JP6897933B2 - High-voltage insulation monitoring device and high-voltage insulation monitoring method - Google Patents

High-voltage insulation monitoring device and high-voltage insulation monitoring method Download PDF

Info

Publication number
JP6897933B2
JP6897933B2 JP2017130246A JP2017130246A JP6897933B2 JP 6897933 B2 JP6897933 B2 JP 6897933B2 JP 2017130246 A JP2017130246 A JP 2017130246A JP 2017130246 A JP2017130246 A JP 2017130246A JP 6897933 B2 JP6897933 B2 JP 6897933B2
Authority
JP
Japan
Prior art keywords
phase
zero
current
phase current
load current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017130246A
Other languages
Japanese (ja)
Other versions
JP2019013124A (en
Inventor
資基 早田
資基 早田
鈴木 隆
隆 鈴木
隼 永田
隼 永田
和博 小林
和博 小林
鈴木 正美
正美 鈴木
祐輔 篠崎
祐輔 篠崎
Original Assignee
株式会社三英社製作所
一般財団法人関東電気保安協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三英社製作所, 一般財団法人関東電気保安協会 filed Critical 株式会社三英社製作所
Priority to JP2017130246A priority Critical patent/JP6897933B2/en
Publication of JP2019013124A publication Critical patent/JP2019013124A/en
Application granted granted Critical
Publication of JP6897933B2 publication Critical patent/JP6897933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

本発明は、高圧配電線路の絶縁低下を検出する高圧絶縁監視装置及び高圧絶縁監視方法に関する。 The present invention relates to a high-voltage insulation monitoring device and a high-voltage insulation monitoring method for detecting a decrease in insulation of a high-voltage distribution line.

高圧受電設備では、配電系統からの受電点に開閉器(区分開閉器)を設置し、その開閉器と地絡継電器とを組み合わせて地絡保護を行うことが一般的になっている。地絡継電器は、零相電圧及び零相電流の整定値を超える地絡事故が起きた場合に、開閉器による遮断動作を行う。また地絡継電器は、開閉器の定格遮断容量を守るための負荷電流値を開閉器内部の変流器(CT)から得ている。 In high-voltage power receiving equipment, it is common to install a switch (partitioned switch) at the receiving point from the distribution system and combine the switch with a ground relay to protect the ground fault. The ground relay performs a cutoff operation by a switch when a ground fault accident that exceeds the set values of the zero-phase voltage and the zero-phase current occurs. Further, in the ground relay, the load current value for protecting the rated breaking capacity of the switch is obtained from the current transformer (CT) inside the switch.

地絡事故を検出する方法としては、開閉器内の零相電圧検出装置(ZPD)から取り出した零相電圧や、零相変流器(ZCT)から取り出した零相電流を利用する方法が用いられている(例えば、特許文献1参照)。なお、地絡事故時の絶縁抵抗値は0〜数十kΩとなり、100mA程度の零相電流の検出を行うことになる。 As a method for detecting a ground fault, a method using a zero-phase voltage taken out from a zero-phase voltage detector (ZPD) in a switch or a zero-phase current taken out from a zero-phase current transformer (ZCT) is used. (See, for example, Patent Document 1). The insulation resistance value at the time of a ground fault is 0 to several tens of kΩ, and a zero-phase current of about 100 mA is detected.

一方、地絡事故の原因が設備汚損によって徐々に劣化するものである場合には、事故前に絶縁抵抗が少しだけ低下している時期がある。これを検出する場合、数MΩ程度の高抵抗の検出、すなわち数mAの零相電流の検出が必要となる。ところが、零相電流は理想的にはゼロであるところ、負荷電流が大きくなると零相変流器(ZCT)には数mA程度の誤差が生じるため、数mAの零相電流を検出することは難しい。そこで出願人は、特許第5972097号(特許文献2)において、各相の負荷電流の影響による零相電流の誤差を補正する技術を提案した。これにより、高精度な絶縁低下検出を行うことが可能となった。 On the other hand, when the cause of the ground fault is gradually deteriorated due to equipment pollution, there is a period when the insulation resistance is slightly reduced before the accident. When this is detected, it is necessary to detect a high resistance of about several MΩ, that is, a zero-phase current of several mA. However, where the zero-phase current is ideally zero, when the load current becomes large, an error of about several mA occurs in the zero-phase current transformer (ZCT), so it is not possible to detect a zero-phase current of several mA. difficult. Therefore, in Patent No. 5972097 (Patent Document 2), the applicant has proposed a technique for correcting the error of the zero-phase current due to the influence of the load current of each phase. This makes it possible to detect insulation deterioration with high accuracy.

特開平6−284559号公報Japanese Unexamined Patent Publication No. 6-284559 特許第5972097号公報Japanese Patent No. 5972097

しかしながら特許文献2の技術においては、零相変流器の特性(方程式の補正係数)を求める際に、各相の負荷電流の合成が零となる状態で三相負荷のバランスを変えて、各相の負荷電流と零相電流との関係を求めている。すなわち、負荷を制御しながら各相の負荷電流と零相電流を測定する必要があり、開閉器に「任意の」負荷を接続した状態では補正係数を求めることができない。このため補正係数を得るためには、新しい開閉器について設置前に測定するか、既設の開閉器を回路から切り離して測定する必要がある。特に既設の開閉器において上記の測定を行う場合には、必ず停電を伴うという問題がある。 However, in the technique of Patent Document 2, when the characteristics of the zero-phase current transformer (correction coefficient of the equation) are obtained, the balance of the three-phase load is changed while the combination of the load currents of each phase is zero. The relationship between the phase load current and the zero-phase current is being sought. That is, it is necessary to measure the load current and zero-phase current of each phase while controlling the load, and the correction coefficient cannot be obtained when an "arbitrary" load is connected to the switch. Therefore, in order to obtain the correction coefficient, it is necessary to measure the new switch before installation or to separate the existing switch from the circuit. In particular, when performing the above measurement with an existing switch, there is a problem that a power failure is always accompanied.

そこで本発明の目的は、既設の開閉器であっても停電させることなく零相変流器の特性を得ることができ、高精度な絶縁低下検出を行うことが可能な高圧絶縁監視装置及び高圧絶縁監視方法を提供することである。 Therefore, an object of the present invention is a high-voltage insulation monitoring device and a high-voltage insulation monitoring device capable of obtaining the characteristics of a zero-phase current transformer without causing a power failure even with an existing switch and performing highly accurate insulation deterioration detection. It is to provide an insulation monitoring method.

上記課題を解決するために、本発明にかかる高圧絶縁監視装置の代表的な構成は、零相電流を検出する零相変流器と、各相の負荷電流を検出する変流器とを備えた開閉器に接続して高圧配電線路の絶縁低下を検出する高圧絶縁監視装置であって、各相の負荷電流及び零相変流器の特性を用いて、各相の負荷電流の影響による零相電流の誤差を抑えるように零相電流を補正する補正部と、補正された零相電流に基づいて高抵抗の絶縁低下を検出する絶縁低下検出部とを備え、補正部は、開閉器に負荷電流が流れている状態で各相の負荷電流および零相電流を少なくとも4回測定し、各相の負荷電流に補正係数をかけて零相電流の誤差を定義する方程式に対して、4回分の測定値の1つを基準値として、残りの3回分の各相の負荷電流および零相電流と基準値との差分を用いて、方程式の未知数である補正係数を求め、補正係数を方程式に適用することにより誤差を求めることを特徴とする。 In order to solve the above problems, a typical configuration of the high-voltage insulation monitoring device according to the present invention includes a zero-phase transformer that detects a zero-phase current and a transformer that detects a load current of each phase. It is a high-voltage insulation monitoring device that is connected to a switch to detect a decrease in insulation of a high-voltage distribution line. It uses the load current of each phase and the characteristics of the zero-phase sequence current, and is zero due to the influence of the load current of each phase. It is equipped with a correction unit that corrects the zero-phase current so as to suppress the error of the phase current, and an insulation reduction detection unit that detects the insulation deterioration of high resistance based on the corrected zero-phase current. Measure the load current and zero-phase current of each phase at least four times with the load current flowing, and multiply the load current of each phase by the correction coefficient to define the zero-phase current error. Using one of the measured values of the above as the reference value, the load current of each phase for the remaining three times and the difference between the zero-phase current and the reference value are used to obtain the correction coefficient, which is an unknown number in the equation, and the correction coefficient is used as the equation. It is characterized in that an error is obtained by applying it.

上記構成によれば、任意の負荷を接続した状態で補正係数を求めることができる。したがって、既設の開閉器であっても停電させることなく零相変流器の特性を得ることができる。 According to the above configuration, the correction coefficient can be obtained with an arbitrary load connected. Therefore, even with an existing switch, the characteristics of a zero-phase current transformer can be obtained without causing a power failure.

高圧絶縁監視装置は、さらに、1サイクル分の零相電流の測定値を用いて、短時間かつ大幅な絶縁低下を短周期で検出する微地絡検出部を備えていてもよい。 The high-voltage insulation monitoring device may further include a microground fault detection unit that detects a large decrease in insulation in a short period of time by using the measured value of the zero-phase current for one cycle.

上記構成によれば、樹木接触や放電性などの短時間事故である微地絡を検出することができ、包括的な地絡検出を行うことが可能となる。 According to the above configuration, it is possible to detect a microground fault which is a short-time accident such as a tree contact or a discharge property, and it is possible to perform comprehensive ground fault detection.

高圧絶縁監視装置は、さらに、各相の負荷電流の位相から三相交流の相回転方向を検出する検相器を備えていてもよい。 The high-voltage insulation monitoring device may further include a phase detector that detects the phase rotation direction of the three-phase alternating current from the phase of the load current of each phase.

上記構成によれば、零相変流器の特性を得る際に相回転方向を自動的に設定することが可能となる。また、相回転方向の検出を、電源投入時などの所定のタイミングで、または定期的に行うことにより、相回転方向の変化に対して自動的に対応することが可能となる。 According to the above configuration, it is possible to automatically set the phase rotation direction when obtaining the characteristics of the zero-phase current transformer. Further, by detecting the phase rotation direction at a predetermined timing such as when the power is turned on or periodically, it is possible to automatically respond to the change in the phase rotation direction.

また、本発明にかかる高圧絶縁監視方法の代表的な構成は、零相電流を検出する零相変流器と各相の負荷電流を検出する変流器とを備えた開閉器に接続し、高圧配電線路の零相電流を検出し、高圧配電線路の各相の負荷電流を検出し、各相の負荷電流及び零相変流器の特性を用いて、各相の負荷電流の影響による零相電流の誤差を抑えるように零相電流を補正してから、補正された零相電流に基づいて高抵抗の絶縁低下を検出する高圧絶縁監視方法であって、零相電流を補正するとき、開閉器に負荷電流が流れている状態で各相の負荷電流および零相電流を少なくとも4回測定し、各相の負荷電流に補正係数をかけて零相電流の誤差を定義する方程式に対して、4回分の測定値の1つを基準値として、残りの3回分の各相の負荷電流および零相電流と基準値との差分を用いて、方程式の未知数である補正係数を求め、補正係数を方程式に適用することにより誤差を求めることを特徴とする。 Further, a typical configuration of the high-pressure insulation monitoring method according to the present invention is connected to a switch provided with a zero-phase current transformer that detects a zero-phase current and a current transformer that detects a load current of each phase. Detects the zero-phase current of the high-voltage distribution line, detects the load current of each phase of the high-voltage distribution line, and uses the load current of each phase and the characteristics of the zero-phase sequencer to zero due to the influence of the load current of each phase. A high-voltage insulation monitoring method that detects a decrease in insulation of high resistance based on the corrected zero-phase current after correcting the zero-phase current so as to suppress the error of the phase current. For an equation that defines the zero-phase current error by measuring the load current and zero-phase current of each phase at least four times with the load current flowing through the switch, and multiplying the load current of each phase by a correction coefficient. Using one of the four measurement values as the reference value and using the difference between the load current and zero-phase current of each phase of the remaining three times and the reference value, the correction coefficient, which is an unknown number in the equation, is obtained, and the correction coefficient is obtained. Is characterized by finding the error by applying to the equation.

上記構成の方法によれば、任意の負荷を接続した状態で補正係数を求めることができる。したがって、既設設備に対して停電させることなく零相変流器の特性を得ることができる。なお、上述した高圧絶縁監視装置における技術的思想に対応する構成要素やその説明は、当該高圧絶縁監視方法にも適用可能である。 According to the method of the above configuration, the correction coefficient can be obtained with an arbitrary load connected. Therefore, the characteristics of the zero-phase current transformer can be obtained without causing a power failure to the existing equipment. It should be noted that the components corresponding to the technical idea in the high-voltage insulation monitoring device described above and their description thereof can also be applied to the high-voltage insulation monitoring method.

本発明に係る高圧絶縁監視装置又は高圧絶縁監視方法によれば、各相の負荷電流の影響による零相電流の誤差を抑え、高精度な絶縁低下検出を行うことができる。特に、任意の負荷を接続した状態で補正係数を求めることができるため、既設の開閉器であっても停電させることなく零相変流器の特性を得ることができる。 According to the high-voltage insulation monitoring device or the high-voltage insulation monitoring method according to the present invention, it is possible to suppress the error of the zero-phase current due to the influence of the load current of each phase and perform highly accurate insulation deterioration detection. In particular, since the correction coefficient can be obtained with an arbitrary load connected, the characteristics of a zero-phase current transformer can be obtained even with an existing switch without causing a power failure.

高圧絶縁監視装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the high voltage insulation monitoring apparatus. 三相平衡状態での負荷電流と補正前後の零相電流のレベルとの関係を示すグラフである。It is a graph which shows the relationship between the load current in a three-phase equilibrium state, and the level of a zero-phase current before and after correction. 第2実施形態にかかる高圧絶縁監視装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the high voltage insulation monitoring apparatus which concerns on 2nd Embodiment. 第1実施形態で説明した絶縁低下検出と、第2実施形態で追加した微地絡検出の差異を説明する図である。It is a figure explaining the difference between the insulation deterioration detection explained in 1st Embodiment and the fine ground fault detection added in 2nd Embodiment. 第3実施形態にかかる高圧絶縁監視装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the high voltage insulation monitoring apparatus which concerns on 3rd Embodiment.

[第1実施形態]
本発明にかかる高圧絶縁監視装置および高圧絶縁監視方法の第1実施形態について説明する。図1は高圧絶縁監視装置の概略構成を示すブロック図である。高圧絶縁監視装置10は、変電所から需要先に電気を供給する配電系統の高圧配電線路L1上に設けられた開閉器20(区分開閉器)と、地絡事故の発生に応じて開閉器20による遮断動作を行う地絡継電器30と、地絡事故発生などを報知する表示部50とを備えている。
[First Embodiment]
The first embodiment of the high-voltage insulation monitoring device and the high-voltage insulation monitoring method according to the present invention will be described. FIG. 1 is a block diagram showing a schematic configuration of a high-voltage insulation monitoring device. The high-voltage insulation monitoring device 10 includes a switch 20 (classified switch) provided on the high-voltage distribution line L1 of the distribution system that supplies electricity from the substation to the demand destination, and a switch 20 in response to the occurrence of a ground fault. It is provided with a ground relay relay 30 that shuts off by the above, and a display unit 50 that notifies the occurrence of a ground fault or the like.

開閉器20は、高圧配電線路L1の零相電圧を検出する零相電圧検出装置22(ZPD)と、高圧配電線路L1の零相電流を検出する零相変流器24(ZCT)と、高圧配電線路L1の各相の負荷電流を検出する変流器26(CT)、計器用変成器28(VT)とを有している。この開閉器20は、高圧受電設備における配電系統からの受電点に設けられている。なお、零相電圧検出装置22としては、例えば、各相の対地電圧を合成して零相電圧を検出するコンデンサ形零相電圧検出装置を用いることが可能である。 The switch 20 includes a zero-phase voltage detector 22 (ZPD) that detects the zero-phase voltage of the high-voltage distribution line L1, a zero-phase current transformer 24 (ZCT) that detects the zero-phase current of the high-voltage distribution line L1, and a high voltage. It has a current transformer 26 (CT) for detecting the load current of each phase of the distribution line L1 and a current transformer 28 (VT) for an instrument. The switch 20 is provided at a power receiving point from a power distribution system in a high-voltage power receiving facility. As the zero-phase voltage detecting device 22, for example, a capacitor-type zero-phase voltage detecting device that detects the zero-phase voltage by synthesizing the ground voltage of each phase can be used.

地絡継電器30は、零相電圧検出装置22により検出された零相電圧及び零相変流器24により検出された零相電流が、配電系統との保護協調の観点から設定されている零相電圧及び零相電流の整定値を超えるか否かを判断する。それらの零相電圧及び零相電流が整定値を超えたと判断した場合には、地絡事故が発生したと判定する。そして地絡継電器30は、零相電圧−零相電流の位相を判定して、電源側の地絡か、負荷側の地絡かを判定し、負荷側の地絡である場合に開閉器20による遮断動作を行う。これにより、高圧配電線路L1が開閉器20により遮断されることになる。 In the ground relay 30, the zero-phase voltage detected by the zero-phase voltage detection device 22 and the zero-phase current detected by the zero-phase transformer 24 are set from the viewpoint of protection coordination with the distribution system. Determine if the voltage and zero-phase current set values are exceeded. When it is determined that the zero-phase voltage and the zero-phase current exceed the set value, it is determined that a ground fault has occurred. Then, the ground relay 30 determines the phase of the zero-phase voltage-zero-phase current, determines whether it is a ground fault on the power supply side or a ground fault on the load side, and if it is a ground fault on the load side, the switch 20 Performs the shutoff operation by. As a result, the high-voltage distribution line L1 is cut off by the switch 20.

地絡継電器30は、零相電流と各相の負荷電流の測定値を記憶するメモリ32と、FFT解析部34と、零相電流を補正する補正部36、地絡事故発生前の数MΩの高抵抗の絶縁低下を検出する絶縁低下検出部38を有している。 The ground relay 30 includes a memory 32 that stores the measured values of the zero-phase current and the load current of each phase, an FFT analysis unit 34, a correction unit 36 that corrects the zero-phase current, and several MΩ before the occurrence of the ground fault. It has an insulation reduction detection unit 38 that detects a high resistance insulation reduction.

絶縁低下検出部38は、補正部36により補正された零相電流に基づいて、高抵抗の絶縁低下を検出する。なお、補正部36および絶縁低下検出部38は、電気回路などのハードウエアにより構成されているが、これに限るものではなく、例えば、プログラムなどのソフトウエアにより構成されても良く、あるいは、それらの両方の組合せにより構成されても良い。 The insulation degradation detection unit 38 detects a high resistance insulation degradation based on the zero-phase current corrected by the correction unit 36. The correction unit 36 and the insulation deterioration detection unit 38 are configured by hardware such as an electric circuit, but are not limited to this, and may be configured by software such as a program, or they. It may be composed of a combination of both.

表示部50は、地絡事故が発生したことを報知する表示や、地絡事故発生前の数MΩの絶縁低下が発生したことを報知する表示を行う。この表示部50としては、例えば、磁気反転表示器などを用いることが可能であり、他にも、LEDランプなどの表示灯やLEDディスプレイなどを用いることが可能である。なお、表示灯やLEDディスプレイなどを用いる場合には、例えば、太陽電池や充電池などの電源を設け、その電源から表示部50に電力を供給する。 The display unit 50 displays a display notifying that a ground fault has occurred and a display notifying that a several MΩ insulation deterioration has occurred before the ground fault occurred. As the display unit 50, for example, a magnetic reversal display or the like can be used, and in addition, an indicator lamp such as an LED lamp or an LED display can be used. When an indicator light, an LED display, or the like is used, for example, a power source such as a solar cell or a rechargeable battery is provided, and power is supplied to the display unit 50 from the power source.

次に、前述の補正部36による補正処理について詳しく説明する。最初に、零相変流器24の出力である零相電流に対する負荷電流の影響について説明し、その後、実際の補正手順について説明する。 Next, the correction process by the correction unit 36 described above will be described in detail. First, the effect of the load current on the zero-phase current, which is the output of the zero-phase current transformer 24, will be described, and then the actual correction procedure will be described.

地絡継電器30は、零相電圧検出装置22、零相変流器24、変流器26、計器用変成器28からの各出力信号を、一定時間メモリ32に蓄積する。FFT解析部34がメモリ32に蓄積したデータをFFT解析し、出力レベルが最大となる周波数ラインの零相電流と各相の負荷電流を抽出する。出力レベルが最大となる周波数ラインは、計器用変成器28の出力で判定する。計器用変成器28は地絡継電器30の電源として用いているが、常に出力が安定しているため、周波数ラインの判定にも利用することができる。なお計器用変成器28は開閉器20に内蔵されていてもよいし、外付けであってもよい。 The ground relay 30 stores each output signal from the zero-phase voltage detection device 22, the zero-phase current transformer 24, the current transformer 26, and the instrument transformer 28 in the memory 32 for a certain period of time. The FFT analysis unit 34 performs FFT analysis on the data stored in the memory 32, and extracts the zero-phase current of the frequency line having the maximum output level and the load current of each phase. The frequency line at which the output level is maximized is determined by the output of the instrument transformer 28. The instrument transformer 28 is used as a power source for the ground relay, but since the output is always stable, it can also be used for determining the frequency line. The instrument transformer 28 may be built in the switch 20 or may be externally attached.

零相変流器24の出力を零相電流IZCT、各相の線に取り付けられた変流器26の出力を負荷電流I、I、Iとする。零相電流IZCTは、各負荷電流I、I、Iにより次式(1)により表わされる。
ZCT=I+I+I ・・・(1)
三相平衡状態の場合、本来はIZCT=0となる。したがって、三相平衡状態であるのに零相電流が発生した場合には(IZCT≠0)、その原因は負荷電流の影響となる。
The output of the zero-phase current transformer 24 is the zero-phase current I ZCT, and the output of the current transformer 26 attached to each phase line is the load currents I U , IV , and I W. The zero-phase current I ZCT is represented by the following equation (1) by the respective load currents I U , IV , and I W.
I ZCT = I U + IV + I W ... (1)
In the case of a three-phase equilibrium state, I ZCT = 0 originally. Therefore, when a zero-phase current is generated even in a three-phase equilibrium state (I ZCT ≠ 0), the cause is the influence of the load current.

図2は三相平衡状態での負荷電流と補正前後の零相電流のレベルとの関係を示すグラフである。前述の測定結果によれば、図2に示すように、補正前の零相電流のレベル(波形A1)は負荷電流に比例して増加する。ただし、負荷電流の影響による零相電流のレベルは、負荷電流が25Aである場合でも2mA程度である。通常、地絡継電器30は、地絡抵抗10kΩ以下で流れる100mA以上の零相電流を検出して地絡事故を判別するため、2mA程度の負荷電流が通常の地絡事故の検出に影響を及ぼすことはほとんどない。 FIG. 2 is a graph showing the relationship between the load current in the three-phase equilibrium state and the level of the zero-phase current before and after the correction. According to the above-mentioned measurement results, as shown in FIG. 2, the level of the zero-phase current (waveform A1) before correction increases in proportion to the load current. However, the level of the zero-phase current due to the influence of the load current is about 2 mA even when the load current is 25 A. Normally, the ground relay 30 detects a zero-phase current of 100 mA or more flowing with a ground fault resistance of 10 kΩ or less to determine a ground fault, so a load current of about 2 mA affects the detection of a normal ground fault. There are few things.

ところが、数MΩの高抵抗の絶縁低下において正確な零相電流を検出する必要がある場合には、絶縁低下による零相電流として1mA程度の零相電流を検出する必要があるため、負荷電流が零相電流に及ぼす影響は大きく検出の障害となる。したがって、高精度な絶縁低下検出を行うためには、負荷電流の影響を除去もしくは緩和する必要がある。 However, when it is necessary to detect an accurate zero-phase current in a high resistance insulation reduction of several MΩ, it is necessary to detect a zero-phase current of about 1 mA as the zero-phase current due to the insulation reduction, so that the load current becomes The effect on the zero-phase current is a major obstacle to detection. Therefore, in order to perform highly accurate insulation deterioration detection, it is necessary to eliminate or mitigate the influence of the load current.

三相平衡状態の場合、零相電流は理論上ゼロであることから、負荷電流が零相電流に影響を与える原因は零相変流器24の特性によるものである。このため、零相電流の補正には、変流器26から各負荷電流を取得するとともに、零相変流器24の特性を把握する必要がある。 In the case of the three-phase equilibrium state, the zero-phase current is theoretically zero. Therefore, the reason why the load current affects the zero-phase current is due to the characteristics of the zero-phase current transformer 24. Therefore, in order to correct the zero-phase current, it is necessary to acquire each load current from the current transformer 26 and to grasp the characteristics of the zero-phase current transformer 24.

各負荷電流の影響によって生じる零相電流の誤差IZCT_eは、各負荷電流のベクトルI、I、Iの影響を表す補正係数α、β、γ(ZCT特性ベクトル)を用いて以下の式(2)により表わされる。
ZCT_e=α・I+β・I+γ・I ・・・(2)
ZCT_e:零相電流の誤差
,I,I:各相の負荷電流
α,β,γ:補正係数
The zero-phase current error I ZCT_e caused by the influence of each load current is as follows using the correction coefficients α, β, γ (ZCT characteristic vector) representing the influence of the vectors I U , IV , and I W of each load current. It is represented by the equation (2).
I ZCT_e = α ・ I U + β ・IV + γ ・ I W・ ・ ・ (2)
I ZCT_e: Zero-phase current error I U , IV , I W : Load current of each phase α, β, γ: Correction coefficient

この式(2)が各負荷電流の影響による零相電流の誤差を定義する方程式である。ここで先願(特許第5972097号)においては、残留零相電流を零に保ちつつ負荷バランスが異なる3組の各相の負荷電流を印加して、6元連立方程式(I、I、Iがベクトルなので、3元ではなく6元になる)を解くよう説明した。 This equation (2) is an equation that defines the error of the zero-phase current due to the influence of each load current. Here in the prior application (Japanese Patent No. 5972097), by applying a load current of the three sets of each phase load balancing is different while maintaining the remaining zero-phase current to zero, 6-way simultaneous equations (I U, I V, Since I W is a vector, it becomes 6 elements instead of 3 elements).

しかしながら、現地設備の開閉器20で取得できる零相電流には、残留分や設備の絶縁抵抗による零相電流が含まれる。これらの成分は負荷電流の影響で発生した出力と区別することができず、大きさが不定である。現地での測定値における零相電流と負荷電流の関係を式(3)に示す。
ZCT_e=α・I+β・I+γ・I+IOO+IOR ・・・(3)
α,β,γ:補正係数
ZCT_e:零相電流の誤差
,I,I:各相の負荷電流
OO:残留零相電流
OR:現地設備の絶縁抵抗による零相電流
式(3)では、IOOとIORが未知の変数となるため、6元連立方程式を解くことができない。
However, the zero-phase current that can be acquired by the switch 20 of the local equipment includes the zero-phase current due to the residual component and the insulation resistance of the equipment. These components are indistinguishable from the output generated by the influence of the load current, and their magnitude is indefinite. Equation (3) shows the relationship between the zero-phase current and the load current in the field measurements.
I ZCT_e = α ・ I U + β ・IV + γ ・ I W + I OO + I OR・ ・ ・ (3)
α, β, γ: Correction coefficient I ZCT_e : Zero-phase current error I U , IV , I W : Load current of each phase I OO : Residual zero-phase current I OR : Zero-phase current formula due to insulation resistance of local equipment In (3), since IOO and IOR are unknown variables, it is not possible to solve the 6-element simultaneous equation.

そこで補正部36は次のように処理を行う。実フィールドでの検証から得られた知見によれば、直近の点検時に測定した需要家側設備の絶縁抵抗値が充分に高く、点検から数日以内であれば、残留分の時間的な変動は無視できるほど小さい。同様に、絶縁抵抗値の時間的な変動も無視できるほど小さい。そこで、IOOとIORが変数ではなく定数であるという前提のもとに、4回分の測定値の1回分を基準値として、残りの3回分の方程式から基準値を代入した方程式を引くことによってIOOとIORを消去する。すると、次式(4)のようになる。
(IZCT_N-IZCT_0)=α(IU_N-IU_0)+β(IV_N-IV_0)+γ(IW_N-IW_0)・・・(4)
α,β,γ:補正係数
ZCT_N:任意の時点Nにおける零相電流(N=1〜3)
ZCT_0:基準値に選択した零相電流
U_N,IV_N,IW_N:任意の時点Nにおける各相の負荷電流
U_0,IV_0,IW_0:基準値に選択した各相の負荷電流
Therefore, the correction unit 36 performs the processing as follows. According to the knowledge obtained from the verification in the actual field, the insulation resistance value of the equipment on the consumer side measured at the latest inspection is sufficiently high, and if it is within a few days after the inspection, the temporal fluctuation of the residual amount will be. Small enough to be ignored. Similarly, the temporal fluctuation of the insulation resistance value is negligibly small. Therefore, on the assumption that IOO and IOR are constants rather than variables, the equations obtained by substituting the reference values from the remaining three equations are subtracted from the remaining three equations, with one of the four measured values as the reference value. to clear the I OO and I OR by. Then, the following equation (4) is obtained.
(I ZCT_N -I ZCT_0) = α (I U_N -I U_0) + β (I V_N -I V_0) + γ (I W_N -I W_0) ··· (4)
α, β, γ: Correction coefficient I ZCT_N : Zero-phase current at any time point N (N = 1-3)
I ZCT_0: reference value to the selected zero-phase current I U_N, I V_N, I W_N : each phase of the load at any point in time N current I U_0, I V_0, I W_0 : each phase of the load current selected reference value

式(4)は不定の成分IOO,IORを含まないことから、6元連立方程式を解くことが可能となる。このように、負荷電流のバランスが異なる4つの時点における負荷電流及び零相電流の測定値を用いることで不定成分をキャンセルし、補正係数を求めることができる。 Equation (4) is undefined components I OO, since it does not include the I OR, it is possible to solve the 6-way simultaneous equations. In this way, the indefinite component can be canceled and the correction coefficient can be obtained by using the measured values of the load current and the zero-phase current at the four time points where the balance of the load current is different.

4回分の負荷電流及び零相電流の測定値は、複数回FFT解析した測定値の中から適宜選択することができる。4回分を選択する基準としては、有意な差のあるものが好ましい。4回分のうちいずれの1回分を基準値としてもよいが、例えば零相電流IZCT_Nが平均に近いものを用いることができる。データの蓄積の一例としては、サイクルレートを0.02秒として、60秒分(3,000サイクル)を蓄積する。そして、例えば2秒程度のデータをFFT解析して、1回分の測定値を得る。 The measured values of the load current and the zero-phase current for four times can be appropriately selected from the measured values analyzed by FFT a plurality of times. As a criterion for selecting 4 doses, those having a significant difference are preferable. Any one of the four doses may be used as the reference value, but for example, one having a zero-phase current I ZCT_N close to the average can be used. As an example of data accumulation, 60 seconds (3,000 cycles) are accumulated with a cycle rate of 0.02 seconds. Then, for example, data for about 2 seconds is FFT-analyzed to obtain a measured value for one time.

上記のようにして求めた補正係数α、β、γの値を用いて式(3)からIOO_N+IOR_Nの値を決定することができる。そして、実際に補正の対象となる時点の各相の負荷電流IU_N,IV_N,IW_Nを式(3)に代入すれば、零相電流の誤差IZCT_eを求めることができる。そして次式(5)のように、補正の対象となる時点の零相電流IZCT_N(測定値)から誤差IZCT_eを引くことにより、補正後の零相電流I(推定値)を求めることができる。
=IZCT_N−IZCT_e ・・・(5)
:補正後の零相電流
ZCT_N:任意の時点N(補正の対象となる時点)における零相電流
ZCT_e:零相電流の誤差
The value of IOO_N + IOR_N can be determined from the equation (3) using the values of the correction coefficients α, β, and γ obtained as described above. Then, by substituting the load currents I U_N , IV_N , and I W_N of each phase at the time of actual correction into the equation (3), the error I ZCT_e of the zero-phase current can be obtained. Then, as in the following equation (5), the corrected zero-phase current I 0 (estimated value) is obtained by subtracting the error I ZCT_e from the zero-phase current I ZCT_N (measured value) at the time of the correction. Can be done.
I 0 = I ZCT_N- I ZCT_e ... (5)
I 0 : Zero-phase current after correction I ZCT_N : Zero-phase current at an arbitrary time point N (time point to be corrected) I ZCT_e : Error of zero-phase current

図2に示すように、この補正によれば、補正後の零相電流(波形A2)は、補正前の零相電流(波形A1)に比べ、負荷電流の値によらず0.2mA程度で安定している。0.2mAは地絡抵抗20MΩで流れる零相電流に相当する。このように補正後の零相電流は補正前の零相電流に比べ0.0mAに近づいていることから、補正によって負荷電流の影響が緩和されていることがわかる。 As shown in FIG. 2, according to this correction, the corrected zero-phase current (waveform A2) is about 0.2 mA, regardless of the load current value, as compared with the uncorrected zero-phase current (waveform A1). stable. 0.2mA corresponds to the zero-phase current flowing with a ground fault resistance of 20MΩ. Since the zero-phase current after correction is closer to 0.0 mA than the zero-phase current before correction, it can be seen that the effect of the load current is mitigated by the correction.

上記のようにして補正部36は、負荷電流の影響を受けた零相電流を高精度な絶縁低下検出が可能となるレベルまで補正することができる。したがって絶縁低下検出部38は補正後の零相電流を判定し、高抵抗(数MΩ)の絶縁低下を高精度に検出することができる。 As described above, the correction unit 36 can correct the zero-phase current affected by the load current to a level at which highly accurate insulation deterioration detection is possible. Therefore, the insulation deterioration detection unit 38 can determine the corrected zero-phase current and detect the insulation deterioration of high resistance (several MΩ) with high accuracy.

特に本発明においては、補正部36が、4回分の測定値の1つを基準値として、残りの3回分の各相の負荷電流および零相電流と基準値との差分を用いて、方程式の未知数である補正係数を求めている。これにより、任意の負荷を接続した状態で補正係数を求めることができる。したがって、既設の開閉器20であっても停電させることなく零相変流器24の特性を得ることができる。 In particular, in the present invention, the correction unit 36 uses one of the measured values for four times as a reference value, and uses the load current of each phase for the remaining three times and the difference between the zero-phase current and the reference value to form an equation. The correction coefficient, which is an unknown number, is being obtained. As a result, the correction coefficient can be obtained with an arbitrary load connected. Therefore, even with the existing switch 20, the characteristics of the zero-phase current transformer 24 can be obtained without causing a power failure.

また、既設の開閉器20に対しても高抵抗の絶縁低下を高精度に検出することが可能であるため、開閉器20を新規に購入する必要がなく、本発明にかかる地絡継電器30を導入する際の費用を削減することができる。 Further, since it is possible to detect the insulation deterioration of high resistance with high accuracy even for the existing switch 20, it is not necessary to purchase a new switch 20, and the ground relay 30 according to the present invention can be used. The cost of introduction can be reduced.

[第2実施形態]
本発明にかかる高圧絶縁監視装置および高圧絶縁監視方法の第2実施形態について説明する。第1実施形態と説明の重複する部分については同一の符号を付して説明を省略する。
[Second Embodiment]
A second embodiment of the high-voltage insulation monitoring device and the high-voltage insulation monitoring method according to the present invention will be described. The same reference numerals are given to the overlapping parts of the first embodiment and the description, and the description thereof will be omitted.

第1実施形態において説明したように、補正部36が零相電流を補正するためには、FFT解析しながら一定時間のサイクルのデータを蓄積する必要がある。汎用のマイクロコンピュータで安価に装置を構成する場合、連続的にFFTを行うとすると計算負荷が重くなる。しかし、設備汚損による絶縁抵抗の低下は時間経過と共に徐々に進行するため、常時監視する必要性はなく、周期的に行う(例えば、数分ごとに数秒間取り込みFFT解析する)ことでも実用性は十分である。 As described in the first embodiment, in order for the correction unit 36 to correct the zero-phase current, it is necessary to accumulate the data of the cycle for a certain period of time while performing the FFT analysis. When a general-purpose microcomputer is used to construct an apparatus at low cost, the calculation load becomes heavy if FFT is continuously performed. However, since the decrease in insulation resistance due to equipment contamination gradually progresses with the passage of time, it is not necessary to constantly monitor it, and it is not practical to perform it periodically (for example, take in for several seconds every few minutes and perform FFT analysis). It is enough.

しかしながら、第1実施形態の構成では、長期的な絶縁低下は検出できるが、樹木接触や放電性などの短時間事故を検出することはできない。そこで本実施形態では、短時間事故も検出できるように構成の追加を行う。 However, in the configuration of the first embodiment, long-term insulation deterioration can be detected, but short-term accidents such as tree contact and discharge property cannot be detected. Therefore, in the present embodiment, the configuration is added so that a short-time accident can be detected.

図3は第2実施形態にかかる高圧絶縁監視装置の概略構成を示すブロック図である。図3に示す地絡継電器30においては、絶縁低下検出部38に加えて、短時間かつ大幅な絶縁低下を短周期で検出する微地絡検出部40を備えている。 FIG. 3 is a block diagram showing a schematic configuration of the high-voltage insulation monitoring device according to the second embodiment. In the ground relay 30 shown in FIG. 3, in addition to the insulation deterioration detecting unit 38, a fine ground fault detecting unit 40 that detects a large insulation deterioration in a short time and in a short cycle is provided.

微地絡検出部40には、零相変流器24から零相電流が入力される。地絡事故時の絶縁抵抗値は0〜数十kΩであり、微地絡検出部40は100mA程度の零相電流の検出を行う。したがって微地絡検出部40が零相電流を検出するにあたってはFFT解析は必要なく、1サイクル分の零相電流の測定値を用いて微地絡を検出することができる。 A zero-phase current is input from the zero-phase current transformer 24 to the microground fault detection unit 40. The insulation resistance value at the time of a ground fault is 0 to several tens of kΩ, and the micro ground fault detection unit 40 detects a zero-phase current of about 100 mA. Therefore, FFT analysis is not required for the micro-ground fault detection unit 40 to detect the zero-phase current, and the micro-ground fault can be detected by using the measured value of the zero-phase current for one cycle.

図4は、第1実施形態で説明した絶縁低下検出と、第2実施形態で追加した微地絡検出の差異を説明する図である。図4(a)に示すように、絶縁低下検出は、微地絡検出と比較して検出可能な絶縁抵抗値が大きく、設備の汚損によるメガオームオーダーの絶縁低下を検出可能である。その一方で、検出に必要とする時間が長く、短時間事故を検出することはできない。微地絡検出は、絶縁低下検出と比較して検出時間が短く、樹木接触や放電性などの短時間事故を検出可能である。その一方で、検出可能な抵抗値は絶縁低下検出より低い。 FIG. 4 is a diagram for explaining the difference between the insulation deterioration detection described in the first embodiment and the microground fault detection added in the second embodiment. As shown in FIG. 4A, the insulation reduction detection has a larger detectable insulation resistance value than the microground fault detection, and can detect a megaohm-order insulation deterioration due to equipment contamination. On the other hand, the time required for detection is long, and it is not possible to detect an accident for a short time. Micro-ground fault detection has a shorter detection time than insulation deterioration detection, and can detect short-time accidents such as tree contact and discharge. On the other hand, the detectable resistance value is lower than the insulation reduction detection.

すると図4(b)に示すように、0.04〜3MΩの高抵抗の範囲は絶縁低下検出によって検出することができると共に、0.02秒以上の短時間の範囲は微地絡検出によって検出することができる。このように、本実施形態の構成によれば、設備汚損による絶縁抵抗の低下も、樹木接触や放電性などの短時間事故である微地絡も両方とも検出することができ、包括的な地絡検出を行うことが可能となる。 Then, as shown in FIG. 4 (b), a high resistance range of 0.04 to 3 MΩ can be detected by insulation deterioration detection, and a short time range of 0.02 seconds or more can be detected by microground fault detection. can do. As described above, according to the configuration of the present embodiment, it is possible to detect both a decrease in insulation resistance due to equipment contamination and a microground fault that is a short-term accident such as tree contact or discharge, and is a comprehensive ground. Entanglement detection can be performed.

[第3実施形態]
本発明にかかる高圧絶縁監視装置および高圧絶縁監視方法の第3実施形態について説明する。第1実施形態と説明の重複する部分については同一の符号を付して説明を省略する。
[Third Embodiment]
A third embodiment of the high-voltage insulation monitoring device and the high-voltage insulation monitoring method according to the present invention will be described. The same reference numerals are given to the overlapping parts of the first embodiment and the description, and the description thereof will be omitted.

零相変流器24に対する負荷電流による影響は、三相交流の相回転方向(相順)によって特性が異なる。このため、補正する際に補正部36に相回転方向を入力する必要がある。 The effect of the load current on the zero-phase current transformer 24 differs depending on the phase rotation direction (phase order) of the three-phase alternating current. Therefore, it is necessary to input the phase rotation direction to the correction unit 36 at the time of correction.

相回転方向は、一般に検相器と呼ばれる機器で相電圧位相により判定することが知られている。しかし、開閉器20には相電圧を検出するセンサが内蔵されていないことがある。そこで本実施形態では、第1実施形態で使用されるデータの一部を用いて相回転方向の判定を行う。 It is known that the phase rotation direction is determined by the phase voltage phase with a device generally called a phase detector. However, the switch 20 may not have a built-in sensor for detecting the phase voltage. Therefore, in the present embodiment, the phase rotation direction is determined using a part of the data used in the first embodiment.

図5は第3実施形態にかかる高圧絶縁監視装置の概略構成を示すブロック図である。図5に示す地絡継電器30においては、絶縁低下検出部38に加えて、各相の負荷電流の位相から三相交流の相回転方向を検出する検相器42を備えている。 FIG. 5 is a block diagram showing a schematic configuration of the high-voltage insulation monitoring device according to the third embodiment. The ground relay 30 shown in FIG. 5 includes a phase detector 42 that detects the phase rotation direction of three-phase alternating current from the phase of the load current of each phase, in addition to the insulation drop detection unit 38.

検相器42は、FFT解析部34の処理データを受け取り、各相の負荷電流の位相に基づいて相回転を判別する。設備が課電状態であれば、少なくとも受電設備の変圧器無負荷電流やケーブル充電電流は流れるため、相回転の判別が可能である。 The phase detector 42 receives the processing data of the FFT analysis unit 34 and determines the phase rotation based on the phase of the load current of each phase. If the equipment is in a power-charged state, at least the transformer no-load current and the cable charging current of the power receiving equipment flow, so that the phase rotation can be determined.

上記構成によれば、零相変流器24の特性を得る際に、相回転方向を自動的に設定することが可能となる。また、相回転方向の検出を、電源投入時などの所定のタイミングで、または定期的に行うことにより、相回転方向の変化に対して自動的に対応することが可能となる。 According to the above configuration, the phase rotation direction can be automatically set when the characteristics of the zero-phase current transformer 24 are obtained. Further, by detecting the phase rotation direction at a predetermined timing such as when the power is turned on or periodically, it is possible to automatically respond to the change in the phase rotation direction.

最後に、前述の実施形態は例示であり、発明の範囲はそれらに限定されない。前述の実施形態は種々変更可能であり、例えば、前述の実施形態に示される全構成要素から幾つかの構成要素が削除されても良く、さらに、異なる実施形態に係る構成要素が適宜組み合わされても良い。 Finally, the aforementioned embodiments are exemplary and the scope of the invention is not limited thereto. The above-described embodiment can be variously changed. For example, some components may be deleted from all the components shown in the above-described embodiment, and the components according to different embodiments may be appropriately combined. Is also good.

本発明は、高圧配電線路の絶縁低下を検出する高圧絶縁監視装置及び高圧絶縁監視方法として利用することができる。 The present invention can be used as a high-voltage insulation monitoring device and a high-voltage insulation monitoring method for detecting a decrease in insulation of a high-voltage distribution line.

L1…高圧配電線路、10…高圧絶縁監視装置、20…開閉器、22…零相電圧検出装置、24…零相変流器、26…変流器、28…計器用変成器、30…地絡継電器、32…メモリ、34…FFT解析部、36…補正部、38…絶縁低下検出部、40…微地絡検出部、42…検相器、50…表示部
L1 ... High-voltage distribution line, 10 ... High-voltage insulation monitoring device, 20 ... Switch, 22 ... Zero-phase voltage detector, 24 ... Zero-phase current transformer, 26 ... Current transformer, 28 ... Instrument transformer, 30 ... Ground Interference electric power, 32 ... Memory, 34 ... FFT analysis unit, 36 ... Correction unit, 38 ... Insulation deterioration detection unit, 40 ... Micro ground fault detection unit, 42 ... Phase detector, 50 ... Display unit

Claims (4)

零相電流を検出する零相変流器と、各相の負荷電流を検出する変流器とを備えた開閉器に接続して高圧配電線路の絶縁低下を検出する高圧絶縁監視装置であって、
前記各相の負荷電流及び前記零相変流器の特性を用いて、前記各相の負荷電流の影響による前記零相電流の誤差を抑えるように前記零相電流を補正する補正部と、
補正された零相電流に基づいて高抵抗の絶縁低下を検出する絶縁低下検出部とを備え、
前記補正部は、
前記開閉器に負荷電流が流れている状態で前記各相の負荷電流および前記零相電流を少なくとも4回測定し、
前記各相の負荷電流に補正係数をかけて前記零相電流の誤差を定義する方程式に対して、
4回分の測定値の1つを基準値として、残りの3回分の前記各相の負荷電流および前記零相電流と基準値との差分を用いて、前記方程式の未知数である補正係数を求め、
該補正係数を前記方程式に適用することにより誤差を求めることを特徴とする高圧絶縁監視装置。
A high-voltage insulation monitoring device that detects a decrease in insulation of a high-voltage distribution line by connecting to a switch equipped with a zero-phase current transformer that detects the zero-phase current and a current transformer that detects the load current of each phase. ,
A correction unit that corrects the zero-phase current so as to suppress an error of the zero-phase current due to the influence of the load current of each phase by using the load current of each phase and the characteristics of the zero-phase current transformer.
It is equipped with an insulation degradation detector that detects insulation degradation of high resistance based on the corrected zero-phase current.
The correction unit
With the load current flowing through the switch, the load current of each phase and the zero-phase current were measured at least four times.
For the equation that defines the error of the zero-phase current by multiplying the load current of each phase by the correction coefficient.
Using one of the four measured values as a reference value, and using the load current of each of the remaining three times and the difference between the zero-phase current and the reference value, the correction coefficient, which is an unknown number in the equation, is obtained.
A high-voltage insulation monitoring device characterized in that an error is obtained by applying the correction coefficient to the equation.
当該高圧絶縁監視装置は、さらに、
1回分の前記零相電流の測定値を用いて、短時間かつ大幅な絶縁低下を短周期で検出する微地絡検出部を備えることを特徴とする請求項1に記載の高圧絶縁監視装置。
The high-voltage insulation monitoring device further
The high-voltage insulation monitoring device according to claim 1, further comprising a microground fault detecting unit that detects a large decrease in insulation in a short period of time by using the measured value of the zero-phase current for one time.
当該高圧絶縁監視装置は、さらに、
前記各相の負荷電流の位相から三相交流の相回転方向を検出する検相器を備えることを特徴とする請求項1または2に記載の高圧絶縁監視装置。
The high-voltage insulation monitoring device further
The high-voltage insulation monitoring device according to claim 1 or 2, further comprising a phase detector that detects the phase rotation direction of three-phase alternating current from the phase of the load current of each phase.
零相電流を検出する零相変流器と各相の負荷電流を検出する変流器とを備えた開閉器に接続し、
高圧配電線路の零相電流を検出し、
前記高圧配電線路の各相の負荷電流を検出し、
前記各相の負荷電流及び前記零相変流器の特性を用いて、前記各相の負荷電流の影響による前記零相電流の誤差を抑えるように前記零相電流を補正してから、
補正された零相電流に基づいて高抵抗の絶縁低下を検出する高圧絶縁監視方法であって、
前記零相電流を補正するとき、
前記開閉器に負荷電流が流れている状態で前記各相の負荷電流および前記零相電流を少なくとも4回測定し、
前記各相の負荷電流に補正係数をかけて前記零相電流の誤差を定義する方程式に対して、
4回分の測定値の1つを基準値として、残りの3回分の前記各相の負荷電流および前記零相電流と基準値との差分を用いて、前記方程式の未知数である補正係数を求め、
該補正係数を前記方程式に適用することにより誤差を求めることを特徴とする高圧絶縁監視方法。
Connect to a switch equipped with a zero-phase current transformer that detects the zero-phase current and a current transformer that detects the load current of each phase.
Detects the zero-phase current of the high-voltage distribution line and
The load current of each phase of the high-voltage distribution line is detected, and the load current is detected.
Using the load current of each phase and the characteristics of the zero-phase current transformer, the zero-phase current is corrected so as to suppress the error of the zero-phase current due to the influence of the load current of each phase.
A high-voltage insulation monitoring method that detects high-resistance insulation degradation based on the corrected zero-phase current.
When correcting the zero-phase current
With the load current flowing through the switch, the load current of each phase and the zero-phase current were measured at least four times.
For the equation that defines the error of the zero-phase current by multiplying the load current of each phase by the correction coefficient.
Using one of the four measured values as a reference value, and using the load current of each of the remaining three times and the difference between the zero-phase current and the reference value, the correction coefficient, which is an unknown number in the equation, is obtained.
A high-voltage insulation monitoring method characterized in that an error is obtained by applying the correction coefficient to the equation.
JP2017130246A 2017-07-03 2017-07-03 High-voltage insulation monitoring device and high-voltage insulation monitoring method Active JP6897933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017130246A JP6897933B2 (en) 2017-07-03 2017-07-03 High-voltage insulation monitoring device and high-voltage insulation monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017130246A JP6897933B2 (en) 2017-07-03 2017-07-03 High-voltage insulation monitoring device and high-voltage insulation monitoring method

Publications (2)

Publication Number Publication Date
JP2019013124A JP2019013124A (en) 2019-01-24
JP6897933B2 true JP6897933B2 (en) 2021-07-07

Family

ID=65228115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017130246A Active JP6897933B2 (en) 2017-07-03 2017-07-03 High-voltage insulation monitoring device and high-voltage insulation monitoring method

Country Status (1)

Country Link
JP (1) JP6897933B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183879A (en) * 2019-05-01 2020-11-12 株式会社辰巳菱機 Load test device
CN110346696B (en) * 2019-07-05 2022-05-13 杭州西湖电子研究所 Three-dimensional map expression method for wide-area dielectric loss current difference

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102167A (en) * 1985-10-30 1987-05-12 Meidensha Electric Mfg Co Ltd Method for detecting reverse phase
JP3676486B2 (en) * 1996-03-25 2005-07-27 株式会社キューヘン Ground fault detection device
CN102317800B (en) * 2009-03-05 2014-07-30 三菱电机株式会社 Device for detecting insulation degradation
US7965478B2 (en) * 2009-06-29 2011-06-21 Rockwell Automation Technologies, Inc. System and method for detecting a fault condition
JP5972097B2 (en) * 2012-08-08 2016-08-17 一般財団法人関東電気保安協会 High voltage insulation monitoring device and high voltage insulation monitoring method

Also Published As

Publication number Publication date
JP2019013124A (en) 2019-01-24

Similar Documents

Publication Publication Date Title
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
US7180300B2 (en) System and method of locating ground fault in electrical power distribution system
US7425778B2 (en) Apparatus and method for compensating secondary currents used in differential protection to correct for a phase shift introduced between high voltage and low voltage transformer windings
US6584417B1 (en) Method and directional element for fault direction determination in a capacitance-compensated line
US20150346266A1 (en) System and method for pulsed ground fault detection and localization
US20150088438A1 (en) Ratio metric current measurement
US20150077891A1 (en) Power supply monitoring system
US20120182657A1 (en) Rate of change differential protection
KR100902471B1 (en) Apparatus for compensating electric power error in digital protection relay
US20140306716A1 (en) Methods for detecting an open current transformer
JP6897933B2 (en) High-voltage insulation monitoring device and high-voltage insulation monitoring method
JP4599120B2 (en) Electrical installation insulation monitoring device and method
RU2550751C2 (en) Method and device for detection of ground short-circuit
US20230393179A1 (en) Method and device for measuring an insulation resistance of a dc voltage source connected to a split intermediate circuit in mains parallel operation
KR102109414B1 (en) Switchgear capable of detecting current transformer faults by variation in secondary current
JP5638289B2 (en) Measuring device for earth capacitance in power system
US7233464B2 (en) Apparatus for and method of ground fault detection
JP5972097B2 (en) High voltage insulation monitoring device and high voltage insulation monitoring method
US11965916B2 (en) Method and device for determining the resistive component of the leakage current impedance in the alternating current network
JP4527346B2 (en) Insulation state monitoring method and device
JP4489395B2 (en) Equipment for measuring electrostatic capacitance of power system to ground
JP4121979B2 (en) Non-grounded circuit insulation monitoring method and apparatus
JP6907167B2 (en) High-voltage insulation monitoring device and high-voltage insulation monitoring method
JPH04220573A (en) Low-voltage system line wire insulation monitoring method
JP2019060726A (en) Forcible grounding device and ground fault surveying device

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210602

R150 Certificate of patent or registration of utility model

Ref document number: 6897933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250