration ash, are converted into harmless heavy metals (metals that are difficult to elute) and the like. Further, sulfuric acid and iron combine with heavy metals and the like to form an insoluble hydrate (iron hydroxide sulfate). This makes it possible to insolubilize harmful substances such as heavy metals contained in incineration ash.

上記地盤改良材の製造方法において、第2の工程では、中間材と、還元剤と水とを混合した還元剤「水溶液と、を混合して撹拌するようにしてもよい。この場合には、還元剤を水溶液として混合することにより、水分が効果的に補われ、不溶化材に基づく水和物形成による不溶化、かつ、酸性硫酸塩に基づく電位移動及び水和物形成による不溶化が促進される。そのため、不溶化反応時間を短縮したり、別途還元剤を混合する工程を省略したりすることができ、第2の工程における不溶化効果をより一層高めることができる。また、還元剤水溶液に含まれる水分が造粒固化にも効果的に利用されるため、強度向上をより一層図ることができる。 In the method for producing the ground improving material, in the second step, the intermediate material and the reducing agent "aqueous solution", which is a mixture of the reducing agent and water, may be mixed and stirred. By mixing the reducing agent as an aqueous solution, water is effectively supplemented, insolubilization by hydrate formation based on the insolubilizer, and potential transfer based on acidic sulfate and insolubilization by hydrate formation are promoted. Therefore, the insolubilization reaction time can be shortened, the step of separately mixing the reducing agent can be omitted, the insolubilization effect in the second step can be further enhanced, and the water content in the reducing agent aqueous solution can be further enhanced. Is also effectively used for granulation and solidification, so that the strength can be further improved.

第2の工程において、還元剤水溶液中の還元剤の割合は、適宜調整することができるが、例えば、還元剤水溶液を100質量%とした場合に、還元剤を1〜10質量%(1〜10%水溶液)、好ましくは5質量%(5%水溶液)とすることができる。 In the second step, the ratio of the reducing agent in the aqueous solution of the reducing agent can be appropriately adjusted. For example, when the aqueous solution of the reducing agent is 100% by mass, the reducing agent is 1 to 10% by mass (1 to 10% by mass). It can be 10% aqueous solution), preferably 5% by mass (5% aqueous solution).

第2の工程において、中間材に対する還元剤水溶液の混合量は、適宜調整することができるが、例えば、中間材を100質量%とした場合に、還元剤水溶液を10〜30質量%とすることができる。 In the second step, the mixing amount of the reducing agent aqueous solution with respect to the intermediate material can be appropriately adjusted. For example, when the intermediate material is 100% by mass, the reducing agent aqueous solution is 10 to 30% by mass. Can be done.

また、焼却灰は、木質系焼却灰であってもよい。木質系焼却灰は、バイオマス発電等で草木を焼却したときに発生する草木灰等の焼却灰である。木質系焼却灰は、高アルカリ性を有する。そのため、第1の工程において、アルカリ側で水和物形成による不溶化を行い、第2の工程において、酸性硫酸塩によりPH調整をして中性域で電位移動及び水和物形成による不溶化を行うという2段階による不溶化効果をより有効に発揮することができる。 Further, the incinerator ash may be a wood-based incinerator ash. Wood-based incineration ash is incineration ash such as vegetation ash generated when vegetation is incinerated by biomass power generation or the like. Wood-based incinerator ash has high alkalinity. Therefore, in the first step, insolubilization is performed by hydrate formation on the alkaline side, and in the second step, PH is adjusted with an acidic sulfate to perform potential transfer and insolubilization by hydrate formation in the neutral region. The insolubilization effect of the two steps can be more effectively exhibited.

また、木質系焼却灰は、水和反応の要素である酸化カルシウム(CaO)を十分に含んでいるため(例えば、25質量%前後)、造粒固化効果を有効に発揮することができる。また、木質系焼却灰は、一般的に粒子径が細かく、毛細粘着力が強くなる傾向があり、造粒固化効果を高めることができる。また、木質系焼却灰は、二酸化ケイ素(SiO)を十分に含んでいるため(例えば、30質量%前後)、造粒固化後の強度を十分に確保することができる。 Further, since the wood-based incinerator ash sufficiently contains calcium oxide (CaO), which is an element of the hydration reaction (for example, about 25% by mass), the granulation and solidification effect can be effectively exhibited. Further, the wood-based incinerator ash generally has a fine particle size and tends to have a strong capillary adhesive force, so that the granulation and solidification effect can be enhanced. Further, since the wood-based incinerator ash contains a sufficient amount of silicon dioxide (SiO 2 ) (for example, about 30% by mass), sufficient strength after granulation and solidification can be ensured.

また、焼却灰として、バイオマス発電等で使用される草木等の焼却灰である木質系焼却灰を有効に利用し、地盤改良材を製造することにより、リサイクル(再資源化)を促進し、循環型社会に貢献できる。また、木質系焼却灰には、植物の生育に必要な元素であるカルシウム(Ca)や育成を助ける元素であるケイ素(Si)が多く含まれているため、木質系焼却灰を用いて製造した地盤改良材は、地盤の改良はもちろんのこと、植物の生育を促進し、緑化効果もある。 In addition, as incineration ash, wood-based incineration ash, which is incineration ash for plants and trees used in biomass power generation, etc., is effectively used to produce ground improvement materials, thereby promoting recycling (recycling) and recycling. Can contribute to a type society. In addition, since wood-based incineration ash contains a large amount of calcium (Ca), which is an element necessary for plant growth, and silicon (Si), which is an element that assists growth, it was manufactured using wood-based incineration ash. The ground improvement material not only improves the ground, but also promotes the growth of plants and has a greening effect.

また、第1の工程では、焼却灰と、不溶化材と、固化材と、を撹拌して混合するようにしてもよい。焼却灰に対し、不溶化材に加えて固化材を混合することにより、第2の工程において焼却灰の造粒を阻害することなく、固化を促進させることができる。すなわち、効率良く造粒固化でき、強度向上を図ることができる。 Further, in the first step, the incinerator ash, the insolubilizing material, and the solidifying material may be stirred and mixed. By mixing the incinerator with the solidifying material in addition to the insolubilizing material, solidification can be promoted without inhibiting the granulation of the incinerated ash in the second step. That is, it can be efficiently granulated and solidified, and the strength can be improved.

第1の工程において、焼却灰に対する固化材の混合量は、適宜調整することができるが、例えば、焼却灰を100質量%とした場合に、固化材を1〜40質量%とすることができる。 In the first step, the mixing amount of the solidifying material with respect to the incinerated ash can be appropriately adjusted. For example, when the incinerated ash is 100% by mass, the solidifying material can be 1 to 40% by mass. ..

また、固化材は、不洗砂を含んでいてもよい。焼却灰にも十分混合することができる不洗砂を用いることにより、第2の工程における造粒固化効果をさらに高め、強度向上をより一層図ることができる。なお、固化材としては、上述した不洗砂以外の各種固化材が含まれていてもよい。 Further, the solidifying material may contain non-washed sand. By using unwashed sand that can be sufficiently mixed with the incinerator ash, the granulation and solidification effect in the second step can be further enhanced, and the strength can be further improved. The solidifying material may include various solidifying materials other than the above-mentioned non-washed sand.

実施例:
以下、本発明を実施例により説明し、比較例と比較する。ここでは、各種の原材料及び製造方法によって地盤改良材の試験体を作製し、各試験体について不溶化試験及び固化試験を行った。
Example:
Hereinafter, the present invention will be described with reference to Examples and compared with Comparative Examples. Here, test specimens of ground improvement materials were prepared by various raw materials and manufacturing methods, and insolubilization tests and solidification tests were conducted on each specimen.

(使用原材料)
[焼却灰]
原料となる焼却灰は、木質系焼却灰を用いた。木質系焼却灰は、バイオマス発電で使用された木質ペレット及びPKS(パーム椰子殻)の流動層ボイラー焼却灰である。
(Raw materials used)
[Incinerator ash]
Wood-based incinerator ash was used as the raw material incinerator ash. The wood-based incineration ash is a fluidized bed boiler incineration ash of wood pellets and PKS (palm palm husks) used in biomass power generation.

[不溶化材]
不溶化材は、アルミナ系不溶化材とドロマイト系不溶化材の2種類を用いた。アルミナ系不溶化材としては、Alを主成分とする無機系複合物を用いた。ドロマイト系不溶化材としては、焼成ドロマイトであるCaO・MgO(軽焼ドロマイト)を主成分とする無機系複合物を用いた。なお、後述する表には、アルミナ系不溶化材を「アルミナ系」、ドロマイト系不溶化材を「ドロマイト系」と記載した。
[Insolubilizer]
As the insolubilizing material, two types, an alumina-based insolubilizing material and a dolomite-based insolubilizing material, were used. As the alumina-based insolubilizer , an inorganic composite containing Al 2 O 3 as a main component was used. As the dolomite-based insolubilizer, an inorganic composite containing CaO / MgO (light-baked dolomite), which is calcined dolomite, as a main component was used. In the table described later, the alumina-based insolubilizer is described as "alumina-based" and the dromite-based insolubilizer is described as "dromite-based".

[固化材]
固化材は、不洗砂を用いた。
[Solid material]
Non-washed sand was used as the solidifying material.

[還元剤]
還元剤は、硫酸第一鉄を用いた。また、還元剤水溶液として混合する場合には、硫酸第一鉄5%水溶液を用いた。なお、硫酸第一鉄5%水溶液は、還元剤水溶液を100質量%とした場合に、還元剤が5質量%含まれている水溶液である。なお、後述する表には、還元剤と水とを別々で混合する場合は「粉末」、還元剤水溶液として混合する場合は「水溶液」と記載した。
[Reducing agent]
As the reducing agent, ferrous sulfate was used. When mixed as a reducing agent aqueous solution, a ferrous sulfate 5% aqueous solution was used. The ferrous sulfate 5% aqueous solution is an aqueous solution containing 5% by mass of the reducing agent when the reducing agent aqueous solution is 100% by mass. In the table described later, when the reducing agent and water are mixed separately, they are described as "powder", and when they are mixed as a reducing agent aqueous solution, they are described as "aqueous solution".

(不溶化試験)
原料となる焼却灰及び各試験体について、環境庁告示46号溶出試験により、産業廃棄物に含まれる有害物質である重金属等の溶出量を測定した。検査項目は、カドミウム、六価クロム、シアン、水銀、アルキル水銀、セレン、鉛、砒素、ふっ素、ほう素とした。なお、後述する表には、各検査項目の基準値(単位:mg/L)を示した。
(Insolubilization test)
For the incinerator ash as a raw material and each test piece, the elution amount of heavy metals, which are harmful substances contained in industrial waste, was measured by the Elution Test of Notification No. 46 of the Environment Agency. The inspection items were cadmium, hexavalent chromium, cyanide, mercury, alkylmercury, selenium, lead, arsenic, fluorine, and boron. The table to be described later shows the reference value (unit: mg / L) of each inspection item.

(試験例1)
比較例である試験体11と本発明の実施例である試験体12とを作製し、不溶化試験を行った。
(Test Example 1)
A test body 11 as a comparative example and a test body 12 as an example of the present invention were prepared and insolubilized.

[試験体11]
混錬ミキサー(強制2軸型ミキサー)に、木質系焼却灰(焼却灰:原料A)、アルミナ系不溶化材(不溶化材)、不洗砂(固化材)、粉末状の硫酸第一鉄(還元剤)及び水を投入し、これらを撹拌・混合した。不溶化材の混合量は、焼却灰を100質量%とした場合に10質量%、固化材の混合量は、焼却灰を100質量%とした場合に5質量%とした。また、還元剤の混合量は、焼却灰を100質量%とした場合に0.25質量%、水の混合量は、焼却灰、不溶化材及び固化材の合計量を100質量%とした場合に20質量%とした。これにより、地盤改良材の試験体を得た。
[Test body 11]
Wood-based incinerator ash (incinerator ash: raw material A), alumina-based insolubilizer (insolubilizer), non-washed sand (solidifying material), powdered ferrous sulfate (reducing) in a kneading mixer (forced twin-screw mixer) Agent) and water were added, and these were stirred and mixed. The mixing amount of the insolubilizing material was 10% by mass when the incinerator ash was 100% by mass, and the mixing amount of the solidifying material was 5% by mass when the incinerating ash was 100% by mass. The mixing amount of the reducing agent is 0.25% by mass when the incinerator ash is 100% by mass, and the mixing amount of water is 100% by mass when the total amount of the incinerator ash, the insolubilizing material and the solidifying material is 100% by mass. It was set to 20% by mass. As a result, a test piece of the ground improvement material was obtained.

[試験体12]
混錬ミキサーに、木質系焼却灰(焼却灰:原料A)、ドロマイト系不溶化材(不溶化材)及び不洗砂(固化材)を投入し、これらを撹拌・混合した。不溶化材の混合量は、焼却灰を100質量%とした場合に10質量%、固化材の混合量は、焼却灰を100質量%とした場合に5質量%とした。これにより、中間材を得た(1次撹拌、第1の工程)。中間材は、半日以上養生した。
[Test body 12]
Wood-based incinerator ash (incinerator ash: raw material A), dolomite-based insolubilizing material (insolubilizing material) and unwashed sand (solidifying material) were put into a kneading mixer, and these were stirred and mixed. The mixing amount of the insolubilizing material was 10% by mass when the incinerator ash was 100% by mass, and the mixing amount of the solidifying material was 5% by mass when the incinerating ash was 100% by mass. As a result, an intermediate material was obtained (primary stirring, first step). The intermediate material was cured for more than half a day.

次に、混錬ミキサーに、中間材、粉末状の硫酸第一鉄(還元剤)及び水を投入し、これらを撹拌・混合した。具体的には、中間材に硫酸第一鉄及び水を徐々に加えながら、撹拌・混合することにより、造粒固化を行った。還元剤の混合量は、焼却灰を100質量%とした場合に0.25質量%、水の混合量は、中間材を100質量%とした場合に20質量%とした。これにより、地盤改良材の試験体を得た(2次撹拌、第2の工程)。 Next, an intermediate material, powdered ferrous sulfate (reducing agent) and water were put into a kneading mixer, and these were stirred and mixed. Specifically, granulation and solidification were carried out by stirring and mixing while gradually adding ferrous sulfate and water to the intermediate material. The mixing amount of the reducing agent was 0.25% by mass when the incinerator ash was 100% by mass, and the mixing amount of water was 20% by mass when the intermediate material was 100% by mass. As a result, a test piece of the ground improvement material was obtained (secondary stirring, second step).

表1に不溶化試験の結果を示す。
試験体12は、ドロマイト系の不溶化材を用い、2段階(表には「2段」と記載)の混合(第1の工程、第2の工程)を行ったことにより、アルミナ系の不溶化材を用い、1回での混合であった試験体11よりも重金属等の不溶化効果が高い。具体的には、試験体12は、各種重金属等の不溶化効果を十分に有し、試験体11よりもふっ素、ほう素の溶出量が低く、不溶化効果が高い。これにより、不溶化材としてドロマイト系を用い、2段階での混合(第1の工程、第2の工程)が好ましいことがわかった。
Table 1 shows the results of the insolubilization test.
The test body 12 uses a dolomite-based insolubilizer and is mixed (first step, second step) in two steps (described as "two steps" in the table) to obtain an alumina-based insolubilizer. Has a higher insolubilizing effect on heavy metals and the like than the test piece 11 which was mixed once. Specifically, the test body 12 has a sufficient insolubilizing effect for various heavy metals and the like, the amount of fluorine and boron eluted is lower than that of the test body 11, and the insolubilizing effect is high. From this, it was found that using a dolomite system as the insolubilizing material and mixing in two steps (first step, second step) is preferable.

Figure 0006904620
Figure 0006904620

(試験例2)
比較例である試験体21と本発明の実施例である試験体22とを作製し、不溶化試験を行った。
(Test Example 2)
A test body 21 as a comparative example and a test body 22 as an example of the present invention were prepared and insolubilized.

[試験体21]
混錬ミキサーに、木質系焼却灰(焼却灰:原料B)、ドロマイト系不溶化材(不溶化材)、不洗砂(固化材)、粉末状の硫酸第一鉄(還元剤)及び水を投入し、これらを撹拌・混合した。不溶化材、固化材、還元剤及び水の混合量は、上述の試験体11の作製と同様である。これにより、地盤改良材の試験体21を得た。
[Test body 21]
Wood-based incinerator ash (incinerator ash: raw material B), dolomite-based insolubilizer (insolubilizer), non-washed sand (solidifying material), powdered ferrous sulfate (reducing agent), and water are added to the kneading mixer. , These were stirred and mixed. The mixing amount of the insolubilizing material, the solidifying material, the reducing agent and water is the same as in the preparation of the test body 11 described above. As a result, a test body 21 of the ground improvement material was obtained.

[試験体22]
混錬ミキサーに、木質系焼却灰(焼却灰:原料B)、ドロマイト系不溶化材(不溶化材)及び不洗砂(固化材)を投入し、これらを撹拌・混合した。不溶化材及び固化材の混合量は、上述の試験体12の作製と同様とした。これにより、中間材を得た(1次撹拌、第1の工程)。中間材は、半日以上養生した。
[Test body 22]
Wood-based incinerator ash (incinerator ash: raw material B), dolomite-based insolubilizer (insolubilizer) and non-washed sand (solidified material) were put into a kneading mixer, and these were stirred and mixed. The mixing amount of the insolubilizing material and the solidifying material was the same as in the preparation of the test body 12 described above. As a result, an intermediate material was obtained (primary stirring, first step). The intermediate material was cured for more than half a day.

次に、混錬ミキサーに、中間材、粉末状の硫酸第一鉄(還元剤)及び水を投入し、これらを撹拌・混合した。具体的には、中間材に粉末状の硫酸第一鉄及び水を徐々に加えながら、撹拌・混合することにより、造粒固化を行った。還元剤及び水の混合量は、上述の試験体12の作製と同様とした。これにより、地盤改良材の試験体22を得た(2次撹拌、第2の工程)。 Next, an intermediate material, powdered ferrous sulfate (reducing agent) and water were put into a kneading mixer, and these were stirred and mixed. Specifically, granulation and solidification were carried out by stirring and mixing while gradually adding powdered ferrous sulfate and water to the intermediate material. The mixing amount of the reducing agent and water was the same as in the preparation of the test body 12 described above. As a result, a test piece 22 of the ground improvement material was obtained (secondary stirring, second step).

表2に不溶化試験の結果を示す。
試験体22は、2段階の混合(第1の工程、第2の工程)を行ったことにより、1回での混合であった試験体21よりも重金属等の不溶化効果が高い。具体的には、試験体22は、各種重金属等の不溶化効果を十分に有し、試験体21よりもセレン、ふっ素、ほう素の溶出量が低く、不溶化効果が高い。これにより、2段階での混合(第1の工程、第2の工程)が好ましいことがわかった。
Table 2 shows the results of the insolubilization test.
By performing the two-step mixing (first step, second step), the test body 22 has a higher insolubilizing effect of heavy metals and the like than the test body 21 which was mixed at one time. Specifically, the test body 22 has a sufficient insolubilizing effect for various heavy metals and the like, the elution amount of selenium, fluorine and boron is lower than that of the test body 21, and the insolubilizing effect is high. From this, it was found that mixing in two steps (first step, second step) is preferable.

Figure 0006904620
Figure 0006904620

(試験例3)
比較例である試験体31と本発明の実施例である試験体32とを作製し、不溶化試験を行った。
(Test Example 3)
A test body 31 as a comparative example and a test body 32 as an example of the present invention were prepared and insolubilized.

[試験体31]
混錬ミキサーに、木質系焼却灰(焼却灰:原料C)、ドロマイト系不溶化材(不溶化材)、不洗砂(固化材)、硫酸第一鉄5%水溶液(還元剤水溶液)を投入し、これらを撹拌・混合した。不溶化材及び固化材の混合量は、上述の試験体11の作製と同様である。また、還元剤水溶液の混合量は、焼却灰、不溶化材及び固化材の合計量を100質量%とした場合に20質量%とした。これにより、地盤改良材の試験体31を得た。
[Test body 31]
Add wood-based incineration ash (incineration ash: raw material C), dolomite-based insolubilizer (insolubilizer), non-washed sand (solidifying material), and ferrous sulfate 5% aqueous solution (reducing agent aqueous solution) into the kneading mixer. These were stirred and mixed. The mixing amount of the insolubilizing material and the solidifying material is the same as in the preparation of the test body 11 described above. The mixing amount of the reducing agent aqueous solution was 20% by mass when the total amount of the incinerator ash, the insolubilizing material and the solidifying material was 100% by mass. As a result, a test piece 31 of the ground improvement material was obtained.

[試験体32]
混錬ミキサーに、木質系焼却灰(焼却灰:原料C)、ドロマイト系不溶化材(不溶化材)及び不洗砂(固化材)を投入し、これらを撹拌・混合した。不溶化材及び固化材の混合量は、上述の試験体12の作製と同様とした。これにより、中間材を得た(1次撹拌、第1の工程)。中間材は、半日以上養生した。
[Test body 32]
Wood-based incinerator ash (incinerator ash: raw material C), dolomite-based insolubilizer (insolubilizer) and non-washed sand (solidified material) were put into a kneading mixer, and these were stirred and mixed. The mixing amount of the insolubilizing material and the solidifying material was the same as in the preparation of the test body 12 described above. As a result, an intermediate material was obtained (primary stirring, first step). The intermediate material was cured for more than half a day.

次に、混錬ミキサーに、中間材及び硫酸第一鉄5%水溶液(還元剤水溶液)を投入し、これらを撹拌・混合した。具体的には、中間材に硫酸第一鉄5%水溶液を徐々に加えながら、撹拌・混合することにより、造粒固化を行った。還元剤水溶液の混合量は、中間材を100質量%とした場合に20質量%とした。これにより、地盤改良材の試験体32を得た(2次撹拌、第2の工程)。 Next, the intermediate material and the ferrous sulfate 5% aqueous solution (reducing agent aqueous solution) were put into the kneading mixer, and these were stirred and mixed. Specifically, granulation and solidification were carried out by stirring and mixing while gradually adding a 5% aqueous solution of ferrous sulfate to the intermediate material. The mixing amount of the reducing agent aqueous solution was 20% by mass when the intermediate material was 100% by mass. As a result, a test piece 32 of the ground improvement material was obtained (secondary stirring, second step).

表3に不溶化試験の結果を示す。
試験体32は、2段階の混合(第1の工程、第2の工程)を行ったことにより、1回での混合であった試験体31よりも重金属等の不溶化効果が高い。具体的には、試験体32は、各種重金属等の不溶化効果を十分に有し、試験体31よりもカドミウム、セレン、ふっ素、ほう素の溶出量が低く、不溶化効果が高い。これにより、2段階での混合(第1の工程、第2の工程)が好ましいことがわかった。
Table 3 shows the results of the insolubilization test.
By performing the two-step mixing (first step, second step), the test body 32 has a higher insolubilizing effect of heavy metals and the like than the test body 31 which was mixed at one time. Specifically, the test body 32 has a sufficient insolubilizing effect for various heavy metals and the like, and the elution amount of cadmium, selenium, fluorine and boron is lower than that of the test body 31, and the insolubilizing effect is high. From this, it was found that mixing in two steps (first step, second step) is preferable.

Figure 0006904620
Figure 0006904620

(試験例4)
本発明の実施例である試験体41及び試験体42を作製し、不溶化試験を行った。
(Test Example 4)
The test body 41 and the test body 42, which are examples of the present invention, were prepared and insolubilized.

[試験体41]
混錬ミキサーに、木質系焼却灰(焼却灰:原料D)、ドロマイト系不溶化材(不溶化材)及び不洗砂(固化材)を投入し、これらを撹拌・混合した。不溶化材及び固化材の混合量は、上述の試験体12の作製と同様とした。これにより、中間材を得た(1次撹拌、第1の工程)。中間材は、半日以上養生した。
[Test body 41]
Wood-based incinerator ash (incinerator ash: raw material D), dolomite-based insolubilizing material (insolubilizing material) and unwashed sand (solidifying material) were put into a kneading mixer, and these were stirred and mixed. The mixing amount of the insolubilizing material and the solidifying material was the same as in the preparation of the test body 12 described above. As a result, an intermediate material was obtained (primary stirring, first step). The intermediate material was cured for more than half a day.

次に、混錬ミキサーに、中間材、粉末状の硫酸第一鉄(還元剤)及び水を投入し、これらを撹拌・混合した。具体的には、中間材に粉末状の硫酸第一鉄及び水を徐々に加えながら、撹拌・混合することにより、造粒固化を行った。還元剤及び水の混合量は、上述の試験体12の作製と同様とした。これにより、地盤改良材の試験体41を得た(2次撹拌、第2の工程)。 Next, an intermediate material, powdered ferrous sulfate (reducing agent) and water were put into a kneading mixer, and these were stirred and mixed. Specifically, granulation and solidification were carried out by stirring and mixing while gradually adding powdered ferrous sulfate and water to the intermediate material. The mixing amount of the reducing agent and water was the same as in the preparation of the test body 12 described above. As a result, a test piece 41 of the ground improvement material was obtained (secondary stirring, second step).

[試験体42]
混錬ミキサーに、木質系焼却灰(焼却灰:原料D)、ドロマイト系不溶化材(不溶化材)及び不洗砂(固化材)を投入し、これらを撹拌・混合した。不溶化材及び固化材の混合量は、上述の試験体32の作製と同様とした。これにより、中間材を得た(1次撹拌、第1の工程)。中間材は、半日以上養生した。
[Test body 42]
Wood-based incinerator ash (incinerator ash: raw material D), dolomite-based insolubilizing material (insolubilizing material) and unwashed sand (solidifying material) were put into a kneading mixer, and these were stirred and mixed. The mixing amount of the insolubilizing material and the solidifying material was the same as in the preparation of the test body 32 described above. As a result, an intermediate material was obtained (primary stirring, first step). The intermediate material was cured for more than half a day.

次に、混錬ミキサーに、中間材及び硫酸第一鉄5%水溶液(還元剤水溶液)を投入し、これらを撹拌・混合した。具体的には、中間材に硫酸第一鉄5%水溶液を徐々に加えながら、撹拌・混合することにより、造粒固化を行った。還元剤水溶液の混合量は、上述の試験体32の作製と同様とした。これにより、地盤改良材の試験体42を得た(2次撹拌、第2の工程)。 Next, the intermediate material and the ferrous sulfate 5% aqueous solution (reducing agent aqueous solution) were put into the kneading mixer, and these were stirred and mixed. Specifically, granulation and solidification were carried out by stirring and mixing while gradually adding a 5% aqueous solution of ferrous sulfate to the intermediate material. The mixing amount of the reducing agent aqueous solution was the same as in the preparation of the test body 32 described above. As a result, a test piece 42 of the ground improvement material was obtained (secondary stirring, second step).

表4に不溶化試験の結果を示す。
試験体42は、第2の工程において還元剤及び水を予め混合した還元剤水溶液として添加したことにより、第2の工程において還元剤及び水をそれぞれ別々に添加した試験体41よりも重金属等の不溶化効果がより高い。具体的には、試験体41は、各種重金属等の不溶化効果を十分に有するが、試験体42は、試験体41よりもカドミウム、ふっ素、ほう素の溶出量がさらに低く、不溶化効果がより高い。これにより、第2の工程において還元剤及び水を予め混合した還元剤水溶液として添加することが好ましいことがわかった。
Table 4 shows the results of the insolubilization test.
By adding the reducing agent and water as an aqueous solution of the reducing agent mixed in advance in the second step, the test body 42 has a heavier metal or the like than the test body 41 in which the reducing agent and water are separately added in the second step. Higher insolubilizing effect. Specifically, the test body 41 has a sufficient insolubilizing effect for various heavy metals, etc., but the test body 42 has a lower elution amount of cadmium, fluorine, and boron than the test body 41, and has a higher insolubilizing effect. .. From this, it was found that it is preferable to add the reducing agent and water as a premixed reducing agent aqueous solution in the second step.

Figure 0006904620
Figure 0006904620

(試験例5)
さらに、比較例である試験体51と本発明の実施例である試験体52とを作製し、固化試験を行った。試験体51は、上述の試験体31と同様の方法で作製した。また、試験体52は、上述の試験体32と同様の方法で作製した。
(Test Example 5)
Further, a test body 51 as a comparative example and a test body 52 as an example of the present invention were prepared and a solidification test was conducted. The test body 51 was produced in the same manner as the test body 31 described above. Further, the test body 52 was produced by the same method as the above-mentioned test body 32.

固化試験は、試験体をJIS A 1210:2009「突固めによる土の締固め試験方法」に規定される10cmモールドに3層に分けて充填し、20℃で材齢7日まで密封養生した後、JIS A 1228「締固めた土のコーン指数試験方法」に準拠して材齢7日のコーン指数を測定した。コーン指数は、国土交通省の「発生土利用基準について」の土質区分基準の第3種建設発生土に規定される400kN/m以上であるものを合格とした。 In the solidification test, the test piece was filled in three layers in a 10 cm mold specified in JIS A 1210: 2009 "Soil compaction test method by compaction", and sealed and cured at 20 ° C. until the age of 7 days. , JIS A 1228 "Corn index test method for compacted soil" was used to measure the cone index at 7 days of age. As for the corn index, those with 400 kN / m 2 or more specified in the soil classification standard of the Ministry of Land, Infrastructure, Transport and Tourism "Regarding the Soil Utilization Standards for Type 3 Construction" were accepted.

コーン指数は、試験体51が1451kN/m、試験体52が1815kN/mであった。試験体52は、2段階の混合(第1の工程、第2の工程)を行ったことにより、1回での混合であった試験体51よりも強度が高いことがわかった。試験体52は、2段階の混合(第1の工程、第2の工程)とすることで、化学反応が進み、エントリガンの形成により造粒しやすくなり、併せて強度も増していることがわかった。 Cone Index, the test body 51 1451kN / m 2, the test body 52 was 1815kN / m 2. It was found that the test body 52 had higher strength than the test body 51, which was mixed in one step, by performing the two-step mixing (first step, second step). By mixing the test piece 52 in two stages (first step, second step), the chemical reaction proceeds, the formation of the entry gun facilitates granulation, and the strength is also increased. all right.

本発明は、上記実施形態に何ら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。例えば、上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本発明の実施形態である。

It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented in various embodiments without departing from the present invention. For example, the functions of one component in the above embodiment may be dispersed as a plurality of components, or the functions of the plurality of components may be integrated into one component. Further, a part of the configuration of the above embodiment may be omitted. Further, at least a part of the configuration of the above embodiment may be added or replaced with the configuration of the other embodiment. It should be noted that all aspects included in the technical idea specified from the wording described in the claims are embodiments of the present invention.

Claims (2)

地盤改良材の製造方法であって、
焼却灰と、CaMg(CO、CaCO及びMgOのうち1種又は2種以上を含む不溶化材と、を撹拌して混合し、中間材を得る第1の工程と、
前記中間材と還元剤である硫酸第一鉄と水とを混合した還元剤水溶液と、を撹拌して混合し、前記還元剤水溶液に含まれる水分により造粒固化した地盤改良材を得る第2の工程と、を含む、地盤改良材の製造方法。
It is a method of manufacturing ground improvement materials.
The first step of obtaining an intermediate material by stirring and mixing the incinerator ash and an insolubilizing material containing one or more of CaMg (CO 3 ) 2 , CaCO 3 and MgO.
The obtained and the intermediate material, a reducing agent and an aqueous solution of a mixture of ferrous and water sulphate as a reducing agent, and mixed by stirring, the soil improvement material obtained by granulating solidified by water contained in the aqueous reducing agent solution A method for producing a ground improvement material, which comprises two steps.
前記焼却灰は、木質系焼却灰である、請求項1に記載の地盤改良材の製造方法 The method for producing a ground improvement material according to claim 1, wherein the incinerator ash is a wood-based incinerator ash .
JP2020142405A 2020-08-26 2020-08-26 Manufacturing method of ground improvement material Active JP6904620B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020142405A JP6904620B1 (en) 2020-08-26 2020-08-26 Manufacturing method of ground improvement material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020142405A JP6904620B1 (en) 2020-08-26 2020-08-26 Manufacturing method of ground improvement material

Publications (2)

Publication Number Publication Date
JP6904620B1 true JP6904620B1 (en) 2021-07-21
JP2022038097A JP2022038097A (en) 2022-03-10

Family

ID=76918206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020142405A Active JP6904620B1 (en) 2020-08-26 2020-08-26 Manufacturing method of ground improvement material

Country Status (1)

Country Link
JP (1) JP6904620B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302885A (en) * 2006-04-14 2007-11-22 Univ Waseda Insolubilizing agent for harmful substance
WO2009128490A1 (en) * 2008-04-16 2009-10-22 株式会社Azmec Insolubilizing agent for toxic substances, method for insolubilization of toxic substances, and water treatment process
JP5757613B2 (en) * 2011-02-28 2015-07-29 太平洋セメント株式会社 Processing materials such as heavy metals
JP2014047121A (en) * 2012-09-03 2014-03-17 Sumitomo Osaka Cement Co Ltd Coal ash granulated body and granulated body mixture
JP6211937B2 (en) * 2014-01-23 2017-10-11 恵和興業株式会社 Reusable granulate from wooden waste
JP5913675B1 (en) * 2015-03-30 2016-04-27 吉澤石灰工業株式会社 Hazardous substance insolubilizing agent and method for insolubilizing hazardous substances

Also Published As

Publication number Publication date
JP2022038097A (en) 2022-03-10

Similar Documents

Publication Publication Date Title
CN100522854C (en) Solidifying agent for solidifying and stabilizing treatment of generated dewatered sludge in sewage plant
CN101357840B (en) Baking-free type refuse burning flyash haydite and manufacturing method thereof
US6399848B1 (en) Encapsulation of hazardous waste materials
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
JP4835359B2 (en) Coal ash granulated sand and method for producing coal ash granulated sand
KR101334533B1 (en) sludge solidification removal composite and using the covering landfill production method
CN108421805A (en) A kind of electrolytic manganese residues solidification and stabilization processing method
JP2005146275A (en) Agent for improving, solidifying, and stabilizing soil and its quality
CN113185253B (en) Curing material and preparation method and application thereof
JP2012076009A (en) Method of producing granulated and solidified body from biomass incineration ash
JP2018158306A (en) Solidification insolubilization body, and solidification insolubilization method
JP7422071B2 (en) Heavy metal insolubilization solidification material and method for improving contaminated soil
JP2012046704A (en) Solidification material
KR101341541B1 (en) Soil material using organic or inorganic sludge and manufacturing method thereof
JP6904620B1 (en) Manufacturing method of ground improvement material
JP2005220249A (en) Elution-preventing agent and soil-treating agent
JP5768293B2 (en) Method for producing soil-solidifying material using fluorine-containing inorganic waste, obtained soil-solidifying material, and method for solidifying soft soil using the soil-solidifying material
JP2014097477A (en) Harmful substance insolubilizing material and insolubilizing method of harmful substance
Wang et al. A novel approach to treating nickel-containing electroplating sludge by solidification with basic metallurgical solid waste
KR100948658B1 (en) Method for solidifying sewage sludge
JP6441086B2 (en) Effective use of coal ash
CN103524059A (en) Method for preparing low energy consumption cement with tin ore tailings as raw materials for resource utilization
JP5077777B2 (en) Elution reduction material and elution reduction treatment method
JP2009006250A (en) Manufacturing method of earthwork material and earthwork material
Liu et al. Evaluation of a sustainable magnesium phosphate-based binder modified with oxalic acid-activated bone meal, sodium carbonate, and fly ash for stabilizing Pb-and Cd-contaminated soils

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200826

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200826

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210419

C876 Explanation why request for accelerated appeal examination is justified

Free format text: JAPANESE INTERMEDIATE CODE: C876

Effective date: 20210419

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210512

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210617

R150 Certificate of patent or registration of utility model

Ref document number: 6904620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250