JP6898762B2 - Heat storage system and heat storage system operation method - Google Patents

Heat storage system and heat storage system operation method Download PDF

Info

Publication number
JP6898762B2
JP6898762B2 JP2017077187A JP2017077187A JP6898762B2 JP 6898762 B2 JP6898762 B2 JP 6898762B2 JP 2017077187 A JP2017077187 A JP 2017077187A JP 2017077187 A JP2017077187 A JP 2017077187A JP 6898762 B2 JP6898762 B2 JP 6898762B2
Authority
JP
Japan
Prior art keywords
heat storage
valve
evaporator
pressure
reaction medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017077187A
Other languages
Japanese (ja)
Other versions
JP2018179368A (en
Inventor
山内 崇史
崇史 山内
瀬戸山 徳彦
徳彦 瀬戸山
靖樹 廣田
靖樹 廣田
雅巳 谷口
雅巳 谷口
雅史 阿波
雅史 阿波
冬人 荒木
冬人 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2017077187A priority Critical patent/JP6898762B2/en
Publication of JP2018179368A publication Critical patent/JP2018179368A/en
Application granted granted Critical
Publication of JP6898762B2 publication Critical patent/JP6898762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本願は、蓄熱システム及び蓄熱システム運転方法に関する。 The present application relates to a heat storage system and a method of operating the heat storage system.

特許文献1には、排気ガスを浄化する触媒セラミック部の周囲に化学反応蓄熱装置を設け、冷間時に蓄熱物質を発熱させるための水を供給する触媒暖機装置が記載されている。この触媒暖機装置では、暖機後に可逆反応を起こさせ、反応後の水を水蒸気として外部へ排出する。 Patent Document 1 describes a catalyst warm-up device in which a chemical reaction heat storage device is provided around a catalyst ceramic portion that purifies exhaust gas and water is supplied to generate heat of a heat storage substance when it is cold. In this catalyst warm-up device, a reversible reaction is caused after warming up, and the water after the reaction is discharged to the outside as water vapor.

特開昭59−208118号公報JP-A-59-208118

蒸発器で蒸発させた反応媒体を蓄熱器で吸着させて蓄熱させる蓄熱システムにおいて、蒸発器と蓄熱器との圧力差が大きいと、蒸発器から蓄熱器へ液相の反応媒体が移動してしまう現象、いわゆる液とびが生じることがある。液相の反応媒体が蓄熱器に供給されると、蓄熱器での蓄熱量の低下を招くことがある。 In a heat storage system in which a reaction medium vaporized by an evaporator is adsorbed by a heat storage device to store heat, if the pressure difference between the evaporator and the heat storage device is large, the liquid phase reaction medium moves from the evaporator to the heat storage device. A phenomenon, so-called liquid splattering, may occur. When the liquid phase reaction medium is supplied to the heat storage device, the amount of heat stored in the heat storage device may decrease.

本発明は上記事実を考慮し、蒸発器から蓄熱器への液とびに起因する蓄熱器での蓄熱量低下を抑制することを課題とする。 In consideration of the above facts, it is an object of the present invention to suppress a decrease in the amount of heat stored in the heat storage due to liquid splashing from the evaporator to the heat storage.

第一の態様では、反応媒体が蒸発される蒸発器と、前記蒸発器で蒸発された前記反応媒体の吸着又は化学反応により蓄熱する蓄熱器と、前記蒸発器と前記蓄熱器を接続する反応媒体配管と、前記反応媒体配管を開閉する開閉弁と、前記開閉弁の開弁状態における前記蒸発器と前記蓄熱器の間の圧力差の時間変化を緩和する緩和部材と、を有する。 In the first aspect, an evaporator in which the reaction medium is vaporized, a heat storage device that stores heat by adsorption or chemical reaction of the reaction medium vaporized by the evaporator, and a reaction medium that connects the evaporator and the heat storage device. It has a pipe, an on-off valve for opening and closing the reaction medium pipe, and a relaxation member for alleviating a time change of a pressure difference between the evaporator and the heat storage device in the opened state of the on-off valve.

この蓄熱システムでは、開閉弁が開弁された状態では、蒸発器で蒸発された反応媒体が反応媒体配管を通って蓄熱器に移動する。蓄熱器では、反応媒体の吸着又は化学反応により蓄熱される。 In this heat storage system, when the on-off valve is opened, the reaction medium evaporated by the evaporator moves to the heat storage through the reaction medium piping. In the heat storage device, heat is stored by adsorption of the reaction medium or a chemical reaction.

蒸発器は蓄熱器よりも高圧であるため、開閉弁の開弁状態では、蒸発器と蓄熱器の間に圧力差が生じる。緩和部材によって、この圧力差の時間変化が緩和されるので、液相の反応媒体が蒸発器から蓄熱器へ移動してしまう現象、いわゆる液とびを抑制できる。蓄熱器への液とびを抑制することで、蓄熱器の蓄熱量低下を抑制できる。 Since the evaporator has a higher pressure than the heat storage device, a pressure difference occurs between the evaporator and the heat storage device when the on-off valve is open. Since the relaxation member relaxes the time change of the pressure difference, it is possible to suppress the phenomenon that the reaction medium of the liquid phase moves from the evaporator to the heat storage device, that is, so-called liquid skipping. By suppressing the liquid from spilling onto the heat storage device, it is possible to suppress a decrease in the amount of heat stored in the heat storage device.

第二の態様では、第一の態様において、前記緩和部材が、前記開閉弁をバイパスし前記反応媒体配管よりも圧力損失の大きいバイパス配管と、前記バイパス配管を開閉するバイパス開閉弁と、前記開閉弁及び前記バイパス開閉弁の開閉を制御する制御装置と、を含む。 In the second aspect, in the first aspect, the relaxation member bypasses the on-off valve and has a bypass pipe having a larger pressure loss than the reaction medium pipe, a bypass on-off valve that opens and closes the bypass pipe, and the opening / closing. A control device for controlling the opening and closing of the valve and the bypass on-off valve is included.

制御装置が、開閉弁を閉弁し、バイパス開閉弁を開弁すると、バイパス開閉弁の圧力損失は反応媒体配管の圧力損失よりも大きいので、蒸発器から蓄熱器へ反応媒体が急激に移動することが抑制される。これにより、蒸発器と蓄熱器との間の圧力差の時間変化が緩和され、蒸発器から蓄熱器へ徐々に反応媒体が移動する。 When the control device closes the on-off valve and opens the bypass on-off valve, the pressure loss of the bypass on-off valve is larger than the pressure loss of the reaction medium piping, so that the reaction medium moves rapidly from the evaporator to the regenerator. Is suppressed. As a result, the time change of the pressure difference between the evaporator and the regenerator is alleviated, and the reaction medium gradually moves from the evaporator to the regenerator.

第三の態様では、第一の態様において、前記緩和部材が、所定時間で前記開閉弁の開閉を繰り返すよう制御する制御装置を含む。 In the third aspect, in the first aspect, the relaxation member includes a control device that controls the opening and closing of the on-off valve to be repeated at a predetermined time.

制御装置により、開閉弁は所定時間で開閉を繰り返す。蒸発器と蓄熱器との圧力差が大きくても、蒸発器から蓄熱器へ所定時間内で複数回に分けて反応媒体が移動する。すなわち、所定時間内では、蒸発器から蓄熱器へ反応媒体が急激に移動することが抑制される。これにより、蒸発器と蓄熱器との間の圧力差の時間変化が緩和され、蒸発器から蓄熱器へ徐々に反応媒体が移動する。 The on-off valve is repeatedly opened and closed at a predetermined time by the control device. Even if the pressure difference between the evaporator and the heat storage device is large, the reaction medium moves from the evaporator to the heat storage device in a plurality of times within a predetermined time. That is, within a predetermined time, the rapid movement of the reaction medium from the evaporator to the heat storage device is suppressed. As a result, the time change of the pressure difference between the evaporator and the regenerator is alleviated, and the reaction medium gradually moves from the evaporator to the regenerator.

第四の態様では、第一の態様において、前記開閉弁が、前記反応媒体配管に設けられる第一開閉弁と、前記反応媒体配管において前記第一開閉弁よりも前記蓄熱器側に設けられ前記蒸発器及び前記蓄熱器よりも容積の小さいバッファ部を前記第一開閉弁との間に形成する第二開閉弁と、を含み、前記緩和部材が、前記第一開閉弁と前記第二開閉弁の一方の開弁と他方の閉弁を交互に繰り返す制御装置を含む。 In the fourth aspect, in the first aspect, the on-off valve is provided on the first on-off valve provided in the reaction medium pipe and on the heat storage side of the reaction medium pipe with respect to the first on-off valve. The relaxation member includes the first on-off valve and the second on-off valve, including an evaporator and a second on-off valve that forms a buffer portion having a volume smaller than that of the heat storage device between the first on-off valve and the first on-off valve. It includes a control device that alternately repeats opening one valve and closing the other valve.

制御装置により、第一開閉弁と第二開閉弁の一方の開弁と他方の閉弁を交互に繰り返す。蒸発器の反応媒体はバッファ部に一時的に貯留され、その後、蓄熱器に移動する。蒸発器と蓄熱器との圧力差が大きくても、蒸発器から蓄熱器へ所定時間内で複数回に分けて反応媒体が移動する。すなわち、蒸発器から蓄熱器へ反応媒体が急激に移動することが抑制される。これにより、蒸発器と蓄熱器との間の圧力差の時間変化が緩和され、蒸発器から蓄熱器へ徐々に反応媒体が移動する。 The control device alternately repeats opening one of the first on-off valve and the second on-off valve and closing the other. The reaction medium of the evaporator is temporarily stored in the buffer section and then moved to the regenerator. Even if the pressure difference between the evaporator and the heat storage device is large, the reaction medium moves from the evaporator to the heat storage device in a plurality of times within a predetermined time. That is, the rapid movement of the reaction medium from the evaporator to the heat storage device is suppressed. As a result, the time change of the pressure difference between the evaporator and the regenerator is alleviated, and the reaction medium gradually moves from the evaporator to the regenerator.

第五の態様では、第二〜第四のいずれか1つの態様において、前記蒸発器の圧力を検知する第一圧力センサと、前記蓄熱器の圧力を検知する第二圧力センサと、を備え、前記制御装置が、前記第一圧力センサで検知された蒸発器の圧力及び前記第二圧力センサで検知された蓄熱器の圧力に基づいて前記緩和部材を制御する。 In the fifth aspect, in any one of the second to fourth aspects, a first pressure sensor for detecting the pressure of the evaporator and a second pressure sensor for detecting the pressure of the heat storage device are provided. The control device controls the relaxation member based on the pressure of the evaporator detected by the first pressure sensor and the pressure of the regenerator detected by the second pressure sensor.

制御装置による緩和部材の制御が、第一圧力センサで検知した蒸発器の圧力と、第二圧力センサで検知した蓄熱器の圧力に基づくので、これらの圧力に基づかない制御を行う構成と比較して、より的確な制御が可能である。 Since the control of the relaxation member by the control device is based on the pressure of the evaporator detected by the first pressure sensor and the pressure of the heat storage device detected by the second pressure sensor, it is compared with the configuration in which the control is not based on these pressures. Therefore, more accurate control is possible.

第六の態様では、第五の態様において、前記制御装置が、前記蒸発器の圧力と前記蓄熱器の圧力の比が所定の閾値以下の状態では前記緩和部材を作動停止させる。 In the sixth aspect, in the fifth aspect, the control device stops the operation of the relaxation member when the ratio of the pressure of the evaporator to the pressure of the heat storage device is equal to or less than a predetermined threshold value.

圧力の比が閾値以下の状態では、制御装置により、緩和部材は作動停止される。緩和部材が作動停止している状態では、作動している状態と比較して、蒸発器から蓄熱器への圧力損失が小さいので、短時間で反応媒体を蒸発器から蓄熱器へ移動させることができる。 When the pressure ratio is below the threshold value, the relaxation member is stopped by the control device. When the relaxation member is stopped, the pressure loss from the evaporator to the regenerator is smaller than when it is operating, so the reaction medium can be moved from the evaporator to the regenerator in a short time. it can.

第七の態様では、第一〜第六のいずれか1つの態様において、前記反応媒体が不凍冷媒である。 In the seventh aspect, in any one of the first to sixth aspects, the reaction medium is an antifreeze refrigerant.

ここでいう「不凍冷媒」は、たとえば、水等の溶媒に、凝固点を降下させるための溶質が溶けた状態の溶液である。不凍溶液は、溶媒のみの反応媒体よりも凝固点が低いので、より低温であっても、蓄熱システムを運転できる。 The "antifreeze refrigerant" referred to here is, for example, a solution in which a solute for lowering the freezing point is dissolved in a solvent such as water. Since the antifreeze solution has a lower freezing point than the solvent-only reaction medium, the heat storage system can be operated even at a lower temperature.

不凍冷媒の溶質が蓄熱器に吸着されると、蓄熱器の蓄熱容量の低下を招くことがある。緩和部材により、蒸発器と蓄熱器の間の圧力差の時間変化を緩和し、液とびを抑制することで、不凍冷媒の溶質が蓄熱器に吸着されなくなり、蓄熱器の蓄熱容量の低下を抑制できる。 If the solute of the antifreeze refrigerant is adsorbed on the heat storage device, the heat storage capacity of the heat storage device may decrease. The relaxation member alleviates the time change of the pressure difference between the evaporator and the heat storage device, and suppresses the liquid jump, so that the solute of the antifreeze refrigerant is not adsorbed by the heat storage device, and the heat storage capacity of the heat storage device is reduced. Can be suppressed.

第八の態様では、第一〜第七のいずれか1つの態様において、前記蓄熱器が、外部熱源と熱的に接続され、吸着剤による前記反応媒体の吸脱着又は化学蓄熱剤による前記反応媒体の化学反応で蓄熱と放熱が可能である。 In the eighth aspect, in any one of the first to seventh aspects, the heat storage device is thermally connected to an external heat source, and the reaction medium is adsorbed or desorbed by an adsorbent or the reaction medium is a chemical heat storage agent. Heat storage and heat dissipation are possible by the chemical reaction of.

したがって、吸着剤による反応媒体の吸着や、化学蓄熱剤による反応媒体の化学反応で生じた熱を外部熱源に放熱することが可能である。また、外部熱源からの受熱により吸着剤から反応媒体を脱着したり、化学蓄熱剤において化学反応の逆反応を生じさせたりすることが可能である。 Therefore, it is possible to dissipate the heat generated by the adsorption of the reaction medium by the adsorbent or the chemical reaction of the reaction medium by the chemical heat storage agent to an external heat source. Further, it is possible to desorb the reaction medium from the adsorbent by receiving heat from an external heat source, or to cause a reverse reaction of a chemical reaction in a chemical heat storage agent.

第九の態様では、蒸発器で蒸発された反応媒体を反応媒体配管の開閉弁の開弁状態で蓄熱器に移動させて吸着又は化学反応により蓄熱し、前記開閉弁の開弁状態で前記蒸発器と前記蓄熱器の間の圧力変化の時間変化を緩和して前記反応媒体を前記蓄熱器に移動させる。 In the ninth aspect, the reaction medium vaporized by the evaporator is moved to the heat storage device in the open state of the on-off valve of the reaction medium pipe to store heat by adsorption or chemical reaction, and the evaporation is carried out in the open state of the on-off valve. The reaction medium is moved to the heat storage device by relaxing the time change of the pressure change between the device and the heat storage device.

蒸発器は蓄熱器よりも高圧であるため、開閉弁の開弁状態では、蒸発器と蓄熱器の間に圧力差が生じる。この圧力差の時間変化を緩和することで、液相の反応媒体が蒸発器から蓄熱器へ移動してしまう現象、いわゆる液とびを抑制できる。蓄熱器への液とびを抑制することで、蓄熱器での反応媒体を気化するためにエネルギーを少なくし、蓄熱器の蓄熱量低下を抑制できる。 Since the evaporator has a higher pressure than the heat storage device, a pressure difference occurs between the evaporator and the heat storage device when the on-off valve is open. By relaxing the time change of this pressure difference, it is possible to suppress the phenomenon that the reaction medium of the liquid phase moves from the evaporator to the heat storage device, that is, so-called liquid skipping. By suppressing the liquid spill to the heat storage device, the energy can be reduced to vaporize the reaction medium in the heat storage device, and the decrease in the heat storage amount of the heat storage device can be suppressed.

第十の態様では、第九の態様において、前記蒸発器の圧力と前記蓄熱器の圧力の差圧が所定の圧力閾値以下の状態では前記圧力変化の時間変化の緩和を行わない。 In the tenth aspect, in the ninth aspect, when the pressure difference between the pressure of the evaporator and the pressure of the heat storage device is equal to or less than a predetermined pressure threshold value, the time change of the pressure change is not relaxed.

差圧が圧力閾値以下の状態では、蒸発器と蓄熱器の間の圧力差の時間変化を緩和しないので、短時間で反応媒体を蒸発器から蓄熱器へ移動させることができる。 When the differential pressure is equal to or lower than the pressure threshold value, the time change of the pressure difference between the evaporator and the regenerator is not relaxed, so that the reaction medium can be moved from the evaporator to the regenerator in a short time.

本発明は上記構成としたので、蒸発器から蓄熱器への液とびに起因する蓄熱器での蓄熱量低下を抑制できる。 Since the present invention has the above configuration, it is possible to suppress a decrease in the amount of heat stored in the heat storage due to liquid splattering from the evaporator to the heat storage.

図1は第一実施形態の蓄熱システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a heat storage system according to the first embodiment. 図2は第一実施形態の蓄熱システムにおける運転方法の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of an operation method in the heat storage system of the first embodiment. 図3は第一実施形態の蓄熱システムにおける蒸発器及び蓄熱器の圧力の時間変化を示すグラフである。FIG. 3 is a graph showing the time change of the pressure of the evaporator and the heat storage device in the heat storage system of the first embodiment. 図4は比較例の蓄熱システムの構成を示す図である。FIG. 4 is a diagram showing a configuration of a heat storage system of a comparative example. 図5は比較例の蓄熱システムにおける蒸発器及び蓄熱器の圧力の時間変化を示すグラフである。FIG. 5 is a graph showing the time change of the pressure of the evaporator and the heat storage device in the heat storage system of the comparative example. 図6は液とび割合と有効蓄熱量率の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the liquid skip ratio and the effective heat storage amount ratio. 図7は第二実施形態の蓄熱システムの構成を示す図である。FIG. 7 is a diagram showing the configuration of the heat storage system of the second embodiment. 図8は第二実施形態の蓄熱システムにおける運転方法の一例を示すフローチャートである。FIG. 8 is a flowchart showing an example of an operation method in the heat storage system of the second embodiment. 図9は第二実施形態の蓄熱システムにおける蒸発器及び蓄熱器の圧力の時間変化を示すグラフである。FIG. 9 is a graph showing the time change of the pressure of the evaporator and the heat storage device in the heat storage system of the second embodiment. 図10は第三実施形態の蓄熱システムの構成を示す図である。FIG. 10 is a diagram showing the configuration of the heat storage system of the third embodiment. 図11は第三実施形態の蓄熱システムにおける運転方法の一例を示すフローチャートである。FIG. 11 is a flowchart showing an example of an operation method in the heat storage system of the third embodiment. 図12は第三実施形態の蓄熱システムにおける蒸発器及び蓄熱器の圧力の時間変化を示すグラフである。FIG. 12 is a graph showing the time change of the pressure of the evaporator and the heat storage device in the heat storage system of the third embodiment. 図13は蓄熱システムのサイクル数と有効蓄熱量率の関係を示すグラフである。FIG. 13 is a graph showing the relationship between the number of cycles of the heat storage system and the effective heat storage amount ratio.

図1に示すように、第一実施形態の蓄熱システム112は、蒸発器114及び蓄熱器116を有する。蒸発器114と蓄熱器116とは、反応媒体配管118で接続されている。 As shown in FIG. 1, the heat storage system 112 of the first embodiment includes an evaporator 114 and a heat storage device 116. The evaporator 114 and the heat storage device 116 are connected by a reaction medium pipe 118.

蒸発器114は、その内部で反応媒体が蒸発されることで冷熱が生成される。この冷熱により、図示しない冷却対象を冷却することが可能である。 In the evaporator 114, cold heat is generated by evaporating the reaction medium inside the evaporator 114. It is possible to cool a cooling target (not shown) by this cooling heat.

蓄熱器116は、本実施形態では、内部に吸着剤が収容されており、吸着剤により、気相の反応媒体を吸着する。そして、吸着時に生じた熱を蓄熱する。吸着剤としては、反応媒体との組み合わせにより適切な材料を選択できる。たとえば、反応媒体として、水や、後述するエチレングリコール水溶液を用いた場合、吸着剤の例としては13Xゼオライトを挙げることができるが、これに限定されない。 In the present embodiment, the heat storage device 116 contains an adsorbent inside, and the adsorbent adsorbs the reaction medium of the gas phase. Then, the heat generated during adsorption is stored. As the adsorbent, an appropriate material can be selected depending on the combination with the reaction medium. For example, when water or an aqueous ethylene glycol solution described later is used as the reaction medium, 13X zeolite can be mentioned as an example of the adsorbent, but the reaction medium is not limited to this.

蓄熱器116には外部熱源120が熱的に接続されており、実質的に熱交換器として作用している。蓄熱器116で蓄えた熱を外部熱源120に放熱できる。また、外部熱源120から受けた熱により、吸着剤から反応媒体を脱着させることで、蓄熱器116を再生することができる。外部熱源120として、蓄熱器116から受熱する部材又は部位と、蓄熱器116へ放熱する部材又は部位とが別体であってもよい。 An external heat source 120 is thermally connected to the heat storage device 116, and it substantially acts as a heat exchanger. The heat stored in the heat storage device 116 can be dissipated to the external heat source 120. Further, the heat storage device 116 can be regenerated by desorbing the reaction medium from the adsorbent by the heat received from the external heat source 120. As the external heat source 120, the member or portion that receives heat from the heat storage device 116 and the member or portion that dissipates heat to the heat storage device 116 may be separate bodies.

本実施形態では、蒸発器114が凝縮器を兼ねる構成である。蓄熱器116から脱着された気相の反応媒体は、蒸発器114に戻され、蒸発器114が凝縮器として機能することで液化される。もちろん、蒸発器114とは別体の凝縮器を有する構成でもよい。 In the present embodiment, the evaporator 114 also serves as a condenser. The vapor phase reaction medium desorbed from the heat storage device 116 is returned to the evaporator 114, and is liquefied by the evaporator 114 functioning as a condenser. Of course, a configuration having a condenser separate from the evaporator 114 may be used.

本実施形態の反応媒体の例としては、溶媒としての水に、溶質としてエチレングリコールが30重量%程度で溶け込んだエチレングリコール水溶液を挙げることができる。エチレングリコールは、溶媒の凝固点を降下させる溶質の一例である。本実施形態の反応媒体は、これにより、純水と比較して凝固点が低い不凍冷媒として作用する。 An example of the reaction medium of the present embodiment is an ethylene glycol aqueous solution in which ethylene glycol is dissolved in water as a solvent in an amount of about 30% by weight as a solute. Ethylene glycol is an example of a solute that lowers the freezing point of a solvent. As a result, the reaction medium of the present embodiment acts as an antifreeze refrigerant having a lower freezing point than pure water.

反応媒体配管118には、開閉弁122が設けられている。開閉弁122の開閉は、制御装置128によって制御される。開閉弁122の開弁状態では、蒸発器114から蓄熱器116へ反応媒体が移動可能であるが、閉弁状態では反応媒体は移動不能である。 The reaction medium pipe 118 is provided with an on-off valve 122. The opening and closing of the on-off valve 122 is controlled by the control device 128. In the valve open state of the on-off valve 122, the reaction medium can be moved from the evaporator 114 to the heat storage device 116, but in the valve closed state, the reaction medium cannot be moved.

第一実施形態では、反応媒体配管118に、開閉弁122をバイパスするバイパス配管124が設けられている。以下、バイパス配管124を経由することなく蒸発器114から蓄熱器116へ反応媒体が移動する経路を直接経路RDと言い、バイパス配管124を通る経路をバイパス経路RBと言う。バイパス配管124の圧力損失は、反応媒体がバイパス配管124を通らない場合と比較して高くなるように設定されている。したがって、バイパス経路RBの圧力損失ΔPBは、直接経路RDの圧力損失ΔPDよりも大きい。 In the first embodiment, the reaction medium pipe 118 is provided with a bypass pipe 124 that bypasses the on-off valve 122. Hereinafter, the path through which the reaction medium moves from the evaporator 114 to the heat storage device 116 without passing through the bypass pipe 124 is referred to as a direct path RD, and the path through the bypass pipe 124 is referred to as a bypass path RB. The pressure loss of the bypass pipe 124 is set to be higher than that when the reaction medium does not pass through the bypass pipe 124. Therefore, the pressure loss ΔPB of the bypass path RB is larger than the pressure loss ΔPD of the direct path RD.

バイパス配管124には、バイパス開閉弁126が設けられている。バイパス開閉弁126の開閉は、制御装置128によって制御される。第一実施形態では、緩和部材134の一例として、バイパス配管124及びバイパス開閉弁126を含む構成である。 The bypass pipe 124 is provided with a bypass on-off valve 126. The opening and closing of the bypass on-off valve 126 is controlled by the control device 128. In the first embodiment, as an example of the relaxation member 134, the bypass pipe 124 and the bypass on-off valve 126 are included.

蓄熱システム112は、蒸発器114の圧力を検知する第一圧力センサ130と、蓄熱器116の圧力を検知する第二圧力センサ132とを有している。これらの圧力センサで検知した圧力の値は制御装置128に送られる。制御装置128では、圧力センサから送られた圧力の値を基に、開閉弁122及びバイパス開閉弁126の開閉を制御する。 The heat storage system 112 includes a first pressure sensor 130 that detects the pressure of the evaporator 114 and a second pressure sensor 132 that detects the pressure of the heat storage device 116. The pressure value detected by these pressure sensors is sent to the control device 128. The control device 128 controls the opening and closing of the on-off valve 122 and the bypass on-off valve 126 based on the value of the pressure sent from the pressure sensor.

次に、本実施形態の蓄熱システム112の作用及び運転方法を、図4に示す比較例の蓄熱システム12と比較しつつ説明する。 Next, the operation and operation method of the heat storage system 112 of the present embodiment will be described while comparing with the heat storage system 12 of the comparative example shown in FIG.

比較例の蓄熱システム12では、第一実施形態の蓄熱システム112と同様の蒸発器114、蓄熱器116及び反応媒体配管118を有している。ただし、緩和部材、すなわち、反応媒体配管118の開閉弁122をバイパスするバイパス配管は設けられておらず、バイパス開閉弁も設けられていない。そして、比較例の蓄熱システム12では、制御装置128による開閉弁122の開閉制御として、たとえば、短時間で開閉弁122の開閉を繰り返すような制御は行わず、一定時間に渡って開弁状態あるいは閉弁状態を維持する制御を行う。 The heat storage system 12 of the comparative example has an evaporator 114, a heat storage device 116, and a reaction medium pipe 118 similar to the heat storage system 112 of the first embodiment. However, the relaxation member, that is, the bypass pipe for bypassing the on-off valve 122 of the reaction medium pipe 118 is not provided, and the bypass on-off valve is not provided either. Then, in the heat storage system 12 of the comparative example, as the opening / closing control of the on-off valve 122 by the control device 128, for example, the control that repeatedly opens and closes the on-off valve 122 in a short time is not performed, and the valve is opened or opened for a certain period of time. Control to maintain the valve closed state.

比較例の蓄熱システム12において、制御装置128が開閉弁122を閉弁した状態で、蒸発器114により反応媒体が蒸発すると、蒸発器114の圧力P1が高くなる。 In the heat storage system 12 of the comparative example, when the reaction medium is evaporated by the evaporator 114 in a state where the control device 128 closes the on-off valve 122, the pressure P1 of the evaporator 114 becomes high.

図5には、比較例の蓄熱システム12における蒸発器114の圧力P1と蓄熱器116の圧力P2の時間変化が示されている。蒸発器114の圧力P1に対し、蓄熱器116の圧力P2は相対的に低い。すなわち、蓄熱システム12において、蒸発器114から蓄熱器116へ反応媒体の潜熱が放熱される前の段階では、蒸発器114の圧力P1と蓄熱器116の圧力P2との差圧の値が大きくなる(P1−P2=PA−PB)。 FIG. 5 shows the time change of the pressure P1 of the evaporator 114 and the pressure P2 of the heat storage device 116 in the heat storage system 12 of the comparative example. The pressure P2 of the heat storage device 116 is relatively low with respect to the pressure P1 of the evaporator 114. That is, in the heat storage system 12, the value of the differential pressure between the pressure P1 of the evaporator 114 and the pressure P2 of the heat storage device 116 becomes large before the latent heat of the reaction medium is radiated from the evaporator 114 to the heat storage device 116. (P1-P2 = PA-PB).

この状態で制御装置128が開閉弁122を開弁した場合を想定する。図5において、時刻T1が、開閉弁122が開弁された時刻である。開閉弁122の開弁により、蒸発器114と蓄熱器116とが連通される。そして、蒸発器114の圧力P1が短時間で急激に低下すると共に、蓄熱器116の圧力P2が短時間で急激に上昇する。これにより、蒸発器114内の反応媒体の一部が液相の状態で蓄熱器116へ移動する「液とび」が発生する場合がある。 It is assumed that the control device 128 opens the on-off valve 122 in this state. In FIG. 5, the time T1 is the time when the on-off valve 122 is opened. By opening the on-off valve 122, the evaporator 114 and the heat storage device 116 are communicated with each other. Then, the pressure P1 of the evaporator 114 drops sharply in a short time, and the pressure P2 of the heat storage device 116 rises sharply in a short time. As a result, a "liquid jump" may occur in which a part of the reaction medium in the evaporator 114 moves to the heat storage device 116 in a liquid phase state.

一般に、液体が蓄熱器に供給されて吸着剤に付着してしまうと、吸着剤が気相の反応媒体を吸着できる容積が小さくなる。そして、付着した液体を気化して吸着剤で吸着するために大きなエネルギーを要する。すなわち、蓄熱器116における実質的な蓄熱量が小さくなる。 Generally, when the liquid is supplied to the heat storage device and adheres to the adsorbent, the volume at which the adsorbent can adsorb the reaction medium of the gas phase becomes small. Then, a large amount of energy is required to vaporize the adhered liquid and adsorb it with the adsorbent. That is, the substantial amount of heat stored in the heat storage device 116 becomes small.

図6には、液とび割合と、蓄熱器116の有効蓄熱量率との関係の一例が示されている。このグラフの横軸の「液とび割合」とは、蒸発器114における反応媒体の反応全量に対して液とびした反応媒体の割合(百分率)である。また、このグラフの縦軸の「有効蓄熱量率」とは、蓄熱器116の全蓄熱量に対する、液とび後の実質的な蓄熱可能量の比率である。なお、全蓄熱量は、蓄熱器116の吸着剤が反応媒体を全く吸着していない状態から、限界まで吸着した場合の蓄熱量である。 FIG. 6 shows an example of the relationship between the liquid skip ratio and the effective heat storage amount ratio of the heat storage device 116. The “liquid skip ratio” on the horizontal axis of this graph is the ratio (percentage) of the liquid splashed reaction medium to the total amount of the reaction medium in the evaporator 114. Further, the "effective heat storage amount ratio" on the vertical axis of this graph is the ratio of the actual heat storage amount after liquid splashing to the total heat storage amount of the heat storage device 116. The total heat storage amount is the amount of heat storage when the adsorbent of the heat storage device 116 does not adsorb the reaction medium at all and adsorbs it to the limit.

この図6のグラフから分かるように、液とび割合が高い程、有効蓄熱量率が低下している。比較例の蓄熱システム12では、実際に液とびが発生することがあり、これにより、有効蓄熱量率が低下することがある。 As can be seen from the graph of FIG. 6, the higher the liquid jump ratio, the lower the effective heat storage rate. In the heat storage system 12 of the comparative example, liquid skipping may actually occur, which may reduce the effective heat storage amount rate.

これに対し第一実施形態の蓄熱システム112では、図2に示すフローの制御により、緩和部材134を作動させ、液とびを抑制している。なお、第一実施形態の制御では、初期状態として、開閉弁122及びバイパス開閉弁126はいずれも閉弁されている。 On the other hand, in the heat storage system 112 of the first embodiment, the relaxation member 134 is operated by controlling the flow shown in FIG. 2, and the liquid splash is suppressed. In the control of the first embodiment, both the on-off valve 122 and the bypass on-off valve 126 are closed as an initial state.

この制御フローでは、まず、ステップS102において、制御装置128は、第一圧力センサ130から蒸発器114の圧力P1を取得し、さらに、第二圧力センサ132から蓄熱器116の圧力P2を取得する。 In this control flow, first, in step S102, the control device 128 acquires the pressure P1 of the evaporator 114 from the first pressure sensor 130, and further acquires the pressure P2 of the heat storage device 116 from the second pressure sensor 132.

ステップS104では、これらの圧力P1、P2の比(圧力比P1/P2)が、所定の閾値C1よりも大きいか否かを判断する。閾値C1は、圧力比P1/P2がこの閾値C1を超えた状態で開閉弁122が開弁されると、液とびが発生するおそれがある値であり、たとえば、閾値C1=5である。なお、圧力比P1/P2に代えて、圧力差P1−P2を用い、この圧力差が所定の圧力閾値より大きいか否かでステップS104の判断を行ってもよい。圧力比P1/P2を用いる場合は、圧力P1、P2は絶対圧を用いる。これに対し圧力差P1−P2を用いる場合は、圧力P1、P2は絶対圧であってもゲージ圧(相対圧)であってもよい。 In step S104, it is determined whether or not the ratio of these pressures P1 and P2 (pressure ratio P1 / P2) is larger than the predetermined threshold value C1. The threshold value C1 is a value at which liquid splash may occur when the on-off valve 122 is opened while the pressure ratio P1 / P2 exceeds the threshold value C1, and for example, the threshold value C1 = 5. Instead of the pressure ratio P1 / P2, the pressure difference P1-P2 may be used, and the determination in step S104 may be performed based on whether or not this pressure difference is larger than a predetermined pressure threshold value. When the pressure ratio P1 / P2 is used, the absolute pressure is used for the pressures P1 and P2. On the other hand, when the pressure difference P1-P2 is used, the pressures P1 and P2 may be absolute pressure or gauge pressure (relative pressure).

ステップS104において、圧力比P1/P2が閾値C1以下であると判断した場合は、ステップS106に移行する。ステップS106では、制御装置128は、開閉弁122を開弁する(常時開弁状態とする)が、圧力比P1/P2が閾値C1以下なので、液とびは発生しない。 If it is determined in step S104 that the pressure ratio P1 / P2 is equal to or less than the threshold value C1, the process proceeds to step S106. In step S106, the control device 128 opens the on-off valve 122 (always in a valve-opened state), but since the pressure ratio P1 / P2 is equal to or less than the threshold value C1, liquid splash does not occur.

ステップS106において、圧力比P1/P2が閾値C1を超えていると判断した場合は、ステップS108に移行する。ステップS108では、バイパス開閉弁126が開弁される。そして、ステップS102に戻る。これ以降は、圧力比P1/P2が閾値C1以下になるまで、開閉弁122は閉弁され、バイパス開閉弁126は開弁された状態を維持する。 If it is determined in step S106 that the pressure ratio P1 / P2 exceeds the threshold value C1, the process proceeds to step S108. In step S108, the bypass on-off valve 126 is opened. Then, the process returns to step S102. After that, the on-off valve 122 is closed and the bypass on-off valve 126 is maintained in the opened state until the pressure ratio P1 / P2 becomes equal to or less than the threshold value C1.

図3には、第一実施形態の蓄熱システム112における蒸発器114の圧力P1(初期状態の圧力はPA)と蓄熱器116の圧力P2(初期状態の圧力はPB)の時間変化が示されている。 FIG. 3 shows the time change of the pressure P1 (the pressure in the initial state is PA) of the evaporator 114 and the pressure P2 (the pressure in the initial state is PB) of the heat storage device 116 in the heat storage system 112 of the first embodiment. There is.

バイパス経路RBの圧力損失は直接経路RDの圧力損失よりも大きい。このため、図3から分かるように、第一実施形態においてバイパス開閉弁126を開弁した時刻T1から開閉弁122を常時開弁状態にした時刻T2までの圧力P1の降下は、比較例よりも緩やかである。同様に、第一実施形態において時刻T1から時刻T2までの圧力P2の上昇も、比較例より緩やかである。そして、第一実施形態では、この時間における差圧P1−P2の時間変化も、比較例より緩やかである。 The pressure loss of the bypass path RB is larger than the pressure loss of the direct path RD. Therefore, as can be seen from FIG. 3, the drop in pressure P1 from the time T1 when the bypass on-off valve 126 is opened to the time T2 when the on-off valve 122 is always opened in the first embodiment is larger than that in the comparative example. It is gradual. Similarly, in the first embodiment, the increase in pressure P2 from time T1 to time T2 is also slower than in the comparative example. Then, in the first embodiment, the time change of the differential pressure P1-P2 at this time is also gentler than that of the comparative example.

このように、第一実施形態では、蒸発器114から蓄熱器116へ反応媒体が移動する初期(放熱開始初期)において、蒸発器114と蓄熱器116との差圧の時間変化を緩やかにすることで、液とびを抑制できる。液とびを抑制しているので、液とび割合としては0%であり、図6のグラフから、第一実施形態の蓄熱システム112では、有効蓄熱量率が100%であると分かる。 As described above, in the first embodiment, in the initial stage when the reaction medium moves from the evaporator 114 to the heat storage device 116 (the initial stage of heat dissipation start), the time change of the differential pressure between the evaporator 114 and the heat storage device 116 is made gentle. Therefore, liquid splash can be suppressed. Since the liquid skipping is suppressed, the liquid skipping ratio is 0%, and from the graph of FIG. 6, it can be seen that the effective heat storage amount rate is 100% in the heat storage system 112 of the first embodiment.

特に第一実施形態の蓄熱システム112では、開閉弁122及びバイパス開閉弁126の開閉動作として、短時間で開閉を繰り返すような動作を行わないので、制御が簡単であり、低コストで緩和部材134を作動させることができる。 In particular, in the heat storage system 112 of the first embodiment, since the on-off valve 122 and the bypass on-off valve 126 are not repeatedly opened and closed in a short time, the control is easy and the mitigation member 134 is inexpensive. Can be activated.

次に、第二実施形態について説明する。第二実施形態において、第一実施形態と同様の要素、部材等については同一符号を付して、詳細な説明を省略する。 Next, the second embodiment will be described. In the second embodiment, the same elements, members, and the like as in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

図7に示すように、第二実施形態の蓄熱システム212では、第一実施形態のバイパス配管124やバイパス開閉弁126(図1参照)は設けられていない。そして、開閉弁122は、所定時間内の短時間で開閉を繰り返すように、制御装置128によって制御される。すなわち、第二実施形態の緩和部材134は、制御装置128により開閉弁122を所定時間内で繰り返し開閉する制御を含む構成である。 As shown in FIG. 7, in the heat storage system 212 of the second embodiment, the bypass pipe 124 and the bypass on-off valve 126 (see FIG. 1) of the first embodiment are not provided. Then, the on-off valve 122 is controlled by the control device 128 so as to repeat opening and closing in a short time within a predetermined time. That is, the relaxation member 134 of the second embodiment has a configuration including control for repeatedly opening and closing the on-off valve 122 within a predetermined time by the control device 128.

第二実施形態の蓄熱システム212では、図8に示す制御により、液とびを抑制している。 In the heat storage system 212 of the second embodiment, liquid splattering is suppressed by the control shown in FIG.

この制御フローでは、ステップS202において、制御装置128は圧力P1と、圧力P2を取得し、ステップS204では、圧力比P1/P2が、所定の閾値C1よりも大きいか否かを判断する。そして、ステップS204において、圧力比P1/P2が閾値C1以下であると判断した場合は、ステップS206に移行する。ステップS206では、制御装置128は、開閉弁122の開閉を短時間で繰り返すことなく、常時開弁状態とする。ここまでは、第一実施形態の蓄熱システム112における制御のフローのステップS102〜S106と同様である。 In this control flow, in step S202, the control device 128 acquires the pressure P1 and the pressure P2, and in step S204, it is determined whether or not the pressure ratio P1 / P2 is larger than the predetermined threshold value C1. Then, when it is determined in step S204 that the pressure ratio P1 / P2 is equal to or less than the threshold value C1, the process proceeds to step S206. In step S206, the control device 128 is always in the valve open state without repeating the opening and closing of the on-off valve 122 in a short time. Up to this point, the same as steps S102 to S106 of the control flow in the heat storage system 112 of the first embodiment.

第二実施形態では、ステップS204において、圧力比P1/P2が閾値C1を超えていると判断した場合は、ステップS208に移行する。ステップS208では、制御装置128は、開閉弁122の開弁と閉弁とを短時間で繰り返し行う。このような制御は、デューティー比制御と称されることがある。 In the second embodiment, when it is determined in step S204 that the pressure ratio P1 / P2 exceeds the threshold value C1, the process proceeds to step S208. In step S208, the control device 128 repeatedly opens and closes the on-off valve 122 in a short time. Such control is sometimes referred to as duty ratio control.

具体的には、図9に示すように、時刻T1から時刻T2までにおいて、時間ΔTH2の間で開閉弁122を開弁している状態と、時間ΔTT2の間で開閉弁122を閉弁している状態と交互に行う。開閉弁122が開弁されている状態で、圧力P1は短時間で低下するが、開弁している時間ΔTH2が短いので、圧力低下量は小さい。同様に、開閉弁122が開弁されている状態で、圧力P2は短時間で上昇するが、開弁している時間ΔTH2が短いので、圧力上昇量は小さい。開閉弁122が閉弁されている状態では、圧力P1は殆ど変化せず、圧力P2も殆ど変化しない。 Specifically, as shown in FIG. 9, from time T1 to time T2, the on-off valve 122 is opened between the time ΔTH2 and the on-off valve 122 is closed between the time ΔTT2. Alternate with the state of being. With the on-off valve 122 opened, the pressure P1 drops in a short time, but since the valve opening time ΔTH2 is short, the amount of pressure drop is small. Similarly, the pressure P2 rises in a short time when the on-off valve 122 is opened, but the pressure rise amount is small because the valve opening time ΔTH2 is short. When the on-off valve 122 is closed, the pressure P1 hardly changes, and the pressure P2 hardly changes either.

ステップS208において、開閉弁122の開弁と閉弁とを所定回数行った後、ステップS202に戻る。あるいは、開閉弁122の開弁と閉弁とを行いつつ、ステップS202に戻ってもよい。 In step S208, the on-off valve 122 is opened and closed a predetermined number of times, and then the process returns to step S202. Alternatively, the process may return to step S202 while opening and closing the on-off valve 122.

このように、第二実施形態では、開閉弁122の開閉を繰り返すので、バイパス開閉弁122を開弁した時刻T1から開閉弁122を常時開弁状態にした時刻T2までで複数回に分けて蒸発器114から蓄熱器116へ反応媒体が移動する。図9から分かるように、時刻T1から時刻T2までの圧力P1の降下の時間変化が、比較例よりも緩やかである。同様に、時刻T1から時刻T2までの圧力P2の上昇の時間変化も、比較例よりも緩やかである。そして、差圧P1−P2の時間平均での変化も緩やかである。すなわち、第二実施形態においても、蒸発器114から蓄熱器116へ反応媒体が移動する初期(放熱開始初期)において、蒸発器114と蓄熱器116との差圧の時間変化を緩やかにすることで、液とびを抑制できる。 As described above, in the second embodiment, since the on-off valve 122 is repeatedly opened and closed, evaporation is performed in a plurality of times from the time T1 when the bypass on-off valve 122 is opened to the time T2 when the on-off valve 122 is always opened. The reaction medium moves from the vessel 114 to the regenerator 116. As can be seen from FIG. 9, the time change of the drop of the pressure P1 from the time T1 to the time T2 is gradual as compared with the comparative example. Similarly, the time change of the rise of the pressure P2 from the time T1 to the time T2 is also gradual as compared with the comparative example. The time average change of the differential pressures P1-P2 is also gradual. That is, also in the second embodiment, in the initial stage when the reaction medium moves from the evaporator 114 to the heat storage device 116 (the initial stage of heat dissipation start), the time change of the differential pressure between the evaporator 114 and the heat storage device 116 is made gentle. , Liquid splash can be suppressed.

特に、第二実施形態の蓄熱システム212では、開閉弁122のバイパス経路や、このバイパス経路を開閉するバイパス開閉弁を設ける必要がないので、部品点数が少ない。 In particular, in the heat storage system 212 of the second embodiment, since it is not necessary to provide a bypass path for the on-off valve 122 or a bypass on-off valve for opening and closing the bypass path, the number of parts is small.

次に、第三実施形態について説明する。第三実施形態において、第一実施形態又は第二実施形態と同様の要素、部材等については同一符号を付して、詳細な説明を省略する。 Next, the third embodiment will be described. In the third embodiment, the same elements, members, and the like as those in the first embodiment or the second embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

図10に示すように、第三実施形態の蓄熱システム312では、第一実施形態のバイパス配管124及びバイパス開閉弁126(図1参照)は設けられていない。そして、反応媒体配管118に、開閉弁122として、蒸発器114に近い位置の第一開閉弁122Aと、蓄熱器116に近い位置の第二開閉弁122Bとが設けられている。 As shown in FIG. 10, in the heat storage system 312 of the third embodiment, the bypass pipe 124 and the bypass on-off valve 126 (see FIG. 1) of the first embodiment are not provided. The reaction medium pipe 118 is provided with a first on-off valve 122A located close to the evaporator 114 and a second on-off valve 122B located close to the heat storage device 116 as on-off valves 122.

第一開閉弁122Aの開閉、及び第二開閉弁122Bの開閉は、制御装置128によって制御される。 The opening and closing of the first on-off valve 122A and the opening and closing of the second on-off valve 122B are controlled by the control device 128.

反応媒体配管118において、第一開閉弁122Aと第二開閉弁122Bの間の部分は、所定の容積を有するバッファ部314である。バッファ部314の容積は、蒸発器114の容積及び蓄熱器116の容積よりも小さい。 In the reaction medium pipe 118, the portion between the first on-off valve 122A and the second on-off valve 122B is a buffer portion 314 having a predetermined volume. The volume of the buffer unit 314 is smaller than the volume of the evaporator 114 and the volume of the heat storage device 116.

第三実施形態の蓄熱システム312では、図11に示す制御により、液とびを抑制している。すなわち、第三実施形態の緩和部材134は、制御装置128により第一開閉弁122Aの開閉及び第二開閉弁122Bの開閉を所定時間内で繰り返し開閉する制御を含む構成である。 In the heat storage system 312 of the third embodiment, liquid splashing is suppressed by the control shown in FIG. That is, the relaxation member 134 of the third embodiment has a configuration including a control in which the control device 128 repeatedly opens and closes the first on-off valve 122A and the second on-off valve 122B within a predetermined time.

この制御フローでは、ステップS302において、制御装置128は圧力P1と、圧力P2を取得し、ステップS304では、圧力比P1/P2が、所定の閾値C1よりも大きいか否かを判断する。そして、ステップS304において、圧力比P1/P2が閾値C1以下であると判断した場合は、ステップS306に移行する。ここまでは、第一実施形態の蓄熱システム112における制御のフローのステップS102〜S106と同様である。ただし、ステップS306では、第一開閉弁122Aと第二開閉弁122Bの両方を常時開弁状態とする。 In this control flow, in step S302, the control device 128 acquires the pressure P1 and the pressure P2, and in step S304, it is determined whether or not the pressure ratio P1 / P2 is larger than the predetermined threshold value C1. Then, when it is determined in step S304 that the pressure ratio P1 / P2 is equal to or less than the threshold value C1, the process proceeds to step S306. Up to this point, the same as steps S102 to S106 of the control flow in the heat storage system 112 of the first embodiment. However, in step S306, both the first on-off valve 122A and the second on-off valve 122B are always opened.

第三実施形態では、ステップS304において、圧力比P1/P2が閾値C1を超えていると判断した場合は、ステップS308に移行する。ステップS308では、制御装置128は、第一開閉弁122Aが閉弁され第二開閉弁122Bが開弁された状態(以下「第一開閉状態」という)と、第一開閉弁122Aが開弁され第二開閉弁122Bが閉弁された状態(以下「第二開閉状態」という)とを短時間で繰り返し行う。 In the third embodiment, when it is determined in step S304 that the pressure ratio P1 / P2 exceeds the threshold value C1, the process proceeds to step S308. In step S308, in the control device 128, the first on-off valve 122A is closed and the second on-off valve 122B is opened (hereinafter referred to as "first on-off state"), and the first on-off valve 122A is opened. The state in which the second on-off valve 122B is closed (hereinafter referred to as "second on-off state") is repeated in a short time.

具体的には、図12に示すように、時刻T1から時刻T2までにおいて、時間ΔTH3の間での第一開閉状態と、時間ΔTT3の間での第二開閉状態とを交互に行う。第一開閉状態では、蓄熱器116とバッファ部314とが連通されており、バッファ部314の容積は蓄熱器116の容積よりも小さいので、蓄熱器116の圧力P2が僅かに上昇すると共に、バッファ部314の圧力P3が大きく低下する。また、第一開閉状態では、蒸発器114の圧力P1は一定である。 Specifically, as shown in FIG. 12, from time T1 to time T2, the first open / closed state during the time ΔTH3 and the second open / closed state during the time ΔTT3 are alternately performed. In the first open / closed state, the heat storage device 116 and the buffer unit 314 are communicated with each other, and the volume of the buffer unit 314 is smaller than the volume of the heat storage device 116. The pressure P3 of the part 314 is greatly reduced. Further, in the first open / closed state, the pressure P1 of the evaporator 114 is constant.

これに対し、第二開閉状態では、蒸発器114とバッファ部314とが連通されており、バッファ部314の容積は蒸発器114の容積よりも小さいので、蒸発器114の圧力P1が僅かに低下すると共に、バッファ部314の圧力P3が大きく上昇する。ただし、このときのバッファ部314の圧力P3は、蒸発器114の初期状態の圧力PAよりも低い値である。 On the other hand, in the second open / closed state, the evaporator 114 and the buffer portion 314 are communicated with each other, and the volume of the buffer portion 314 is smaller than the volume of the evaporator 114, so that the pressure P1 of the evaporator 114 is slightly lowered. At the same time, the pressure P3 of the buffer unit 314 rises significantly. However, the pressure P3 of the buffer unit 314 at this time is a value lower than the pressure PA in the initial state of the evaporator 114.

ステップS308において、第一開閉状態と第二開閉状態とを所定回数実現した後、ステップS302に戻る。あるいは、第一開閉状態と第二開閉状態の繰り返し処理を行いつつ、ステップS302に戻ってもよい。 After realizing the first open / closed state and the second open / closed state a predetermined number of times in step S308, the process returns to step S302. Alternatively, the process may return to step S302 while repeating the first opening / closing state and the second opening / closing state.

このようにして、第三実施形態では、第一開閉状態と第二開閉状態とを繰り返すことで、バッファ部314に一時的に反応媒体が貯留され、その後、この貯留された反応媒体が蓄熱器116に移動する動作が、複数回繰り返される。図12から分かるように、時刻T1から時刻T2までの圧力P1の降下の時間変化が、比較例よりも緩やかである。同様に、時刻T1から時刻T2までの圧力P2の上昇の時間変化も、比較例よりも緩やかである。そして、差圧P1−P2の時間平均での変化も緩やかである。すなわち、第三実施形態においても、蒸発器114から蓄熱器116へ反応媒体が移動する初期(放熱開始初期)において、蒸発器114と蓄熱器116との差圧の時間変化を緩やかにすることで、液とびを抑制できる。 In this way, in the third embodiment, the reaction medium is temporarily stored in the buffer unit 314 by repeating the first open / closed state and the second open / closed state, and then the stored reaction medium is stored in the heat storage device. The operation of moving to 116 is repeated a plurality of times. As can be seen from FIG. 12, the time change of the drop of the pressure P1 from the time T1 to the time T2 is gradual as compared with the comparative example. Similarly, the time change of the rise of the pressure P2 from the time T1 to the time T2 is also gradual as compared with the comparative example. The time average change of the differential pressures P1-P2 is also gradual. That is, also in the third embodiment, in the initial stage when the reaction medium moves from the evaporator 114 to the heat storage device 116 (the initial stage of heat dissipation start), the time change of the differential pressure between the evaporator 114 and the heat storage device 116 is made gentle. , Liquid splash can be suppressed.

特に第三実施形態では、反応媒体配管118に直列的に複数(図10の例では2つ)の開閉弁122を設けており、いずれか一方の開閉弁122の開弁状態で、他方の開閉弁122を閉弁状態にする。これにより、蒸発器114から蓄熱器116への直接的な反応媒体の移動経路が生じないので、液とびをより確実に抑制できる。 In particular, in the third embodiment, a plurality of (two in the example of FIG. 10) on-off valves 122 are provided in series with the reaction medium pipe 118, and when one of the on-off valves 122 is opened, the other is opened and closed. The valve 122 is closed. As a result, a direct movement path of the reaction medium from the evaporator 114 to the heat storage device 116 does not occur, so that liquid splattering can be suppressed more reliably.

上記各実施形態の蓄熱システムでは、蒸発器114から蓄熱器116への液とびを緩和部材134により抑制しているので、反応媒体配管118の圧力損失を小さくしても、蒸発器114から蓄熱器116への液とびは発生しない。反応媒体配管118の圧力損失を小さくすることで、反応媒体が蒸発器114から蓄熱器116へ移動する際の単位時間あたりの移動量を多くすることができる。 In the heat storage system of each of the above embodiments, the liquid splash from the evaporator 114 to the heat storage device 116 is suppressed by the relaxation member 134, so that even if the pressure loss of the reaction medium pipe 118 is reduced, the heat storage device from the evaporator 114 No liquid splashing to 116 occurs. By reducing the pressure loss of the reaction medium pipe 118, it is possible to increase the amount of movement per unit time when the reaction medium moves from the evaporator 114 to the heat storage device 116.

上記各実施形態において、蓄熱器116には外部熱源120が接続されている。蓄熱器116の熱を外部熱源120に放熱することが可能である。また、外部熱源120の熱を受けて、蓄熱器116の吸着剤から反応媒体を脱着させ、蓄熱器116を再生することが可能である。 In each of the above embodiments, an external heat source 120 is connected to the heat storage device 116. The heat of the heat storage device 116 can be dissipated to the external heat source 120. Further, the reaction medium can be desorbed from the adsorbent of the heat storage device 116 by receiving the heat of the external heat source 120, and the heat storage device 116 can be regenerated.

上記各実施形態において、蒸発器114から蓄熱器116へ反応媒体が移動する初期(放熱開始初期)で、圧力比P1/P2あるいは圧力差P1−P2に基づくことなく、液とびを抑制するための制御を行ってもよい。この場合は、圧力比P1/P2あるいは圧力差P1−P2に基づいて、この制御を終了する。 In each of the above embodiments, in the initial stage when the reaction medium moves from the evaporator 114 to the heat storage device 116 (initial stage of heat dissipation start), the liquid splash is suppressed without being based on the pressure ratio P1 / P2 or the pressure difference P1-P2. Control may be performed. In this case, this control is terminated based on the pressure ratio P1 / P2 or the pressure difference P1-P2.

蓄熱器116としては、反応媒体を吸着する構成の他に、反応媒体の化学反応によって蓄熱する蓄熱器であってもよい。 The heat storage device 116 may be a heat storage device that stores heat by a chemical reaction of the reaction medium, in addition to the structure that adsorbs the reaction medium.

反応媒体としては、蒸発器114で気化されて蓄熱器116に移動し、蓄熱器116において上記した吸着や化学反応により蓄熱される作用を奏すればよく、たとえば、水であってもよい。 The reaction medium may be water, for example, as long as it is vaporized by the evaporator 114 and moved to the heat storage device 116, and the heat storage device 116 has an action of storing heat by the above-mentioned adsorption or chemical reaction.

また、水に対し、凝固点を降下させるための溶質が溶けた溶液は、氷点下であっても凝固しない不凍溶液である。このような不凍溶液を反応媒体として用いることで、氷点下であっても反応媒体が凝固しないので、氷点下で蓄熱システムを運転することが可能である。たとえば、水を溶媒とし、エチレングリコールを溶質とした水溶液を反応媒体として用いることが可能である。この場合、蓄熱器116の吸着剤としては、上記したゼオライトを用いることができる。また、凝固点降下剤としては、有機系溶剤(エチレングリコールはその一例である)、無機塩、有機塩等を挙げることができる。 Further, the solution in which the solute for lowering the freezing point is dissolved in water is an antifreeze solution that does not solidify even below the freezing point. By using such an antifreeze solution as a reaction medium, the reaction medium does not solidify even below the freezing point, so that the heat storage system can be operated below the freezing point. For example, an aqueous solution containing water as a solvent and ethylene glycol as a solute can be used as a reaction medium. In this case, the above-mentioned zeolite can be used as the adsorbent for the heat storage device 116. Examples of the freezing point depression agent include organic solvents (ethylene glycol is an example), inorganic salts, organic salts and the like.

溶質として凝固点降下剤を用いた溶液では、液相の状態で蓄熱器116に供給されてしまうと、凝固点降下剤が吸着剤に吸着されてしまうことがある。吸着剤において凝固点降下剤を吸着した部分では気相の反応媒体を吸着できないので、吸着剤の吸着特性が低下する。特に、たとえば上記したエチレングリコール等、一部の凝固点降下剤では、一般的な蓄熱システム112に用いられる外部熱源からの熱では吸着剤から脱離させることが難しい。したがって、蓄熱システム112の運転を繰り返すごとに、吸着剤に凝固点降下剤が蓄積されて吸着されてしまう。 In a solution using a freezing point depression agent as a solute, if the solution is supplied to the heat storage device 116 in a liquid phase state, the freezing point depression agent may be adsorbed by the adsorbent. Since the reaction medium of the gas phase cannot be adsorbed at the portion where the freezing point depression agent is adsorbed in the adsorbent, the adsorption characteristics of the adsorbent deteriorate. In particular, some freezing point depression agents such as the above-mentioned ethylene glycol are difficult to be desorbed from the adsorbent by heat from an external heat source used in a general heat storage system 112. Therefore, every time the operation of the heat storage system 112 is repeated, the freezing point depression agent is accumulated and adsorbed on the adsorbent.

図13には、蓄熱システムにおいて、エチレングリコール水溶液の液とびが繰り返された場合の、蓄熱システム112の運転回数と有効蓄熱量率の関係が示されている。液とびが発生していると、その割合が低くても運転を重ねるごとに有効蓄熱量率が低下している。これに対し、上記各実施形態の蓄熱システム112、212、312では、そもそも液とびが発生していないので、運転を繰り返しても、有効蓄熱量率は低下しない。 FIG. 13 shows the relationship between the number of operations of the heat storage system 112 and the effective heat storage rate when the ethylene glycol aqueous solution is repeatedly skipped in the heat storage system. When liquid splashes occur, the effective heat storage rate decreases with each operation even if the ratio is low. On the other hand, in the heat storage systems 112, 212, and 312 of each of the above-described embodiments, the liquid splash does not occur in the first place, so that the effective heat storage amount rate does not decrease even if the operation is repeated.

112 蓄熱システム
114 蒸発器
116 蓄熱器
118 反応媒体配管
120 外部熱源
122 開閉弁
122A 第一開閉弁
122B 第二開閉弁
124 バイパス配管
126 バイパス開閉弁
128 制御装置
130 第一圧力センサ
132 第二圧力センサ
134 緩和部材
212 蓄熱システム
312 蓄熱システム
112 Heat storage system 114 Evaporator 116 Heat storage 118 Reaction medium piping 120 External heat source 122 On-off valve 122A First on-off valve 122B Second on-off valve 124 Bypass piping 126 Bypass on-off valve 128 Control device 130 First pressure sensor 132 Second pressure sensor 134 Mitigation member 212 Heat storage system 312 Heat storage system

Claims (10)

反応媒体が蒸発される蒸発器と、
前記蒸発器で蒸発された前記反応媒体の吸着又は化学反応により蓄熱する蓄熱器と、
前記蒸発器と前記蓄熱器を接続する反応媒体配管と、
前記反応媒体配管を開閉する開閉弁と、
前記蒸発器の圧力を検知する第一圧力センサと、
前記蓄熱器の圧力を検知する第二圧力センサと、
前記開閉弁の開弁状態における前記蒸発器と前記蓄熱器の間の圧力差の時間変化を緩和する緩和部材と、
を有し、
前記緩和部材が、
前記第一圧力センサで検知された前記蒸発器の圧力及び前記第二圧力センサで検知された前記蓄熱器の圧力に基づいて前記緩和部材を制御する制御装置、を含む蓄熱システム。
An evaporator in which the reaction medium is vaporized, and
A heat storage device that stores heat by adsorption or chemical reaction of the reaction medium vaporized by the evaporator.
A reaction medium pipe connecting the evaporator and the heat storage device, and
An on-off valve that opens and closes the reaction medium piping,
The first pressure sensor that detects the pressure of the evaporator and
A second pressure sensor that detects the pressure of the heat storage device and
A relaxation member that alleviates the time change of the pressure difference between the evaporator and the heat storage device in the opened state of the on-off valve, and
Have,
The relaxation member
A heat storage system including a control device that controls the relaxation member based on the pressure of the evaporator detected by the first pressure sensor and the pressure of the heat storage device detected by the second pressure sensor.
反応媒体が蒸発される蒸発器と、
前記蒸発器で蒸発された前記反応媒体の吸着又は化学反応により蓄熱する蓄熱器と、
前記蒸発器と前記蓄熱器を接続する反応媒体配管と、
前記反応媒体配管を開閉する開閉弁と、
前記開閉弁の開弁状態における前記蒸発器と前記蓄熱器の間の圧力差の時間変化を緩和する緩和部材と、
を有し、
前記緩和部材が、
前記開閉弁をバイパスし前記反応媒体配管よりも圧力損失の大きいバイパス配管と、
前記バイパス配管を開閉するバイパス開閉弁と、
前記開閉弁及び前記バイパス開閉弁の開閉を制御する制御装置と、
を含む、蓄熱システム。
An evaporator in which the reaction medium is vaporized, and
A heat storage device that stores heat by adsorption or chemical reaction of the reaction medium vaporized by the evaporator.
A reaction medium pipe connecting the evaporator and the heat storage device, and
An on-off valve that opens and closes the reaction medium piping,
A relaxation member that alleviates the time change of the pressure difference between the evaporator and the heat storage device in the opened state of the on-off valve, and
Have,
The relaxation member
A bypass pipe that bypasses the on-off valve and has a larger pressure loss than the reaction medium pipe,
A bypass on-off valve that opens and closes the bypass pipe,
A control device that controls the opening and closing of the on-off valve and the bypass on-off valve, and
Including heat storage system.
反応媒体が蒸発される蒸発器と、
前記蒸発器で蒸発された前記反応媒体の吸着又は化学反応により蓄熱する蓄熱器と、
前記蒸発器と前記蓄熱器を接続する反応媒体配管と、
前記反応媒体配管を開閉する開閉弁と、
前記開閉弁の開弁状態における前記蒸発器と前記蓄熱器の間の圧力差の時間変化を緩和する緩和部材と、
を有し、
前記開閉弁が、
前記反応媒体配管に設けられる第一開閉弁と、
前記反応媒体配管において前記第一開閉弁よりも前記蓄熱器側に設けられ前記蒸発器及び前記蓄熱器よりも容積の小さいバッファ部を前記第一開閉弁との間に形成する第二開閉弁と、
を含み、
前記緩和部材が、
前記第一開閉弁と前記第二開閉弁の一方の開弁と他方の閉弁を交互に繰り返す制御装置を含む、蓄熱システム。
An evaporator in which the reaction medium is vaporized, and
A heat storage device that stores heat by adsorption or chemical reaction of the reaction medium vaporized by the evaporator.
A reaction medium pipe connecting the evaporator and the heat storage device, and
An on-off valve that opens and closes the reaction medium piping,
A relaxation member that alleviates the time change of the pressure difference between the evaporator and the heat storage device in the opened state of the on-off valve, and
Have,
The on-off valve
The first on-off valve provided in the reaction medium pipe and
In the reaction medium piping, a second on-off valve provided on the heat storage side of the first on-off valve and a buffer portion having a volume smaller than that of the evaporator and the heat storage valve is formed between the first on-off valve and the first on-off valve. ,
Including
The relaxation member
A heat storage system including a control device that alternately repeats opening one of the first on-off valve and the second on-off valve and closing the other valve.
前記蒸発器の圧力を検知する第一圧力センサと、
前記蓄熱器の圧力を検知する第二圧力センサと、
を備え、
前記制御装置が、前記第一圧力センサで検知された蒸発器の圧力及び前記第二圧力センサで検知された蓄熱器の圧力に基づいて前記緩和部材を制御する請求項2又は請求項3に記載の蓄熱システム。
The first pressure sensor that detects the pressure of the evaporator and
A second pressure sensor that detects the pressure of the heat storage device and
With
The second or third aspect, wherein the control device controls the relaxation member based on the pressure of the evaporator detected by the first pressure sensor and the pressure of the regenerator detected by the second pressure sensor. Heat storage system.
前記制御装置が、所定時間で前記開閉弁の開閉を繰り返すよう制御する、請求項1に記載の蓄熱システム。 The heat storage system according to claim 1, wherein the control device controls to repeatedly open and close the on-off valve at a predetermined time. 前記制御装置が、前記蒸発器の圧力と前記蓄熱器の圧力の比が所定の閾値以下の状態では前記緩和部材を作動停止させる請求項1、請求項4又は請求項5に記載の蓄熱システム。 The heat storage system according to claim 1, 4, or 5 , wherein the control device stops the operation of the relaxation member when the ratio of the pressure of the evaporator to the pressure of the heat storage device is equal to or less than a predetermined threshold value. 前記反応媒体が不凍冷媒である請求項1〜請求項6のいずれか1項に記載の蓄熱システム。 The heat storage system according to any one of claims 1 to 6, wherein the reaction medium is an antifreeze refrigerant. 前記蓄熱器が、外部熱源と熱的に接続され、吸着剤による前記反応媒体の吸脱着又は化学蓄熱剤による前記反応媒体の化学反応で蓄熱と放熱が可能である請求項1〜請求項7のいずれか1項に記載の蓄熱システム。 The heat storage device is thermally connected to an external heat source, and heat can be stored and dissipated by the adsorption / desorption of the reaction medium by an adsorbent or the chemical reaction of the reaction medium by a chemical heat storage agent. The heat storage system according to any one item. 蒸発器で蒸発された反応媒体を反応媒体配管の開閉弁の開弁状態で蓄熱器に移動させて吸着又は化学反応により蓄熱し、
前記蒸発器の圧力及び前記蓄熱器の圧力に基づいて前記開閉弁の開弁状態で前記蒸発器と前記蓄熱器の間の圧力の時間変化を緩和して前記反応媒体を前記蓄熱器に移動させる蓄熱システム運転方法。
The reaction medium vaporized by the evaporator is moved to the heat storage device with the on-off valve of the reaction medium piping open, and heat is stored by adsorption or chemical reaction.
Based on the pressure of the evaporator and the pressure of the heat storage device, the reaction medium is moved to the heat storage device by relaxing the time change of the pressure difference between the evaporator and the heat storage device in the opened state of the on-off valve. How to operate the heat storage system.
蒸発器で蒸発された反応媒体を反応媒体配管の開閉弁の開弁状態で蓄熱器に移動させて吸着又は化学反応により蓄熱し、
前記開閉弁の開弁状態で前記蒸発器と前記蓄熱器の間の圧力の時間変化を緩和して前記反応媒体を前記蓄熱器に移動させ、
前記蒸発器の圧力と前記蓄熱器の圧力の差圧が所定の圧力閾値以下の状態では前記圧力差の時間変化の緩和を行わない、蓄熱システム運転方法。
The reaction medium vaporized by the evaporator is moved to the heat storage device with the on-off valve of the reaction medium piping open, and heat is stored by adsorption or chemical reaction.
With the on-off valve open, the reaction medium is moved to the heat storage by relaxing the time change of the pressure difference between the evaporator and the heat storage.
A heat storage system operating method in which the time change of the pressure difference is not relaxed when the pressure difference between the pressure of the evaporator and the pressure of the heat storage device is equal to or less than a predetermined pressure threshold value.
JP2017077187A 2017-04-07 2017-04-07 Heat storage system and heat storage system operation method Active JP6898762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017077187A JP6898762B2 (en) 2017-04-07 2017-04-07 Heat storage system and heat storage system operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017077187A JP6898762B2 (en) 2017-04-07 2017-04-07 Heat storage system and heat storage system operation method

Publications (2)

Publication Number Publication Date
JP2018179368A JP2018179368A (en) 2018-11-15
JP6898762B2 true JP6898762B2 (en) 2021-07-07

Family

ID=64274957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017077187A Active JP6898762B2 (en) 2017-04-07 2017-04-07 Heat storage system and heat storage system operation method

Country Status (1)

Country Link
JP (1) JP6898762B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175524U (en) * 1985-04-22 1986-11-01
JPH01234722A (en) * 1988-03-15 1989-09-20 Kawasaki Heavy Ind Ltd Heat transfer system
JP2002013833A (en) * 2000-06-30 2002-01-18 Ebara Corp Control method for absorption refrigerating machine
JP6251616B2 (en) * 2014-03-20 2017-12-20 株式会社デンソー Chemical heat storage device
JP6323257B2 (en) * 2014-08-28 2018-05-16 株式会社デンソー Cooling system

Also Published As

Publication number Publication date
JP2018179368A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
US10808972B2 (en) Adsorption-based cooling system
US9353978B2 (en) Adsorber and adsorption heat pump
JP2000511626A (en) Pulse operation control valve
US9618238B2 (en) Adsorption refrigerator
JP6343156B2 (en) Compression refrigerator
US9631851B2 (en) Vacuum container for removing foreign gases from an adsorption refrigeration machine
JP2001235251A (en) Adsorbing type freezer machine
US11346590B2 (en) Cooling system
US20180031293A1 (en) Cooling Systems and Methods
US10168081B2 (en) Adsorption heat pump system and cooling generation method
JP4394717B2 (en) Operation method of adsorption refrigeration system
US10309694B2 (en) Heat pump and cooling power generation method
JP6898762B2 (en) Heat storage system and heat storage system operation method
JP6028758B2 (en) Adsorption heat pump system and cold heat generation method
FR2991031A1 (en) IMPROVED LOOP TRANSPORTATION DEVICE IN CLOSED LOOP
JP2004092585A (en) Warming-up device
JP2001215068A (en) Adsorption type refrigerator
JP6365016B2 (en) HEAT PUMP AND CRYSTAL GENERATION METHOD
RU2183310C1 (en) Heat setting device
JP2015527560A (en) Recovery container and method for recovering working medium in sorption device
JP2016050715A (en) Air conditioning system with adsorption type refrigerator
JP2020169787A (en) Adsorption type refrigerator
JP2016011820A (en) Adsorption heat pump system and cold generation method
JP2002267292A (en) Degassing device for refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210611

R150 Certificate of patent or registration of utility model

Ref document number: 6898762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250