JP6900719B2 - Rubber composition for tread and tires - Google Patents

Rubber composition for tread and tires Download PDF

Info

Publication number
JP6900719B2
JP6900719B2 JP2017050239A JP2017050239A JP6900719B2 JP 6900719 B2 JP6900719 B2 JP 6900719B2 JP 2017050239 A JP2017050239 A JP 2017050239A JP 2017050239 A JP2017050239 A JP 2017050239A JP 6900719 B2 JP6900719 B2 JP 6900719B2
Authority
JP
Japan
Prior art keywords
mass
parts
rubber
resin
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017050239A
Other languages
Japanese (ja)
Other versions
JP2018154664A (en
Inventor
勇輝 河西
勇輝 河西
真誉 廣
真誉 廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2017050239A priority Critical patent/JP6900719B2/en
Publication of JP2018154664A publication Critical patent/JP2018154664A/en
Application granted granted Critical
Publication of JP6900719B2 publication Critical patent/JP6900719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、トレッド用ゴム組成物およびこのゴム組成物により構成されたトレッドを有するタイヤに関する。 The present invention relates to a rubber composition for tread and a tire having a tread composed of the rubber composition.

スパイクタイヤによる粉塵公害を防止するために、スパイクタイヤの使用を禁止することが法制化され、寒冷地では、スパイクタイヤに代わってスタッドレスタイヤが使用されるようになった。タイヤを氷上でグリップさせると氷表面に水が発生し、その場合、タイヤは水の上に浮いたような状態になるため、充分なグリップ力が得られなくなり、スリップの原因となる。そこで、氷表面に発生する水を除去して、タイヤのゴム表面を氷に直接密着させることが重要である。 In order to prevent dust pollution caused by studded tires, the ban on the use of studded tires has been legislated, and studless tires have been used in place of studded tires in cold regions. When the tire is gripped on ice, water is generated on the ice surface, and in that case, the tire is in a state of floating on the water, so that sufficient grip force cannot be obtained, which causes slippage. Therefore, it is important to remove the water generated on the ice surface and bring the rubber surface of the tire into direct contact with the ice.

氷表面の水を除去する方法として、発泡ゴムを使用する方法やゴム内部にバルーンを存在させる方法が知られているが、氷上性能を確保するためには、これらの含有量や占有面積を増加させる必要がある。しかし、含有量や占有面積を増加させた場合、スタッドレスタイヤとしての耐久性、耐摩耗性が低下するという問題がある。 As a method of removing water on the ice surface, a method of using foam rubber and a method of allowing a balloon to exist inside the rubber are known, but in order to ensure the performance on ice, the content and occupied area of these are increased. I need to let you. However, when the content and the occupied area are increased, there is a problem that the durability and wear resistance of the studless tire are lowered.

また、特許文献1および2には、ゴム成分に卵殻粉や貝殻の粉砕品、炭酸カルシウムを配合し、氷上性能を改善する方法も知られているが、このような方法によっても、これらの配合量を増加させるに伴い、耐摩耗性が大きく悪化するという問題がある。 Further, Patent Documents 1 and 2 also know a method of blending eggshell powder, crushed shells, and calcium carbonate with a rubber component to improve the performance on ice. As the amount is increased, there is a problem that the wear resistance is greatly deteriorated.

耐摩耗性の悪化を防止する方法として、天然ゴムの含有比率を高めること、オイルとしてミネラルオイル等の低極性オイルではなくアロマ系オイルを用いることが挙げられるが、氷上性能や雪上性能が悪化する。また、耐摩耗性に優れたブタジエンゴムを用いる方法もあるが、コストが上昇したり、加工性が悪化したりする懸念がある。 Methods to prevent deterioration of wear resistance include increasing the content ratio of natural rubber and using aroma oil instead of low-polarity oil such as mineral oil as oil, but performance on ice and snow deteriorates. .. There is also a method of using butadiene rubber having excellent wear resistance, but there is a concern that the cost will increase and the workability will deteriorate.

さらに、近年、地球温暖化の影響や夏用タイヤへのはきかえが面倒ではきつぶす等の理由で、氷雪路以外をスタッドレスタイヤで走る場合も多く、スタッドレスタイヤのトレッド部分の耐摩耗性がより求められている。 Furthermore, in recent years, due to the effects of global warming and the troublesome replacement of summer tires, studless tires are often used on roads other than ice and snow, and the wear resistance of the tread part of the studless tires has improved. More sought after.

特開2007−169500号公報JP-A-2007-169500 特開平9−77915号公報Japanese Unexamined Patent Publication No. 9-77915

低温氷上性能および耐摩耗性に優れるトレッド用ゴム組成物およびこのゴム組成物により構成されたトレッドを有するタイヤを提供することを目的とする。 An object of the present invention is to provide a rubber composition for a tread having excellent performance on low temperature ice and abrasion resistance, and a tire having a tread composed of the rubber composition.

本発明は、ゴム成分100質量部に対し、平均粒子径が120μm以上の卵殻粉を3〜15質量部、ならびにポリテルペン樹脂およびテルペンスチレン樹脂の少なくとも一方を10質量部以下含有するトレッド用ゴム組成物に関する。 The present invention is a rubber composition for a tread containing 3 to 15 parts by mass of eggshell powder having an average particle diameter of 120 μm or more and 10 parts by mass or less of at least one of a polyterpene resin and a terpene styrene resin with respect to 100 parts by mass of a rubber component. Regarding.

また、本発明は前記トレッド用ゴム組成物により構成されたトレッドを有するタイヤに関する。 The present invention also relates to a tire having a tread composed of the rubber composition for tread.

本発明のゴム成分、大粒子卵殻粉ならびにポリテルペン樹脂およびテルペンスチレン樹脂の少なくとも一方を含有するトレッド用ゴム組成物およびこのトレッド用ゴム組成物により構成されたトレッドを有するタイヤは、低温氷上性能および耐摩耗性に優れる。 A tire having a tread rubber composition containing the rubber component of the present invention, large particle eggshell powder, and at least one of a polyterpene resin and a terpene styrene resin and a tread composed of the tread rubber composition has low-temperature ice performance and resistance. Excellent wear resistance.

本発明のトレッド用ゴム組成物は、ゴム成分に平均粒子径が120μm以上の大粒子卵殻粉と、ポリテルペン樹脂およびテルペンスチレン樹脂の少なくとも一方を含有することを特徴とし、低温氷上性能および耐摩耗性に優れる。ここで、大粒子径の卵殻粉は、卵殻粉が脱離した後に残るゴム表面の凹凸で引っ掻き効果を発現し、低温氷上性能、特に0℃での発進性能に優れる一方で、耐摩耗性が低下してしまうが、ポリテルペン樹脂およびテルペンスチレン樹脂の少なくとも一方を併用することで、耐摩耗性を改善することができる。これは、ポリテルペン樹脂およびテルペンスチレン樹脂の少なくとも一方を含有することでゴム強度(伸び)が向上し、卵殻脱落時に発現する凹凸のエッジ部分に余計な亀裂等の発生を抑制できるため、凹凸を起点とする摩耗の発生が抑制されることによると考えられる。さらには、凹凸のエッジが効くようになるため更なる氷上性能の向上も見込まれる。 The rubber composition for tread of the present invention is characterized by containing a large particle eggshell powder having an average particle diameter of 120 μm or more and at least one of a polyterpene resin and a terpene styrene resin as a rubber component, and has low-temperature ice performance and abrasion resistance. Excellent for. Here, the eggshell powder having a large particle size exhibits a scratching effect due to the unevenness of the rubber surface remaining after the eggshell powder is detached, and is excellent in low-temperature ice performance, especially in starting performance at 0 ° C., while having abrasion resistance. Although it will decrease, the abrasion resistance can be improved by using at least one of the polyterpene resin and the terpene styrene resin in combination. This is because the rubber strength (elongation) is improved by containing at least one of the polyterpene resin and the terpene styrene resin, and the occurrence of unnecessary cracks and the like at the edge portion of the unevenness that appears when the eggshell falls off can be suppressed. It is considered that this is because the occurrence of wear is suppressed. Furthermore, it is expected that the performance on ice will be further improved because the uneven edges will be effective.

卵殻粉を含有することにより(A)卵殻粉自体が氷雪路面を引っ掻く効果、(B)卵殻粉粒子に存在する細孔が氷雪路面の水を吸水し除去する効果、(C)卵殻粉粒子が脱落することによりできた細孔が氷雪路面の水を吸水し除去する効果、および(D)卵殻粉粒子が脱落することによりできた細孔の淵部分がエッジとして働き、氷雪路面を引っ掻く効果が得られる。特に、大粒子径卵殻粉を含有することにより、(D)の効果がより顕著に発揮される。 By containing eggshell powder, (A) the eggshell powder itself has the effect of scratching the ice and snow road surface, (B) the pores existing in the eggshell powder particles absorb and remove the water on the ice and snow road surface, and (C) the eggshell powder particles The pores formed by falling off absorb and remove water from the ice and snow road surface, and (D) the edge of the pores formed by the eggshell powder particles falling off acts as an edge and has the effect of scratching the ice and snow road surface. can get. In particular, the effect of (D) is more prominently exhibited by containing a large particle size eggshell powder.

大粒子卵殻粉の平均粒子径は、120μm以上であり、125μm以上が好ましく、130μm以上がより好ましい。卵殻粉の平均粒子径が120μm未満の場合は、低温氷上性能の向上効果が不十分となる傾向がある。また、卵殻粉の平均粒子径は、耐摩耗性の観点から、150μm以下が好ましく、140μm以下がより好ましく、135μm以下がさらに好ましい。なお、本明細書における卵殻粉の平均粒子径は、粒度分布測定器により測定される値である。 The average particle size of the large-particle eggshell powder is 120 μm or more, preferably 125 μm or more, and more preferably 130 μm or more. When the average particle size of eggshell powder is less than 120 μm, the effect of improving the performance on low-temperature ice tends to be insufficient. The average particle size of eggshell powder is preferably 150 μm or less, more preferably 140 μm or less, and even more preferably 135 μm or less from the viewpoint of abrasion resistance. The average particle size of eggshell powder in the present specification is a value measured by a particle size distribution measuring device.

平均粒子径が120μm以上の卵殻粉としては、グリーンテクノ社製の卵殻粉カルシウムSQ−130などが挙げられる。 Examples of eggshell powder having an average particle size of 120 μm or more include eggshell powder calcium SQ-130 manufactured by Green Techno Co., Ltd.

平均粒子径が120μm以上の卵殻粉のゴム成分100質量部に対する含有量は、本発明の効果が十分に得られるという理由から、3質量部以上であり、5質量部以上がさらに好ましい。また、当該卵殻粉の含有量は、耐摩耗性の観点から、15質量部以下であり12質量部以下がより好ましい。 The content of eggshell powder having an average particle size of 120 μm or more with respect to 100 parts by mass of the rubber component is 3 parts by mass or more, more preferably 5 parts by mass or more, because the effect of the present invention can be sufficiently obtained. The content of the eggshell powder is 15 parts by mass or less, more preferably 12 parts by mass or less, from the viewpoint of abrasion resistance.

ポリテルペン樹脂およびテルペンスチレン樹脂は、クマロン樹脂、石油系樹脂(脂肪族系石油樹脂、芳香族系石油樹脂、脂環族系石油樹脂など)、フェノール系樹脂、ロジン誘導体などのタイヤ用ゴム組成物に用いられる他の粘着性樹脂よりもSP値が低いという特徴がある。ここでSP値とは、化合物の構造に基づいてHoy法によって算出された溶解度パラメーター(Solubility Parameter)を意味し、二つの化合物のSP値が離れているほど相溶性が低いことを示す。ここで、水のSP値は約23であり、前記他の粘着性樹脂のSP値は約9〜12であることから、他の粘着性樹脂よりもSP値が低いポリテルペン樹脂およびテルペンスチレン樹脂は、より水との相溶性が低い粘着性樹脂であり、これを含有するゴム組成物とすることにより、ゴム組成物の撥水性を向上させることができる。なお、前記Hoy法とは、例えば、K.L.Hoy “Table of Solubility Parameters”, Solvent and Coatings Materials Research and Development Department, Union Carbites Corp.(1985)に記載された計算方法である。 Polyterpene resin and terpene styrene resin are used in rubber compositions for tires such as kumaron resin, petroleum resin (aliphatic petroleum resin, aromatic petroleum resin, alicyclic petroleum resin, etc.), phenolic resin, rosin derivative, etc. It is characterized by having a lower SP value than other adhesive resins used. Here, the SP value means a solubility parameter calculated by the Hoy method based on the structure of the compound, and the farther the SP values of the two compounds are, the lower the compatibility is. Here, since the SP value of water is about 23 and the SP value of the other adhesive resin is about 9 to 12, the polyterpene resin and the terpene styrene resin having lower SP values than the other adhesive resins are , It is an adhesive resin having a lower compatibility with water, and by using a rubber composition containing this, the water repellency of the rubber composition can be improved. The Hoy method is, for example, a calculation method described in K.L. Hoy “Table of Solubility Parameters”, Solvent and Coatings Materials Research and Development Department, Union Carbites Corp. (1985).

ポリテルペン樹脂は、α−ピネン、β−ピネン、リモネン、ジペンテンなどのテルペン化合物から選ばれる少なくとも1種を原料とする樹脂である。テルペンスチレン樹脂は、前記テルペン原料およびスチレンを原料とする樹脂である。なお、本明細書中のテルペンスチレン樹脂は原料中のテルペン化合物およびスチレンの合計が80質量%以上のものを指す。ポリテルペン樹脂およびテルペンスチレン樹脂は、水素添加処理を行った樹脂(水添ポリテルペン樹脂、水添テルペンスチレン樹脂)であってもよい。テルペン系樹脂への水素添加処理は、公知の方法で行うことができ、また市販の水添樹脂を使用することもできる。 The polyterpene resin is a resin made from at least one selected from terpene compounds such as α-pinene, β-pinene, limonene, and dipentene. The terpene styrene resin is a resin made from the terpene raw material and styrene. The terpene styrene resin in the present specification refers to a resin in which the total amount of the terpene compound and styrene in the raw material is 80% by mass or more. The polyterpene resin and the terpene styrene resin may be hydrogenated resins (hydrogenated polyterpene resin, hydrogenated terpene styrene resin). The hydrogenation treatment to the terpene resin can be carried out by a known method, or a commercially available hydrogenated resin can also be used.

一方、テルペン化合物とフェノール系化合物とを原料とするテルペンフェノール樹脂は耐摩耗性を悪化させる傾向があることから、含有しないことが好ましい。 On the other hand, a terpene phenol resin made from a terpene compound and a phenol-based compound tends to deteriorate wear resistance, and therefore, it is preferable not to contain the terpene phenol resin.

ポリテルペン樹脂およびテルペンスチレン樹脂の軟化点は、ハンドリングの容易性などの観点から、75℃以上が好ましく、80℃以上がより好ましく、90℃以上がさらに好ましい。また、加工性、ゴム成分とフィラーとの分散性向上という観点から、150℃以下が好ましく、140℃以下がより好ましく、130℃以下がさらに好ましい。なお、本発明における樹脂の軟化点は、フローテスター((株)島津製作所製のCFT−500Dなど)を用い、試料として1gの樹脂を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押出し、温度に対するフローテスターのプランジャー降下量をプロットし、試料の半量が流出した温度とした。 The softening point of the polyterpene resin and the terpene styrene resin is preferably 75 ° C. or higher, more preferably 80 ° C. or higher, and even more preferably 90 ° C. or higher from the viewpoint of ease of handling. Further, from the viewpoint of workability and improvement of dispersibility between the rubber component and the filler, 150 ° C. or lower is preferable, 140 ° C. or lower is more preferable, and 130 ° C. or lower is further preferable. The softening point of the resin in the present invention is determined by using a flow tester (CFT-500D manufactured by Shimadzu Corporation, etc.) and using a plunger while heating 1 g of the resin as a sample at a heating rate of 6 ° C./min. A load of 1.96 MPa was applied, and the sample was extruded from a nozzle having a diameter of 1 mm and a length of 1 mm.

ポリテルペン樹脂およびテルペンスチレン樹脂のガラス転移温度(Tg)は、ゴム組成物のガラス転移温度が高くなり、耐久性が悪化することを防ぐという理由から、80℃以下が好ましく、75℃以下がより好ましい。また、当該テルペン系樹脂のガラス転移温度の下限は特に限定されないが、オイルと同等以上の重量平均分子量(Mw)にでき、かつ難揮発性を確保できるという理由から、5℃以上が好ましい。また、当該テルペン系樹脂の重量平均分子量は、高温時の揮発性に優れ、消失させやすいことから、300以下が好ましい。 The glass transition temperature (Tg) of the polyterpene resin and the terpene styrene resin is preferably 80 ° C. or lower, more preferably 75 ° C. or lower, because it prevents the rubber composition from increasing the glass transition temperature and deteriorating the durability. .. The lower limit of the glass transition temperature of the terpene resin is not particularly limited, but is preferably 5 ° C. or higher because the weight average molecular weight (Mw) equal to or higher than that of oil can be obtained and the low volatility can be ensured. Further, the weight average molecular weight of the terpene resin is preferably 300 or less because it is excellent in volatility at high temperature and easily disappears.

ポリテルペン樹脂およびテルペンスチレン樹脂のSP値は、ゴム組成物の撥水性をより向上させることができるという理由から、8.90以下が好ましく、8.80以下がより好ましい。テルペン系樹脂のSP値の下限は、ゴム成分との相溶性の観点から7.5以上が好ましい。 The SP value of the polyterpene resin and the terpene styrene resin is preferably 8.90 or less, more preferably 8.80 or less, because the water repellency of the rubber composition can be further improved. The lower limit of the SP value of the terpene resin is preferably 7.5 or more from the viewpoint of compatibility with the rubber component.

ポリテルペン樹脂およびテルペンスチレン樹脂の少なくとも一方のゴム成分100質量部に対する含有量は、耐摩耗性の観点から10質量部以下であり、8質量部以下が好ましい。また、本発明の効果が良好に得られるという理由から2質量部以上が好ましく、4質量部以上がより好ましい。 The content of at least one of the polyterpene resin and the terpene styrene resin with respect to 100 parts by mass of the rubber component is 10 parts by mass or less, preferably 8 parts by mass or less from the viewpoint of abrasion resistance. Further, 2 parts by mass or more is preferable, and 4 parts by mass or more is more preferable, because the effect of the present invention can be obtained satisfactorily.

ゴム成分としては、特に限定されず、従来タイヤのトレッド用ゴム組成物に用いられるゴム成分を用いることができる。例えば、天然ゴムおよびポリイソプレンゴム(IR)を含むイソプレン系ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)などのジエン系ゴム成分や、ブチル系ゴムが挙げられる。これらのゴム成分は、単独で用いることも、2種以上を併用することもできる。なかでも、低燃費性や耐摩耗性、耐久性、ウェットグリップ性能のバランスの観点からイソプレン系ゴム、SBR、BRを含有することが好ましく、耐チッピング性能に特に優れるという理由からイソプレン系ゴムとSBRを含有することが好ましい。 The rubber component is not particularly limited, and a rubber component used in a conventional tire tread rubber composition can be used. For example, isoprene-based rubber containing natural rubber and polyisoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR). Diene-based rubber components such as, and butyl-based rubber can be mentioned. These rubber components may be used alone or in combination of two or more. Among them, isoprene rubber, SBR, and BR are preferably contained from the viewpoint of balance of fuel efficiency, wear resistance, durability, and wet grip performance, and isoprene rubber and SBR are particularly excellent in chipping resistance. Is preferably contained.

前記天然ゴムとしては、天然ゴム(NR)や、エポキシ化天然ゴム(ENR)、水素化天然ゴム(HNR)、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)などの改質天然ゴムなども含まれる。 Examples of the natural rubber include modified natural rubber such as natural rubber (NR), epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), deproteinized natural rubber (DPNR), and high-purity natural rubber (UPNR). Etc. are also included.

イソプレン系ゴムを含有する場合のゴム成分中の含有量は、ゴムの混練り加工性、押出し加工性において優れるという点から、10質量%以上が好ましく、20質量%以上がより好ましい。また、イソプレン系ゴムの含有量は、低温特性において優れるという点から、80質量%以下が好ましく、70質量%以下がより好ましい。 When the isoprene-based rubber is contained, the content in the rubber component is preferably 10% by mass or more, more preferably 20% by mass or more, from the viewpoint of being excellent in the kneading processability and extrusion processability of the rubber. Further, the content of the isoprene-based rubber is preferably 80% by mass or less, more preferably 70% by mass or less, from the viewpoint of being excellent in low temperature characteristics.

前記BRとしては、シス含有量が90%以上のハイシスBR、末端および/または主鎖が変性された変性BR、スズ、ケイ素化合物などでカップリングされた変性BR(縮合物、分岐構造を有するものなど)などが挙げられる。これらのBRのなかでも、耐摩耗性に優れるという理由から、ハイシスBRが好ましい。 The BR includes a high cis BR having a cis content of 90% or more, a modified BR having a modified terminal and / or main chain, a modified BR (condensate, having a branched structure, etc.) coupled with a tin, silicon compound, or the like. Etc.) and so on. Among these BRs, Hisys BR is preferable because it has excellent wear resistance.

BRを含有する場合のゴム成分中の含有量は、耐摩耗性の観点から1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上がさらに好ましい。また、BRの含有量は、加工性の観点から80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下がさらに好ましい。 When BR is contained, the content in the rubber component is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more from the viewpoint of wear resistance. The BR content is preferably 80% by mass or less, more preferably 75% by mass or less, and even more preferably 70% by mass or less from the viewpoint of processability.

本発明のゴム組成物は、前記成分以外にも、ゴム組成物の製造に一般的に使用される配合剤、例えば、前記卵殻粉以外の充填剤(他の充填剤)、酸化亜鉛、ステアリン酸、軟化剤、老化防止剤、ワックス、加硫剤、加硫促進剤などを適宜含有することができる。 In addition to the above components, the rubber composition of the present invention contains a compounding agent generally used for producing the rubber composition, for example, a filler other than the eggshell powder (other filler), zinc oxide, and stearic acid. , Softener, anti-aging agent, wax, vulcanizing agent, vulcanization accelerator and the like can be appropriately contained.

前記他の充填剤としては特に限定されず、平均粒子径が120μm未満の卵殻粉(小粒子卵殻粉)、カーボンブラック、シリカ、水酸化アルミニウム、アルミナ(酸化アルミニウム)、炭酸カルシウム、タルクなどが挙げられ、これらの充填剤を単独で用いることも、2種以上を組み合わせて用いることもできる。 The other filler is not particularly limited, and examples thereof include eggshell powder (small particle eggshell powder) having an average particle diameter of less than 120 μm, carbon black, silica, aluminum hydroxide, alumina (aluminum oxide), calcium carbonate, and talc. These fillers can be used alone or in combination of two or more.

小粒子卵殻粉は、平均粒子径が120μm未満の卵殻粉であり、破壊強度の観点から、100μm以下が好ましく、80μm以下がより好ましく、30μm以下がさらに好ましい。また、小粒子卵殻粉は低温氷上性能に優れるという理由から、10μm以上が好ましく、12μm以上がより好ましい。 The small particle eggshell powder is an eggshell powder having an average particle diameter of less than 120 μm, and is preferably 100 μm or less, more preferably 80 μm or less, still more preferably 30 μm or less, from the viewpoint of breaking strength. Further, the small particle eggshell powder is preferably 10 μm or more, more preferably 12 μm or more, because it is excellent in low-temperature ice performance.

小粒子卵殻粉を含有する場合のゴム成分100質量部に対する含有量は、低温氷上性能に優れるという理由から、1質量部以上が好ましく、3質量部以上がより好ましい。また、当該卵殻粉の含有量は、20質量部以下が好ましく、15質量部以下がより好ましい。 When the small particle eggshell powder is contained, the content of the rubber component with respect to 100 parts by mass is preferably 1 part by mass or more, more preferably 3 parts by mass or more, because it is excellent in low-temperature ice performance. The content of the eggshell powder is preferably 20 parts by mass or less, more preferably 15 parts by mass or less.

カーボンブラックとしては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどが挙げられ、これらのカーボンブラックは単独で用いてもよく、2種以上を組合せて用いてもよい。 Examples of carbon black include furnace black, acetylene black, thermal black, channel black, graphite, and the like, and these carbon blacks may be used alone or in combination of two or more.

カーボンブラックのチッ素吸着比表面積(N2SA)は、充分な補強性および耐摩耗性が得られる点から、70m2/g以上が好ましく、90m2/g以上がより好ましい。また、カーボンブラックのN2SAは、分散性に優れ、発熱しにくいという点から、300m2/g以下が好ましく、250m2/g以下がより好ましい。なお、N2SAは、JIS K 6217−2「ゴム用カーボンブラック−基本特性−第2部:比表面積の求め方−窒素吸着法−単点法」に準じて測定することができる。 The nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 70 m 2 / g or more, and more preferably 90 m 2 / g or more, from the viewpoint of obtaining sufficient reinforcing properties and wear resistance. Also, N 2 SA of carbon black is excellent in dispersibility, from the viewpoint that it is difficult to heat generation, preferably 300 meters 2 / g or less, more preferably 250m 2 / g. N 2 SA can be measured according to JIS K 6217-2 "Carbon black for rubber-Basic characteristics-Part 2: How to obtain specific surface area-Nitrogen adsorption method-Single point method".

カーボンブラックのDBP吸油量は、耐摩耗性の観点から、50ml/100g以上が好ましく、100ml/100g以上がより好ましい。また、グリップ性能の観点から、カーボンブラックのDBP吸油量は、250ml/100g以下が好ましく、200ml/100g以下がより好ましく、135ml/100g以下がより好ましい。なお、本明細書におけるカーボンブラックのDBP吸油量は、JIS K6217−4:2008に準じて測定される値である。 From the viewpoint of wear resistance, the DBP oil absorption amount of carbon black is preferably 50 ml / 100 g or more, and more preferably 100 ml / 100 g or more. From the viewpoint of grip performance, the DBP oil absorption amount of carbon black is preferably 250 ml / 100 g or less, more preferably 200 ml / 100 g or less, and more preferably 135 ml / 100 g or less. The DBP oil absorption amount of carbon black in the present specification is a value measured according to JIS K6217-4: 2008.

カーボンブラックを含有する場合のジエン系ゴム成分100質量部に対する含有量は、5質量部以上が好ましく、10質量部以上がより好ましい。5質量部未満の場合は、充分な補強性が得られない傾向がある。また、カーボンブラックの含有量は200質量部以下が好ましく、150質量部以下がより好ましく、60質量部以下がさらに好ましい。200質量部を超える場合は、加工性が悪化する傾向、発熱しやすくなる傾向、および耐摩耗性が低下する傾向がある。 When carbon black is contained, the content of the diene rubber component with respect to 100 parts by mass is preferably 5 parts by mass or more, and more preferably 10 parts by mass or more. If it is less than 5 parts by mass, sufficient reinforcing properties tend not to be obtained. The carbon black content is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and even more preferably 60 parts by mass or less. If it exceeds 200 parts by mass, the workability tends to deteriorate, heat generation tends to occur easily, and wear resistance tends to decrease.

シリカとしては特に限定されず、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)等が挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。 The silica is not particularly limited, and examples thereof include dry silica (silicic anhydride) and wet silica (hydrous silica), but wet silica is preferable because it contains a large amount of silanol groups.

シリカのチッ素吸着比表面積(N2SA)は、耐久性や破断時伸びの観点から、80m2/g以上が好ましく、100m2/g以上がより好ましい。また、シリカのN2SAは、低燃費性および加工性の観点から、250m2/g以下が好ましく、220m2/g以下がより好ましい。なお、本明細書におけるシリカのN2SAとは、ASTM D3037−93に準じて測定された値である。 The nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 80 m 2 / g or more, and more preferably 100 m 2 / g or more, from the viewpoint of durability and elongation at break. The N 2 SA of the silica, from the viewpoint of fuel economy and workability, preferably 250 meters 2 / g or less, more preferably 220 m 2 / g. The N 2 SA of silica in the present specification is a value measured according to ASTM D3037-93.

シリカを含有する場合のゴム成分100質量部に対する含有量は、耐久性や破断時伸びの観点から、5質量部以上が好ましく、10質量部以上がより好ましい。また、シリカの含有量は、混練時の分散性向上の観点、圧延時の加熱や圧延後の保管中にシリカが再凝集して加工性が低下することを抑制するという観点から、200質量部以下が好ましく、150質量部以下がより好ましい。 When silica is contained, the content of the rubber component with respect to 100 parts by mass is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, from the viewpoint of durability and elongation at break. The silica content is 200 parts by mass from the viewpoint of improving dispersibility during kneading and from the viewpoint of suppressing the reaggregation of silica during heating during rolling and storage after rolling to reduce processability. The following is preferable, and 150 parts by mass or less is more preferable.

シリカは、シランカップリング剤と併用することが好ましい。シランカップリング剤としては、ゴム工業において、従来からシリカと併用される任意のシランカップリング剤を使用することができ、例えば、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(3−トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド系、3−メルカプトプロピルトリメトキシシラン、Momentive社製のNXT−Z100、NXT−Z45、NXTなどのメルカプト系(メルカプト基を有するシランカップリング剤)、ビニルトリエトキシシランなどのビニル系、3−アミノプロピルトリエトキシシランなどのアミノ系、γ−グリシドキシプロピルトリエトキシシランなどのグリシドキシ系、3−ニトロプロピルトリメトキシシランなどのニトロ系、3−クロロプロピルトリメトキシシランなどのクロロ系などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Silica is preferably used in combination with a silane coupling agent. As the silane coupling agent, any silane coupling agent conventionally used in combination with silica can be used in the rubber industry, for example, bis (3-triethoxysilylpropyl) disulfide and bis (3-triethoxy). Cyrilpropyl) Tetrasulfide and other sulfides, 3-mercaptopropyltrimethoxysilane, Momentive's NXT-Z100, NXT-Z45, NXT and other mercaptos (silane coupling agents having a mercapto group), vinyltriethoxysilane Vinyl type such as 3-aminopropyltriethoxysilane, amino type such as γ-glycidoxypropyltriethoxysilane, nitro type such as 3-nitropropyltrimethoxysilane, 3-chloropropyltrimethoxysilane Such as chloro system can be mentioned. These may be used alone or in combination of two or more.

シランカップリング剤を含有する場合のシリカ100質量部に対する含有量は、十分なフィラー分散性の改善効果や、粘度低減等の効果が得られるという理由から、4.0質量部以上であることが好ましく、6.0質量部以上であることがより好ましい。また、十分なカップリング効果、シリカ分散効果が得られず、補強性が低下するという理由から、シランカップリング剤の含有量は、12質量部以下であることが好ましく、10質量部以下であることがより好ましい。 When the silane coupling agent is contained, the content with respect to 100 parts by mass of silica is 4.0 parts by mass or more because an effect of improving sufficient filler dispersibility and an effect of reducing viscosity can be obtained. It is preferably 6.0 parts by mass or more, and more preferably 6.0 parts by mass or more. Further, the content of the silane coupling agent is preferably 12 parts by mass or less, preferably 10 parts by mass or less, because a sufficient coupling effect and silica dispersion effect cannot be obtained and the reinforcing property is lowered. Is more preferable.

前記軟化剤としては、低温可塑剤、オイル、および液状ジエン系重合体などが挙げられる。なかでも氷上性能の向上が見込まれるという理由から、粘着性樹脂を含有することが好ましい。 Examples of the softener include low-temperature plasticizers, oils, and liquid diene-based polymers. Above all, it is preferable to contain an adhesive resin because the performance on ice is expected to be improved.

前記低温可塑剤としては、例えば、アジピン酸ジブチル(DBA)、アジピン酸ジイソブチル(DIBA)、アジピン酸ジオクチル(DOA)、アゼライン酸ジ2−エチルヘキシル(DOZ)、セバシン酸ジブチル(DBS)、アジピン酸ジイソノニル(DINA)、フタル酸ジエチル(DEP)、フタル酸ジオクチル(DOP)、フタル酸ジウンデシル(DUP)、フタル酸ジブチル(DBP)、セバシン酸ジオクチル(DOS)、リン酸トリブチル(TBP)、リン酸トリオクチル(TOP)、リン酸トリエチル(TEP)、リン酸トリメチル(TMP)、チミジントリリン酸(TTP)、リン酸トリクレシル(TCP)、リン酸トリキシレニル(TXP)等のエステル系可塑剤が挙げられ、低温時における可塑効果と耐摩耗性のバランスから、DOS、TOPが好ましい。 Examples of the low temperature plasticizer include dibutyl adipate (DBA), diisobutyl adipate (DIBA), dioctyl adipate (DOA), di2-ethylhexyl azelaate (DOZ), dibutyl sebacate (DBS), and diisononyl adipate. (DINA), diethyl phthalate (DEP), dioctyl phthalate (DOP), diundesyl phthalate (DUP), dibutyl phthalate (DBP), dioctyl sevacinate (DOS), tributyl phosphate (TBP), trioctyl phosphate (DINA) Examples thereof include ester-based plasticizers such as TOP), triethyl phosphate (TEP), trimethyl phosphate (TMP), thymidine triphosphate (TTP), tricrecil phosphate (TCP), and trixylenyl phosphate (TXP), which are used at low temperatures. DOS and TOP are preferable from the viewpoint of the balance between the plasticizing effect and the abrasion resistance.

前記オイルとしては、例えば、パラフィン系、アロマ系、ナフテン系プロセスオイルなどのプロセスオイルが挙げられる。 Examples of the oil include process oils such as paraffin-based, aroma-based, and naphthenic-based process oils.

前記液状ジエン系重合体は、常温(25℃)で液体状態のジエン系重合体であり、例えば、液状スチレンブタジエン共重合体(液状SBR)、液状ブタジエン重合体(液状BR)、液状イソプレン重合体(液状IR)、液状スチレンイソプレン共重合体(液状SIR)などが挙げられる。なかでも、耐摩耗性と走行中の安定したグリップ性能がバランスよく得られるという理由から、液状SBRが好ましい。 The liquid diene polymer is a diene polymer in a liquid state at room temperature (25 ° C.), and is, for example, a liquid styrene-butadiene copolymer (liquid SBR), a liquid butadiene polymer (liquid BR), or a liquid isoprene polymer. (Liquid IR), liquid styrene isoprene copolymer (liquid SIR) and the like can be mentioned. Of these, liquid SBR is preferable because it provides a good balance between wear resistance and stable grip performance during running.

軟化剤を含有する場合のゴム成分100質量部に対する含有量(複数の軟化剤を併用する場合は全ての合計量)は、本発明の効果が効果的に得られるという理由から、5質量部以上が好ましい。また、30質量部以下が好ましい。 The content of the rubber component with respect to 100 parts by mass when the softener is contained (the total amount of all when a plurality of softeners are used in combination) is 5 parts by mass or more because the effect of the present invention can be effectively obtained. Is preferable. Further, it is preferably 30 parts by mass or less.

前記老化防止剤としては特に限定されず、ゴム分野で使用されているものが使用可能であり、例えば、キノリン系、キノン系、フェノール系、フェニレンジアミン系老化防止剤などが挙げられる。 The antiaging agent is not particularly limited, and those used in the rubber field can be used, and examples thereof include quinoline-based, quinone-based, phenol-based, and phenylenediamine-based antiaging agents.

老化防止剤を含有する場合のゴム成分100質量部に対する含有量は、0.5質量部以上が好ましく、0.8質量部以上がより好ましい。また、老化防止剤の含有量は、充填剤等の分散性、破断時伸び、混練効率の観点から、2.0質量部以下が好ましく、1.5質量部以下がより好ましく、1.2質量部以下がより好ましい。 When the anti-aging agent is contained, the content of the rubber component with respect to 100 parts by mass is preferably 0.5 parts by mass or more, more preferably 0.8 parts by mass or more. The content of the antiaging agent is preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass or less, and 1.2 parts by mass from the viewpoints of dispersibility of the filler and the like, elongation at break, and kneading efficiency. Less than a part is more preferable.

前記加硫剤としては特に限定されず、タイヤ工業において一般的なものを使用できる。本発明の効果が良好に得られるという点からは、硫黄が好ましく、粉末硫黄がより好ましい。また、硫黄は他の加硫剤と併用してもよい。他の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6−ヘキサメチレン−ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄原子を含む加硫剤や、ジクミルパーオキサイドなどの有機過酸化物などが挙げられる。 The vulcanizing agent is not particularly limited, and those commonly used in the tire industry can be used. Sulfur is preferable, and powdered sulfur is more preferable, from the viewpoint that the effects of the present invention can be obtained satisfactorily. In addition, sulfur may be used in combination with other vulcanizing agents. Other vulcanizing agents include, for example, Tackylol V200 manufactured by Taoka Chemical Industry Co., Ltd., DURALINK HTS (1,6-hexamethylene-sodium dithiosulfate / dihydrate) manufactured by Flexis, and KA9188 manufactured by Rankses. Examples thereof include a vulcanizing agent containing a sulfur atom such as (1,6-bis (N, N'-dibenzylthiocarbamoyldithio) hexane) and an organic peroxide such as dicumyl peroxide.

加硫剤を含有する場合のゴム成分100質量部に対する含有量は、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。また、加硫剤の含有量は、15質量部以下が好ましく、5質量部以下がより好ましい。 When the vulcanizing agent is contained, the content of the rubber component with respect to 100 parts by mass is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more. The content of the vulcanizing agent is preferably 15 parts by mass or less, and more preferably 5 parts by mass or less.

前記加硫促進剤としては、グアニジン系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンデート系の化合物などが挙げられる。なかでも、本発明の効果が好適に得られるという理由から、ベンゾチアゾリルスルフィド基を有する加硫促進剤が好ましい。 Examples of the vulcanization accelerator include guanidine-based, aldehyde-amine-based, aldehyde-ammonia-based, thiazole-based, sulfenamide-based, thiourea-based, thiuram-based, dithiocarbamate-based, and zandate-based compounds. Among them, a vulcanization accelerator having a benzothiazolyl sulfide group is preferable because the effect of the present invention can be preferably obtained.

ベンゾチアゾリルスルフィド基を有する加硫促進剤としては、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(TBBS)、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(DCBS)、N,N−ジイソプロピル−2−ベンゾチアゾールスルフェンアミド、N,N−ジ(2−エチルヘキシル)−2−ベンゾチアゾリルスルフェンアミド(BEHZ)、N,N−ジ(2−メチルヘキシル)−2−ベンゾチアゾリルスルフェンアミド(BMHZ)、N−エチル−N−t−ブチルベンゾチアゾール−2−スルフェンアミド(ETZ)等のスルフェンアミド系加硫促進剤や、N−tert−ブチル−2−ベンゾチアゾリルスルフェンイミド(TBSI)、ジ−2−ベンゾチアゾリルジスルフィド(DM)等が挙げられる。 Examples of the brewing accelerator having a benzothiazolyl sulfide group include N-tert-butyl-2-benzothiazolyl sulfenamide (TBBS), N-cyclohexyl-2-benzothiazolyl sulfenamide (CBS), and N. , N-Dicyclohexyl-2-benzothiazolyl sulfenamide (DCBS), N, N-diisopropyl-2-benzothiazolesulfenamide, N, N-di (2-ethylhexyl) -2-benzothiazolyl sulfenamide (BEHZ), N, N-di (2-methylhexyl) -2-benzothiazolyl sulfenamide (BMHZ), N-ethyl-N-t-butylbenzothiazole-2-sulfenamide (ETZ), etc. Examples thereof include sulfenamide-based sulfide accelerators, N-tert-butyl-2-benzothiazolyl sulfenimide (TBSI), and di-2-benzothiazolyl disulfide (DM).

加硫促進剤を含有する場合のゴム成分100質量部に対する含有量は、十分な加硫速度を確保するという観点から、0.5質量部以上が好ましく、1.0質量部以上が好ましい。また、加硫促進剤の含有量は、ブルーミングを抑制するという観点から、10質量部以下が好ましく、5質量部以下がより好ましい。 When the vulcanization accelerator is contained, the content of the rubber component with respect to 100 parts by mass is preferably 0.5 parts by mass or more, and preferably 1.0 part by mass or more from the viewpoint of ensuring a sufficient vulcanization rate. The content of the vulcanization accelerator is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, from the viewpoint of suppressing blooming.

本発明のトレッド用ゴム組成物は、一般的な方法で製造できる。例えば、バンバリーミキサーやニーダー、オープンロールなどの一般的なゴム工業で使用される公知の混練機で、前記各成分のうち、架橋剤および加硫促進剤以外の成分を混練りした後、これに、架橋剤および加硫促進剤を加えてさらに混練りし、その後加硫する方法などにより製造できる。 The rubber composition for tread of the present invention can be produced by a general method. For example, a known kneader used in the general rubber industry such as a Banbury mixer, a kneader, and an open roll is used to knead each of the above components other than the cross-linking agent and the vulcanization accelerator, and then knead the components. , A cross-linking agent and a vulcanization accelerator are added, the mixture is further kneaded, and then vulcanization is performed.

本発明のゴム組成物を用いたタイヤは、前記ゴム組成物を用いて、通常の方法により製造できる。すなわち、ジエン系ゴム成分に対して前記の配合剤を必要に応じて配合した前記ゴム組成物を、トレッドの形状にあわせて押出し加工し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成型することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、タイヤを製造することができる。 A tire using the rubber composition of the present invention can be produced by a usual method using the rubber composition. That is, the rubber composition obtained by blending the above-mentioned compounding agent with the diene-based rubber component as necessary is extruded according to the shape of the tread and bonded together with other tire members on a tire molding machine. An unvulcanized tire is formed by molding according to the above method, and the tire can be manufactured by heating and pressurizing the unvulcanized tire in a vulcanizer.

実施例に基づいて本発明を具体的に説明するが、本発明は、これらのみに限定して解釈されるものではない。 Although the present invention will be specifically described based on Examples, the present invention is not construed as being limited to these.

実施例および比較例で使用した各種薬品について説明する。
NR:TSR20
BR:宇部興産(株)製のBR150B(ハイシスBR、シス含量97質量%)
カーボンブラック:三菱化学(株)製のダイアブラックI(ASTM No.N220、N2SA:114m2/g、DBP:114ml/100g、平均粒子径:22nm)
卵殻粉1:グリーンテクノ社製のSQ−10(平均粒子径:10μm)
卵殻粉2:グリーンテクノ社製のSQ−50(平均粒子径:50μm)
卵殻粉3:グリーンテクノ社製のSQ−130(平均粒子径:130μm)
ポリテルペン樹脂:ヤスハラケミカル(株)製のPX1150N(水素添加されていないポリテルペン樹脂、SP値:8.26、軟化点:115℃、Tg:65℃)
水添ポリテルペン樹脂:ヤスハラケミカル(株)製のP125(水素添加されたポリテルペン樹脂、水添率:100モル%、SP値:8.36、軟化点:125℃、Tg:74℃)
テルペンスチレン樹脂:Arizona chemical社製のSYLVATRAXX6720(水素添加されていないテルペンスチレン樹脂、SP値:8.70、軟化点:118℃、Tg:70℃、テルペン化合物およびスチレンの合計:90質量%)
テルペンフェノール樹脂:Arizona chemical社製のSYLVARES TP115
オイル:(株)ジャパンエナジー製のプロセスP−200
ワックス:大内新興化学工業(株)製のサンノックN
老化防止剤:住友化学(株)製のアンチゲン6C(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン)
ステアリン酸:日油(株)製のステアリン酸「椿」
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
硫黄:軽井沢硫黄(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド)
Various chemicals used in Examples and Comparative Examples will be described.
NR: TSR20
BR: BR150B manufactured by Ube Industries, Ltd. (Hisys BR, cis content 97% by mass)
Carbon Black: Dia Black I manufactured by Mitsubishi Chemical Corporation (ASTM No. N220, N 2 SA: 114 m 2 / g, DBP: 114 ml / 100 g, average particle size: 22 nm)
Eggshell powder 1: SQ-10 manufactured by Green Techno Co., Ltd. (average particle size: 10 μm)
Eggshell powder 2: SQ-50 manufactured by Green Techno Co., Ltd. (average particle size: 50 μm)
Eggshell powder 3: SQ-130 manufactured by Green Techno Co., Ltd. (average particle size: 130 μm)
Polyterpen resin: PX1150N manufactured by Yasuhara Chemical Co., Ltd. (Polyterpen resin without hydrogenation, SP value: 8.26, softening point: 115 ° C, Tg: 65 ° C)
Hydrogenated polyterpene resin: P125 manufactured by Yasuhara Chemical Co., Ltd. (hydrogenated polyterpene resin, hydrogenation rate: 100 mol%, SP value: 8.36, softening point: 125 ° C., Tg: 74 ° C.)
Terpene Styrene Resin: SYLVATARX6720 manufactured by Arizona Chemical (Non-hydrogenated Terpene Styrene Resin, SP Value: 8.70, Softening Point: 118 ° C, Tg: 70 ° C, Total of Terpene Compound and Styrene: 90% by Mass)
Terpene Phenol Formaldehyde: SYLVARES TP115 manufactured by Arizona Chemical
Oil: Process P-200 manufactured by Japan Energy Co., Ltd.
Wax: Sunknock N manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
Anti-aging agent: Antigen 6C (N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine) manufactured by Sumitomo Chemical Co., Ltd.
Stearic acid: Stearic acid "Camellia" manufactured by NOF CORPORATION
Zinc oxide: Zinc oxide No. 1 manufactured by Mitsui Metal Mining Co., Ltd. Sulfur: Powdered sulfur vulcanization accelerator manufactured by Karuizawa Sulfur Co., Ltd .: Noxeller CZ (N-cyclohexyl-2-) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd. Benzothiazolyl vulcan amide)

実施例および比較例
表1に示す配合処方にしたがい、1.7Lの密閉型バンバリーミキサーを用いて、硫黄および加硫促進剤以外の薬品を排出温度170℃になるまで5分間混練りし、混練物を得た。さらに、得られた混練物を前記バンバリーミキサーにより、排出温度150℃で4分間、再度混練りした(リミル)。次に、2軸オープンロールを用いて、得られた混練物に硫黄および加硫促進剤を添加し、4分間、105℃になるまで練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で12分間プレス加硫することで、試験用ゴム組成物を作製した。
Examples and Comparative Examples According to the formulation shown in Table 1, chemicals other than sulfur and vulcanization accelerator were kneaded for 5 minutes until the discharge temperature reached 170 ° C. using a 1.7 L sealed Banbury mixer, and kneaded. I got something. Further, the obtained kneaded product was kneaded again with the Banbury mixer at a discharge temperature of 150 ° C. for 4 minutes (remill). Next, using a twin-screw open roll, sulfur and a vulcanization accelerator were added to the obtained kneaded product and kneaded for 4 minutes until the temperature reached 105 ° C. to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press-vulcanized at 170 ° C. for 12 minutes to prepare a test rubber composition.

また、前記未加硫ゴム組成物を所定の形状の口金を備えた押し出し機でタイヤトレッドの形状に押し出し成形し、他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、170℃の条件下で12分間プレス加硫することにより、試験用タイヤ(サイズ:195/65R15、スタッドレスタイヤ)を製造した。 Further, the unvulcanized rubber composition is extruded into a tire tread shape by an extruder equipped with a base having a predetermined shape, and bonded together with other tire members to form an unvulcanized tire, under the condition of 170 ° C. Test tires (size: 195 / 65R15, studless tires) were produced by press vulcanization underneath for 12 minutes.

得られた未加硫ゴム組成物、加硫ゴム組成物および試験用タイヤについて下記の評価を行った。評価結果を表1に示す。 The obtained unvulcanized rubber composition, vulcanized rubber composition and test tire were evaluated as follows. The evaluation results are shown in Table 1.

低温氷上性能(0℃発進性能)
ドライブ軸に試験用タイヤを装着した車両を、表所路面に停止した状態から発進させ、時速10kmに達した時の走行距離を測定した。結果は、指数で示し、指数が大きいほど低温氷上性能に優れることを示す。指数は次の式で求めた。なお、118以上を性能目標値とする。
(低温氷上性能指数)=(比較例1の時速10kmに達した時の走行距離)/(各配合例の時速10kmに達した時の走行距離)×100
Low temperature ice performance (0 ° C start performance)
A vehicle equipped with test tires on the drive shaft was started from a state where it was stopped on the front road surface, and the mileage when the speed reached 10 km / h was measured. The results are indicated by an index, and the larger the index, the better the performance on low temperature ice. The index was calculated by the following formula. The performance target value is 118 or more.
(Low temperature figure of merit) = (mileage when reaching 10 km / h in Comparative Example 1) / (mileage when reaching 10 km / h in each formulation example) × 100

耐摩耗性能
各試験用タイヤを車両(国産FF2000cc)の全輪に装着し、走行距離8000km後のタイヤトレッド部の溝深さを測定し、タイヤ溝深さが1mm減る時の走行距離を求めた。結果は指数で表し、指数が大きいほど耐摩耗性が良好であることを示す。指数は次の式で求めた。なお、92以上を性能目標値とする。
(耐摩耗性能指数)=(各配合例のタイヤ溝が1mm減る時の走行距離)/(比較例1のタイヤ溝が1mm減る時の走行距離)×100
Abrasion resistance performance Each test tire was mounted on all wheels of a vehicle (domestic FF2000cc), and the groove depth of the tire tread after a mileage of 8000 km was measured to determine the mileage when the tire groove depth was reduced by 1 mm. .. The result is expressed by an index, and the larger the index, the better the wear resistance. The index was calculated by the following formula. The performance target value is 92 or more.
(Abrasion resistance performance index) = (mileage when the tire groove of each compounding example is reduced by 1 mm) / (mileage when the tire groove of Comparative Example 1 is reduced by 1 mm) × 100

Figure 0006900719
Figure 0006900719

表1の結果より、ゴム成分に対し、所定量の平均粒子径が120μm以上の卵殻粉ならびにポリテルペン樹脂およびテルペンスチレン樹脂の少なくとも一方を含有するトレッド用ゴム組成物および当該ゴム組成物により構成されたトレッドを有するタイヤは、低温氷上性能および耐摩耗性に優れることがわかる。 From the results in Table 1, it was composed of a rubber composition for tread and the rubber composition containing at least one of a predetermined amount of eggshell powder having an average particle size of 120 μm or more, a polyterpene resin, and a terpene styrene resin with respect to the rubber component. It can be seen that the tire having a tread is excellent in low temperature ice performance and abrasion resistance.

Claims (2)

ゴム成分100質量部に対し、平均粒子径が120μm以上の卵殻粉を3〜15質量部、ならびにポリテルペン樹脂およびテルペンスチレン樹脂の少なくとも一方を2〜10質量部含有するトレッド用ゴム組成物。 Relative to 100 parts by mass of the rubber component, the average 3 to 15 parts by mass particle size of more than eggshell powder 120 [mu] m, and polyterpene resins and terpene styrene rubber composition for a tread having 2-10 parts by weight containing at least one resin. 請求項1記載のトレッド用ゴム組成物により構成されたトレッドを有するタイヤ。 A tire having a tread made of the rubber composition for tread according to claim 1.
JP2017050239A 2017-03-15 2017-03-15 Rubber composition for tread and tires Active JP6900719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017050239A JP6900719B2 (en) 2017-03-15 2017-03-15 Rubber composition for tread and tires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017050239A JP6900719B2 (en) 2017-03-15 2017-03-15 Rubber composition for tread and tires

Publications (2)

Publication Number Publication Date
JP2018154664A JP2018154664A (en) 2018-10-04
JP6900719B2 true JP6900719B2 (en) 2021-07-07

Family

ID=63717630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017050239A Active JP6900719B2 (en) 2017-03-15 2017-03-15 Rubber composition for tread and tires

Country Status (1)

Country Link
JP (1) JP6900719B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7392367B2 (en) * 2019-10-02 2023-12-06 住友ゴム工業株式会社 Heavy load tires

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641355A (en) * 1992-07-27 1994-02-15 Ohtsu Tire & Rubber Co Ltd :The Thread rubber composition for studless tire
JP2011088988A (en) * 2009-10-21 2011-05-06 Bridgestone Corp Tire
EP3064543B1 (en) * 2013-11-20 2019-09-11 Sumitomo Rubber Industries, Ltd. Winter tire

Also Published As

Publication number Publication date
JP2018154664A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6798141B2 (en) Winter tires
JP7006211B2 (en) Pneumatic tires
JP7059669B2 (en) Rubber composition for tread and tires
US11732116B2 (en) Rubber composition for tire tread and tire
JP6594611B2 (en) High performance tires
JP2018030993A (en) tire
JP6958064B2 (en) tire
JP5281109B2 (en) Rubber composition for cap tread and studless tire
EP2325242B1 (en) Rubber composition for cap tread and studless tire
EP3546512A1 (en) Rubber composition for tread, and tire
JP7240080B2 (en) tire
JP2020029555A (en) Rubber composition for tire tread and tire manufactured using the same
JP5269370B2 (en) Rubber composition for racing tire and racing tire having tread using the same
JP6776638B2 (en) High performance tire
JP6888306B2 (en) Rubber composition for tread and tires
JP5403399B2 (en) Rubber composition and tire using the same
JP6900719B2 (en) Rubber composition for tread and tires
JP6769028B2 (en) tire
JP6658831B2 (en) High performance tires
JP7067475B2 (en) Rubber composition for tread and tires
JP5878375B2 (en) Rubber composition for tire and winter tire or studless tire
JP2015221884A (en) Rubber composition and pneumatic tire
JP5887762B2 (en) Rubber composition for tire tread and pneumatic tire using the same
JP2015221883A (en) Rubber composition and pneumatic tire
JP6013926B2 (en) Rubber composition for studless tire and studless tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R150 Certificate of patent or registration of utility model

Ref document number: 6900719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250