JP6897574B2 - アクセラレータ制御装置、アクセラレータ制御方法およびプログラム - Google Patents

アクセラレータ制御装置、アクセラレータ制御方法およびプログラム Download PDF

Info

Publication number
JP6897574B2
JP6897574B2 JP2017563868A JP2017563868A JP6897574B2 JP 6897574 B2 JP6897574 B2 JP 6897574B2 JP 2017563868 A JP2017563868 A JP 2017563868A JP 2017563868 A JP2017563868 A JP 2017563868A JP 6897574 B2 JP6897574 B2 JP 6897574B2
Authority
JP
Japan
Prior art keywords
task
data
accelerator
memory
subtask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017563868A
Other languages
English (en)
Other versions
JPWO2017131187A1 (ja
Inventor
鈴木 順
順 鈴木
真樹 菅
真樹 菅
佑樹 林
佑樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2017131187A1 publication Critical patent/JPWO2017131187A1/ja
Application granted granted Critical
Publication of JP6897574B2 publication Critical patent/JP6897574B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/4881Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0604Improving or facilitating administration, e.g. storage management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0659Command handling arrangements, e.g. command buffers, queues, command scheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline, look ahead
    • G06F9/3877Concurrent instruction execution, e.g. pipeline, look ahead using a slave processor, e.g. coprocessor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5011Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
    • G06F9/5016Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals the resource being the memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/5038Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the execution order of a plurality of tasks, e.g. taking priority or time dependency constraints into consideration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • G06F9/5044Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering hardware capabilities

Description

(関連出願についての記載)
本発明は、日本国特許出願:特願2016−015352号(2016年1月29日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明はアクセラレータ制御装置、アクセラレータ制御方法およびプログラムに関し、特にアクセラレータを用いた計算を制御するアクセラレータ制御装置、アクセラレータ制御方法およびプログラムに関する。
近年、衛星画像やセンサデータ等のビックデータをリアルタイムに解析し、未知の現象を発見し、または、将来起こり得る現象を予知ないし予兆することへのニーズが高まっている。ここで、解析対象とされるデータは、センシング精度の向上に伴い大容量化している。しかしながら、個々のオペレータ(ないし事業者)に対して、100ないし1000台規模のクラスタ(計算機クラスタ)を占有させることは、コストの観点から困難である。
そこで、最近では、上記のリアルタイム解析において、GPU(Graphical Processing Unit)等を搭載したアクセラレータが用いられる機会が増えている。特許文献1には、アクセラレータ制御装置の一例が記載されている。図22に示すように、特許文献1に記載されたアクセラレータ制御装置は、情報処理装置8によって構成される。情報処理装置8は、共有メモリ81と、共有メモリ81に接続する複数のアクセラレータ821〜823とを備えている。
共有メモリ81は、アクセラレータ821〜823が処理するデータを保持する。アクセラレータ821〜823は、共有メモリ81からアクセラレータ821〜823のメモリ(非図示)に移動されたデータに対して処理を行う。アクセラレータ821〜823は、処理を完了したデータを再び自身のメモリから共有メモリ81に移動する。これらのデータの移動と処理は、所望の処理が完了するまで繰り返して行われる。
特開2013−025392号公報
上記特許文献の全開示内容は、本書に引用をもって繰り込み記載されているものとする。以下の分析は、本発明者によってなされたものである。
特許文献1に記載された技術では、共有メモリからアクセラレータのメモリにデータを移動するのに時間を要するため、アクセラレータを用いた計算が高速に行えないおそれがある。また、同様の理由により、複数のアクセラレータを用いて計算を行う場合、用いるアクセラレータの数に応じて全体の計算時間を短縮できず、スケーラビリティが得られないおそれもある。
クラスタ技術を採用する代わりに、GPU(Graphical Processing Unit)等を搭載したアクセラレータを用いることにより、例えばノード数を1/10に削減できる。一方、アクセラレータを用いる場合、クラスタ技術と比較してメモリ容量は1/1000に減少する。したがって、アクセラレータのメモリ(アクセラレータメモリ)に収まらず、共有メモリ(ないしメインメモリ)とアクセラレータメモリとのデータのやり取りを伴うアウトオブコア(Out-of-Core)処理が増大する。典型的な例では、アクセラレータを用いることにより、処理性能およびメモリ容量は、クラスタ技術の場合におけるこれらの値から以下のように変化する。
処理性能:100ギガフロップ(CPU:Central Processing Unit) ⇒ 1テラフロップ(GPU)
メモリ容量:1テラバイト(CPU) ⇒ 10ギガバイト(GPU)
しかながら、アクセラレータにデータを入出力するためのI/O(Input/Output)帯域はGPUの演算性能と比較して極端に狭い。典型的な例では、1テラフロップ(TFlop)の演算性能に対してI/O帯域は32ギガバイト/秒(GB/s)である。したがって、アクセラレータメモリとメインメモリとの間のデータのI/Oが処理の高速化のボトルネックとなるおそれがある。
そこで、メモリを有するアクセラレータを用いたタスクの処理を高速化することが課題となる。本発明の目的は、かかる課題解決に寄与するアクセラレータ制御装置、アクセラレータ制御方法およびプログラムを提供することにある。なお、本発明のその他の課題ないし目的は、後述の発明を実施するための形態の説明において明らかとなる。
本発明の第1の態様に係るアクセラレータ制御装置は、実行可能なタスクを保持するタスク記憶部と、メモリを有するアクセラレータ上で実行するときの前記メモリへの入出力データ量が相対的に少ないタスクを、前記実行可能なタスクの中から選択し、選択したタスクに対する前記メモリにおけるデータ入出力の準備を前記アクセラレータに指示するデータスケジューラと、前記選択されたタスクを実行するように前記アクセラレータに指示し、前記選択されたタスクの完了により実行可能となるタスクを前記タスク記憶部に追加するタスクスケジューラとを備え、前記データスケジューラは、前記メモリの使用状況に応じて、前記タスク記憶部が保持する実行可能なタスクの中から次のタスクの選択と、選択した次のタスクに対するデータ入出力の準備を継続する。
本発明の第2の態様に係るアクセラレータ制御方法は、メモリと、アクセラレータと、を備えるアクセラレータ制御装置を制御する方法であり、実行可能なタスクを記憶部に保持するステップと、メモリを有するアクセラレータ上で実行するときの前記メモリへの入出力データ量が相対的に少ないタスクを、前記実行可能なタスクの中から選択し、選択したタスクに対する前記メモリにおけるデータ入出力の準備を前記アクセラレータに指示するステップと、前記選択されたタスクを実行するように前記アクセラレータに指示し、前記選択されたタスクの完了により実行可能となるタスクを前記記憶部に追加するステップと、前記メモリの使用状況に応じて、前記記憶部が保持する実行可能なタスクの中から次のタスクの選択と、選択した次のタスクに対するデータ入出力の準備を継続するステップと、を含む。
本発明の第3の態様に係るプログラムは、実行可能なタスクを記憶部に保持する処理と、メモリを有するアクセラレータ上で実行するときの前記メモリへの入出力データ量が相対的に少ないタスクを、前記実行可能なタスクの中から選択し、選択したタスクに対する前記メモリにおけるデータ入出力の準備を前記アクセラレータに指示する処理と、前記メモリにおけるデータ入出力の準備が完了すると、前記選択されたタスクを実行するように前記アクセラレータに指示し、前記選択されたタスクの完了により実行可能となるタスクを前記記憶部に追加する処理と、前記メモリの使用状況に応じて、前記記憶部が保持する実行可能なタスクの中から次のタスクの選択と、選択した次のタスクに対するデータ入出力の準備を継続する処理と、をコンピュータに実行させる。なお、プログラムは、非一時的なコンピュータ可読記録媒体(non-transitory computer-readable storage medium)に記録されたプログラム製品として提供することもできる。
本発明に係るアクセラレータ制御装置、アクセラレータ制御方法およびプログラムによると、メモリを有するアクセラレータを用いたタスクの処理を高速化することができる。
一実施形態に係るアクセラレータ制御装置の構成を例示するブロック図である。 一実施形態に係るアクセラレータ制御装置の動作を例示する図である。 一実施形態に係るアクセラレータ制御装置の他の構成を例示するブロック図である。 一実施形態に係るアクセラレータ制御装置の動作を説明するための図である。 一実施形態に係るアクセラレータ制御装置の動作を例示する図である。 比較例の動作を説明するための図である。 一実施形態に係るアクセラレータ制御装置の効果について説明するための図である。 第1の実施形態に係るアクセラレータ制御装置の構成を例示するブロック図である。 第1の実施形態に係るアクセラレータ制御装置における予約API(Application Programming Interface)および実行APIを例示する図である。 第1の実施形態に係るアクセラレータ制御装置におけるDAG(Directed Acyclic Graph、有向非巡回グラフ)の構成を例示する図である。 第1の実施形態に係るアクセラレータ制御装置におけるデータおよび処理の分割について説明するための図である。 第1の実施形態に係るアクセラレータ制御装置におけるデータおよび処理の分割について説明するための図である。 第1の実施形態に係るアクセラレータ制御装置のアクセラレータ制御部の構成を例示するブロック図である。 第1の実施形態に係るアクセラレータ制御装置におけるメモリ管理テーブルの構成を例示する図である。 第1の実施形態に係るアクセラレータ制御装置におけるデータ管理テーブルの構成を例示する図である。 第1の実施形態に係るアクセラレータ制御装置の実行不可能サブタスク記憶部が保持するタスクを例示する図である。 第1の実施形態に係るアクセラレータ制御装置の動作を例示するフロー図である。 第1の実施形態に係るアクセラレータ制御装置の詳細な動作を例示するシーケンス図である。 第1の実施形態に係るアクセラレータ制御装置のデータスケジューラの動作を例示するフロー図である。 第1の実施形態に係るアクセラレータ制御装置の先読み判定部の動作を例示するフロー図である。 第1の実施形態に係るアクセラレータ制御装置の次回サブタスク判定部の動作を例示するフロー図である。 特許文献1に記載された関連技術を説明するための図である。
はじめに、一実施形態の概要について説明する。なお、この概要に付記する図面参照符号は、専ら理解を助けるための例示であり、本発明を図示の態様に限定することを意図するものではない。
図1は、一実施形態に係るアクセラレータ制御装置10の構成を例示するブロック図である。図1を参照すると、アクセラレータ制御装置10は、タスク記憶部11、データスケジューラ12、および、タスクスケジューラ13を備えている。
タスク記憶部11は、実行可能なタスク(例えば、図10のタスク、または、図11、図12のサブタスクのうちの実行可能なもの)を保持する。データスケジューラ12は、メモリを有するアクセラレータ(例えば、図8のアクセラレータメモリを有するアクセラレータ)上で実行するときの当該メモリへの入出力データ量が相対的に少ない(例えば最小の)タスクを、上記実行可能なタスクの中から選択し、選択したタスクに対する当該メモリにおけるデータ入出力の準備をアクセラレータに指示する。タスクスケジューラ13は、(例えば上記メモリにおけるデータ入出力の準備が完了すると)選択されたタスクを実行するようにアクセラレータに指示するとともに、選択されたタスクの完了により実行可能となるタスク(例えば、図10のタスク71の完了により実行可能となるタスク72)をタスク記憶部11に追加する。ここで、データスケジューラ12は、上記メモリの使用状況に応じて、タスク記憶部11が保持する実行可能なタスクの中から次のタスクの選択と、選択した次のタスクに対するデータ入出力の準備を継続する。
すなわち、アクセラレータ制御装置10は、アクセラレータのメモリへのデータ入出力量が相対的に少ないタスクを次のタスクとして選択するとともに、当該メモリの使用状況に応じて(例えば余裕がある場合)、選択したタスクに対するデータ入出力の準備を継続する構成を採用する。これにより、アクセラレータメモリと外部メモリとのデータの入出力量を削減すると同時に、アクセラレータメモリと外部メモリとの間のI/O帯域を有効利用することができる。したがって、アクセラレータ制御装置10によると、メモリを有するアクセラレータを用いたタスクの処理を高速化することが可能となる。
図2は、図1に示すアクセラレータ制御装置10の動作を例示する図である。図2(a)は、ユーザプログラムの処理を示すDAG(Directed Acyclic Graph、有向非巡回グラフ)を例示する。ここでは、一例として、DAGの各ノードは、タスクを分割したサブタスク(図11、図12参照)を表すものとする。
図2(b)を参照すると、タスクスケジューラ13とデータスケジューラ12は並列に動作している。タスクスケジューラ13は実行可能なサブタスク「1」〜「3」をタスク記憶部11の実行可能リストに積む。データスケジューラ12はタスク記憶部11が保持する実行可能リストの中で最も入力データのアクセラレータ(ないしアクセラレータメモリ)へのI/Oが小さいサブタスクを選択し、そのサブタスクの実行に必要なデータのI/Oを行う。例えば、サブタスク「2」の入力データのみがアクセラレータのメモリにキャッシュされている場合、データスケジューラ12はサブタスク「2」を選択する。また、データスケジューラ12は、選択したサブタスク「2」のエントリをタスク記憶部11の実行可能リストから消去する。
図2(c)を参照すると、データスケジューラ12はサブタスク「2」を実行するための入力データのI/Oと出力メモリの確保を完了し、それらのメモリ領域をロックし、タスクスケジューラ13にサブタスク「2」の実行可を通知する。データスケジューラ12は、タスク記憶部11の実行可能リストから次にI/Oを行うべきサブタスクを選択する。ここでは、一例として、データスケジューラ12はサブタスク「1」を選択したとする。また、タスクスケジューラ13はサブタスク「2」を実行する。
図2(d)を参照すると、タスクスケジューラ13はサブタスク「2」の実行を完了し、データスケジューラ12にサブタスク「2」の実行完了を通知する。データスケジューラ12は、サブタスク「2」の入出力データのロックを解除する。図2(a)のDAGによるとサブタスク「5」が実行可能となるため、タスクスケジューラ13はサブタスク「5」をタスク記憶部11の実行可能リストに積む。
以下、同様の処理がタスクスケジューラ13とデータスケジューラ12の並列動作によって行われる。なお、複数のアクセラレータが存在する場合、データスケジューラ12はアクセラレータごとに上記の処理を行う。
このように、タスクスケジューラ13によるサブタスクの実行が行われる一方で、データスケジューラ12はアクセラレータのメモリへのデータ入出力量が最小となるサブタスクを次のタスクとして選択し、選択したサブタスクに対するデータ入出力の準備を継続する。これにより、アクセラレータメモリと外部メモリとのデータの入出力を削減し、かつ、アクセラレータメモリと外部メモリとの間のI/O帯域を有効に活用することが可能となる。
図3は、一実施形態に係るアクセラレータ制御装置10の他の構成を例示するブロック図である。図3を参照すると、タスク記憶部11は、実行可能なタスク(ないしサブタスク)であって実行先のアクセラレータが制限されないタスクを保持する第1の記憶部14と、実行先のアクセラレータが制限されたタスクを保持する第2の記憶部15とを有する。このとき、データスケジューラ12は、アクセラレータ上で実行するときのメモリへの入出力データ量が相対的に少ない(例えば最小の)タスクを、第1の記憶部14が保持するタスク、および、第2の記憶部15が保持するタスクであって実行先が当該アクセラレータに制限されたタスクの中から選択する。
例えば、第1の記憶部14は、最上流のタスク、または、上流のすべてのタスクの実行が完了したタスクを保持する。一方、第2の記憶部15は、実行先のアクセラレータが制限されたタスクとして、上流のタスクの少なくとも1つが当該アクセラレータで実行待ち(すなわち、データ入出力の準備が完了し、アクセラレータで実行されるのを待っている状態)であり、かつ、上流の残りのすべてのタスクの実行が完了したタスクを保持する。
図4は、図3に示すアクセラレータ制御装置10の動作を説明するための図である。ここでは、アクセラレータ51〜5N(Nは自然数)は、それぞれGPU1〜Nを有するものとする。第1の記憶部14は、実行先のアクセラレータが制限されないサブタスクを保持している。一方、第2の記憶部15は、実行先のアクセラレータ(ないしGPU)が制限されたサブタスクをアクセラレータごとに保持する。第1の記憶部14および第2の記憶部15に蓄積されたサブタスクは、「I/O待ち」状態である。
データスケジューラ12は、アクセラレータ(例えばGPU 1に対応するアクセラレータ)上で実行するときのメモリへの入出力データ量が最小のサブタスクを、第1の記憶部14が保持するサブタスク(Ready Sub Tasks)、および、第2の記憶部15が保持するサブタスクであって実行先が当該アクセラレータに制限されたサブタスク(例えばGPU 1 Ready Sub Tasks)の中から選択する。データスケジューラ12が選択したサブタスクは、当該サブタスクに対するデータ入出力の準備(図4のI/O)が完了すると、対応するGPUに対するキュー(FIFO:First-In First-Out)に格納され、「実行待ち」状態となる。キューに格納されたサブタスクは、対応するアクセラレータのGPU(例えばGPU 1)で順次実行され(図4のProcessing)、実行が完了すると、「実行完了」状態となる。
図5は、図3に示すアクセラレータ制御装置10の動作を例示する図である。図5(a)は、ユーザプログラムの処理を示すDAGを例示する。ここでは、一例として、DAGの各ノードは、タスクを分割したサブタスクを表すものとする。図5(b)を参照すると、データスケジューラ12(またはタスクスケジューラ13)は、サブタスク「2」をアクセラレータにおいて実行待ちとしたタイミングで、サブタスク「2」が完了したときに実行可能になるサブタスク「5」を第2の記憶部15が保持する当該アクセラレータ(ないしGPU)に対応するLocal Queueに追加する。データスケジューラ12は、サブタスクのスケジュールの際、第1の記憶部14が保持する実行可能リストと、第2の記憶部15が保持するスケジュール対象のアクセラレータ(ないしGPU)に対応するLocal Queueを参照し、これらのリストないしキューが保持するサブタスクの中から、当該アクセラレータ上で実行するときのメモリへの入出力データ量が最小のサブタスクを選択する。ここで、各アクセラレータ内では動作がシリアライズされることになるため、図5に示す状態において、サブタスク「5」を選択しても何ら問題はない。なお、データスケジューラ12は、サブタスクの選択において他のアクセラレータについては考慮しない。また、データスケジューラ12(またはタスクスケジューラ13)は、サブタスク「5」を選択する場合、サブタスク「5」の完了により実行可能になるサブタスクが存在するときには、さらに対応するアクセラレータ(ないしGPU)に対するLocal Queueに追加する。タスクスケジューラ13は、サブタスクの完了後、第2の記憶部15が保持するLocal Queueに該当エントリ(すなわち、実行先のアクセラレータが制限されないサブタスク、例えば上流のすべてのサブタスクの実行が完了したサブタスク)が存在する場合、かかるエントリを第2の記憶部15から第1の記憶部14が保持する実行可能リストに移動する。
このように、図3に示すアクセラレータ制御装置10は、最上流のタスク、または、上流のすべてのタスクの実行が完了したタスクを保持する第1の記憶部14と、実行先のアクセラレータが制限されたタスクとして、上流のタスクの少なくとも1つが当該アクセラレータで実行待ちであり、かつ、上流の残りのすべてのタスクの実行が完了したタスクを保持する第2の記憶部15とを有する。また、アクセラレータ制御装置10はデータスケジューラ12がアクセラレータ上で実行するときのメモリへの入出力データ量が最小のタスクを、第1の記憶部14が保持するタスク、および、第2の記憶部15が保持するタスクであって実行先が当該アクセラレータに制限されたタスクの中から選択する。これにより、メモリを有するアクセラレータを用いたタスクの処理をさらに高速化することが可能となる。なぜなら、データスケジューラ12は、タスクが実行完了となるよりも前の実行待ちの時点において、当該タスクの完了によって実行が可能となる後段のタスクについても、入出力データの準備を開始するタスクの候補とすることができるからである。
次に、一実施形態に係るアクセラレータ制御装置10(図1、図3)によってもたらされる効果について、比較例と対比しつつ説明する。
図6は、比較例の動作を説明するための図である。図6を参照すると、比較例においては、上流のサブタスクが完了し、実行可能となったサブタスクに対して、順番に入力データの準備と出力メモリ領域の確保が行われる。
図7は、一実施形態に係るアクセラレータ制御装置10の効果について説明するための図である。図7を参照すると、DAGのデータA〜Cは、それぞれN個のデータパーティションに分割されている(Nは自然数)。同様に、タスクA、Bは、それぞれN個のサブタスクに分割されている。例えば、サブタスクSTa1〜STaNをデータパーティションDPa1〜DPaNに適用した場合、分割しない場合(すなわち、タスクAをデータAに適用した場合)と同一の結果が得られる。ここでは、データA、Bの双方のすべてのデータパーティションを、同時にアクセラレータメモリに保持することはできないものと仮定する。
図6に示す比較例では、図7のサブタスクを処理する場合、まず、サブタスクSTa1〜STaNがFIFOに積まれる。その後、サブタスクSTb1〜STbNがFIFOに積まれる。しかしながら、データA、Bをアクセラレータのメモリにすべて搭載することは不可能であるため、サブタスクSTa1〜STaNの実行において、後に使用されるデータパーティションDPb1〜DPbNの少なくとも一部(例えばデータパーティションDPbx)をスワップアウト(Swap Out、すなわちアクセラレータメモリからメインメモリに移動)する必要がある。さらに、サブタスクSTbxの実行時にスワップアウトされていたデータパーティションDPbxをスワップイン(Swap In、すなわちメインメモリからアクセラレータメモリに移動)する必要もある。
一方、一実施形態に係るアクセラレータ制御装置10によると、サブタスクSTa1、STb1を実行した後、サブタスクSTa2、STb2を実行する、というように進めることができ、比較例のようにデータパーティション(例えばデータパーティションDPbx)に対するスワップ(Swap、すなわちI/O)が発生しない。したがって、一実施形態によると、アクセラレータとメインメモリとの間のデータのI/Oを比較例よりも少なくすることができ、処理の高速化を図ることが可能となる。
<実施形態1>
次に、第1の実施形態に係るアクセラレータ制御装置について、図面を参照して詳細に説明する。
[構成]
図8は、本実施形態に係るアクセラレータ制御装置1の構成を例示するブロック図である。図8を参照すると、アクセラレータ制御装置1は、アクセラレータ51〜53、メインメモリ4、アクセラレータ制御部3、ユーザプログラム21、および、DAG(Directed Acyclic Graph)作成部22を備えている。アクセラレータ制御装置1は、一例として、ホストコンピュータによって実現される。なお、ユーザプログラム21は、アクセラレータ制御装置1の外部の構成としてもよい。
アクセラレータ51〜53は、計算処理を実行する。
メインメモリ4は、アクセラレータ51〜53のメモリリソースの不足により保持できなくなったデータを退避するためのメモリである。
アクセラレータ制御部3は、アクセラレータ51〜53を制御する。
DAG作成部22は、ユーザプログラム21のAPI(Application Programming Interface)呼び出しにより、ユーザプログラム21の処理を示すDAG(Directed Acyclic Graph)を作成してアクセラレータ制御部3に送信する。
図8において、アクセラレータの数は説明の都合上3つとしている。ただし、アクセラレータの数は1つ以上であればよく、図示の態様に限定されない。アクセラレータとは、特に限定されないが、例えばNVIDIA社のGPU(Graphical Processing Unit)、Intel社のXeon Phi等である。アクセラレータはコンピュータのCPU(Central Processing Unit)のコプロセッサであり、例えばコンピュータのI/O(Input/Output)スロットに挿入する形で実装される。
以下では、複数のアクセラレータ51〜53についての説明が重複する場合、アクセラレータ51についてのみ説明する。アクセラレータ52、53については、同様の説明があてはまる。
アクセラレータ51は、データを処理するプロセッサ511と、データを格納するアクセラレータメモリ521を備えている。ここでは、アクセラレータが有するローカルメモリをアクセラレータメモリという。
ユーザプログラム21は、アクセラレータ51〜53を利用するプログラマ(ユーザ)が作成するアプリケーションプログラム、または、ユーザによって実行されるアプリケーションプログラムである。ユーザプログラム21は、一例として、DAG作成部22によって提供されるAPIを用いて実装される。DAG作成部22によって提供されるAPIには、例えば、図9に示すように予約APIおよび実行APIの2種類のAPIが含まれる。
予約APIは、図10に示すDAGのタスク(ないし処理)の1つに対応する。ユーザプログラム21から予約APIが呼び出されると、DAG作成部22は、DAGに対して1つのタスクと、そのタスクが生成するデータとを追加する。例えば、図10において、データ61に対して予約APIを用いてタスク71が呼ばれた場合、DAG作成部22はタスク71とその出力データであるデータ62をDAGに付加する。なお、予約APIは、タスクを予約するためのAPIである。すなわち、予約APIが呼び出された直後には、アクセラレータ51〜53でタスクは実行されず、DAGが生成されるにすぎない。
一方、実行APIが呼び出された場合、新たなタスクとそのタスクが生成するデータがDAGに付加される場合とされない場合がある。また、実行APIの呼び出しは、それまでに生成されたDAGのタスクの実行をトリガする。実行APIに属するタスクは、ユーザプログラム21内でDAGが処理された後のデータが必要となる場合や、計算結果のデータをアクセラレータメモリにデータオブジェクトとして保持するstoreObjectの場合等である。
予約APIや実行APIは、図9に示すように1つまたは複数の引数α、β、γ、…を持つ場合がある。これらの引数のうちの1つは、カーネル関数である場合がある。ここで、カーネル関数とは、ユーザプログラム21がデータに対し実行する処理を示す関数である。APIが引数として関数をとるか否かは、予約APIや実行APIの種類に依存する。予約APIや実行APIはデータに対し行われる処理のパターンを示し、実際の具体的な処理はユーザプログラム21内で予約APIと実行APIの引数として与えられるカーネル関数によって行われる。
カーネル関数を引数とするAPIの一例は、mapである。mapでは、入力データを構成するすべての要素に対してカーネル関数が適用される。DAGの入力データは、例えば、画像やデータベースのテーブルである。これらのデータにmapが適用された場合、カーネル関数は画像の各画素や、データベースの各エントリに対して個別に適用される。
一方、カーネル関数を必要としないAPIとして、例えば、storeObject,appendObject,readがある。storeObjectは、計算結果をアクセラレータメモリ521〜523にデータオブジェクトとして保持するAPIである。storeObjectによると、アクセラレータメモリ521〜523にデータオブジェクトとして保持するデータに名前付けを行うことが可能となる。このとき、storeObjectの引数としてオブジェクトの名前を渡す。また、appendObjectは、すでに存在するオブジェクトの末尾にデータを付加する場合に用いられるAPIである。さらに、readは、アクセラレータ51〜53上に存在するデータオブジェクトの内容をユーザ空間に取得するAPIである。
また、DAGが示すタスクの入力データとして、アクセラレータメモリ521〜523が保持するデータオブジェクトを指定することが可能である。この場合、予約APIや実行APIで行う処理の入力データとして、アクセラレータ51〜53が保持するオブジェクトの名前を指定する。この名前は、storeObjectを呼び出したプログラムが付けたものである。
ここで、DAGの各データは、図11に示すように2つ以上の分割(データパーティション)から構成されてもよい。図11は、図10のDAGのデータ61、タスク71、データ62、タスク72、および、データ63において、データを2つのデータパーティションで構成した例である。この場合、例えば、タスク71を、データパーティション61−1とデータパーティション61−2の両方に適用すれば、データ61を分割しない場合の処理と同一の結果が得られる。これは、並列計算ではデータパラレルという処理形態に属し、本発明の属する技術分野の技術者の間では一般的に知られている処理である。図11では、データパーティション61−1に対する処理をサブタスク71−1等と記しているが、サブタスク71−1の処理内容は図10におけるタスク71と同一である。また、複数の分割(データパーティション)に対する処理を、異なるアクセラレータが分散して実行するようにしてもよい。
図12は、データ61がデータパーティション61−1〜61−4に分割されている場合を示す。ここで、データパーティション61−1とデータパーティション61−2は、アクセラレータ51で処理される。一方、データパーティション61−3とデータパーティション61−4は、アクセラレータ52で処理される。この場合、4つすべてのデータパーティションを1つのアクセラレータで処理する場合と比較して、理想的なケースでは2倍の計算性能が得られる。
なお、以下の説明では、誤解のおそれがない場合、データやタスクを分割する場合について説明し、データやタスクを分割しない場合についての説明を省略する。したがって、データを分割しない場合、以下の説明におけるデータパーティションは分割前の元のデータそのものを意味し、データパーティションに対するサブタスクは元のデータに対するタスクを意味する。
DAG作成部22は、ユーザプログラム21が予約APIと実行APIを呼び出す度にDAGを生成する。予約APIが呼ばれた場合、DAG作成部22はDAGに対応する処理と出力データを付加する。一方、実行APIが呼ばれた場合、DAG作成部22はDAG処理と出力データの追加が必要であれば追加し、それまで生成したDAGをアクセラレータ制御部3に通知する。
なお、DAG作成部22が作成するDAGは、ユーザプログラム21が呼び出した予約APIや実行APIの種類、各APIに与えられたカーネル関数を含む。また、DAG作成部22は、DAGを通知する際、ユーザプログラム21の識別子を送信する。また、DAG作成部22は、ユーザプログラム21が終了する場合、アクセラレータ制御部3にユーザプログラム21の識別子を送信し、ユーザプログラム21が生成したデータのうちのstoreObjectで保持が指定された以外の中間データを消去するように要求する。
図13は、図8に示すアクセラレータ制御装置1のアクセラレータ制御部3の構成を例示するブロック図である。図13を参照すると、アクセラレータ制御部3は、プログラム解析部31、タスク処理部32、サブタスク記憶部36、データ管理部33、データ管理テーブル34、および、メモリ管理テーブル35を備えている。プログラム解析部31は、DAG作成部22から受信したユーザプログラム21の処理を示すDAGを解析する。タスク処理部32は、DAGの処理を実行する。サブタスク記憶部36は、DAGに含まれるサブタスクを実行可能なものと、それ以外のものとに分類して保持する。データ管理部33は、DAGの処理に必要なデータの管理や準備を行う。メモリ管理テーブル35は、アクセラレータのメモリを管理する。データ管理テーブル34は、アクセラレータのメモリ上のデータを管理する。以下、これらの各構成について詳述する。
メモリ管理テーブル35は、アクセラレータメモリ521〜523を管理するテーブルである。アクセラレータメモリ521〜523は、一定サイズのページに分割して管理される。ページサイズは、例えば、4KBや64KBである。メモリ管理テーブル35は、図14に示すように、各ページに関する情報をエントリとして保持する。各ページの情報は、そのページが属するアクセラレータ番号と、ページ番号と、そのページが使用中であることを示す使用中フラグと、そのページが使用中である場合、ページが保持するデータの識別子を示すデータ番号と、そのページが保持するデータはデータのうちのどのデータパーティションかを示すパーティション番号と、そのページが計算に使用中であり解放することが禁止されていることを示すロックフラグとを保持する。使用中フラグおよびロックフラグは、ブール値である。データの識別子は、DAGのデータに割り当てられる。
ここでは、一例として、使用中フラグは、ページが使用中である場合には「1」とし、それ以外の場合には「0」とする。また、ロックフラグは、ページの解放が禁止される場合には「1」とし、それ以外の場合には「0」とする。
例えば、図14に示すメモリ管理テーブル35の最初のエントリは、アクセラレータ51が保持するアクセラレータメモリ521のページ1は、データパーティション62−1(すなわち、データ61の1番目のデータパーティション)によって使用され、このページは現在計算に使用されているためロック中であることを示す。なお、ロック中のページが保持するデータは、メインメモリ4に退避させることができない。
データ管理テーブル34は、アクセラレータメモリ521〜523上のデータを管理する。データ管理テーブル34は、図15に示すように、ユーザプログラム21から送信されたDAG内のデータに関する情報を保持する。各エントリは、データ番号と、各データのパーティション番号と、そのデータが計算済みか否かを示す計算済フラグと、そのデータがメインメモリ4に退避されていることを示すスワップフラグと、そのデータを保持するアクセラレータ番号を示すアクセラレータ番号と、データを保持するアクセラレータのページ番号とを保持する。計算済フラグおよびスワップフラグは、ブール値である。
ここでは、一例として、計算済フラグは計算済である場合には「1」とし、それ以外の場合には「0」とする。また、スワップフラグは、データがメインメモリ4に退避されている場合には「1」とし、それ以外の場合には「0」とする。
例えば、図15に示すデータ管理テーブル34の最初のエントリは、データ番号が62であるデータの1番目のデータパーティション(すなわち、データパーティション62−1)は既に計算済みであり、アクセラレータ51のアクセラレータメモリ521のページ1に保持されていることを示す。データ管理テーブル34のエントリが保持するアクセラレータ番号とページ番号より、メモリ管理テーブル35の該当エントリを参照し、各データが使用するページの情報を検索したり、計算に使用する場合にページをロックしたりすることが可能となる。
プログラム解析部31は、DAG作成部22から受信したユーザの処理を示すDAGを解析し、データとタスクに分割する。プログラム解析部31は、DAG内のデータについて、データ管理テーブル34にエントリを作成する。ここで、プログラム解析部31は、データパーティション数に応じた数のエントリを作成する。なお、データのエントリ作成時点では、まだ各データパーティションの計算が行われていないため、データ管理テーブル34における計算済フラグは「0」となる。
一方、DAGの入力データとしてユーザプログラム21の今回より前のDAGが出力したデータや、ユーザプログラム21とは別のユーザプログラムが以前に作成し、アクセラレータ上のメモリにストアしたデータオブジェクトのデータについては、エントリがすでに存在している。したがって、プログラム解析部31は、これらのデータのエントリを新たに作成する必要はない。また、これらのエントリの計算済フラグは、データ管理テーブル34において「1」にセットされている。
プログラム解析部31は、DAGの「タスク」の単位に分割した処理を実行するようにタスク処理部32に要求する。プログラム解析部31は、DAGのタスク1つにつき、データパーティション数に応じてサブタスクの要求を行う。また、プログラム解析部31は、消去したエントリが使用していたページのメモリ管理テーブル35の使用中フラグを解除する(例えば、使用中フラグを「1」から「0」に変更する)ことで、アクセラレータメモリ521〜523を解放する。
データ管理部33は、データスケジューラ331とデータ移動部332を備えている。データスケジューラ331は、アクセラレータメモリ521〜523が保持するデータの管理や、メモリの確保を指示する。データ移動部332は、アクセラレータ51〜53にデータをロードし、アクセラレータメモリ521〜523の確保を行う。
データスケジューラ331は、メモリ管理テーブル35を参照して、アクセラレータ51のアクセラレータメモリ521を管理する。また、データスケジューラ331は、他のアクセラレータ52、53についても、同様に管理する。さらに、データスケジューラ331は、タスク処理部32からサブタスクの実行に必要な入力データと出力データの要求を受ける。
実行するサブタスクがDAGの最初のサブタスクである場合、入力データとしてアクセラレータメモリが保持するデータオブジェクトの識別子が指定されている。また、実行するサブタスクが最初のサブタスク以外のサブタスクである場合、DAGにおける前段のサブタスクが完了していれば、そのサブタスクの出力データがすでに計算されている。いずれの場合も、データ管理テーブル34の対応するエントリのスワップフラグが「0」であれば、それらのデータパーティションがメインメモリ4に退避されていないため、アクセラレータメモリ上において準備が完了している。
一方、スワップフラグが「1」の場合、データスケジューラ331はそのデータパーティションをアクセラレータメモリ上に用意する。データスケジューラ331は、メモリ管理テーブル35を参照し、退避されたデータパーティションをロードするために十分な空きページがいずれかのアクセラレータ51〜53に存在するか否かを確認する。十分な空きページが存在する場合、データスケジューラ331は退避されたデータをその空きページにロードするようにデータ移動部332に要求する。一方、空きページが十分でない場合、データスケジューラ331はデータ管理テーブル34およびメモリ管理テーブル35を参照し、ロックされていないページが保持するデータパーティションを選択し、そのデータパーティションをメインメモリ4に退避するようにデータ移動部332に要求する。ここで、データスケジューラ331は、データパーティションを単位として退避の要求を行う。これにより、入力データをロードするためのメモリが確保できるため、データスケジューラ331はデータ移動部332に入力データのデータパーティションをロードするよう通知する。
データスケジューラ331は、サブタスクの出力データに関しては、メモリ管理テーブル35を参照し、タスク処理部32が要求するサブタスクの出力データに必要なページ数が空きページから確保可能であれば、メモリを確保するようデータ移動部332に要求する。このとき、データスケジューラ331はページを確保するアクセラレータも指定する。
一方、空きページから確保可能でない場合、データスケジューラ331は、退避された入力データをロードするためにメモリを確保する上述の場合と同様の動作を行う。すなわち、データスケジューラ331は、まず、アクセラレータメモリ上でロックされていないページが保持するデータパーティションをメインメモリ4に退避するようにデータ移動部332に通知した後、データ移動部332に出力データを出力するためのページ数を確保させる。
また、データスケジューラ331は、入力データと出力データのメモリ領域をロックするようにデータ移動部332に要求する。さらに、データスケジューラ331は、タスク処理部32から処理の完了通知を受信し、データ移動部332にロック中のページのロックを解除し、データ管理テーブル34における出力データの計算済フラグを「1」にセットするように通知する。
なお、タスクスケジューラ321が実行を要求するサブタスクの種類によっては、入力データと出力メモリ領域の一方のみを準備すればよい場合がある。例えば、データオブジェクトの内容を取得するreadの実行要求では、出力メモリ領域を用意する必要はない。
データ移動部332は、データスケジューラ331からの指示を受け、アクセラレータのメモリの確保や、アクセラレータに対するデータの移動を行う。
データ移動部332は、データスケジューラ331からの指示を受け、アクセラレータのメモリの確保を行い、メモリ管理テーブル35に確保したメモリのページのエントリを登録する。また、データ移動部332は、データ管理テーブル34のデータパーティションのエントリに、確保したメモリに該当するアクセラレータ番号とページ番号を登録する。
データ移動部332は、データスケジューラ331からの指示を受け、計算に使用中のページのロックフラグを「1」にセットする。また、データ移動部332は、計算が完了したページのロックフラグを「1」から「0」に解除する。さらに、データ移動部332は、データ管理テーブル34において出力データの計算済フラグを「1」にセットする。
データ移動部332は、データスケジューラ331からの指示を受け、データパーティションをメインメモリ4に退避する。この場合、データ移動部332は、退避したデータパーティションのデータ管理テーブル34のエントリのスワップフラグをセットする。また、データ移動部332は、退避したデータパーティションが使用していたページのメモリ管理テーブル35のエントリの使用中フラグを解除する。
タスク処理部32は、タスクスケジューラ321と、タスク実行部322を備えている。タスクスケジューラ321は、サブタスクの実行に必要な入力データと出力データのメモリ領域を要求し、また、サブタスクの実行を要求する。また、タスク実行部322は、アクセラレータ51〜53にサブタスクを実行させる。
タスクスケジューラ321は、プログラム解析部31からDAGに含まれるサブタスクの実行要求を受信する。タスクスケジューラ321は、データパーティションに対する処理実行の単位で要求を受信する。タスクスケジューラ321は、受信した要求に含まれるサブタスクのうち、DAGの上流から順番にサブタスクを実行する。図11で示したDAGでは、サブタスク71が上流のサブタスクに相当する。DAGにおいて、上流のサブタスクが完了しなければ、下流の(次段の)サブタスクを実行することができない。タスクスケジューラ321は、実行する各サブタスクに必要な入力データと出力データのメモリ領域をデータスケジューラ331に要求する。タスクスケジューラ321は、データスケジューラ331から要求したサブタスクに対するデータとメモリ領域の確保完了を受信後、タスク実行部322に該当するサブタスクを実行するために必要なアクセラレータ番号、入力データのアドレス、出力データを書き込むアドレス、または、これらの情報を知るために必要なデータ管理テーブル34とメモリ管理テーブル35のエントリ情報を通知し、タスク実行部322にサブタスクを実行させる。この処理は、データパーティションの単位で行われる。
要求するサブタスクが、アクセラレータが保持するデータオブジェクトにデータを追記するappendObjectである場合、タスクスケジューラ321は追記する情報をタスク実行部322に渡す。このデータは、プログラム解析部31がユーザプログラム21のDAGを受信する中に含まれている。
タスクスケジューラ321は、タスク実行部322からサブタスクの完了通知を受信し、サブタスクが完了した際には、入力データと出力データのロックを解除するようにデータスケジューラ331に通知する。
さらに、タスクスケジューラ321は、タスク実行部322に要求したサブタスクがアクセラレータのメモリが保持するデータオブジェクトの内容を取得するreadである場合、readを実行したタスク実行部322からデータを取得し、取得したデータを、プログラム解析部31を介してユーザプログラム21に伝える。
タスク実行部322は、タスクスケジューラ321からの指示を受け、タスクスケジューラ321から受信したユーザプログラム21のカーネル関数を用いて指定されたアクセラレータの指定された入力アドレスと出力アドレスに対して処理を行う。また、タスク実行部322は、処理完了をタスクスケジューラ321に通知する。要求されたサブタスクがappendObjectである場合、タスク実行部322は指定されたデータオブジェクトに対してデータを追記する。一方、要求されたサブタスクがデータオブジェクトの内容を取得するreadである場合、タスク実行部322は指定されたデータオブジェクトの該当番地から情報を取得してタスクスケジューラ321に通知する。
次に、サブタスク記憶部36が保持する情報と、タスクスケジューラ321およびデータスケジューラ331の機能のうちの、かかる情報に関連した機能について説明する。
はじめに、サブタスクの分類について説明する。サブタスクには、以下の4つの状態がある。
(1)I/O待ち
サブタスクの入力データパーティションの準備および出力データパーティションのメモリ確保を、サブタスクを実行するアクセラレータのメモリに対して行うことを待っている状態(例えば図4のI/O前の状態)
(2)実行待ち
入力データパーティションの準備および出力データパーティションのメモリ確保が完了し、アクセラレータでサブタスクが実行されるのを待っている状態(例えば図4のI/Oが完了してFIFOに蓄積された状態)
(3)実行中
サブタスクがアクセラレータ上のプロセッサで実行中の状態(例えば図4のProcessingの状態)
(4)実行完了
サブタスクの実行が完了した状態(例えば図4のProcessingが完了した状態)
以下では、アクセラレータにおけるサブタスクの入力データパーティションの準備および出力データパーティションのメモリ確保を「サブタスクの入出力データの準備」という。
図13を参照すると、サブタスク記憶部36は、実行不可能サブタスク記憶部361、実行可能サブタスク記憶部362、および、アクセラレータ実行可能サブタスク記憶部363を有する。
実行不可能サブタスク記憶部361が記憶するサブタスクは、ユーザプログラム21から実行を依頼されたDAGが含むサブタスクの中で、データスケジューラ331が入出力データの準備を行う候補とならないサブタスクである。 ここで、入出力データの準備を行う候補とならないサブタスクとは、当該サブタスクより上流のサブタスクにI/O待ちのサブタスクを含むか、2つ以上の実行待ちサブタスクを含み、それらのサブタスクの実行を待っているアクセラレータがすべて同一でない場合である。また、実行待ちのサブタスクとは、データスケジューラ331の依頼によるデータ移動部332での入出力データの準備が完了し、タスクスケジューラ321に実行準備完了の通知が渡ったサブタスクであるが、まだデータスケジューラ331の依頼によるサブタスクの実行がタスク実行部322で開始されていない(すなわち未実行の)サブタスクである。
図16は、実行不可能サブタスク記憶部361に記憶されるサブタスクの例を示す。例えば、図16(a)においてサブタスク「1」がI/O待ちの場合、サブタスク「2」は実行不可能サブタスク記憶部361に記憶される。また、図16(b)においてサブタスク「a」とサブタスク「b」が異なるアクセラレータで実行待ちの場合、サブタスク「c」は実行不可能サブタスク記憶部361に記憶される。
実行可能サブタスク記憶部362が記憶するサブタスクは、ユーザプログラム21から実行を依頼されたDAGが含むサブタスクの中で、データスケジューラ331が入出力データの準備を行う候補となるサブタスクであり、かつ、入出力データの準備を行うアクセラレータに制限がないサブタスクである。 ここで、入出力データの準備を行うアクセラレータに制限がないサブタスクとは、当該サブタスクがDAGの最も上流のサブタスクであり、それより上流のサブタスクが存在しないか、または、当該サブタスクが依存する当該サブタスクより上流のすべてのサブタスクが実行完了状態であり、当該サブタスクの入力データパーティションがメインメモリ4、または、いずれかのアクセラレータのアクセラレータメモリに保持されているサブタスクである。
アクセラレータ実行可能サブタスク記憶部363は、アクセラレータ数分の記憶領域を含む。各アクセラレータに対応する記憶領域に記憶されるサブタスクは、ユーザプログラム21から実行を依頼されたDAGが含むサブタスクの中で、データスケジューラ331が当該アクセラレータでのみ入出力データを準備するサブタスクの候補とすることができるサブタスクである。ここで、ただ1つのアクセラレータでのみ入出力データの準備を行うサブタスクの候補とすることができるサブタスクとは、当該サブタスクが依存するサブタスクがすべて実行待ち、または、実行完了状態であり、それらのサブタスクの少なくとも1つは実行待ちのサブタスクであり、実行待ちのサブタスクはすべて当該サブタスクが記憶される領域に対応するアクセラレータで実行待ちであるサブタスクである。
タスクスケジューラ321は、プログラム解析部31からサブタスクの実行要求を受ける。実行要求を受けたサブタスクはすべてI/O待ち状態である。タスクスケジューラ321はサブタスクの中でDAGの一番上流のサブタスクを実行可能サブタスク記憶部362に記憶し、それ以外のサブタスクを実行不可能サブタスク記憶部361に記憶する。一番上流のサブタスクとは、そのサブタスクが依存するサブタスクが存在しないサブタスクである。タスクスケジューラ321はデータスケジューラ331に実行可能サブタスク記憶部362にサブタスクを記憶したことを通知する。
また、タスクスケジューラ321はデータスケジューラ331から入出力データの準備が完了し実行待ちになったサブタスクと、実行を待っているアクセラレータの識別子の通知を受信し、タスク実行部322に通知されたサブタスクを通知されたアクセラレータで実行するように要求する。
さらに、タスクスケジューラ321は、タスク実行部322からサブタスクの実行が完了し実行完了状態になったとの通知を受信し、サブタスクの入力データと出力メモリ領域のロックを解除するようデータスケジューラ331に通知する。また、タスクスケジューラ321は、実行が完了したサブタスクにより実行不可能サブタスク記憶部361からアクセラレータ実行可能サブタスク記憶部363、またアクセラレータ実行可能サブタスク記憶部363から実行可能サブタスク記憶部362に移動すべきサブタスクを探索して移動させる。このとき、タスクスケジューラ321はアクセラレータ実行可能サブタスク記憶部363と実行可能サブタスク記憶部362にサブタスクを移動させたことをデータスケジューラ331に通知する。この通知は、サブタスクの移動がアクセラレータ実行可能サブタスク記憶部363と実行可能サブタスク記憶部362の双方、または、どちらか一方に発生した場合に行う。
データスケジューラ331は、タスクスケジューラ321からサブタスクの実行完了通知を受信し、サブタスクの入出力データパーティションのロックを解除する。このときロックを解除したアクセラレータに対してデータ移動部332にデータの入出力を行わせていない場合、データスケジューラ331は後述の「入出力開始処理」を実施する。
また、データスケジューラ331はタスクスケジューラ321からサブタスクを新たに実行可能サブタスク記憶部362またはアクセラレータ実行可能サブタスク記憶部363に記憶した通知を受信し、データ移動部332にデータの入出力を行わせていないアクセラレータがある場合、それらのすべてのアクセラレータについて後述の「入出力開始処理」を実施する。
さらに、データスケジューラ331は、データ移動部332からサブタスクの入出力データの準備完了の通知を受信し、入出力データパーティションを保持するメモリ領域をメモリ管理テーブル35においてロックし、サブタスクを実行待ち状態とし、タスクスケジューラ321にサブタスクが実行待ち状態となったことを通知する。また、データスケジューラ331は、サブタスクの入出力データの準備を完了したアクセラレータに対し、次の入出力処理を行わせるための後述の「入出力開始処理」を実施する。
データスケジューラ331は、「入出力開始処理」として、データの入出力を行わせていないアクセラレータに対し、次の入出力の要求を行う。データスケジューラ331は、先読み判定部334を用いてアクセラレータに次に要求する入出力処理を決定する。
先読み判定部334がデータパーティションのスワップアウトを決定した場合、データスケジューラ331はアクセラレータが保持するデータパーティションの内、今後のDAGが含むサブタスクの処理で入力データパーティションとして使用しないデータパーティションを選択し、データ移動部332に当該データパーティションのメインメモリ4への退避指示を送信する。また、入力データパーティションとして使用しないデータパーティションが存在しない場合、データスケジューラ331は入力パーティションとして使用するデータパーティションの内、最近最も参照されなかったデータパーティションを選択し、データ移動部332にメインメモリ4への退避指示を送信する。最近最も参照されなかったデータパーティションの選択は、LRU(Least Recently Used)の基準に基づく管理方式であり、当該技術分野の技術者にとって一般的な知識である。なお、退避されるデータパーティションを保持するメモリ領域は、メモリ管理テーブル35によってロックされていないことが必要である。ロックされていないデータパーティションが存在しない場合、データスケジューラ331は何も行わない。
一方、先読み判定部334が決定した入出力処理がデータパーティションの準備指示の場合、データスケジューラ331は次回サブタスク判定部336を用いて当該アクセラレータに対して行わせる入出力データの準備の対象となるサブタスクを決定する。次回サブタスク判定部336が決定したサブタスクの入力データパーティションを当該アクセラレータがアクセラレータメモリに保持する場合、データスケジューラ331は入力データパーティションをロックする。また、データスケジューラ331は、当該アクセラレータが保持しない入力データパーティションの準備と出力データパーティションの確保をデータ移動部332に要求する。
さらに、データスケジューラ331はデータ移動部332からデータパーティションのメインメモリ4への退避の完了通知を受信し、退避が完了したアクセラレータに次のデータの入出力を行わせるために入出力開始処理を実行する。
先読み判定部334は、データスケジューラ331のために、アクセラレータに要求する入出力処理を決定する。先読み判定部334は、メモリ管理テーブル35を参照し、アクセラレータメモリの使用量がしきい値(例えば、アクセラレータメモリの容量の70%〜80%)以上であれば、データスケジューラ331にデータパーティションのスワップアウトを行わせる。一方、しきい値未満であれば、先読み判定部334は、データスケジューラ331にデータパーティションの準備を行わせる。
次回サブタスク判定部336は、データスケジューラ331のために、指定されたアクセラレータに対して次に入出力データの準備を行わせるサブタスクを指定する。次回サブタスク判定部336は、実行可能サブタスク記憶部362と、アクセラレータ実行可能サブタスク記憶部363と、データ管理テーブル34を参照し、入出力データの準備においてアクセラレータへのデータのI/Oが最小となるサブタスクを、次に入出力データを準備するサブタスクとして指定する。
具体的には、次回サブタスク判定部336は、アクセラレータのデータI/Oが最小となるサブタスクの選択の際、アクセラレータ実行可能サブタスク記憶部363の当該アクセラレータが該当する領域と、実行可能サブタスク記憶部362が記憶するサブタスクを全探索することで選択する。次回サブタスク判定部336は、探索するサブタスクにおいて、入力データパーティションに関しては指定されたアクセラレータメモリが保持しないデータパーティションをI/Oが必要なデータパーティションとしてそのデータ容量を総I/O容量にカウントする。また、次回サブタスク判定部336は、出力データパーティションに関しては、出力データパーティションのデータ容量を確保するとアクセラレータメモリの使用量がしきい値を超える場合、しきい値を超える分の容量を総I/O容量にカウントする。これは、サブタスクの入出力データの準備を行う場合、しきい値を超える分のデータ容量に当たるデータパーティションをアクセラレータから退避する必要があるからである。次回サブタスク判定部336は、各サブタスクについてカウントした総I/O容量が最小となるサブタスクを、アクセラレータのデータI/Oが最小となるサブタスクとして選択する。
データ移動部332は、データスケジューラ331からサブタスクの入出力データの準備と、入出力データの準備を行うアクセラレータの指定を受信し、入出力データの準備を行う。データ移動部332は、入力データパーティションに関しては、入力データパーティションを保持するメインメモリ4や他のアクセラレータから入力データパーティションをロードする。一方、データ移動部332は、入出力データパーティションに関しては、データパーティションを出力するために必要なメモリ領域を確保する。また、データ移動部332は、入出力データパーティションとそれらが使用するメモリ領域に関してメモリ管理テーブル35とデータ管理テーブル34が保持する関連情報を更新する。
さらに、データ移動部332はデータスケジューラ331からデータパーティションのメインメモリ4への退避の指示を受信し、指定されたデータパーティションをメインメモリ4に退避する。また、データ移動部332は、退避したデータパーティションとそれが使用するメモリ領域に関してメモリ管理テーブル35とデータ管理テーブル34が保持する関連情報を更新する。
[動作]
次に、本実施形態の動作について、図8、図13および図17を参照して詳細に説明する。図17は、本実施形態に係るアクセラレータ制御装置1の動作を例示するフロー図である。
まず、予約APIと実行APIを用いて作成されたユーザプログラム21が実行される(ステップA1)。
ユーザプログラム21が実行APIを呼び出すと(ステップA2のYes)、DAG作成部22は、それまでに生成したDAGを通知する処理に移行する。
一方、実行API呼び出しでない場合(ステップA2のNo)、DAG作成部22は予約API呼び出しか否かを確認する(ステップA3)。
予約API呼び出しである場合(ステップA3のYes)、DAG作成部22は予約APIで指定されたタスクとデータをそれまで生成したDAGに追加する(ステップA4)。
次に、ユーザプログラム21が終了する場合(ステップA5のYes)、ユーザプログラム21の実行は完了する。
一方、ユーザプログラム21が終了しない場合(ステップA5のNo)、ステップA1に戻り、ユーザプログラム21の実行が継続される。
実行APIが呼び出された場合(ステップA2のYes)、DAG作成部22は、必要であればDAGに最後のタスクとデータを追加し、DAGをプログラム解析部31に通知する(ステップA6)。
プログラム解析部31は、DAGを受信し、DAGを構成するタスクを個別に分解する。次に、プログラム解析部31は、各サブタスクの実行をタスク処理部32に要求する(ステップA7)。要求されたサブタスクの実行は、データパーティションの単位で行う。例えば、図11に示すタスク71では、タスク71がサブタスク71−1とサブタスク71−2の2つから構成されるため、2個の個別のタスクがプログラム解析部31により生成され、タスク処理部32に要求される。なお、個別のデータパーティションに対するタスクをサブタスクと呼ぶ代わりに、単にタスクとも呼ぶ。
タスクスケジューラ321は、次のサブタスクの実行に必要な入力データと出力データのメモリ領域をデータ管理部33に要求する(ステップA8)。
データスケジューラ331は、データ管理テーブル34を参照し、要求されたデータのスワップフラグが「1」にセットされていなければ、データが準備完了であると判断する(ステップA9のYes)。そして、データスケジューラ331は入力データが使用するメモリページのメモリ管理テーブル35の該当するエントリのロックフラグをセットするようにデータ移動部332に要求する。
一方、要求されたデータのスワップフラグが「1」にセットされている場合(ステップA9のNo)、タスクスケジューラ321は、メモリ管理テーブル35を参照し、メインメモリ4に退避されたデータを収容するために十分なメモリ空き領域を保持するアクセラレータが存在するとき、そのアクセラレータに入力データをロードするようにデータ移動部332に要求する。データ移動部332は、指定されたアクセラレータに入力データをロードし、データ管理テーブル34の該当するデータのスワップフラグ、アクセラレータ番号、ページ番号を更新する(ステップA10)。また、データスケジューラ331は、メモリ管理テーブル35において、ロードしたデータが使用するページについて、使用中フラグ、データ番号、および、パーティション番号を更新する。また、データスケジューラ331は、メモリ管理テーブル35においてロックフラグを「1」にセットする。
一方、メインメモリ4に退避されたデータを収容するために十分なメモリ空き領域を保持するアクセラレータが存在しない場合、データスケジューラ331はメモリ管理テーブル35を参照し、ロックフラグがセットされていないページを使用しているデータを選択し、メインメモリ4に退避するようにデータ移動部332に要求する。データ移動部332は指定されたデータを退避し、データ管理テーブル34におけるスワップフラグとアクセラレータ番号とページ番号を更新する。データがメインメモリ4に退避されると、そのデータのアクセラレータ番号とページ番号は無効となる。データスケジューラ331は、入力データをアクセラレータにロードするために必要なメモリ領域が空くまで、データ退避の要求を継続する。入力データをロードするためのメモリが空きになると、その後のデータをロードする処理は、メインメモリ4に退避されたデータを収容するために十分なメモリ空き領域を保持するアクセラレータが存在する場合のデータのロードの処理と同様である。
次に、データスケジューラ331は、要求されたサブタスクの出力メモリ領域がサブタスクの入力データを保持するアクセラレータに確保可能か否かを確認する(ステップA11)。ここで、空きメモリ領域が十分である場合、確保可能と判断する(ステップA11のYes)。
一方、空きメモリ領域が十分でない場合(ステップA11のNo)、データスケジューラ331は、メモリ管理テーブル35を参照し、ロックフラグがセットされていないページを使用するデータを退避するようデータ移動部332に要求する。データ移動部332が指定されたデータを退避する動作(ステップA12)は、ステップA10においてデータを退避する場合の動作と同様である。
アクセラレータに出力データを収容するために十分なメモリ領域が空くと、データスケジューラ331は、データ移動部332に出力データのメモリを確保するように要求する(ステップA13)。
データ移動部332はメモリを確保し、出力データの該当するデータ管理テーブル34のエントリにおいてアクセラレータ番号とページ番号を記載する。また、使用しているページのメモリ管理テーブル35のロックフラグをセットする。データスケジューラ331は、入力データと出力データのメモリ領域がアクセラレータ上に用意されると、タスク処理部32にデータの用意完了を通知する(ステップA14)。
タスクスケジューラ321は、データ用意完了通知を受け、タスク実行部322にサブタスクの実行を要求する(ステップA15)。
実行するサブタスクの要求がユーザプログラム21により与えられたカーネル関数の実行である場合、タスク実行部322はデータを保持するアクセラレータを用いて入力データに対しカーネル関数を実行させ、出力メモリ領域に結果を出力させる。一方、実行するサブタスクの要求がデータのreadである場合、タスク実行部322はデータを保持するアクセラレータからデータを読み、タスクスケジューラ321に通知する。また、実行するサブタスクの要求がデータを付加するappendである場合、タスク実行部322はデータを保持するアクセラレータのメモリ領域に与えられたデータを書き込む。タスクスケジューラ321は、タスク実行部322によるサブタスクの実行が完了すると、データ管理部33にサブタスク完了を通知する(ステップA16)。
タスクスケジューラ321は、処理が完了した入力データと出力データについて、メモリ管理テーブル35におけるロックフラグを解除するとともに、出力データについてデータ管理テーブル34における該当エントリの計算済フラグをセットするように、データ移動部332に要求する(ステップA17)。データ移動部332は、要求された処理を行う。
タスクスケジューラ321は、プログラム解析部31から要求されたDAGのすべてのサブタスクが完了するまで(ステップA18のNo)、サブタスクに関するデータの要求とサブタスクの実行を継続する。
一方、DAGの処理が完了すると(ステップA18のYes)、ステップA1に戻る。
次に、タスクスケジューラ321およびデータスケジューラ331の動作のうちの、サブタスク記憶部36が保持する情報に基づく動作について説明する。
図18は、タスクスケジューラ321とデータスケジューラ331の詳細な動作を例示するシーケンス図である。
図18を参照すると、タスクスケジューラ321は、プログラム解析部31からサブタスクの実行要求を受けると、サブタスクの中でDAGの一番上流のサブタスクを実行可能サブタスク記憶部362に記憶し、それ以外のサブタスクを実行不可能サブタスク記憶部361に記憶する(ステップB1)。タスクスケジューラ321は、実行可能サブタスク記憶部362にサブタスクを記憶したことをデータスケジューラ331に通知する(ステップB2)。
データスケジューラ331はタスクスケジューラ321からサブタスクを新たに実行可能サブタスク記憶部362に記憶した通知を受信し、データ移動部332にデータの入出力を行わせていないアクセラレータがある場合、それらのすべてのアクセラレータについて「入出力開始処理」を実施する(ステップB3)。
また、データスケジューラ331は、データ移動部332からサブタスクの入出力データの準備完了の通知を受信し、入出力データパーティションを保持するメモリ領域をメモリ管理テーブル35においてロックしてサブタスクを実行待ち状態とし(ステップB4)、タスクスケジューラ321にサブタスクが実行待ち状態となった旨を通知する(ステップB5)。さらに、データスケジューラ331は、サブタスクの入出力データの準備を完了したアクセラレータに対し、次の入出力処理を行わせるための「入出力開始処理」を実施する(ステップB6)。
タスクスケジューラ321は入出力データの準備が完了し実行待ちになったサブタスクと、実行を待っているアクセラレータの識別子の通知をデータスケジューラ331から受信し、タスク実行部322に通知されたサブタスクを通知されたアクセラレータで実行するように要求する(ステップB7)。
また、タスクスケジューラ321は、タスク実行部322からサブタスクの実行が完了し実行完了状態になったとの通知を受信し、サブタスクの入力データと出力メモリ領域のロックを解除するようデータスケジューラ331に通知する(ステップB8)。データスケジューラ331は、タスクスケジューラ321からサブタスクの実行完了通知を受信し、サブタスクの入出力データパーティションのロックを解除する(ステップB9)。
さらに、タスクスケジューラ321は、実行が完了したサブタスクが生じたことにより、実行不可能サブタスク記憶部361からアクセラレータ実行可能サブタスク記憶部363に移動すべきサブタスクと、アクセラレータ実行可能サブタスク記憶部363から実行可能サブタスク記憶部362に移動すべきサブタスクを探索して移動させる(ステップB10)。また、タスクスケジューラ321はアクセラレータ実行可能サブタスク記憶部363と実行可能サブタスク記憶部362にサブタスクを移動させたことを、データスケジューラ331に通知する(ステップB11)。
データスケジューラ331はタスクスケジューラ321からサブタスクを新たに実行可能サブタスク記憶部362またはアクセラレータ実行可能サブタスク記憶部363に記憶した通知を受信し(ステップB11)、データ移動部332にデータの入出力を行わせていないアクセラレータがある場合、それらのすべてのアクセラレータについて「入出力開始処理」を実施する(ステップB12)。
図19は、データスケジューラ331による上述の「入出力開始処理」(図18のステップB3、B6、B12)を例示するフロー図である。図19を参照すると、データスケジューラ331は、先読み判定部334を用いてアクセラレータに次に要求する入出力処理を決定する(ステップC1)。
先読み判定部334がデータパーティションのスワップアウトを決定した場合(ステップC2のYes)、データスケジューラ331はアクセラレータが保持するデータパーティションの内、今後のDAGが含むサブタスクの処理で入力データパーティションとして使用しないデータパーティション、または、データスケジューラ331は入力データパーティションとして使用するデータパーティションの内、最近最も参照されなかったデータパーティションを選択し、データ移動部332にメインメモリ4への退避指示を送信する(ステップC3)。
一方、先読み判定部334が決定した入出力処理がデータパーティションの準備指示の場合(ステップC2のNo)、データスケジューラ331は次回サブタスク判定部336を用いて当該アクセラレータに対して行わせる入出力データの準備の対象となるサブタスクを決定する(ステップC4)。さらに、データスケジューラ331は、次回サブタスク判定部336が決定したサブタスクの入力データパーティションを当該アクセラレータがアクセラレータメモリに保持する場合、入力データパーティションをロックする。また、データスケジューラ331は、当該アクセラレータが保持しない入力データパーティションの準備と出力データパーティションの確保をデータ移動部332に要求する(ステップC5)。
図20は、先読み判定部334の動作(図19のステップC1)を例示するフロー図である。図20を参照すると、先読み判定部334は、メモリ管理テーブル35を参照する(ステップD1)。アクセラレータのメモリの使用量がしきい値以上である場合(ステップD2のYes)、先読み判定部334はデータスケジューラ331にデータパーティションのスワップアウトを行わせる(ステップD3)。一方、しきい値未満である場合(ステップD2のNo)、先読み判定部334はデータスケジューラ331にデータパーティションの準備を行わせる(ステップD4)。
図21は、次回サブタスク判定部336の動作(図19のステップC4)を例示するフロー図である。図21を参照すると、次回サブタスク判定部336は、アクセラレータ実行可能サブタスク記憶部363の当該アクセラレータが該当する領域と、実行可能サブタスク記憶部362が記憶するサブタスクを全探索して、1つのサブタスクを選択する(ステップE1)。
次回サブタスク判定部336は、選択したサブタスクをアクセラレータ上で実行する際に、アクセラレータメモリに対して必要とされる総I/O量を算出する。ここで、次回サブタスク判定部336は、総I/O量を
「アクセラレータにロードする入力データ量」+「アクセラレータからスワップアウトされるデータ量」
から算出する。
次回サブタスク判定部336は、入力データパーティションに関しては、指定されたアクセラレータメモリが保持しないデータパーティションをI/Oが必要なデータパーティションとし、そのデータ量を上式第1項の「アクセラレータにロードする入力データ量」にカウントする(ステップE2)。
また、次回サブタスク判定部336は、上式第2項の「アクセラレータからスワップアウトされるデータ量」を
「上式第1項としてロードされる入力データ量」+「出力領域としてアクセラレータメモリ上に確保すべき領域のサイズ」−「ロード先のアクセラレータメモリのしきい値までの空き容量」
から算出する(ステップE3)。一例として、しきい値までの空きメモリ容量を1GBとし、新たにアクセラレータにロードする入力データを500MBとし、確保する出力領域を1GBとした場合、上式第2項の「アクセラレータからスワップアウトされるデータ」量は、
500MB(ロードする入力データ) + 1GB(確保する出力領域) - 1GB(空き領域) = 500MB
となる。
次回サブタスク判定部336は、アクセラレータ実行可能サブタスク記憶部363の当該アクセラレータが該当する領域と、実行可能サブタスク記憶部362が記憶するすべてのサブタスクについて、上記のステップE1〜E3の処理を完了すると(ステップE4のYes)、カウントした総I/O量が最小となるサブタスクを、アクセラレータのデータI/Oが最小となるサブタスクとして選択する(ステップE5)。
本実施形態に係るアクセラレータ制御装置1によると、タスクスケジューラ321によるサブタスクの実行が行われる一方で、データスケジューラ331はアクセラレータメモリへのデータ入出力量が最小となるタスクを次のタスクとして選択し、選択したタスクに対するデータ入出力の準備を継続する。これにより、アクセラレータメモリとメインメモリ4とのデータの入出力を削減しつつ、同時にアクセラレータメモリとメインメモリ4との間のI/O帯域を有効に活用することが可能となる。したがって、本実施形態のアクセラレータ制御装置によるとアクセラレータメモリを有するアクセラレータを用いたタスクの処理において、データI/Oがボトルネックとなることを回避し、処理を高速化することが可能となる。
本実施形態では、1つのデータを複数のアクセラレータに分割して保持し、ユーザプログラムの処理を分割し、各データパーティションを保持するアクセラレータに処理を分配して行わせることで、アクセラレータへのデータロードコストを削減し、用いるアクセラレータ数に応じて処理時間を削減することが可能となる。
<実施形態2>
次に、第2の実施形態に係るアクセラレータ制御装置について説明する。本実施形態のアクセラレータ制御装置は、第1の実施形態のアクセラレータ制御装置1(図8〜図21)と同様の構成を有し、同様の動作を行うことから、差分についてのみ説明する。
第1の実施形態では、タスクスケジューラ321は、タスク実行部322からサブタスクの実行(図18のステップB7)が完了した旨の通知を受信したタイミングで、実行が完了したサブタスクが生じたことにより、実行不可能サブタスク記憶部361からアクセラレータ実行可能サブタスク記憶部363に移動すべきサブタスクと、アクセラレータ実行可能サブタスク記憶部363から実行可能サブタスク記憶部362に移動すべきサブタスクを探索して、サブタスクを移動させるものとした(図18のステップB10)。一方、本実施形態では、さらに、タスクスケジューラ321がデータスケジューラ331からサブタスクを実行待ち状態とした旨の通知を受けたタイミングで(図18のステップB5)、実行待ちのサブタスクが生じたことにより、実行不可能サブタスク記憶部361からアクセラレータ実行可能サブタスク記憶部363に移動すべきサブタスクを探索して、サブタスクを移動させる。また、タスクスケジューラ321はアクセラレータ実行可能サブタスク記憶部363にサブタスクを移動させたことをデータスケジューラ331に通知する。
さらに、実行不可能サブタスク記憶部361からアクセラレータ実行可能サブタスク記憶部363に移動すべきサブタスクの探索と移動を、タスクスケジューラ321ではなく、データスケジューラ331が行ってもよい。すなわち、データスケジューラ331は、入出力データパーティションをロックしたタイミングで(図18のステップB4)、実行待ちのサブタスクが生じたことにより、実行不可能サブタスク記憶部361からアクセラレータ実行可能サブタスク記憶部363に移動すべきサブタスクを探索して、サブタスクを移動させるようにしてもよい。
本実施形態によると、タスクスケジューラ321は、サブタスクが「実行完了」状態となるよりも前の「実行待ち」状態の時点において(図4参照)、当該サブタスクの完了によって実行が可能となる後段のサブタスクについても、アクセラレータ実行可能サブタスク記憶部363に追加する。このとき、データスケジューラ331は、タスクが「実行完了」状態となるよりも前の「実行待ち」状態の時点において、当該タスクの完了によって実行が可能となる後段のタスクについても、入出力データの準備を開始するタスクの候補とすることができる。したがって、本実施形態によると、データスケジューラ331は、第1の実施形態と比較してさらに早期に後段のサブタスクに対する入出力データの準備に着手することができる。よって、本実施形態によると、第1の実施形態と比較してアクセラレータメモリと外部メモリとの間のI/O(Input/Output)帯域をさらに有効利用することができ、メモリを有するアクセラレータを用いたタスクの処理をさらに高速化することが可能となる。
<実施形態3>
次に、第3の実施形態について説明する。本実施形態では、CPU(Central Processing Unit)とメモリを備えたコンピュータに対して、第1、第2の実施形態に係るアクセラレータ制御装置1の動作を行わせる。特に、CPUに対して、ユーザプログラム21、DAG(Directed Acyclic Graph)作成部22、プログラム解析部31、タスクスケジューラ321、タスク実行部322、データスケジューラ331、および、データ移動部332の機能を行わせる。一方、コンピュータのメモリを、データ管理テーブル34、メモリ管理テーブル35、サブタスク記憶部36、および、メインメモリ4として使用する。ここで、メモリとは、広義の記憶手段であり、半導体メモリおよび一般に二次記憶と呼ばれるハードディスクやフラッシュディスクを含む。また、アクセラレータはコンピュータのI/O(Input/Output)スロットに挿入する。あるいは、I/Oデバイス用のインターコネクションを用いてアクセラレータとコンピュータを接続することも可能である。
本発明は、一例として、1つ以上のアクセラレータを含む計算装置の処理高速化といった用途に適用することができる。
なお、上記特許文献の全開示内容は、本書に引用をもって繰り込み記載されているものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし、選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
1、10 アクセラレータ制御装置
3 アクセラレータ制御部
4 メインメモリ
8 情報処理装置
11 タスク記憶部
12 データスケジューラ
13 タスクスケジューラ
14 第1の記憶部
15 第2の記憶部
21 ユーザプログラム
22 DAG作成部
31 プログラム解析部
32 タスク処理部
33 データ管理部
34 データ管理テーブル
35 メモリ管理テーブル
36 サブタスク記憶部
51〜53 アクセラレータ
61〜66 データ
61−1〜61−4、62−1〜62−4、63−1〜63−4 データパーティション
71〜74 タスク
71−1〜71−4、72−1〜72−4 サブタスク
81 共有メモリ
321 タスクスケジューラ
322 タスク実行部
331 データスケジューラ
332 データ移動部
334 先読み判定部
336 次回サブタスク判定部
361 実行不可能サブタスク記憶部
362 実行可能サブタスク記憶部
363 アクセラレータ実行可能サブタスク記憶部
511〜513 プロセッサ
521〜523 アクセラレータメモリ
821〜823 アクセラレータ

Claims (15)

  1. 実行可能なタスクを保持するタスク記憶部と、
    メモリを有するアクセラレータ上で実行するときの前記メモリへの入出力データ量が相対的に少ないタスクを、前記実行可能なタスクの中から選択し、選択したタスクに対する前記メモリにおけるデータ入出力の準備を前記アクセラレータに指示するデータスケジューラと、
    前記選択されたタスクを実行するように前記アクセラレータに指示し、前記選択されたタスクの完了により実行可能となるタスクを前記タスク記憶部に追加するタスクスケジューラと、を備え、
    前記データスケジューラは、前記メモリの使用状況に応じて、前記タスク記憶部が保持する実行可能なタスクの中から次のタスクの選択と、選択した次のタスクに対するデータ入出力の準備を継続する、
    ことを特徴とするアクセラレータ制御装置。
  2. 前記データスケジューラは、前記アクセラレータ上で実行するときに前記メモリへロードすべき入力データ量と、前記メモリから外部のメモリに退避すべき出力データ量の和が相対的に少ないタスクを、前記タスク記憶部が保持するタスクの中から選択する、
    請求項1に記載のアクセラレータ制御装置。
  3. 前記データスケジューラは、前記メモリの使用量が所定のしきい値未満の場合、次のタスクの選択と、選択した次のタスクに対するデータ入出力の準備を継続する、
    請求項1または2に記載のアクセラレータ制御装置。
  4. 前記タスク記憶部は、
    実行可能なタスクであって実行先のアクセラレータが制限されないタスクを保持する第1の記憶部と、
    実行先のアクセラレータが制限されたタスクを保持する第2の記憶部と、を有し、
    前記データスケジューラは、アクセラレータ上で実行するときのメモリへの入出力データ量が相対的に少ないタスクを、前記第2の記憶部が保持するタスクであって実行先が該アクセラレータに制限されたタスク、および、前記第1の記憶部が保持するタスクの中から選択する、
    請求項1ないし3のいずれか1項に記載のアクセラレータ制御装置。
  5. 前記第1の記憶部は、最上流のタスク、または、上流のすべてのタスクの実行が完了したタスクを保持し、
    前記第2の記憶部は、実行先のアクセラレータが制限されたタスクとして、上流のタスクの少なくとも1つが該アクセラレータで実行待ちであり、かつ、上流の残りのすべてのタスクの実行が完了したタスクを保持する、
    請求項4に記載のアクセラレータ制御装置。
  6. 前記タスクスケジューラは、前記選択されたタスクの実行が完了した場合、前記第1および/または第2の記憶部が保持するタスクを更新する、
    請求項5に記載のアクセラレータ制御装置。
  7. 前記データスケジューラまたは前記タスクスケジューラは、前記選択されたタスクに対するデータ入出力の準備が完了した場合、第2の記憶部が保持するタスクを更新する、
    請求項5または6に記載のアクセラレータ制御装置。
  8. メモリと、アクセラレータと、を備えるアクセラレータ制御装置を制御する方法であり、
    実行可能なタスクを記憶部に保持するステップと、
    メモリを有するアクセラレータ上で実行するときの前記メモリへの入出力データ量が相対的に少ないタスクを、前記実行可能なタスクの中から選択し、選択したタスクに対する前記メモリにおけるデータ入出力の準備を前記アクセラレータに指示するステップと、
    前記選択されたタスクを実行するように前記アクセラレータに指示し、前記選択されたタスクの完了により実行可能となるタスクを前記記憶部に追加するステップと、
    前記メモリの使用状況に応じて、前記記憶部が保持する実行可能なタスクの中から次のタスクの選択と、選択した次のタスクに対するデータ入出力の準備を継続するステップと、を含む、
    ことを特徴とするアクセラレータ制御方法。
  9. 前記アクセラレータ上で実行するときに前記メモリへロードすべき入力データ量と、前記メモリから外部のメモリに退避すべき出力データ量の和が相対的に少ないタスクを、前記記憶部が保持するタスクの中から選択する、
    請求項8に記載のアクセラレータ制御方法。
  10. 前記メモリの使用量が所定のしきい値未満の場合、次のタスクの選択と、選択した次のタスクに対するデータ入出力の準備を継続する、
    請求項8または9に記載のアクセラレータ制御方法。
  11. 実行可能なタスクであって実行先のアクセラレータが制限されない第1のタスクを前記記憶部に保持するステップと、
    実行先のアクセラレータが制限された第2のタスクを前記記憶部に保持するステップと、を含み、
    アクセラレータ上で実行するときのメモリへの入出力データ量が相対的に少ないタスクは、前記第2のタスクであって実行先が該アクセラレータに制限されたタスク、および、前記第1のタスクの中から選択される、
    請求項8ないし10のいずれか1項に記載のアクセラレータ制御方法。
  12. 前記第1のタスクは、最上流のタスク、または、上流のすべてのタスクの実行が完了したタスクであり、
    前記第2のタスクは、実行先のアクセラレータが制限されたタスクであって、上流のタスクの少なくとも1つが該アクセラレータで実行待ちであり、かつ、上流の残りのすべてのタスクの実行が完了したタスクである、
    請求項11に記載のアクセラレータ制御方法。
  13. 前記記憶部が保持する前記第1および/または第2のタスクは、前記選択されたタスクの実行が完了した場合に更新される、
    請求項12に記載のアクセラレータ制御方法。
  14. 前記記憶部が保持する前記第2のタスクは、前記選択されたタスクに対するデータ入出力の準備が完了した場合に更新される、
    請求項11または12に記載のアクセラレータ制御方法。
  15. 実行可能なタスクを記憶部に保持する処理と、
    メモリを有するアクセラレータ上で実行するときの前記メモリへの入出力データ量が相対的に少ないタスクを、前記実行可能なタスクの中から選択し、選択したタスクに対する前記メモリにおけるデータ入出力の準備を前記アクセラレータに指示する処理と、
    前記選択されたタスクを実行するように前記アクセラレータに指示し、前記選択されたタスクの完了により実行可能となるタスクを前記記憶部に追加する処理と、
    前記メモリの使用状況に応じて、前記記憶部が保持する実行可能なタスクの中から次のタスクの選択と、選択した次のタスクに対するデータ入出力の準備を継続する処理と、をコンピュータに実行させる、
    ことを特徴とするプログラム。
JP2017563868A 2016-01-29 2017-01-27 アクセラレータ制御装置、アクセラレータ制御方法およびプログラム Active JP6897574B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016015352 2016-01-29
JP2016015352 2016-01-29
PCT/JP2017/003028 WO2017131187A1 (ja) 2016-01-29 2017-01-27 アクセラレータ制御装置、アクセラレータ制御方法およびプログラム

Publications (2)

Publication Number Publication Date
JPWO2017131187A1 JPWO2017131187A1 (ja) 2018-11-15
JP6897574B2 true JP6897574B2 (ja) 2021-06-30

Family

ID=59397956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017563868A Active JP6897574B2 (ja) 2016-01-29 2017-01-27 アクセラレータ制御装置、アクセラレータ制御方法およびプログラム

Country Status (3)

Country Link
US (1) US10831547B2 (ja)
JP (1) JP6897574B2 (ja)
WO (1) WO2017131187A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180150256A1 (en) * 2016-11-29 2018-05-31 Intel Corporation Technologies for data deduplication in disaggregated architectures
US11005771B2 (en) 2017-10-16 2021-05-11 Mellanox Technologies, Ltd. Computational accelerator for packet payload operations
US11502948B2 (en) 2017-10-16 2022-11-15 Mellanox Technologies, Ltd. Computational accelerator for storage operations
US10841243B2 (en) 2017-11-08 2020-11-17 Mellanox Technologies, Ltd. NIC with programmable pipeline
US10708240B2 (en) 2017-12-14 2020-07-07 Mellanox Technologies, Ltd. Offloading communication security operations to a network interface controller
US10877766B2 (en) * 2018-05-24 2020-12-29 Xilinx, Inc. Embedded scheduling of hardware resources for hardware acceleration
US10705993B2 (en) 2018-11-19 2020-07-07 Xilinx, Inc. Programming and controlling compute units in an integrated circuit
US10824469B2 (en) * 2018-11-28 2020-11-03 Mellanox Technologies, Ltd. Reordering avoidance for flows during transition between slow-path handling and fast-path handling
US11184439B2 (en) 2019-04-01 2021-11-23 Mellanox Technologies, Ltd. Communication with accelerator via RDMA-based network adapter
JP7370158B2 (ja) * 2019-04-03 2023-10-27 株式会社Preferred Networks 情報処理装置および情報処理方法
CN110032453B (zh) * 2019-04-19 2022-05-03 上海兆芯集成电路有限公司 用以任务调度与分配的处理系统及其加速方法
WO2021195949A1 (zh) * 2020-03-31 2021-10-07 华为技术有限公司 一种调度硬件加速器的方法及任务调度器
WO2021210123A1 (ja) * 2020-04-16 2021-10-21 日本電信電話株式会社 スケジューリング方法、スケジューラ、gpuクラスタシステムおよびプログラム
IL276538B2 (en) 2020-08-05 2023-08-01 Mellanox Technologies Ltd A cryptographic device for data communication
CN114095153A (zh) 2020-08-05 2022-02-25 迈络思科技有限公司 密码数据通信装置
US11386034B2 (en) 2020-10-30 2022-07-12 Xilinx, Inc. High throughput circuit architecture for hardware acceleration
US11934658B2 (en) 2021-03-25 2024-03-19 Mellanox Technologies, Ltd. Enhanced storage protocol emulation in a peripheral device
US11934333B2 (en) 2021-03-25 2024-03-19 Mellanox Technologies, Ltd. Storage protocol emulation in a peripheral device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060112388A1 (en) * 2004-11-22 2006-05-25 Masaaki Taniguchi Method for dynamic scheduling in a distributed environment
JP2008152470A (ja) 2006-12-15 2008-07-03 Hitachi Ltd データ処理システム及び半導体集積回路
JP5810918B2 (ja) 2009-12-24 2015-11-11 日本電気株式会社 スケジューリング装置、スケジューリング方法及びプログラム
JP2013025392A (ja) 2011-07-15 2013-02-04 Nec Corp 情報処理装置、データ配置方法及びプログラム

Also Published As

Publication number Publication date
WO2017131187A1 (ja) 2017-08-03
US10831547B2 (en) 2020-11-10
JPWO2017131187A1 (ja) 2018-11-15
US20190026157A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP6897574B2 (ja) アクセラレータ制御装置、アクセラレータ制御方法およびプログラム
US11550627B2 (en) Hardware accelerated dynamic work creation on a graphics processing unit
US9928109B2 (en) Method and system for processing nested stream events
US9996394B2 (en) Scheduling accelerator tasks on accelerators using graphs
JP4712876B2 (ja) 並列プロセッサ方法と装置
US9535756B2 (en) Latency-hiding context management for concurrent distributed tasks in a distributed system
US20170344398A1 (en) Accelerator control device, accelerator control method, and program storage medium
US8359588B2 (en) Reducing inter-task latency in a multiprocessor system
JP6724908B2 (ja) アクセラレータ制御装置、アクセラレータ制御方法およびプログラム
EP2770430A1 (en) System and method for scheduling atomic jobs in a multi-core processor to avoid processing jobs of the same atomicity in parallel
JP5158576B2 (ja) 入出力制御システム、入出力制御方法、及び、入出力制御プログラム
WO2016208178A1 (ja) アクセラレータ制御装置、アクセラレータ制御方法および記憶媒体
JP6156379B2 (ja) スケジューリング装置、及び、スケジューリング方法
JP2022079764A (ja) 同期制御システムおよび同期制御方法
Suzuki et al. Victream: Computing framework for out-of-core processing on multiple GPUs
JP7217341B2 (ja) プロセッサおよびレジスタの継承方法
JP7014173B2 (ja) 分散処理システム
US9378062B2 (en) Interface between a resource manager and a scheduler in a process
US9384063B2 (en) Eliding synchronization in a concurrent data structure
US20230010895A1 (en) Information processing apparatus, information processing method, and computer-readable recording medium storing information processing program
US20240069965A1 (en) Systems and methods for executing compute functions
JP6724380B2 (ja) 繰り返し処理制御システム、繰り返し処理制御方法及びプログラム
JP2023046376A (ja) 制御方法、処理サーバ及びプログラム
JP6303584B2 (ja) データ処理装置、計算機システム、データ処理方法およびデータ処理プログラム
CN117149398A (zh) 一种内存分配的方法和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R150 Certificate of patent or registration of utility model

Ref document number: 6897574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150