JP6903797B1 - Sense amplifier device - Google Patents

Sense amplifier device Download PDF

Info

Publication number
JP6903797B1
JP6903797B1 JP2020105726A JP2020105726A JP6903797B1 JP 6903797 B1 JP6903797 B1 JP 6903797B1 JP 2020105726 A JP2020105726 A JP 2020105726A JP 2020105726 A JP2020105726 A JP 2020105726A JP 6903797 B1 JP6903797 B1 JP 6903797B1
Authority
JP
Japan
Prior art keywords
sense amplifier
terminal
transistor
control signal
bit line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020105726A
Other languages
Japanese (ja)
Other versions
JP2022000831A (en
Inventor
卓也 門脇
卓也 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Winbond Electronics Corp
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to JP2020105726A priority Critical patent/JP6903797B1/en
Application granted granted Critical
Publication of JP6903797B1 publication Critical patent/JP6903797B1/en
Publication of JP2022000831A publication Critical patent/JP2022000831A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】ビット線のデータを感知する(読み出す)ためのセンスアンプ装置を提供する。【解決手段】センスアンプ装置は、第1センスアンプと、第2センスアンプと、第3センスアンプとを含む。第1センスアンプの入力端子は、第1ビット線に接続される。第2センスアンプの入力端子は、第2ビット線に接続される。第3センスアンプは、差動入力対と差動出力対を有し、差動入力対の第1入力端子は、第1センスアンプの出力端子に接続され、差動入力対の第2入力端子は、第2センスアンプの出力端子に接続され、差動出力対の第1出力端子は、第1センスアンプの入力端子に接続され、差動出力対の第2出力端子は、第2センスアンプの入力端子に接続される。【選択図】図4PROBLEM TO BE SOLVED: To provide a sense amplifier device for sensing (reading) bit line data. A sense amplifier device includes a first sense amplifier, a second sense amplifier, and a third sense amplifier. The input terminal of the first sense amplifier is connected to the first bit line. The input terminal of the second sense amplifier is connected to the second bit line. The third sense amplifier has a differential input pair and a differential output pair, and the first input terminal of the differential input pair is connected to the output terminal of the first sense amplifier, and the second input terminal of the differential input pair. Is connected to the output terminal of the second sense amplifier, the first output terminal of the differential output pair is connected to the input terminal of the first sense amplifier, and the second output terminal of the differential output pair is the second sense amplifier. It is connected to the input terminal of. [Selection diagram] Fig. 4

Description

本発明は、信号増幅回路に関するものであり、特に、センスアンプ装置に関するものである。 The present invention relates to a signal amplifier circuit, and more particularly to a sense amplifier device.

図1は、DRAM(dynamic random access memory)100内のメモリセルアレイ(memory cell array)の回路ブロック概略図である。DRAM100のメモリセルアレイは、複数のサブアレイ(sub-array)110〜140を含む。サブアレイ110〜140のそれぞれは、複数のビット線(bit-line)BL0とBL1、複数のワード線(word line、図示せず)、および複数のメモリセル(memory cell、図示せず)を有する。設計要求に応じて、これらのサブアレイ110〜140は、周知のメモリセルまたはその他のメモリセルであってもよいため、ここでは詳しく説明しない。 FIG. 1 is a schematic diagram of a circuit block of a memory cell array in a DRAM (dynamic random access memory) 100. The memory cell array of the DRAM 100 includes a plurality of sub-arrays 110-140. Each of the subarrays 110 to 140 has a plurality of bit-lines BL0 and BL1, a plurality of word lines (not shown), and a plurality of memory cells (not shown). Depending on the design requirements, these subarrays 110-140 may be well-known memory cells or other memory cells and will not be described in detail here.

図1に示したDRAM100は、さらに、複数のセンスアンプ(sense amplifier, SA)を含む。2つのサブアレイのビット線は、1つのセンスアンプを共有する。これらのセンスアンプのそれぞれは、差動信号アンプである。すなわち、これらのセンスアンプのそれぞれは、差動対を有する。前記差動対の第1端子と第2端子は、それぞれ異なるサブアレイの1本のビット線に接続される。例えば、センスアンプ150の差動対の第1端子は、サブアレイ110のビット線BL0に接続され、センスアンプ150の差動対の第2端子は、サブアレイ120のビット線BL1に接続される。 The DRAM 100 shown in FIG. 1 further includes a plurality of sense amplifiers (SA). The bit lines of the two subarrays share one sense amplifier. Each of these sense amplifiers is a differential signal amplifier. That is, each of these sense amplifiers has a differential pair. The first terminal and the second terminal of the differential pair are connected to one bit line of different subarrays. For example, the first terminal of the differential pair of the sense amplifier 150 is connected to the bit line BL0 of the sub-array 110, and the second terminal of the differential pair of the sense amplifier 150 is connected to the bit line BL1 of the sub-array 120.

図1に示したセンスアンプ150の前記差動対の第1端子と第2端子は、等しいビット線容量を有し、高精度な差動センシング(differential sensing)のために負荷容量がマッチングしている。エッジサブアレイ(edge sub-array、例えば、サブアレイ110または140)の一側には、負荷容量マッチングができないため、センスアンプがない。エッジサブアレイ110または140は、ダミービット線(dummy bit-line、破線で示される)およびダミービット線に接続された複数のダミーメモリセル(dummy memory cell、図示せず)を含む。一般的に、ダミーメモリセルは、アイドリングの不要なメモリセルである。したがって、エッジサブアレイのうちの半分のメモリセルは、使用不可(unavailable)である。 The first terminal and the second terminal of the differential pair of the sense amplifier 150 shown in FIG. 1 have the same bit line capacitance, and the load capacitances are matched for high-precision differential sensing. There is. There is no sense amplifier on one side of the edge sub-array (eg, sub-array 110 or 140) because load capacitance matching is not possible. The edge subarray 110 or 140 includes a dummy bit-line (indicated by a dashed line) and a plurality of dummy memory cells (not shown) connected to the dummy bit line. Generally, a dummy memory cell is a memory cell that does not require idling. Therefore, half of the memory cells in the edge subarray are unavailable.

図2は、図1に示したセンスアンプ150、ビット線BL0、およびビット線BL1を示したものである。図3は、図2に示したワード線WL、制御信号CSP、制御信号CSN、データSN、ビット線BL0、およびビット線BL1の波形概略図である。図3の横軸は、時間を示し、縦軸は、信号のレベルを示す。図2および図3を参照されたい。図2に示したセンスアンプ150の第1電源端子は、制御信号CSPを受信し、センスアンプ150の第2電源端子は、制御信号CSNを受信する。図2に示したコンデンサCBLは、ビット線BL0とビット線BL1の寄生容量を示す。図2に示したメモリセルMCは、サブアレイ120においてビット線BL1に接続された複数のメモリセスのうちの1つを示す。メモリセルMCは、等価回路を示し、スイッチSWと記憶素子CSNを含む。スイッチSWの第1端子は、ビット線BL1に接続される。スイッチSWの第2端子は、記憶素子CSNに接続される。スイッチSWの制御端子は、サブアレイ120内の複数のワード線のうちの1本のワード線WLに接続される。ワード線WLがスイッチSWをオン(turn-on)した時、センスアンプ150は、ビット線BL1によりメモリセルMCのデータSNを感知し(読み出し)、データSNのレベルを増幅する。感知信号(ビット線BL0とビット線BL1の間のレベル差)は、

Figure 0006903797
で表すことができる。 FIG. 2 shows the sense amplifier 150, the bit line BL0, and the bit line BL1 shown in FIG. FIG. 3 is a schematic waveform diagram of the word line WL, the control signal CSP, the control signal CSN, the data SN, the bit line BL0, and the bit line BL1 shown in FIG. The horizontal axis of FIG. 3 indicates time, and the vertical axis indicates signal level. See FIGS. 2 and 3. The first power supply terminal of the sense amplifier 150 shown in FIG. 2 receives the control signal CSP, and the second power supply terminal of the sense amplifier 150 receives the control signal CSN. The capacitor C BL shown in FIG. 2 shows the parasitic capacitance of the bit line BL0 and the bit line BL1. The memory cell MC shown in FIG. 2 shows one of a plurality of memory cells connected to the bit line BL1 in the subarray 120. The memory cell MC represents an equivalent circuit and includes a switch SW and a storage element C SN . The first terminal of the switch SW is connected to the bit line BL1. The second terminal of the switch SW is connected to the storage element C SN. The control terminal of the switch SW is connected to one word line WL among the plurality of word lines in the sub-array 120. When the word line WL turns on the switch SW, the sense amplifier 150 senses (reads) the data SN of the memory cell MC by the bit line BL1 and amplifies the level of the data SN. The sense signal (level difference between bit line BL0 and bit line BL1) is
Figure 0006903797
Can be represented by.

センスアンプ150はNMOS対(NMOS pair)とPMOS対(PMOS pair)を含む。プロセスのばらつきにより、センスアンプ150において対になったトランジスタの間のVthミスマッチ(mismatch)が生じる。感知信号dVSIGがVthミスマッチよりも大きくなければ、センスアンプ150は、感知信号dVSIGを正確に感知することができない。しかしながら、プロセスが縮小すると、セル記憶ノード(cell storage node, CSN)の容量が減少し、感知信号dVSIGが小さくなる。また、チップ上のセンスアンプの数量が増加するにつれ、Vthミスマッチも、統計上、増加する。したがって、プロセスが縮小するにつれて、感知信号マージン(sense signal margin)が減少します。 The sense amplifier 150 includes an OSPF pair (NMOS pair) and a MIMO pair (PMOS pair). Process variability results in a V th mismatch between the paired transistors in the sense amplifier 150. Unless the sense signal dV SIG is greater than the V th mismatch, the sense amplifier 150 cannot accurately sense the sense signal dV SIG. However, as the process shrinks, the capacity of the cell storage node (CSN) decreases and the sense signal dV SIG decreases. Also, as the number of sense amplifiers on the chip increases, so does the V th mismatch statistically. Therefore, as the process shrinks, the sense signal margin decreases.

注意すべきこととして、「先行技術」の段落の内容は、本発明を理解しやすくするためのものである。「先行技術」の段落が開示する内容(または全ての内容)は、本発明が属する技術分野において通常の知識を有する者が知っている周知の技術ではない可能性がある。「先行技術」の段落が開示する内容は、当該内容が本発明の出願前に本発明が属する技術分野において通常の知識を有する者にとって既に知られていることを表すものではない。 It should be noted that the content of the "Prior Art" paragraph is intended to facilitate the understanding of the present invention. The content (or all content) disclosed in the paragraph "Prior Art" may not be a well-known technique known to those with ordinary knowledge in the technical field to which the present invention belongs. The content disclosed in the paragraph "Prior Art" does not represent that the content is already known to a person having ordinary knowledge in the technical field to which the present invention belongs prior to the filing of the present invention.

本発明は、ビット線のデータを感知する(読み出す)ためのセンスアンプ装置を提供する。 The present invention provides a sense amplifier device for sensing (reading) bit line data.

本発明の1つの実施形態において、上述したセンスアンプ装置は、第1センスアンプと、第2センスアンプと、第3センスアンプとを含む。第1センスアンプの入力端子は、第1ビット線に接続される。第2センスアンプの入力端子は、第2ビット線に接続される。第3センスアンプは、差動入力対と差動出力対を有し、差動入力対の第1入力端子は、第1センスアンプの出力端子に接続され、差動入力対の第2入力端子は、第2センスアンプの出力端子に接続され、差動出力対の第1出力端子は、第1センスアンプの入力端子に接続され、差動出力対の第2出力端子は、第2センスアンプの入力端子に接続される。 In one embodiment of the present invention, the sense amplifier device described above includes a first sense amplifier, a second sense amplifier, and a third sense amplifier. The input terminal of the first sense amplifier is connected to the first bit line. The input terminal of the second sense amplifier is connected to the second bit line. The third sense amplifier has a differential input pair and a differential output pair, and the first input terminal of the differential input pair is connected to the output terminal of the first sense amplifier, and the second input terminal of the differential input pair. Is connected to the output terminal of the second sense amplifier, the first output terminal of the differential output pair is connected to the input terminal of the first sense amplifier, and the second output terminal of the differential output pair is the second sense amplifier. It is connected to the input terminal of.

以上のように、本発明の実施形態の第1センスアンプおよび(または)第2センスアンプは、ビット線上の小信号を増幅することができる。上述した第3センスアンプは、増幅された差動信号を受信することができる。したがって、このセンスアンプ装置は、ビット線のデータを感知する(読み出す)ことができる。 As described above, the first sense amplifier and / or the second sense amplifier of the embodiment of the present invention can amplify a small signal on the bit line. The third sense amplifier described above can receive the amplified differential signal. Therefore, this sense amplifier device can sense (read) bit line data.

本発明の上記および他の目的、特徴、および利点をより分かり易くするため、図面と併せた幾つかの実施形態を以下に説明する。 To better understand the above and other objects, features, and advantages of the present invention, some embodiments in conjunction with the drawings are described below.

添付図面は、本発明の原理がさらに理解されるために含まれており、本明細書に組み込まれ、且つその一部を構成するものである。図面は、本発明の実施形態を例示しており、説明とともに、本発明の原理を説明する役割を果たしている。 The accompanying drawings are included for further understanding of the principles of the present invention, incorporated herein by reference, and constitute a portion thereof. The drawings exemplify embodiments of the present invention and serve to explain the principles of the present invention as well as explain them.

DRAM内のメモリセルアレイの回路ブロック(circuit block)概略図である。It is a schematic diagram of a circuit block of a memory cell array in a DRAM. 図1に示したセンスアンプおよびビット線を示したものである。The sense amplifier and the bit line shown in FIG. 1 are shown. 図2に示したワード線、制御信号、データ、およびビット線の波形概略図である。FIG. 5 is a schematic waveform diagram of word lines, control signals, data, and bit lines shown in FIG. 本発明の1つの実施形態に係るセンスアンプ装置の回路ブロック概略図である。It is the circuit block schematic diagram of the sense amplifier device which concerns on one Embodiment of this invention. 本発明の1つの実施形態に係るセンスアンプの回路概略図である。It is a circuit schematic diagram of the sense amplifier which concerns on one Embodiment of this invention. 本発明の1つの実施形態に係る図5に示した信号を説明するシーケンス概略図である。It is a sequence schematic diagram explaining the signal shown in FIG. 5 which concerns on one Embodiment of this invention. 本発明の別の実施形態に係るセンスアンプの回路概略図である。It is a circuit schematic diagram of the sense amplifier which concerns on another embodiment of this invention. 本発明の1つの実施形態に係る図7に示した信号を説明するシーケンス概略図である。It is a sequence schematic diagram explaining the signal shown in FIG. 7 which concerns on one Embodiment of this invention. 本発明のさらに別の実施形態に係る電圧発生回路概略図である。It is the schematic of the voltage generation circuit which concerns on still another Embodiment of this invention. 本発明のさらに別の実施形態に係る図4に示したセンスアンプを説明する回路概略図である。It is a circuit schematic diagram explaining the sense amplifier shown in FIG. 4 which concerns on still another Embodiment of this invention. 本発明の1つの実施形態に係る図10に示した信号を説明するシーケンス概略図である。It is a sequence schematic diagram explaining the signal shown in FIG. 10 which concerns on one Embodiment of this invention. 本発明のさらに別の実施形態に係る図4に示したセンスアンプを説明する回路概略図である。It is a circuit schematic diagram explaining the sense amplifier shown in FIG. 4 which concerns on still another Embodiment of this invention. 本発明の1つの実施形態に係る図12に示した信号を説明するシーケンス概略図である。It is a sequence schematic diagram explaining the signal shown in FIG. 12 which concerns on one Embodiment of this invention.

本願の明細書全文(請求項を含む)において使用している「接続(連接)」という語句は、直接的または間接的ないかなる接続手段も指すことができる。例を挙げて説明すると、文中において、第1装置が第2装置に接続(連接)されると記述されている場合、当該第1装置が直接当該第2装置に接続されていると解釈してもよく、あるいは当該第1装置がその他の装置またはある種の接続手段により間接的に当該第2装置に接続されていると解釈してもよい。また、可能な限り、図面および実施形態において、同じ符号の素子/部材/ステップを使用して同じ、または類似する部分を表すものとする。異なる実施形態において同じ符号を使用する、あるいは同じ用語の素子/部材/ステップを使用することにより、相互に関連説明を参照することができる。 The phrase "connection" as used in the full text of the specification (including claims) can refer to any direct or indirect means of connection. To explain with an example, when it is described in the text that the first device is connected (connected) to the second device, it is interpreted that the first device is directly connected to the second device. Alternatively, it may be interpreted that the first device is indirectly connected to the second device by another device or some kind of connecting means. Also, wherever possible, elements / members / steps of the same designation shall be used in the drawings and embodiments to represent the same or similar parts. Relevant descriptions can be referenced by using the same reference numerals in different embodiments, or by using elements / members / steps of the same term.

図4は、本発明の1つの実施形態に係るセンスアンプ装置400の回路ブロック(circuit block)概略図である。センスアンプ装置400は、二段センスアンプ(2 stages sense amplifier)であってもよい。図4の実施形態において、センスアンプ装置400は、センスアンプ410〜430とを含む。センスアンプ410の入力端子は、ビット線BLaに接続される。センスアンプ420の入力端子は、ビット線BLbに接続される。ビット線BLaとビット線BLbは、図1と図2に示したビット線(bit-line)BL0とビット線BL1の関連説明を参照して類推することができる。 FIG. 4 is a schematic diagram of a circuit block of the sense amplifier device 400 according to one embodiment of the present invention. The sense amplifier device 400 may be a two-stage sense amplifier. In the embodiment of FIG. 4, the sense amplifier device 400 includes sense amplifiers 410 to 430. The input terminal of the sense amplifier 410 is connected to the bit line BLa. The input terminal of the sense amplifier 420 is connected to the bit line BLb. The bit line BLa and the bit line BLb can be inferred by referring to the related description of the bit line (bit-line) BL0 and the bit line BL1 shown in FIGS. 1 and 2.

ビット線BLaは、DRAM(dynamic random access memory)内のメモリセルアレイ(memory cell array)の1つのサブアレイ(sub-array)の中の複数のメモリセル(memory cell、例えば、メモリセルMC1)に接続され、ビット線BLbは、前記メモリセルアレイの別のサブアレイの中の複数のメモリセル(例えば、メモリセルMC2)に接続される。前記サブアレイは、図1に示したサブアレイ110〜140の関連説明を参照して類推することができ、メモリセルMC1とメモリセルMC2は、図2に示したメモリセルMCの関連説明を参照して類推することができるため、ここでは説明を省略する。 The bit line BLa is connected to a plurality of memory cells (memory cells, for example, memory cell MC1) in one sub-array of the memory cell array in the DRAM (dynamic random access memory). , The bit line BLb is connected to a plurality of memory cells (for example, memory cell MC2) in another subarray of the memory cell array. The sub-array can be inferred by referring to the related description of the sub-arrays 110 to 140 shown in FIG. 1, and the memory cell MC1 and the memory cell MC2 refer to the related description of the memory cell MC shown in FIG. Since it can be inferred, the description is omitted here.

センスアンプ410およびセンスアンプ420は、非差動信号アンプ(シングルエンド信号アンプ)または任意の適切な種類のアンプであってもよい。センスアンプ410は、ビット線BLa上の信号を感知して増幅し、増幅された信号をノードSEN0に出力することができ、センスアンプ420は、ビット線BLb上の信号を感知して増幅し、増幅された信号をノードSEN1に出力することができる。センスアンプ410がビット線BLa上の信号に対応する増幅された信号をノードSEN0に出力した時、センスアンプ420は、ノードSEN1を基準電圧VSEN1のレベル(例えば、1.2V)に設定することができる。センスアンプ420がビット線BLb上の信号に対応する増幅された信号をノードSEN1に出力した時、センスアンプ410は、ノードSEN0を基準電圧VSEN0のレベル(例えば、1.2V)に設定することができる。 The sense amplifier 410 and the sense amplifier 420 may be a non-differential signal amplifier (single-ended signal amplifier) or any suitable type of amplifier. The sense amplifier 410 can detect and amplify the signal on the bit line BLa and output the amplified signal to the node SEN0, and the sense amplifier 420 senses and amplifies the signal on the bit line BLb. The amplified signal can be output to the node SEN1. When the sense amplifier 410 outputs the amplified signal corresponding to the signal on the bit line BLa to the node SEN0, the sense amplifier 420 may set the node SEN1 to the level of the reference voltage VSEN1 (for example, 1.2V). it can. When the sense amplifier 420 outputs the amplified signal corresponding to the signal on the bit line BLb to the node SEN1, the sense amplifier 410 may set the node SEN0 to the level of the reference voltage VSEN0 (for example, 1.2V). it can.

センスアンプ430は、差動信号アンプであってもよい。センスアンプ430は、差動入力対と差動出力対を有する。前記差動入力対の第1入力端子は、ノードSEN0を介してセンスアンプ410の出力端子に接続され、前記差動入力対の第2入力端子は、ノードSEN1を介してセンスアンプ420の出力端子に接続される。センスアンプ430の差動出力対は、ビット線BLaとビット線BLbに対する感知結果を次段回路(例えば、A/Dコンバータ)に提供することができる。また、前記差動出力対の第1出力端子は、センスアンプ410の入力端子に接続され、前記差動出力対の第2出力端子は、センスアンプ420の入力端子に接続される。したがって、センスアンプ430は、ノードSEN0とノードSEN1の間の差動電圧(differential voltage)を感知して増幅し、増幅された信号をビット線BLaとビット線BLbに出力することができる。 The sense amplifier 430 may be a differential signal amplifier. The sense amplifier 430 has a differential input pair and a differential output pair. The first input terminal of the differential input pair is connected to the output terminal of the sense amplifier 410 via the node SEN0, and the second input terminal of the differential input pair is the output terminal of the sense amplifier 420 via the node SEN1. Connected to. The differential output pair of the sense amplifier 430 can provide the sensing result for the bit line BLa and the bit line BLb to the next stage circuit (for example, an A / D converter). Further, the first output terminal of the differential output pair is connected to the input terminal of the sense amplifier 410, and the second output terminal of the differential output pair is connected to the input terminal of the sense amplifier 420. Therefore, the sense amplifier 430 can sense and amplify the differential voltage between the node SEN0 and the node SEN1 and output the amplified signal to the bit line BLa and the bit line BLb.

上述した二段センスアンプ(センスアンプ装置400)において、ビット線(ビット線BLaまたはBLb)上の小信号が第1段センスアンプ(センスアンプ410または420)に増幅された後、増幅された信号を第2段センスアンプ(センスアンプ430)に出力する。したがって、センスアンプ430が受信した差動信号の強度は、図1に示したセンスアンプ(例えば、センスアンプ150)が受信した差動信号の強度よりも大きい。したがって、プロセスの縮小にもかかわらず、図4に示した実施形態は、十分な感知信号マージン(sense signal margin)を実現することができる。したがって、センスアンプ装置400は、ミスマッチに対する耐性(immunity to mismatch)を有する。また、正確なビット線容量マッチング(bit-line capacitance match)を必要としない。したがって、エッジサブアレイ(edge sub-array、例えば、図1に示したサブアレイ110または140)は、両側においてセンスアンプ装置400を配置することができ、エッジサブアレイのメモリセルを使用することができる。 In the above-mentioned two-stage sense amplifier (sense amplifier device 400), a small signal on the bit line (bit line BLa or BLb) is amplified by the first-stage sense amplifier (sense amplifier 410 or 420), and then the amplified signal. Is output to the second-stage sense amplifier (sense amplifier 430). Therefore, the strength of the differential signal received by the sense amplifier 430 is higher than the strength of the differential signal received by the sense amplifier (for example, the sense amplifier 150) shown in FIG. Therefore, despite the reduction of the process, the embodiment shown in FIG. 4 can achieve a sufficient sense signal margin. Therefore, the sense amplifier device 400 has immunity to mismatch. Also, it does not require accurate bit-line capacitance match. Therefore, in the edge sub-array (for example, the sub-array 110 or 140 shown in FIG. 1), the sense amplifier devices 400 can be arranged on both sides, and the memory cells of the edge sub-array can be used.

図5は、本発明の1つの実施形態に係るセンスアンプ500の回路概略図である。センスアンプ500は、図4のセンスアンプ410および420に適している。図5に示した基準電圧VSENは、図4に示した基準電圧VSEN0または基準電圧VSEN1と比較することができる、図5に示したビット線BLは、図4に示したビット線BLaおよびビット線BLbと比較することができる、図5に示したノードSENは、図4に示したノードSEN0またはノードSEN1と比較することができる。図5に示した基準電圧VSEN、制御信号SENC、および制御信号BLCは、その他の装置(図示せず、例えば、コントローラ、基準電圧生成回路等)により提供することができる。 FIG. 5 is a schematic circuit diagram of the sense amplifier 500 according to one embodiment of the present invention. The sense amplifier 500 is suitable for the sense amplifiers 410 and 420 of FIG. The reference voltage VSEN shown in FIG. 5 can be compared with the reference voltage VSEN0 or the reference voltage VSEN1 shown in FIG. 4, and the bit line BL shown in FIG. 5 is the bit line BLa and the bit line shown in FIG. The node SEN shown in FIG. 5, which can be compared with the BLb, can be compared with the node SEN0 or SEN1 shown in FIG. The reference voltage VSEN, the control signal SENC, and the control signal BLC shown in FIG. 5 can be provided by other devices (not shown, for example, a controller, a reference voltage generation circuit, etc.).

図5に示したセンスアンプ500は、トランジスタ510と、トランジスタ520とを含む。図5の実施形態において、トランジスタ510は、PMOS(p-channel metal oxide semiconductor)トランジスタまたはその他のトランジスタを含み、トランジスタ520は、NMOS(n-channel metal oxide semiconductor)トランジスタまたはその他のトランジスタを含む。トランジスタ510の第1端子(例えば、ソース)は、基準電圧VSENに接続される。トランジスタ510の第2端子(例えば、ドレイン)は、センスアンプ500の出力端子に接続され、増幅された信号(例えば、基準電圧VSEN)をノードSENに出力する。トランジスタ510の制御端子(例えば、ゲート)は、制御信号SENCにおいて制御される。トランジスタ520の第1端子(例えば、ソース)は、センスアンプ500の入力端子に接続され、ビット線BLのデータ信号を受信する。トランジスタ520の第2端子(例えば、ドレイン)は、トランジスタ510の第2端子に接続される。トランジスタ520の制御端子(例えば、ゲート)は、制御信号BLCにおいて制御される。 The sense amplifier 500 shown in FIG. 5 includes a transistor 510 and a transistor 520. In the embodiment of FIG. 5, the transistor 510 includes a MOSFET (p-channel metal oxide semiconductor) transistor or other transistor, and the transistor 520 includes an NMOS (n-channel metal oxide semiconductor) transistor or other transistor. The first terminal (eg, source) of transistor 510 is connected to the reference voltage VSEN. The second terminal (for example, drain) of the transistor 510 is connected to the output terminal of the sense amplifier 500, and outputs an amplified signal (for example, reference voltage VSEN) to the node SEN. The control terminal (for example, the gate) of the transistor 510 is controlled by the control signal SENC. The first terminal (for example, the source) of the transistor 520 is connected to the input terminal of the sense amplifier 500 and receives the data signal of the bit line BL. The second terminal (for example, drain) of the transistor 520 is connected to the second terminal of the transistor 510. The control terminal (for example, the gate) of the transistor 520 is controlled by the control signal BLC.

図6は、本発明の1つの実施形態に係る図5に示した信号を説明するシーケンス概略図である。図6の横軸は、時間を示し、縦軸は、信号のレベルを示す。図6は、ワード線WL上の制御信号を示す。ワード線WL上の制御信号が高論理レベルの期間を、ワード線イネーブル期間WLEと称す。ワード線WL上の制御信号が高論理レベルの時、ビット線BLに接続された複数のメモリセルのうちの1つの対応するメモリセルが選択され、この選択された対応するメモリセルは、データをビット線BLに出力する。 FIG. 6 is a schematic sequence diagram illustrating the signal shown in FIG. 5 according to one embodiment of the present invention. The horizontal axis of FIG. 6 indicates time, and the vertical axis indicates signal level. FIG. 6 shows a control signal on the word line WL. The period during which the control signal on the word line WL has a high logic level is referred to as the word line enable period WLE. When the control signal on the word line WL is at a high logic level, the corresponding memory cell of one of the plurality of memory cells connected to the bit line BL is selected, and this selected corresponding memory cell displays data. Output to bit line BL.

図5および図6を参照されたい。ビット線プリチャージ(pre-charge)期間PCにおいて、制御信号SENCがトランジスタ510をオン(turn on)し、制御信号BLCがトランジスタ520を駆動して、ビット線BLに対してプリチャージ(pre-charge)を行う。制御信号BLCは、トランジスタ520を駆動して、ビット線BLのレベルを適切なプリチャージレベル(例えば、0.5V)に設定することができる。 See FIGS. 5 and 6. Bit line pre-charge period In the PC, the control signal SENC turns on the transistor 510, and the control signal BLC drives the transistor 520 to pre-charge the bit line BL. )I do. The control signal BLC can drive the transistor 520 to set the level of the bit line BL to an appropriate precharge level (eg, 0.5V).

続いて、ワード線イネーブル期間WLEの初期化期間601の前に、制御信号SENCがトランジスタ510を導通し、制御信号BLCがトランジスタ520を切断(turn off)する。トランジスタ510は、初期化期間601において、ノードSENのレベルをプリチャージレベル(基準電圧VSEN)に設定することができる。トランジスタ520が切断された後、ワード線イネーブル期間WLEの初期化期間601において、ワード線WLは、読み出したいメモリセルを開く(turn on)ため、読み出したいメモリセルは、プリチャージされたビット線BL上にデータを出力することができる。データが「1」の状況において、ビット線BLのレベルは、プリチャージレベルよりも高くなる。データが「0」の状況において、ビット線BLのレベルは、プリチャージレベルよりも低くなる。 Subsequently, the control signal SENC conducts the transistor 510 and the control signal BLC turns off the transistor 520 before the initialization period 601 of the word line enable period WLE. In the initialization period 601 of the transistor 510, the level of the node SEN can be set to the precharge level (reference voltage VSEN). After the transistor 520 is disconnected, in the initialization period 601 of the word line enable period WLE, the word line WL opens the memory cell to be read (turn on), so that the memory cell to be read is the precharged bit line BL. You can output the data above. In the situation where the data is "1", the level of the bit line BL is higher than the precharge level. In the situation where the data is "0", the level of the bit line BL is lower than the precharge level.

初期化期間601が終了すると、制御信号SENCは、トランジスタ510を切断する。初期化期間601の後のワード線イネーブル期間WLEの感知期間602において、制御信号SENCがトランジスタ510を切断し、制御信号BLCがトランジスタ520を駆動して、ビット線BLを感知する。感知期間602、且つビット線BLのデータが第1論理状態(例えば、「1」)の状況において、トランジスタ520が切断されるため、ノードSENをプリチャージレベル(例えば、1.2V)に保持することができる。感知期間602、且つビット線BLのデータが第2論理状態(例えば、「0」)の状況において、トランジスタ520がオンする。ノードSENの容量(capacitance)は、ビット線BLの容量よりも小さいため、ノードSENは、ビット線BLのレベルに近づくまで放電される。 When the initialization period 601 ends, the control signal SENC disconnects the transistor 510. In the word line enable period WLE sensing period 602 after the initialization period 601 the control signal SENC disconnects the transistor 510 and the control signal BLC drives the transistor 520 to sense the bit line BL. In the situation where the sensing period 602 and the bit line BL data are in the first logical state (for example, "1"), the transistor 520 is disconnected, so that the node SEN is held at the precharge level (for example, 1.2V). be able to. The transistor 520 is turned on in the situation where the sensing period 602 and the data of the bit line BL are in the second logical state (for example, “0”). Since the capacitance of the node SEN is smaller than the capacitance of the bit line BL, the node SEN is discharged until it approaches the level of the bit line BL.

図7は、本発明の別の実施形態に係るセンスアンプ700の回路概略図である。センスアンプ700は、図4のセンスアンプ410および420に適している。図7に示した基準電圧VSENは、図4に示した基準電圧VSEN0または基準電圧VSEN1と比較することができる、図7に示したビット線BLは、図4に示したビット線BLaおよびビット線BLbと比較することができる、図7に示したノードSENは、図4に示したノードSEN0またはノードSEN1と比較することができる。図7に示した基準電圧VSEN、制御信号SENC、制御信号PBLCS、基準電圧VREF_BLC、および制御信号NBLCSは、その他の装置(図示せず、例えば、コントローラ、基準電圧生成回路等)により提供することができる。設計の要求に応じて、基準電圧VREF_BLCは、固定電圧であってもよい。 FIG. 7 is a schematic circuit diagram of a sense amplifier 700 according to another embodiment of the present invention. The sense amplifier 700 is suitable for the sense amplifiers 410 and 420 of FIG. The reference voltage VSEN shown in FIG. 7 can be compared with the reference voltage VSEN0 or the reference voltage VSEN1 shown in FIG. 4. The bit line BL shown in FIG. 7 is the bit line BLa and the bit line shown in FIG. The node SEN shown in FIG. 7, which can be compared with BLb, can be compared with the node SEN0 or node SEN1 shown in FIG. The reference voltage VSEN, the control signal SENC, the control signal PBLCS, the reference voltage VREF_BLC, and the control signal NBLCS shown in FIG. 7 can be provided by other devices (not shown, for example, a controller, a reference voltage generation circuit, etc.). it can. Depending on the design requirements, the reference voltage VREF_BLC may be a fixed voltage.

図7に示したセンスアンプ700は、制御回路710と、トランジスタ720と、トランジスタ730とを含む。図7に示したトランジスタ720およびトランジスタ730は、図5に示したトランジスタ510およびトランジスタ520の関連説明を参照して類推することができるため、ここでは説明を省略する。トランジスタ720の第1端子(例えば、ソース)は、基準電圧VSENに接続される。トランジスタ720の第2端子(例えば、ドレイン)は、センスアンプ700の出力端子に接続され、増幅された信号(例えば、基準電圧VSEN)をノードSENに出力する。トランジスタ720の制御端子(例えば、ゲート)は、制御信号SENCにおいて制御される。トランジスタ730の第1端子(例えば、ソース)は、センスアンプ700の入力端子に接続され、ビット線BLのデータ信号を受信する。トランジスタ730の第2端子(例えば、ドレイン)は、トランジスタ720の第2端子に接続される。トランジスタ730の制御端子(例えば、ゲート)は、制御信号BLCにおいて制御される。 The sense amplifier 700 shown in FIG. 7 includes a control circuit 710, a transistor 720, and a transistor 730. Since the transistor 720 and the transistor 730 shown in FIG. 7 can be inferred by referring to the related description of the transistor 510 and the transistor 520 shown in FIG. 5, the description thereof will be omitted here. The first terminal (eg, source) of transistor 720 is connected to the reference voltage VSEN. The second terminal (for example, drain) of the transistor 720 is connected to the output terminal of the sense amplifier 700, and outputs an amplified signal (for example, reference voltage VSEN) to the node SEN. The control terminal (for example, the gate) of the transistor 720 is controlled by the control signal SENC. The first terminal (for example, the source) of the transistor 730 is connected to the input terminal of the sense amplifier 700 and receives the data signal of the bit line BL. The second terminal (for example, drain) of the transistor 730 is connected to the second terminal of the transistor 720. The control terminals (eg, gates) of the transistor 730 are controlled by the control signal BLC.

制御回路710の入力端子は、センスアンプ700の入力端子に接続され、ビット線BLのデータ信号を受信する。制御回路710は、制御信号BLCを生成してトランジスタ730の制御端子に供給することができる。制御回路710は、センスアンプ700の入力端子のレベル(ビット線BLのデータ信号のレベル)に基づいて、制御信号BLCを動的に調整することができる。 The input terminal of the control circuit 710 is connected to the input terminal of the sense amplifier 700 and receives the data signal of the bit line BL. The control circuit 710 can generate a control signal BLC and supply it to the control terminal of the transistor 730. The control circuit 710 can dynamically adjust the control signal BLC based on the level of the input terminal of the sense amplifier 700 (the level of the data signal of the bit line BL).

図7の実施形態において、制御回路710は、トランジスタ711と、トランジスタ712とを含む。図7の実施形態において、トランジスタ711は、PMOSトランジスタまたはその他のトランジスタを含み、トランジスタ712は、NMOSトランジスタまたはその他のトランジスタを含む。トランジスタ711の第1端子(例えば、ソース)は、制御信号PBLCSを受信する。トランジスタ711の第2端子(例えば、ドレイン)は、制御回路710の出力端子に接続され、制御信号BLCを生成してトランジスタ730の制御端子に供給する。トランジスタ711の制御端子(例えば、ゲート)は、基準電圧VREF_BLCにおいて制御される。トランジスタ712の第1端子(例えば、ソース)は、制御信号NBLCSを受信する。トランジスタ712の第2端子(例えば、ドレイン)は、トランジスタ711の第2端子に接続される。トランジスタ712の制御端子(例えば、ゲート)は、制御回路710の入力端子に接続され、ビット線BLのデータ信号を受信する。 In the embodiment of FIG. 7, the control circuit 710 includes a transistor 711 and a transistor 712. In the embodiment of FIG. 7, the transistor 711 includes a NMOS transistor or other transistor, and the transistor 712 includes an NMOS transistor or other transistor. The first terminal (for example, the source) of the transistor 711 receives the control signal PBLCS. The second terminal (for example, drain) of the transistor 711 is connected to the output terminal of the control circuit 710, generates a control signal BLC, and supplies the control signal BLC to the control terminal of the transistor 730. The control terminal (for example, the gate) of the transistor 711 is controlled at the reference voltage VREF_BLC. The first terminal (eg, source) of transistor 712 receives the control signal NBLCS. The second terminal (for example, drain) of the transistor 712 is connected to the second terminal of the transistor 711. The control terminal (for example, the gate) of the transistor 712 is connected to the input terminal of the control circuit 710 and receives the data signal of the bit line BL.

図8は、本発明の1つの実施形態に係る図7に示した信号を説明するシーケンス概略図である。図7および図8を参照されたい。ビット線プリチャージ期間PCにおいて、制御信号PBLCSがプルアップされるため、トランジスタ711がオンし、制御信号BLCをプルアップする。ビット線プリチャージ期間PCにおいて、制御信号SENCがトランジスタ720をオン(turn on)し、制御信号BLCがトランジスタ730を駆動して、ビット線BLに対してプリチャージを行う。トランジスタ730は、ビット線BLのレベルを適切なプリチャージレベル(例えば、0.5V)に設定することができる。ビット線BLのこのプリチャージレベルは、トランジスタ712の制御端子にフィードバックされるため、トランジスタ712は、ビット線BLのレベルに基づいて、制御信号BLCのレベルを動的に調整することができる。 FIG. 8 is a schematic sequence diagram illustrating the signal shown in FIG. 7 according to one embodiment of the present invention. See FIGS. 7 and 8. Since the control signal PBLCS is pulled up in the bit line precharge period PC, the transistor 711 is turned on and the control signal BLC is pulled up. Bit line precharge period In the PC, the control signal SENC turns on the transistor 720, and the control signal BLC drives the transistor 730 to precharge the bit line BL. The transistor 730 can set the level of the bit line BL to an appropriate precharge level (for example, 0.5V). Since this precharge level of the bit line BL is fed back to the control terminal of the transistor 712, the transistor 712 can dynamically adjust the level of the control signal BLC based on the level of the bit line BL.

ビット線プリチャージ期間PCが終了すると、制御信号PBLCSがプルダウンされるため、トランジスタ711が切断されて、制御信号BLCがトランジスタ712によってプルダウンされる。続いて、ワード線イネーブル期間WLEの初期化期間801において、制御信号SENCがトランジスタ720をオンし、制御信号BLCがトランジスタ730を切断(turn off)する。トランジスタ720は、初期化期間801において、ノードSENのレベルをプリチャージレベル(基準電圧VSEN)に設定することができる。トランジスタ730が切断された後、ワード線WLは、読み出したいメモリセルをオンし、プリチャージされたビット線BL上にデータを出力することができる。 When the bit line precharge period PC ends, the control signal PBLCS is pulled down, so that the transistor 711 is disconnected and the control signal BLC is pulled down by the transistor 712. Subsequently, in the initialization period 801 of the word line enable period WLE, the control signal SENC turns on the transistor 720, and the control signal BLC turns off the transistor 730. In the initialization period 801 of the transistor 720, the level of the node SEN can be set to the precharge level (reference voltage VSEN). After the transistor 730 is disconnected, the word line WL can turn on the memory cell to be read and output data on the precharged bit line BL.

初期化期間801が終了すると、制御信号SENCがトランジスタ720を切断する。ワード線イネーブル期間WLEの感知期間802において、制御信号PBLCSが再度プルアップされるため、トランジスタ711が導通し、制御信号BLCをプルアップする。感知期間802において、制御信号SENCがトランジスタ720を切断し、制御信号BLCがトランジスタ730を駆動して、ビット線BLを感知する。感知期間802、且つビット線BLのデータが第1論理状態(例えば、「1」)の状況において、トランジスタ730が切断されるため、ノードSENをプリチャージレベル(例えば、1.2V)に保持することができる。感知期間802、且つビット線BLのデータが第2論理状態(例えば、「0」)の状況において、トランジスタ730がオンするため、ノードSENは、ビット線BLのレベルに近づくまで放電される。ビット線BLのレベル(データ電圧のレベル)は、トランジスタ712の制御端子にフィードバックされるため、トランジスタ712は、ビット線BLのレベルに基づいて、制御信号BLCのレベルを動的に調整することができる。 When the initialization period 801 ends, the control signal SENC disconnects the transistor 720. Since the control signal PBLCS is pulled up again in the detection period 802 of the word line enable period WLE, the transistor 711 is conducted and the control signal BLC is pulled up. In the sensing period 802, the control signal SENC cuts the transistor 720, and the control signal BLC drives the transistor 730 to sense the bit line BL. In the situation where the sensing period 802 and the bit line BL data are in the first logical state (for example, “1”), the transistor 730 is disconnected, so that the node SEN is held at the precharge level (for example, 1.2V). be able to. In the situation where the sensing period 802 and the data of the bit line BL are in the second logical state (for example, “0”), the transistor 730 is turned on, so that the node SEN is discharged until it approaches the level of the bit line BL. Since the level of the bit line BL (data voltage level) is fed back to the control terminal of the transistor 712, the transistor 712 can dynamically adjust the level of the control signal BLC based on the level of the bit line BL. it can.

ビット線プリチャージ期間PCおよび感知期間802において、制御回路710は、ビット線BLのレベルに基づいて、制御信号BLCを動的に制御することができる。したがって、センスアンプ700は、高速ビット線プリチャージおよびセンシングを実現することができる。 In the bit line precharge period PC and the sensing period 802, the control circuit 710 can dynamically control the control signal BLC based on the level of the bit line BL. Therefore, the sense amplifier 700 can realize high-speed bit line precharging and sensing.

図9は、本発明のさらに別の実施形態に係る電圧発生回路の回路概略図である。図9に示した供給電圧VP、バイアス電圧VBLP、および基準電圧VSSは、その他の装置(図示せず、例えば、コントローラ、基準電圧生成回路等)により提供することができる。バイアス電圧VBLPは、ビット線プリチャージレベルターゲット(例えば、0.5V)であってもよい。図9に示す電圧発生回路は、制御回路710に電圧を供給することができ、すべてのセンスアンプが電圧発生回路を共有する。図9に示す電圧発生器では、供給電圧VPのレベルは制御信号PBLCSの高論理レベルと同じであり、出力電圧VNのレベルは制御信号NBLCSの低論理レベルと同じである。バイアス電圧VBLPは、基準電圧VREF_BLCのレベルおよび出力電圧VNのレベルを制御することができ、ビット線プリチャージレベルは、バイアス電圧VBLPのレベルと同じになる。 FIG. 9 is a schematic circuit diagram of a voltage generating circuit according to still another embodiment of the present invention. The supply voltage VP, the bias voltage VPLP, and the reference voltage VSS shown in FIG. 9 can be provided by other devices (not shown, for example, a controller, a reference voltage generation circuit, etc.). The bias voltage VPLP may be a bit-line precharge level target (eg, 0.5 V). The voltage generation circuit shown in FIG. 9 can supply a voltage to the control circuit 710, and all sense amplifiers share the voltage generation circuit. In the voltage generator shown in FIG. 9, the level of the supply voltage VP is the same as the high logic level of the control signal PBLCS, and the level of the output voltage VN is the same as the low logic level of the control signal NBLCS. The bias voltage VBLP can control the level of the reference voltage VREF_BLC and the level of the output voltage VN, and the bit line precharge level becomes the same as the level of the bias voltage VBLP.

トランジスタ913の第1端子(例えば、ソース)は、供給電圧VPを受信する。トランジスタ913の第2端子(例えば、ドレイン)は、トランジスタ913の制御端子(例えば、ゲート)に接続され、基準電圧VREF_BLCを提供する。トランジスタ914の第1端子(例えば、ドレイン)は、トランジスタ913の第2端子に接続される。トランジスタ914の第2端子(例えば、ソース)は、電流源IBLCに接続され、出力電圧VNを提供する。トランジスタ914の制御端子(例えば、ゲート)は、バイアス電圧VBLPを受信する。電流源IBLCは、さらに、基準電圧VSSに接続される。電流源IBLCは、センスアンプの制御回路710内の電流消費(current consumption)を制御することができる。 The first terminal (eg, source) of transistor 913 receives the supply voltage VP. A second terminal (eg, drain) of transistor 913 is connected to a control terminal (eg, gate) of transistor 913 to provide a reference voltage VREF_BLC. The first terminal (for example, drain) of the transistor 914 is connected to the second terminal of the transistor 913. A second terminal (eg, source) of transistor 914 is connected to the current source IBLC to provide an output voltage VN. The control terminal (eg, gate) of transistor 914 receives the bias voltage VPLP. The current source IBLC is further connected to a reference voltage VSS. The current source IBLC can control the current consumption in the control circuit 710 of the sense amplifier.

図10は、本発明のさらに別の実施形態に係る図4に示したセンスアンプ410〜430を説明する回路概略図である。図4に示したセンスアンプ410、センスアンプ420、およびセンスアンプ430は、図10の関連説明を参照して類推することができる。図10に示した基準電圧VSEN0〜VSEN1、制御信号SENC0〜SENC1、制御信号BLC0〜BLC1、電圧PCS、電圧NCS、および制御信号EQは、その他の装置(図示せず、例えば、コントローラ、基準電圧生成回路等)により提供することができる。 FIG. 10 is a schematic circuit diagram illustrating the sense amplifiers 410 to 430 shown in FIG. 4 according to still another embodiment of the present invention. The sense amplifier 410, the sense amplifier 420, and the sense amplifier 430 shown in FIG. 4 can be inferred by referring to the related description of FIG. The reference voltage VSEN0 to VSEN1, the control signal SENC0 to SENC1, the control signal BLC0 to BLC1, the voltage PCS, the voltage NCS, and the control signal EQ shown in FIG. 10 are other devices (not shown, for example, a controller, a reference voltage generation). It can be provided by a circuit, etc.).

図10に示したセンスアンプ410は、トランジスタ411〜412とを含む。トランジスタ411の第1端子(例えば、ソース)は、基準電圧VSEN0に接続される。トランジスタ411の第2端子(例えば、ドレイン)は、センスアンプ410の出力端子に接続され、増幅された信号(例えば、基準電圧VSEN0)をノードSEN0に出力する。トランジスタ411の制御端子(例えば、ゲート)は、制御信号SENC0において制御される。トランジスタ412の第1端子(例えば、ソース)は、センスアンプ410の入力端子に接続され、ビット線BLaのデータ信号を受信する。トランジスタ412の第2端子(例えば、ドレイン)は、トランジスタ411の第2端子に接続される。トランジスタ412の制御端子(例えば、ゲート)は、制御信号BLC0において制御される。図10に示したセンスアンプ410、トランジスタ411、およびトランジスタ412は、図5に示したセンスアンプ500、トランジスタ510、およびトランジスタ520の関連説明を参照して類推することができるため、ここでは説明を省略する。 The sense amplifier 410 shown in FIG. 10 includes transistors 411 to 412. The first terminal (for example, the source) of the transistor 411 is connected to the reference voltage VSEN0. The second terminal (for example, drain) of the transistor 411 is connected to the output terminal of the sense amplifier 410, and outputs an amplified signal (for example, reference voltage VSEN0) to the node SEN0. The control terminal (for example, the gate) of the transistor 411 is controlled by the control signal SENC0. The first terminal (for example, the source) of the transistor 412 is connected to the input terminal of the sense amplifier 410 and receives the data signal of the bit line BLa. The second terminal (for example, drain) of the transistor 412 is connected to the second terminal of the transistor 411. The control terminal (for example, the gate) of the transistor 412 is controlled by the control signal BLC0. The sense amplifier 410, the transistor 411, and the transistor 412 shown in FIG. 10 can be inferred by analogy with reference to the related description of the sense amplifier 500, the transistor 510, and the transistor 520 shown in FIG. Omit.

図10に示したセンスアンプ420は、トランジスタ421と、トランジスタ422とを含む。トランジスタ421の第1端子(例えば、ソース)は、基準電圧VSEN1に接続される。トランジスタ421の第2端子(例えば、ドレイン)は、センスアンプ420の出力端子に接続され、増幅された信号(例えば、基準電圧VSEN1)をノードSEN1に出力する。トランジスタ421の制御端子(例えば、ゲート)は、制御信号SENC1において制御される。トランジスタ422の第1端子(例えば、ソース)は、センスアンプ420の入力端子に接続され、ビット線BLbのデータ信号を受信する。トランジスタ422の第2端子(例えば、ドレイン)は、トランジスタ421の第2端子に接続される。トランジスタ422の制御端子(例えば、ゲート)は、制御信号BLC1において制御される。図10に示したセンスアンプ420、トランジスタ421、およびトランジスタ422は、図5に示したセンスアンプ500、トランジスタ510、およびトランジスタ520の関連説明を参照して類推することができるため、ここでは説明を省略する。 The sense amplifier 420 shown in FIG. 10 includes a transistor 421 and a transistor 422. The first terminal (for example, the source) of the transistor 421 is connected to the reference voltage VSEN1. The second terminal (for example, drain) of the transistor 421 is connected to the output terminal of the sense amplifier 420, and outputs an amplified signal (for example, reference voltage VSEN1) to the node SEN1. The control terminal (for example, the gate) of the transistor 421 is controlled by the control signal SENC1. The first terminal (for example, the source) of the transistor 422 is connected to the input terminal of the sense amplifier 420 and receives the data signal of the bit line BLb. The second terminal (for example, drain) of the transistor 422 is connected to the second terminal of the transistor 421. The control terminal (for example, the gate) of the transistor 422 is controlled by the control signal BLC1. The sense amplifier 420, the transistor 421, and the transistor 422 shown in FIG. 10 can be inferred by analogy with reference to the related description of the sense amplifier 500, the transistor 510, and the transistor 520 shown in FIG. Omit.

図10に示したセンスアンプ430は、トランジスタ431〜435とを含む。トランジスタ435の第1端子および第2端子(例えば、ソースおよびドレイン)は、それぞれビット線BLaおよびビット線BLbに接続される。トランジスタ435の制御端子(例えば、ゲート)は、制御信号EQにおいて制御される。 The sense amplifier 430 shown in FIG. 10 includes transistors 431 to 435. The first terminal and the second terminal (for example, source and drain) of the transistor 435 are connected to the bit wire BLa and the bit wire BLb, respectively. The control terminal (for example, the gate) of the transistor 435 is controlled by the control signal EQ.

トランジスタ431の第1端子(例えば、ソース)およびトランジスタ432の第1端子(例えば、ソース)は、電圧PCSに接続される。電圧PCSのレベルは、設計要求に基づいて決定することができる。トランジスタ431の第2端子(例えば、ドレイン)およびトランジスタ432の制御端子(例えば、ゲート)は、センスアンプ430の第1出力端子に接続される。センスアンプ430の上述した第1出力端子は、増幅された信号をセンスアンプ410の入力端子にフィードバックすることができる。トランジスタ431の制御端子(例えば、ゲート)およびトランジスタ432の第2端子(例えば、ドレイン)は、センスアンプ430の第2出力端子に接続される。センスアンプ430の上述した第2出力端子は、増幅された信号をセンスアンプ420の入力端子にフィードバックすることができる。 The first terminal (eg, source) of transistor 431 and the first terminal (eg, source) of transistor 432 are connected to a voltage PCS. The level of voltage PCS can be determined based on design requirements. The second terminal (for example, drain) of the transistor 431 and the control terminal (for example, gate) of the transistor 432 are connected to the first output terminal of the sense amplifier 430. The above-mentioned first output terminal of the sense amplifier 430 can feed back the amplified signal to the input terminal of the sense amplifier 410. The control terminal (for example, gate) of the transistor 431 and the second terminal (for example, drain) of the transistor 432 are connected to the second output terminal of the sense amplifier 430. The above-mentioned second output terminal of the sense amplifier 430 can feed back the amplified signal to the input terminal of the sense amplifier 420.

トランジスタ433の第1端子(例えば、ソース)およびトランジスタ434の第1端子(例えば、ソース)は、電圧NCSに接続される。電圧NCSのレベルは、設計要求に基づいて決定することができる。トランジスタ433の第2端子(例えば、ドレイン)は、センスアンプ430の第1出力端子に接続される。センスアンプ430の上述した第1出力端子は、増幅された信号をセンスアンプ410の入力端子にフィードバックすることができる。トランジスタ433の制御端子(例えば、ゲート)は、センスアンプ430の第2出力端子に接続され、ノードSEN1から増幅された信号(または基準電圧VSEN1)を受信する。トランジスタ434の第2端子(例えば、ドレイン)は、センスアンプ430の第2出力端子に接続される。センスアンプ430の上述した第2出力端子は、増幅された信号をセンスアンプ420の入力端子にフィードバックすることができる。トランジスタ434の制御端子(例えば、ゲート)は、センスアンプ430の第1入力端子に接続され、ノードSEN0から増幅された信号(または基準電圧VSEN0)を受信する。 The first terminal (eg, source) of transistor 433 and the first terminal (eg, source) of transistor 434 are connected to voltage NCS. The level of voltage NCS can be determined based on the design requirements. The second terminal (for example, drain) of the transistor 433 is connected to the first output terminal of the sense amplifier 430. The above-mentioned first output terminal of the sense amplifier 430 can feed back the amplified signal to the input terminal of the sense amplifier 410. The control terminal (for example, the gate) of the transistor 433 is connected to the second output terminal of the sense amplifier 430, and receives the amplified signal (or the reference voltage VSEN1) from the node SEN1. The second terminal (for example, drain) of the transistor 434 is connected to the second output terminal of the sense amplifier 430. The above-mentioned second output terminal of the sense amplifier 430 can feed back the amplified signal to the input terminal of the sense amplifier 420. The control terminal (for example, the gate) of the transistor 434 is connected to the first input terminal of the sense amplifier 430 and receives the amplified signal (or the reference voltage VSEN0) from the node SEN0.

図11は、本発明の1つの実施形態に係る図10に示した信号を説明するシーケンス概略図である。図11において、点線の波形は、添え字0をもつ信号(例えば、SENC0、VSEN0、BLC0、およびSEN0)を示し。実線の波形は、添え字1をもつ信号(例えば、SENC1、VSEN1、BLC1、およびSEN1)を示す。図10および図11を参照されたい。ビット線プリチャージ期間PCにおいて、電圧PCSおよび電圧NCSがプルアップされ(例えば、0.3Vから0.5Vにプルアップされ)、基準電圧VSEN0が高レベル(例えば、1.3V)になり、基準電圧VSEN1が低レベル(例えば、0.5V)になり、制御信号SENC0および制御信号SENC1がいずれも低レベル(例えば、0V)になり、制御信号BLC0が高レベルになり、制御信号BLC1が低レベルになる。したがって、ビット線プリチャージ期間PCにおいて、トランジスタ412は、ビット線BL0に対してプリチャージを行うことができ(例えば、0.3Vから0.5Vにプリチャージする)、トランジスタ411は、ノードSEN0を基準電圧VSEN0のレベル(例えば、1.3V)に設定することができ、トランジスタ421は、ノードSEN1を基準電圧VSEN1のレベル(例えば、0.5V)に設定することができる。 FIG. 11 is a schematic sequence diagram illustrating the signal shown in FIG. 10 according to one embodiment of the present invention. In FIG. 11, the dotted waveforms indicate signals with subscript 0 (eg, SENC0, VSEN0, BLC0, and SEN0). The solid waveforms indicate signals with subscript 1 (eg, SENC1, VSEN1, BLC1, and SEN1). See FIGS. 10 and 11. In the bit line precharge period PC, the voltage PCS and voltage NCS are pulled up (eg, from 0.3V to 0.5V) and the reference voltage VSEN0 becomes a high level (eg 1.3V), which is the reference. The voltage VSEN1 is at a low level (eg 0.5V), the control signal SENC0 and the control signal SENC1 are both at a low level (eg 0V), the control signal BLC0 is at a high level, and the control signal BLC1 is at a low level. become. Therefore, in the bit line precharge period PC, the transistor 412 can precharge the bit line BL0 (for example, precharge from 0.3V to 0.5V), and the transistor 411 sets the node SEN0. The reference voltage VSEN0 can be set to the level (eg 1.3V), and the transistor 421 can set the node SEN1 to the level of the reference voltage VSEN1 (eg 0.5V).

ビット線プリチャージ期間PCが終了すると、制御信号BLC0がプルダウンされるため、トランジスタ412が切断される。トランジスタ412および422が切断された後、ワード線WLは、読み出したいメモリセルをオンにするため、読み出したいメモリセルは、プリチャージされたビット線BLa上にデータを出力することができる。続いて、ワード線イネーブル期間WLEの初期化期間1101において、制御信号SENC0およびSENC1がトランジスタ411および421をオンし、制御信号BLC0およびBLC1がトランジスタ412および422を切断する。トランジスタ411および421は、初期化期間1101において、ノードSEN0およびSEN1のレベルを基準電圧VSEN0およびVSEN1のレベルに設定することができる。 When the bit line precharge period PC ends, the control signal BLC0 is pulled down, so that the transistor 412 is disconnected. After the transistors 412 and 422 are disconnected, the word line WL turns on the memory cell to be read, so that the memory cell to be read can output data on the precharged bit line BLa. Subsequently, during the initialization period 1101 of the word line enable period WLE, the control signals SENC0 and SENC1 turn on the transistors 411 and 421, and the control signals BLC0 and BLC1 disconnect the transistors 412 and 422. Transistors 411 and 421 can set the levels of the nodes SEN0 and SEN1 to the levels of the reference voltages VSEN0 and VSEN1 during the initialization period 1101.

初期化期間1101が終了すると、制御信号BLC0がプルアップされ(例えば、0Vから1.3Vにプルアップされ)、トランジスタ411を切断する。ワード線イネーブル期間WLEの感知期間1102において、制御信号SENC0が高レベル(例えば、1.3V)になり、制御信号SENC1が低レベル(例えば、0V)になるため、センスアンプ410がビット線BLa上の信号に対応する増幅された信号をノードSEN0に出力した時、トランジスタ421は、ノードSEN1を基準電圧VSEN1のレベル(例えば、0.5V)に設定することができる。感知期間1102において、制御信号BLC0が再度プルアップされ、制御信号BLC1が低レベルを維持するため、トランジスタ422が切断され、トランジスタ412は、ビット線BLaを感知することができる。センスアンプ410がビット線BLaを感知する期間において、ノードSEN1がトランジスタ421をオンし、制御信号BLC1がトランジスタ422を切断する。 When the initialization period 1101 ends, the control signal BLC0 is pulled up (for example, pulled up from 0V to 1.3V), and the transistor 411 is disconnected. Since the control signal SENC0 becomes a high level (for example, 1.3V) and the control signal SENC1 becomes a low level (for example, 0V) in the detection period 1102 of the word line enable period WLE, the sense amplifier 410 is on the bit line BLa. When the amplified signal corresponding to the signal of is output to the node SEN0, the transistor 421 can set the node SEN1 to the level of the reference voltage VSEN1 (for example, 0.5V). In the sensing period 1102, the control signal BLC0 is pulled up again and the control signal BLC1 maintains a low level, so that the transistor 422 is disconnected and the transistor 412 can sense the bit line BLa. During the period in which the sense amplifier 410 senses the bit line BLa, the node SEN1 turns on the transistor 421, and the control signal BLC1 disconnects the transistor 422.

図12は、本発明のさらに別の実施形態に係る図4に示したセンスアンプ410〜430を説明する回路概略図である。図12に示したセンスアンプ430およびトランジスタ431〜435は、図10の関連説明を参照して類推することができるため、ここでは説明を省略する。図12に示した基準電圧VSEN0〜VSEN1、制御信号SENC0〜SENC1、制御信号PBLCS0〜PBLCS1、基準電圧VREF_BLC、制御信号NBLCS0〜NBLCS1、電圧PCS、電圧NCS、および制御信号EQは、その他の装置(図示せず、例えば、コントローラ、基準電圧生成回路等)により提供することができる。 FIG. 12 is a schematic circuit diagram illustrating the sense amplifiers 410 to 430 shown in FIG. 4 according to still another embodiment of the present invention. The sense amplifier 430 and the transistors 431 to 435 shown in FIG. 12 can be inferred by analogy with reference to the related description of FIG. 10, and thus the description thereof will be omitted here. The reference voltage VSEN0 to VSEN1, control signal SENC0 to SENC1, control signal PBLCS0 to PBLCS1, reference voltage VREF_BLC, control signal NBLCS0 to NBLCS1, voltage PCS, voltage NCS, and control signal EQ shown in FIG. 12 are other devices (FIG. 12). Not shown, for example, can be provided by a controller, a reference voltage generation circuit, etc.).

図12に示したセンスアンプ410は、トランジスタ411〜414とを含む。トランジスタ411の第1端子(例えば、ソース)は、基準電圧VSEN0に接続される。トランジスタ411の第2端子(例えば、ドレイン)は、センスアンプ410の出力端子に接続され、増幅された信号(例えば、基準電圧VSEN0)をノードSEN0に出力する。トランジスタ411の制御端子(例えば、ゲート)は、制御信号SENC0において制御される。トランジスタ412の第1端子(例えば、ソース)は、センスアンプ410の入力端子に接続され、ビット線BLaのデータ信号を受信する。トランジスタ412の第2端子(例えば、ドレイン)は、トランジスタ411の第2端子に接続される。トランジスタ412の制御端子(例えば、ゲート)は、制御信号BLC0において制御される。トランジスタ413の第1端子(例えば、ソース)は、制御信号PBLCS0を受信する。トランジスタ413の第2端子(例えば、ドレイン)は、トランジスタ412の制御端子に接続され、制御信号BLC0を提供する。トランジスタ413の制御端子(例えば、ゲート)は、基準電圧VREF_BLCおいて制御される。トランジスタ414の第1端子(例えば、ソース)は、制御信号NBLCS0を受信する。トランジスタ414の第2端子(例えば、ドレイン)は、トランジスタ413の第2端子に接続される。トランジスタ414の制御端子(例えば、ゲート)は、ビット線BLaに接続される。図12に示したセンスアンプ410およびトランジスタ411〜414は、図7に示したセンスアンプ700、トランジスタ720、トランジスタ730、トランジスタ711、およびトランジスタ712の関連説明を参照して類推することができるため、ここでは説明を省略する。 The sense amplifier 410 shown in FIG. 12 includes transistors 411 to 414. The first terminal (for example, the source) of the transistor 411 is connected to the reference voltage VSEN0. The second terminal (for example, drain) of the transistor 411 is connected to the output terminal of the sense amplifier 410, and outputs an amplified signal (for example, reference voltage VSEN0) to the node SEN0. The control terminal (for example, the gate) of the transistor 411 is controlled by the control signal SENC0. The first terminal (for example, the source) of the transistor 412 is connected to the input terminal of the sense amplifier 410 and receives the data signal of the bit line BLa. The second terminal (for example, drain) of the transistor 412 is connected to the second terminal of the transistor 411. The control terminal (for example, the gate) of the transistor 412 is controlled by the control signal BLC0. The first terminal (for example, the source) of the transistor 413 receives the control signal PBLCS0. The second terminal (for example, drain) of the transistor 413 is connected to the control terminal of the transistor 412 to provide the control signal BLC0. The control terminals (eg, gates) of the transistor 413 are controlled at a reference voltage VREF_BLC. The first terminal (for example, the source) of the transistor 414 receives the control signal NBLCS0. The second terminal (for example, drain) of the transistor 414 is connected to the second terminal of the transistor 413. The control terminal (for example, the gate) of the transistor 414 is connected to the bit line BLa. Since the sense amplifier 410 and the transistors 411 to 414 shown in FIG. 12 can be inferred by referring to the related description of the sense amplifier 700, the transistor 720, the transistor 730, the transistor 711, and the transistor 712 shown in FIG. The description is omitted here.

図12に示したセンスアンプ420は、トランジスタ421〜424とを含む。トランジスタ421の第1端子(例えば、ソース)は、基準電圧VSEN1に接続される。トランジスタ421の第2端子(例えば、ドレイン)は、センスアンプ420の出力端子に接続され、増幅された信号(例えば、基準電圧VSEN1)をノードSEN1に出力する。トランジスタ421の制御端子(例えば、ゲート)は、制御信号SENC1において制御される。トランジスタ422の第1端子(例えば、ソース)は、センスアンプ420の入力端子に接続され、ビット線BLbのデータ信号を受信する。トランジスタ422の第2端子(例えば、ドレイン)は、トランジスタ421の第2端子に接続される。トランジスタ422の制御端子(例えば、ゲート)は、制御信号BLC1において制御される。トランジスタ423の第1端子(例えば、ソース)は、制御信号PBLCS1を受信する。トランジスタ423の第2端子(例えば、ドレイン)は、トランジスタ422の制御端子に接続され、制御信号BLC1を提供する。トランジスタ423の制御端子(例えば、ゲート)は、基準電圧VREF_BLCおいて制御される。トランジスタ424の第1端子(例えば、ソース)は、制御信号NBLCS1を受信する。トランジスタ424の第2端子(例えば、ドレイン)は、トランジスタ423の第2端子に接続される。トランジスタ424の制御端子(例えば、ゲート)は、ビット線BLbに接続される。図12に示したセンスアンプ420およびトランジスタ421〜424は、図7に示したセンスアンプ700、トランジスタ720、トランジスタ730、トランジスタ711、およびトランジスタ712の関連説明を参照して類推することができるため、ここでは説明を省略する。 The sense amplifier 420 shown in FIG. 12 includes transistors 421 to 424. The first terminal (for example, the source) of the transistor 421 is connected to the reference voltage VSEN1. The second terminal (for example, drain) of the transistor 421 is connected to the output terminal of the sense amplifier 420, and outputs an amplified signal (for example, reference voltage VSEN1) to the node SEN1. The control terminal (for example, the gate) of the transistor 421 is controlled by the control signal SENC1. The first terminal (for example, the source) of the transistor 422 is connected to the input terminal of the sense amplifier 420 and receives the data signal of the bit line BLb. The second terminal (for example, drain) of the transistor 422 is connected to the second terminal of the transistor 421. The control terminal (for example, the gate) of the transistor 422 is controlled by the control signal BLC1. The first terminal (for example, the source) of the transistor 423 receives the control signal PBLCS1. The second terminal (for example, the drain) of the transistor 423 is connected to the control terminal of the transistor 422 and provides the control signal BLC1. The control terminals (eg, gates) of transistor 423 are controlled at a reference voltage VREF_BLC. The first terminal (eg, source) of transistor 424 receives the control signal NBLCS1. The second terminal (for example, drain) of the transistor 424 is connected to the second terminal of the transistor 423. The control terminal (for example, the gate) of the transistor 424 is connected to the bit line BLb. Since the sense amplifier 420 and the transistors 421 to 424 shown in FIG. 12 can be inferred by referring to the related description of the sense amplifier 700, the transistor 720, the transistor 730, the transistor 711, and the transistor 712 shown in FIG. The description is omitted here.

図13は、本発明の1つの実施形態に係る図12に示した信号を説明するシーケンス概略図である。図13において、点線の波形は、添え字0をもつ信号(例えば、SENC0、VSEN0、PBLCS0、BLC0、およびSEN0)を示し。実線の波形は、添え字1をもつ信号(例えば、SENC1、VSEN1、PBLCS1、BLC1、およびSEN1)を示す。図12および図13を参照されたい。ビット線プリチャージ期間PCにおいて、電圧PCSおよび電圧NCSがプルアップされ(例えば、0.3Vから0.5Vにプルアップされ)、基準電圧VSEN0が高レベル(例えば、1.3V)になり、基準電圧VSEN1が低レベル(例えば、0.5V)になり、制御信号SENC0および制御信号SENC1がいずれも低レベル(例えば、0V)になり、制御信号PBLCS0が高レベル(例えば、1.3V)になり、制御信号PBLCS1が低レベル(例えば、0V)になり、制御信号NBLCS0およびNBLCS1がいずれも低レベルになる。したがって、ビット線プリチャージ期間PCにおいて、制御信号BLC0がプルアップされるため、トランジスタ412は、ビット線BL0に対してプリチャージを行うことができ(例えば、0.3Vから0.5Vにプリチャージする)、制御信号BLCが低レベル(例えば、0V)を維持するため、トランジスタ422を切断することができる。ビット線プリチャージ期間PCにおいて、トランジスタ411は、ノードSEN0を基準電圧VSEN0のレベル(例えば、1.3V)に設定することができ、トランジスタ421は、ノードSEN1を基準電圧VSEN1のレベル(例えば、0.5V)に設定することができる。 FIG. 13 is a schematic sequence diagram illustrating the signal shown in FIG. 12 according to one embodiment of the present invention. In FIG. 13, the dotted waveforms indicate signals with subscript 0 (eg, SENC0, VSEN0, PBLCS0, BLC0, and SEN0). Solid waveforms indicate signals with subscript 1 (eg, SENC1, VSEN1, PBLCS1, BLC1, and SEN1). See FIGS. 12 and 13. In the bit line precharge period PC, the voltage PCS and voltage NCS are pulled up (eg, from 0.3V to 0.5V) and the reference voltage VSEN0 becomes a high level (eg 1.3V), which is the reference. The voltage VSEN1 becomes a low level (for example, 0.5V), the control signal SENC0 and the control signal SENC1 both become a low level (for example, 0V), and the control signal PBLCS0 becomes a high level (for example, 1.3V). , The control signal PBLCS1 becomes a low level (for example, 0V), and both the control signals NBLCS0 and NBLCS1 become a low level. Therefore, since the control signal BLC0 is pulled up in the bit line precharge period PC, the transistor 412 can precharge the bit line BL0 (for example, from 0.3V to 0.5V). Since the control signal BLC maintains a low level (for example, 0V), the transistor 422 can be disconnected. In the bit line precharge period PC, the transistor 411 can set the node SEN0 to the level of the reference voltage VSEN0 (eg 1.3V), and the transistor 421 sets the node SEN1 to the level of the reference voltage VSEN1 (eg 0). It can be set to .5V).

ビット線プリチャージ期間PCが終了すると、制御信号BLC0がプルダウンされるため、トランジスタ412が切断される。トランジスタ412および422が切断された後、ワード線WLは、読み出したいメモリセルをオンにするため、読み出したいメモリセルは、プリチャージされたビット線BLa上にデータを出力することができる。続いて、ワード線イネーブル期間WLEの初期化期間1301において、制御信号SENC0およびSENC1がトランジスタ411および421をオンし、制御信号BLC0およびBLC1がトランジスタ412および422を切断する。トランジスタ411および421は、初期化期間1301において、ノードSEN0およびSEN1のレベルを基準電圧VSEN0およびVSEN1のレベルに設定することができる。 When the bit line precharge period PC ends, the control signal BLC0 is pulled down, so that the transistor 412 is disconnected. After the transistors 412 and 422 are disconnected, the word line WL turns on the memory cell to be read, so that the memory cell to be read can output data on the precharged bit line BLa. Subsequently, during the initialization period 1301 of the word line enable period WLE, the control signals SENC0 and SENC1 turn on the transistors 411 and 421, and the control signals BLC0 and BLC1 disconnect the transistors 412 and 422. Transistors 411 and 421 can set the levels of the nodes SEN0 and SEN1 to the levels of the reference voltages VSEN0 and VSEN1 during the initialization period 1301.

初期化期間1301が終了すると、制御信号SENC0がプルアップされ(例えば、0Vから1.3Vにプルアップされ)、トランジスタ411を切断する。ワード線イネーブル期間WLEの感知期間1302において、制御信号SENC0が高レベル(例えば、1.3V)になり、制御信号SENC1が低レベル(例えば、0V)になるため、センスアンプ410がビット線BLa上の信号に対応する増幅された信号をノードSEN0に出力した時、トランジスタ421は、ノードSEN1を基準電圧VSEN1のレベル(例えば、0.5V)に設定することができる。感知期間1302において、制御信号BLC0が再度プルアップされ、制御信号BLC1が低レベルを維持するため、トランジスタ422が切断され、トランジスタ412は、ビット線BLaを感知することができる。センスアンプ410がビット線BLaを感知する期間において、ノードSEN1がトランジスタ421をオンし、制御信号BLC1がトランジスタ422を切断する。 When the initialization period 1301 ends, the control signal SENC0 is pulled up (for example, pulled up from 0V to 1.3V), and the transistor 411 is disconnected. Since the control signal SENC0 becomes a high level (for example, 1.3V) and the control signal SENC1 becomes a low level (for example, 0V) in the detection period 1302 of the word line enable period WLE, the sense amplifier 410 is on the bit line BLa. When the amplified signal corresponding to the signal of is output to the node SEN0, the transistor 421 can set the node SEN1 to the level of the reference voltage VSEN1 (for example, 0.5V). In the sensing period 1302, the control signal BLC0 is pulled up again and the control signal BLC1 maintains a low level, so that the transistor 422 is disconnected and the transistor 412 can sense the bit line BLa. During the period in which the sense amplifier 410 senses the bit line BLa, the node SEN1 turns on the transistor 421, and the control signal BLC1 disconnects the transistor 422.

以上のように、上述した実施形態は、二段センスアンプ(センスアンプ装置400)を開示する。センスアンプ装置400において、ビット線BLaまたはBLbの小信号(データ信号)が第1段センスアンプ(センスアンプ410または420)に増幅された後、増幅された信号を第2段センスアンプ(センスアンプ430)に出力する。センスアンプ430は、増幅された差動信号(センスアンプ410およびセンスアンプ420が提供する増幅された信号および基準電圧)を受信し、この増幅された差動信号に対して第二段増幅操作を行うことができる。したがって、センスアンプ装置400は、ビット線BLaおよび(または)ビット線BLbのデータを感知する(読み出す)ことができる。センスアンプ430が受信した差動信号の強度は、図1に示したセンスアンプ(例えば、センスアンプ150)が受信した差動信号の強度よりも大きい。製造プロセスは縮小されるが、センスアンプ装置400は、十分な感知信号マージン(sense signal margin)を実現することができる。したがって、センスアンプ装置400は、正確なビット線容量マッチング(bit-line capacitance match)を必要としない。エッジサブアレイ(edge sub-array、例えば、図1に示したサブアレイ110または140)は、両側においてセンスアンプ装置400を配置することができ、エッジサブアレイのメモリセルを使用することができる。 As described above, the above-described embodiment discloses a two-stage sense amplifier (sense amplifier device 400). In the sense amplifier device 400, a small signal (data signal) of the bit line BLa or BLb is amplified by the first-stage sense amplifier (sense amplifier 410 or 420), and then the amplified signal is amplified by the second-stage sense amplifier (sense amplifier). Output to 430). The sense amplifier 430 receives the amplified differential signal (amplified signal and reference voltage provided by the sense amplifier 410 and the sense amplifier 420), and performs a second-stage amplification operation on the amplified differential signal. It can be carried out. Therefore, the sense amplifier device 400 can sense (read) the data of the bit line BLa and / or the bit line BLb. The strength of the differential signal received by the sense amplifier 430 is higher than the strength of the differential signal received by the sense amplifier (for example, the sense amplifier 150) shown in FIG. Although the manufacturing process is reduced, the sense amplifier device 400 can achieve a sufficient sense signal margin. Therefore, the sense amplifier device 400 does not require accurate bit-line capacitance match. In the edge sub-array (for example, the sub-array 110 or 140 shown in FIG. 1), the sense amplifier device 400 can be arranged on both sides, and the memory cells of the edge sub-array can be used.

以上のごとく、この発明を実施形態により開示したが、もとより、この発明を限定するためのものではなく、当業者であれば容易に理解できるように、この発明の技術思想の範囲内において、適当な変更ならびに修正が当然なされうるものであるから、その特許権保護の範囲は、特許請求の範囲および、それと均等な領域を基準として定めなければならない。 As described above, the present invention has been disclosed by an embodiment, but of course, it is not intended to limit the present invention, and is suitable within the scope of the technical idea of the present invention so that those skilled in the art can easily understand it. Since various changes and amendments can be made as a matter of course, the scope of the patent protection must be determined based on the scope of claims and the area equivalent thereto.

100 DRAM
110、120、130、140 サブアレイ
150、410、420、430、500、700 センスアンプ
400 センスアンプ装置
411、412、413、414、421、422、423、424、431、432、433、434、435、510、520、711、712、720、730、913、914 トランジスタ
601、801、1101、1301 初期化期間
602、802、1102、1302 感知期間
710 制御回路
BL、BL0、BL1、BLa、BLb ビット線
BLC、BLC0、BLC1、CSP、CSN、EQ、NBLCS、NBLCS0、NBLCS1、PBLCS、PBLCS0、PBLCS1、SENC、SENC0、SENC1 制御信号
CBL コンデンサ
CSN 記憶素子
IBLC 電流源
MC、MC1、MC2 メモリセル
NCS、PCS 電圧
PC ビット線プリチャージ期間
SEN、SEN0、SEN1 ノード
SN データ
SW スイッチ
VBLP バイアス電圧
VN 出力電圧
VP 供給電圧
VREF_BLC、VSEN、VSEN0、VSEN1、VSS 基準電圧
WL ワード線
WLE ワード線イネーブル期間
100 DRAM
110, 120, 130, 140 Subarray 150, 410, 420, 430, 500, 700 Sense amplifier 400 Sense amplifier device 411, 421, 413, 414, 421, 422, 423, 424, 431, 432, 433, 434, 435 , 510, 520, 711, 712, 720, 730, 913, 914 Transistors 601, 801, 1101, 1301 Initialization period 602, 802, 1102, 1302 Sensing period 710 Control circuit BL, BL0, BL1, BLa, BLb Bit line BLC, BLC0, BLC1 PC bit line precharge period SEN, SEN0, SEN1 node SN data SW switch VBLP bias voltage VN output voltage VP supply voltage VREF_BLC, VSEN, VSEN0, VSEN1, VSS reference voltage WL word line WLE word line enable period

Claims (11)

第1ビット線に接続される入力端子を有す第1センスアンプと、
第2ビット線に接続される入力端子を有す第2センスアンプと、
差動入力対と差動出力対を有し、前記差動入力対の第1入力端子が、前記第1センスアンプの出力端子に接続され、前記差動入力対の第2入力端子が、前記第2センスアンプの出力端子に接続され、前記差動出力対の第1出力端子が、前記第1センスアンプの前記入力端子に接続され、前記差動出力対の第2出力端子が、前記第2センスアンプの前記入力端子に接続された第3センスアンプと、
を含むセンスアンプ装置。
A first sense amplifier with an input terminal connected to the first bit line,
A second sense amplifier with an input terminal connected to the second bit line,
It has a differential input pair and a differential output pair, the first input terminal of the differential input pair is connected to the output terminal of the first sense amplifier, and the second input terminal of the differential input pair is the said. The first output terminal of the differential output pair is connected to the output terminal of the second sense amplifier, the first output terminal of the differential output pair is connected to the input terminal of the first sense amplifier, and the second output terminal of the differential output pair is the first. The third sense amplifier connected to the input terminal of the two sense amplifier and
Sense amplifier device including.
前記第1センスアンプおよび前記第2センスアンプのそれぞれが、非差動信号アンプであり、前記第3センスアンプが、差動信号アンプである請求項1に記載のセンスアンプ装置。 The sense amplifier device according to claim 1, wherein each of the first sense amplifier and the second sense amplifier is a non-differential signal amplifier, and the third sense amplifier is a differential signal amplifier. 前記第1センスアンプが、
第1端子が、第1基準電圧に接続され、第2端子が、前記第1センスアンプの前記出力端子に接続され、制御端子が、第1制御信号において制御される第1トランジスタと、
第1端子が、前記第1センスアンプの前記入力端子に接続され、第2端子が、前記第1トランジスタの前記第2端子に接続され、制御端子が、第2制御信号において制御される第2トランジスタと、
を含む請求項1に記載のセンスアンプ装置。
The first sense amplifier
The first transistor is connected to the first reference voltage, the second terminal is connected to the output terminal of the first sense amplifier, and the control terminal is controlled by the first control signal.
A second terminal is connected to the input terminal of the first sense amplifier, the second terminal is connected to the second terminal of the first transistor, and the control terminal is controlled by the second control signal. With a transistor
The sense amplifier device according to claim 1.
前記第1トランジスタが、PMOSトランジスタを含み、前記第2トランジスタが、NMOSトランジスタを含む請求項3に記載のセンスアンプ装置。 The sense amplifier device according to claim 3, wherein the first transistor includes a NMOS transistor, and the second transistor includes an NMOS transistor. ワード線イネーブル期間前のビット線プリチャージ期間において、前記第1制御信号が、前記第1トランジスタをオンし、前記第2制御信号が、前記第2トランジスタを駆動して、前記第1ビット線をプリチャージし、
前記ワード線イネーブル期間の初期化期間において、前記第1制御信号が、前記第1トランジスタをオンし、前記第2制御信号が、前記第2トランジスタを切断し、
前記初期化期間後の前記ワード線イネーブル期間の感知期間において、前記第1制御信号が、前記第1トランジスタを切断し、前記第2制御信号が、前記第2トランジスタを駆動して、前記第1ビット線を感知する請求項3に記載のセンスアンプ装置。
In the bit line precharge period before the word line enable period, the first control signal turns on the first transistor, and the second control signal drives the second transistor to drive the first bit line. Precharge and
In the initialization period of the word line enable period, the first control signal turns on the first transistor, and the second control signal disconnects the second transistor.
In the sensing period of the word line enable period after the initialization period, the first control signal cuts the first transistor, the second control signal drives the second transistor, and the first control signal is driven. The sense amplifier device according to claim 3, which senses a bit line.
前記感知期間、且つ前記第1ビット線のデータが第1論理状態の状況において、前記第2トランジスタが切断され、
前記感知期間、且つ前記第1ビット線のデータが第2論理状態の状況において、前記第2トランジスタがオンする請求項5に記載のセンスアンプ装置。
The second transistor is disconnected during the sensing period and in the situation where the data of the first bit line is in the first logical state.
The sense amplifier device according to claim 5, wherein the second transistor is turned on during the sensing period and when the data of the first bit line is in the second logical state.
前記第2センスアンプが前記第2ビット線を感知する期間において、前記第1制御信号が、前記第1トランジスタをオンし、前記第2制御信号が、前記第2トランジスタを切断する請求項3に記載のセンスアンプ装置。 The third aspect of the present invention, wherein the first control signal turns on the first transistor and the second control signal cuts the second transistor during the period in which the second sense amplifier senses the second bit line. The described sense amplifier device. 前記第1センスアンプが、さらに、
入力端子が、前記第1センスアンプの前記入力端子に接続され、前記第2制御信号を生成して、前記第2トランジスタの前記制御端子に供給するために使用され、前記第1センスアンプの前記入力端子のレベルに基づいて、前記第2制御信号を動的に調整する制御回路を含む請求項3に記載のセンスアンプ装置。
The first sense amplifier further
An input terminal is connected to the input terminal of the first sense amplifier and is used to generate the second control signal and supply the control terminal of the second transistor to the control terminal of the first sense amplifier. The sense amplifier device according to claim 3, further comprising a control circuit that dynamically adjusts the second control signal based on the level of the input terminal.
前記制御回路が、
第1端子が、第3制御信号を受信し、第2端子が、前記制御回路の出力端子に接続され、前記第2制御信号を生成して、前記第2トランジスタの前記制御端子に供給し、制御端子が、第2基準電圧において制御される第3トランジスタと、
第1端子が、第4制御信号を受信し、第2端子が、前記第3トランジスタの前記第2端子に接続され、制御端子が、前記制御回路の前記入力端子に接続された第4トランジスタと、
を含む請求項8に記載のセンスアンプ装置。
The control circuit
The first terminal receives the third control signal, the second terminal is connected to the output terminal of the control circuit, generates the second control signal, and supplies the second control signal to the control terminal of the second transistor. A third transistor whose control terminal is controlled at the second reference voltage,
The first terminal receives the fourth control signal, the second terminal is connected to the second terminal of the third transistor, and the control terminal is connected to the input terminal of the control circuit. ,
The sense amplifier device according to claim 8.
前記第3トランジスタが、PMOSトランジスタを含み、前記第4トランジスタが、NMOSトランジスタを含む請求項9に記載のセンスアンプ装置。 The sense amplifier device according to claim 9, wherein the third transistor includes a NMOS transistor, and the fourth transistor includes an NMOS transistor. 前記第3センスアンプが、
第1端子が、第1電圧に接続され、第2端子が、前記第3センスアンプの前記第1出力端子に接続され、制御端子が、前記第3センスアンプの前記第2出力端子に接続された第1トランジスタと、
第1端子が、前記第1電圧に接続され、第2端子が、前記第3センスアンプの前記第2出力端子に接続され、制御端子が、前記第3センスアンプの前記第1出力端子に接続された第2トランジスタと、
第1端子が、第2電圧に接続され、第2端子が、前記第3センスアンプの前記第1出力端子に接続され、制御端子が、前記第3センスアンプの前記第2入力端子に接続された第3トランジスタと、
第1端子が、前記第2電圧に接続され、第2端子が、前記第3センスアンプの前記第2出力端子に接続され、制御端子が、前記第3センスアンプの前記第1入力端子に接続された第4トランジスタと、
を含む請求項1に記載のセンスアンプ装置。
The third sense amplifier
The first terminal is connected to the first voltage, the second terminal is connected to the first output terminal of the third sense amplifier, and the control terminal is connected to the second output terminal of the third sense amplifier. 1st transistor and
The first terminal is connected to the first voltage, the second terminal is connected to the second output terminal of the third sense amplifier, and the control terminal is connected to the first output terminal of the third sense amplifier. With the second transistor
The first terminal is connected to the second voltage, the second terminal is connected to the first output terminal of the third sense amplifier, and the control terminal is connected to the second input terminal of the third sense amplifier. With the third transistor
The first terminal is connected to the second voltage, the second terminal is connected to the second output terminal of the third sense amplifier, and the control terminal is connected to the first input terminal of the third sense amplifier. 4th transistor and
The sense amplifier device according to claim 1.
JP2020105726A 2020-06-19 2020-06-19 Sense amplifier device Active JP6903797B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020105726A JP6903797B1 (en) 2020-06-19 2020-06-19 Sense amplifier device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020105726A JP6903797B1 (en) 2020-06-19 2020-06-19 Sense amplifier device

Publications (2)

Publication Number Publication Date
JP6903797B1 true JP6903797B1 (en) 2021-07-14
JP2022000831A JP2022000831A (en) 2022-01-04

Family

ID=76753194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020105726A Active JP6903797B1 (en) 2020-06-19 2020-06-19 Sense amplifier device

Country Status (1)

Country Link
JP (1) JP6903797B1 (en)

Also Published As

Publication number Publication date
JP2022000831A (en) 2022-01-04

Similar Documents

Publication Publication Date Title
EP1739682B1 (en) Voltage supply circuit and semiconductor memory
US6853593B1 (en) Semiconductor memory device having over-driving scheme
JP3241280B2 (en) Dynamic semiconductor memory device
US20100195415A1 (en) Semiconductor memory device and reading method therefor
JP2011076696A (en) Semiconductor memory apparatus and method of driving bit line sense amplifier
TWI640002B (en) Ultra-low-voltage cmos circuit and the same for memory
US11404110B2 (en) Sense amplification device in memory
US6525979B2 (en) Semiconductor memory device and method for reading information of therefrom
JP2000195268A (en) Semiconductor memory
US7852686B2 (en) Circuit and method for a sense amplifier with instantaneous pull up/pull down sensing
JPH11328979A (en) Ferroelectric memory device and its reading out method
CN113948121A (en) Sensing amplifying device
US9947385B1 (en) Data sense amplification circuit and semiconductor memory device including the same
US7751257B2 (en) Semiconductor memory device
US7719877B2 (en) Memory cell array and method of controlling the same
US6859409B2 (en) Semiconductor memory having sense amplifier architecture
JP6903797B1 (en) Sense amplifier device
KR20160069147A (en) Data sense amplifier and memory device including the same
US6337823B1 (en) Random access memory device capable of minimizing sensing noise
KR102363598B1 (en) Sense amplification device
US11295799B2 (en) Devices for performing a refresh operation based on power control operation
TWI739494B (en) Sense amplification device
JP2011222091A (en) Semiconductor device and information processing system
US6188601B1 (en) Ferroelectric memory device having single bit line coupled to at least one memory cell
CN110379446B (en) Input/output multiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210623

R150 Certificate of patent or registration of utility model

Ref document number: 6903797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150