JP6896255B2 - Heat siphon - Google Patents

Heat siphon Download PDF

Info

Publication number
JP6896255B2
JP6896255B2 JP2019001074A JP2019001074A JP6896255B2 JP 6896255 B2 JP6896255 B2 JP 6896255B2 JP 2019001074 A JP2019001074 A JP 2019001074A JP 2019001074 A JP2019001074 A JP 2019001074A JP 6896255 B2 JP6896255 B2 JP 6896255B2
Authority
JP
Japan
Prior art keywords
heat
main pipe
working fluid
pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019001074A
Other languages
Japanese (ja)
Other versions
JP2020112277A (en
Inventor
山口 博司
博司 山口
達夫 川口
達夫 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKURA SEIYUSHO CO. LTD.
Doshisha
Original Assignee
SAKURA SEIYUSHO CO. LTD.
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKURA SEIYUSHO CO. LTD., Doshisha filed Critical SAKURA SEIYUSHO CO. LTD.
Priority to JP2019001074A priority Critical patent/JP6896255B2/en
Publication of JP2020112277A publication Critical patent/JP2020112277A/en
Application granted granted Critical
Publication of JP6896255B2 publication Critical patent/JP6896255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Description

本発明は、主として地熱の抽出に用いる熱サイフォンに関する。 The present invention relates mainly to thermal siphons used for geothermal extraction.

熱サイフォンはヒートパイプとも呼ばれ、真空脱気した密閉管の内部に、作動流体として水やアルコール等の凝縮性の流体を封入し、その密閉管を鉛直方向に立設したものである。そして、密閉管の下端部側を外部から熱を与える吸熱部とし、かつ上端部側を、熱を奪う放熱部としている。 A heat siphon is also called a heat pipe, in which a condensable fluid such as water or alcohol is sealed as a working fluid inside a vacuum degassed closed pipe, and the closed pipe is erected in the vertical direction. The lower end side of the closed tube is an endothermic part that gives heat from the outside, and the upper end side is a heat dissipation part that takes heat away.

熱サイフォンは、吸熱部に与えられた熱によって作業流体が蒸発し、その蒸気が放熱部まで上昇した後に放熱・凝縮することにより、作動流体の潜熱として熱を輸送する。 In the thermal siphon, the working fluid evaporates due to the heat given to the endothermic portion, and the vapor rises to the heat radiating portion and then dissipates and condenses to transport heat as latent heat of the working fluid.

このように熱サイフォンは、下から上への熱輸送を、動力を用いることなく行うことができるため、高温の地熱を地上に抽出する装置等に採用され、その熱は冷暖房や融雪に利用されている。 In this way, heat siphons can transport heat from bottom to top without using power, so they are used in devices that extract high-temperature geothermal heat to the ground, and the heat is used for heating and cooling and melting snow. ing.

特開平8-327259号公報Japanese Unexamined Patent Publication No. 8-327259

上述した熱サイフォンは、地下100m〜300mの地熱帯に向けて掘られた掘削孔に密閉管を挿入し、下端部で地熱によって加熱され蒸発した作動流体が地上側の端部に移動し、そこで放熱することによって地熱を抽出している(特許文献1参照)。 In the above-mentioned thermal siphon, a closed pipe is inserted into an excavation hole dug 100 m to 300 m underground toward the tropics, and the working fluid heated and evaporated by geothermal heat at the lower end moves to the end on the ground side, where Geothermal heat is extracted by radiating heat (see Patent Document 1).

しかし、従来の熱サイフォンでは、密閉管が長尺であったり熱源の温度が低かったりすると、作動流体の蒸気の上昇が十分に行われないために、熱輸送効率が低下するという問題があった。 However, in the conventional heat siphon, if the closed tube is long or the temperature of the heat source is low, the steam of the working fluid does not rise sufficiently, so that there is a problem that the heat transport efficiency is lowered. ..

本発明は、このような従来の問題点に鑑みてなされたもので、簡単な構成を付加することで高い熱輸送効率を実現できる熱サイフォンを提供することを目的とする。 The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a thermal siphon capable of realizing high heat transfer efficiency by adding a simple configuration.

上述の目的を達成するために、本発明に係る熱サイフォンは、
下端部を熱源に挿入した状態で略鉛直方向に設置され、かつ中空部に凝縮性の作業流体および非凝縮性のガスが封入された有底の主管と、
前記主管の上端部に、主管の開口を覆うように連結された熱交換器と、
前記熱交換器によって凝縮され、液化した作動流体を、前記主管の下方に形成された孔を通して管内に戻す液戻し管と、
前記主管の中空部に、当該主管と間隔を隔てて設置され、かつ上端部が前記熱交換器内に開放され、下端部が前記主管の底部に溜まった作動流体に接しない位置に保持された内管と、を備えたことを特徴とする。
In order to achieve the above object, the thermal siphon according to the present invention
A bottomed main pipe that is installed in a substantially vertical direction with the lower end inserted in the heat source, and in which a condensable working fluid and a non-condensable gas are sealed in the hollow part.
A heat exchanger connected to the upper end of the main pipe so as to cover the opening of the main pipe.
A liquid return pipe that returns the working fluid condensed and liquefied by the heat exchanger to the inside of the pipe through a hole formed below the main pipe.
It was installed in the hollow portion of the main pipe at a distance from the main pipe, the upper end was opened in the heat exchanger, and the lower end was held at a position not in contact with the working fluid accumulated in the bottom of the main pipe. It is characterized by having an inner tube.

ここで、前記熱交換器には、チューブを介して蓄熱機およびポンプが接続されており、当該ポンプによって前記チューブ内を循環する冷媒により、前記作動流体によって熱源から輸送された熱を前記蓄熱機に蓄えることが好ましい。 Here, a heat storage device and a pump are connected to the heat exchanger via a tube, and the heat transferred from the heat source by the working fluid by the refrigerant circulated in the tube by the pump is used in the heat storage device. It is preferable to store in.

また前記作動流体として水を用い、かつ前記非凝縮性のガスとして空気を用いることが好ましい。 Further, it is preferable to use water as the working fluid and air as the non-condensable gas.

また前記熱交換器として、円筒型の筐体の中空部に螺旋状のチューブが収容されたシェル&チューブ型の熱交換器を用いることが好ましい。 Further, as the heat exchanger, it is preferable to use a shell & tube type heat exchanger in which a spiral tube is housed in a hollow portion of a cylindrical housing.

また前記主管の上端部は、前記熱交換器の筐体との連結部から上方に突出して、当該主管と前記筐体との間に溝が形成され、当該溝に溜まった作動流体は、前記筐体の底部に形成された注入口から前記液戻し管に注入されることが好ましい。 Further, the upper end portion of the main pipe projects upward from the connecting portion with the housing of the heat exchanger, a groove is formed between the main pipe and the housing, and the working fluid accumulated in the groove is the said. It is preferable that the fluid is injected into the liquid return pipe from an injection port formed at the bottom of the housing.

本発明に係る熱サイフォンは、蒸発管に二重円管構造を採用すると共に、作動流体以外に非凝縮性のガス(空気または不活性ガス)を管内に封入している。そして非凝縮性のガスを管内で循環させることによって作動流体の蒸気の上昇を促進し、結果として、従来の熱サイフォンと比較して、地熱を抽出する際の熱輸送効率を大幅に向上させている。 The thermal siphon according to the present invention adopts a double circular tube structure for the evaporation tube and encloses a non-condensable gas (air or an inert gas) in the tube in addition to the working fluid. And by circulating the non-condensable gas in the pipe, it promotes the rise of the vapor of the working fluid, and as a result, the heat transport efficiency at the time of extracting geothermal heat is greatly improved as compared with the conventional thermal siphon. There is.

本発明の実施の形態に係る熱サイフォンの全体構成を示す図である。It is a figure which shows the whole structure of the thermal siphon which concerns on embodiment of this invention. 断熱部に単一円管構造または二重円管構造を採用した熱サイフォンにおける作動流体と蒸気の流れを説明する概略断面図である。It is schematic cross-sectional view explaining the flow of working fluid and steam in a thermal siphon which adopted the single circular tube structure or the double circular tube structure in the heat insulating part. 断熱部に単一円管構造または二重円管構造を採用した熱サイフォンの熱輸送効率の実験結果を示すグラフである。It is a graph which shows the experimental result of the heat transport efficiency of the heat siphon which adopted the single circular tube structure or the double circular tube structure in the heat insulating part.

以下、本発明の実施の形態に係る熱サイフォンについて、図面を参照して説明する。 Hereinafter, the thermal siphon according to the embodiment of the present invention will be described with reference to the drawings.

<熱サイフォンの構成と機能>
図1に、本実施の形態に係る熱サイフォンの基本的な構成を示す。熱サイフォン1は、蒸発管2、熱交換器3および液戻し管4で構成され、熱交換器3には蓄熱機5およびポンプ6が接続されている。図中、蒸発管2および熱交換器3は、管の軸心を通る平面で切断した断面を示している。
<Structure and function of thermal siphon>
FIG. 1 shows the basic configuration of the thermal siphon according to the present embodiment. The heat siphon 1 is composed of an evaporation pipe 2, a heat exchanger 3, and a liquid return pipe 4, and a heat storage device 5 and a pump 6 are connected to the heat exchanger 3. In the figure, the evaporation tube 2 and the heat exchanger 3 show a cross section cut in a plane passing through the axis of the tube.

蒸発管2は、下端部を地中の熱源に挿入した状態で略鉛直方向に設置された長尺・有底の主管21と、主管21の中空部に、円筒の軸心を一致するように収容された内管22とで構成されている。また主管21の中空部には作動流体WFが封入されている。主管21は、基本的に鉛直方向に設置されるが、若干傾いていても熱サイフォンの機能に支障が生じることはない。 The evaporation pipe 2 has a long, bottomed main pipe 21 installed in a substantially vertical direction with the lower end inserted into a heat source in the ground, and a hollow portion of the main pipe 21 so that the axis of the cylinder coincides with the center of the cylinder. It is composed of a housed inner pipe 22. A working fluid WF is sealed in the hollow portion of the main pipe 21. The main pipe 21 is basically installed in the vertical direction, but even if it is slightly tilted, the function of the thermal siphon is not hindered.

主管21は複数の管を縦方向に連結して構成されており、接合部にはフランジ24が形成されている。内管22は、主管21の上端部において、図示しない冶具により主管21と軸心が一致する状態で支持されている。また当該冶具には、蒸気が通過できるように開口が設けられている。 The main pipe 21 is formed by connecting a plurality of pipes in the vertical direction, and a flange 24 is formed at the joint portion. The inner pipe 22 is supported at the upper end of the main pipe 21 by a jig (not shown) in a state where the axis coincides with the main pipe 21. Further, the jig is provided with an opening so that steam can pass through.

本実施の形態では、主管21として、耐熱性と強度の観点、更には軽量であることからアルミニウム製のパイプを用い、内管22として、断熱性の観点からポリカーボネート製のパイプを用いている。また、作動流体WFとして水を用いている。主管21として、重量の点で若干不利であるが、ステンレス製のパイプを用いてもよい。また内管22としてポリカーボネート製のパイプを用いたが、断熱性に優れた他の材質のパイプを用いてもよい。 In the present embodiment, an aluminum pipe is used as the main pipe 21 from the viewpoint of heat resistance and strength, and further because it is lightweight, and a polycarbonate pipe is used as the inner pipe 22 from the viewpoint of heat insulation. Further, water is used as the working fluid WF. As the main pipe 21, a stainless steel pipe may be used, although it is slightly disadvantageous in terms of weight. Further, although a polycarbonate pipe is used as the inner pipe 22, a pipe made of another material having excellent heat insulating properties may be used.

前述したように、熱サイフォン1は、通常の使用状態では、地中の熱源に届く長さの縦孔を掘り、その縦孔に蒸発管2を収容している。本実施の形態では、熱サイフォン1の性能を確認するため、熱源として主管21の底部の周囲にヒータ7を配置し、ヒータ7によって作動流体である水を加熱し蒸発させている。 As described above, in the normal use state, the heat siphon 1 digs a vertical hole having a length that reaches the heat source in the ground, and accommodates the evaporation pipe 2 in the vertical hole. In the present embodiment, in order to confirm the performance of the thermal siphon 1, a heater 7 is arranged around the bottom of the main pipe 21 as a heat source, and the heater 7 heats and evaporates water as a working fluid.

主管21の上端の開口部には、熱交換器3が取り付けられている。本実施の形態では、熱交換器3として、シェル&チューブ型の熱交換器を用いており、円筒型の筐体31の中空部に螺旋状の銅製チューブ33が収容されている。図に示すように、熱交換器3の中空部は蒸発管2の中空部と連結されており、かつ筐体31および蓋32によって密閉されている。 A heat exchanger 3 is attached to the opening at the upper end of the main pipe 21. In the present embodiment, a shell & tube type heat exchanger is used as the heat exchanger 3, and the spiral copper tube 33 is housed in the hollow portion of the cylindrical housing 31. As shown in the figure, the hollow portion of the heat exchanger 3 is connected to the hollow portion of the evaporation pipe 2 and is sealed by the housing 31 and the lid 32.

従来の熱サイフォンでは、主管21、熱交換器3の筐体31および蓋32で囲まれた空間には、非凝縮性ガスを真空脱気した後、作動流体を封入していたが、本実施の形態では、非凝縮性ガスである空気が、作動流体WFである水と共に封入されている。蒸発管2をヒータ7で加熱しない状態では、空気の圧力は大気圧と略等しい。 In the conventional heat siphon, the working fluid is sealed in the space surrounded by the main pipe 21, the housing 31 of the heat exchanger 3, and the lid 32 after vacuum degassing the non-condensable gas. In this form, air, which is a non-condensable gas, is sealed together with water, which is a working fluid WF. When the evaporation tube 2 is not heated by the heater 7, the air pressure is substantially equal to the atmospheric pressure.

熱交換器3のチューブ33は、蓋32に形成された孔を介して、蓄熱機5に接続されたチューブ51に連結されており、チューブ33および51を流れる冷媒は、ポンプ6の駆動力によって熱交換器3と蓄熱機5との間を循環する。 The tube 33 of the heat exchanger 3 is connected to the tube 51 connected to the heat storage device 5 through a hole formed in the lid 32, and the refrigerant flowing through the tubes 33 and 51 is driven by the driving force of the pump 6. It circulates between the heat exchanger 3 and the heat storage device 5.

本実施の形態では、冷媒として純水を用いており、熱交換器3のチューブ33を流れる純水は、主として内管22の中空部を上昇してきた水蒸気によって加熱された後、チューブ51内を流れて蓄熱機5に運ばれ、蓄熱機5内に熱を蓄える。 In the present embodiment, pure water is used as the refrigerant, and the pure water flowing through the tube 33 of the heat exchanger 3 is mainly heated by the steam rising in the hollow portion of the inner tube 22, and then inside the tube 51. It flows and is carried to the heat storage device 5, and stores heat in the heat storage device 5.

熱交換器3の筐体31の底面と主管21の下部側面との間には液戻し管4が取り付けられており、熱交換器3で冷却され、凝縮・液化した作動流体WFは、注入口41から注入され、液戻し管4を通って吐出口44から主管21に戻され、主管21の底部に溜まる。 A liquid return pipe 4 is attached between the bottom surface of the housing 31 of the heat exchanger 3 and the lower side surface of the main pipe 21, and the working fluid WF cooled by the heat exchanger 3 and condensed / liquefied is an injection port. It is injected from 41, returned to the main pipe 21 from the discharge port 44 through the liquid return pipe 4, and collects at the bottom of the main pipe 21.

液戻し管4の上部に設けられた調節弁42は、主管21に戻される作動流体WFの流量を調節する弁である。またタンク43は、蒸発管2内に収容される作動流体の量を調節するものであり、量を減らしたい場合には、タンク43から作動流体を外部に排出する。 The control valve 42 provided on the upper part of the liquid return pipe 4 is a valve that regulates the flow rate of the working fluid WF returned to the main pipe 21. Further, the tank 43 adjusts the amount of the working fluid accommodated in the evaporation pipe 2, and when it is desired to reduce the amount, the working fluid is discharged from the tank 43 to the outside.

熱サイフォン1の構成のうち、ヒータ7に囲まれた蒸発管2の下部は、一般に「蒸発部」と呼ばれ、ヒータ7によって作動流体WFを加熱・蒸発させ、蒸気を発生させる。 In the configuration of the thermal siphon 1, the lower part of the evaporation pipe 2 surrounded by the heater 7 is generally called an "evaporation part", and the heater 7 heats and evaporates the working fluid WF to generate steam.

熱サイフォン1の構成のうち蒸発管2の中間部は、一般に「断熱部」と呼ばれ、外周部を断熱材23で覆うことにより、蒸気によって輸送される熱が蒸発管2の外部に放出されるのを防止している。後に詳述するが、蒸発部においてヒータ7によって加熱され、蒸発した作動流体WFの蒸気は、主として内管22の中空部を通って断熱部を上昇し、熱交換器3に到達する。 Of the configuration of the thermal siphon 1, the intermediate portion of the evaporation pipe 2 is generally called a "heat insulating portion", and by covering the outer peripheral portion with the heat insulating material 23, the heat transported by steam is released to the outside of the evaporation pipe 2. It is prevented from flowing. As will be described in detail later, the vapor of the working fluid WF heated and evaporated by the heater 7 in the evaporation portion rises in the heat insulating portion mainly through the hollow portion of the inner pipe 22 and reaches the heat exchanger 3.

熱サイフォン1の構成のうち熱交換器3は、一般に「凝縮部」と呼ばれ、蒸気の熱を、チューブ32を流れる純水に移動させ、蓄熱機5まで輸送する。以下の説明では、必要に応じて上述した「蒸発部」「断熱部」および「凝縮部」を用いる。 Of the configuration of the heat siphon 1, the heat exchanger 3 is generally called a "condensing part", and transfers the heat of steam to pure water flowing through the tube 32 and transports it to the heat storage device 5. In the following description, the above-mentioned "evaporation part", "heat insulation part" and "condensation part" are used as necessary.

熱交換器3の中空部に到達した作動流体の蒸気は、純水によって冷却されたチューブ33に接触することによって凝縮・液化し、筐体31の底に溜まる。図1に示すように、主管21の上端部21aは、筐体31内に突き出ており、筐体31との間にリング状の溝34が形成されている。熱交換器3内で凝縮・液化した作動流体WFは溝34に溜まる。 The steam of the working fluid that has reached the hollow portion of the heat exchanger 3 is condensed and liquefied by coming into contact with the tube 33 cooled by pure water, and is accumulated at the bottom of the housing 31. As shown in FIG. 1, the upper end portion 21a of the main pipe 21 protrudes into the housing 31, and a ring-shaped groove 34 is formed between the main pipe 21 and the housing 31. The working fluid WF condensed and liquefied in the heat exchanger 3 collects in the groove 34.

図1に示すように、溝34の底には、液戻し管4の注入口41が形成されているため、筐体31の溝34に溜まった作動流体WFは、液戻し管4を通って下方に運ばれ、吐出口44から主管21内に戻される。 As shown in FIG. 1, since the injection port 41 of the liquid return pipe 4 is formed at the bottom of the groove 34, the working fluid WF accumulated in the groove 34 of the housing 31 passes through the liquid return pipe 4. It is carried downward and returned into the main pipe 21 from the discharge port 44.

なお、ヒータ7によって加熱・蒸発され、内管22の中空部を上昇する作動流体の蒸気の一部は、内管22の内周面に接触することによって冷やされ、凝縮・液化した後、重力によって液膜流となって主管21の底部に戻される。 A part of the vapor of the working fluid that is heated and evaporated by the heater 7 and rises in the hollow portion of the inner pipe 22 is cooled by coming into contact with the inner peripheral surface of the inner pipe 22, condensed and liquefied, and then gravity. It becomes a liquid film flow and is returned to the bottom of the main pipe 21.

<作動流体の流れ>
次に、図2を参照して、本発明の熱サイフォンにおける作動流体およびその蒸気の流れを、従来の熱サイフォンと比較して説明する。
<Flow of working fluid>
Next, with reference to FIG. 2, the working fluid and the flow of steam thereof in the thermal siphon of the present invention will be described in comparison with the conventional thermal siphon.

図2(a)は、断熱部に単一円管構造を採用した従来の熱サイフォンにおける作動流体の流れを示す概略断面図、図2(b)は、断熱部に二重円管構造を採用した本発明に係る熱サイフォンおける作動流体の流れを示す概略断面図である。図中、黒色の矢印は作動流体WFの流れを示し、白抜きの矢印は作動流体の蒸気および空気の流れを示す。 FIG. 2A is a schematic cross-sectional view showing the flow of working fluid in a conventional thermal siphon in which a single circular tube structure is adopted for the heat insulating portion, and FIG. 2B is a double circular tube structure adopted for the heat insulating portion. It is the schematic cross-sectional view which shows the flow of the working fluid in the thermal siphon which concerns on this invention. In the figure, black arrows indicate the flow of the working fluid WF, and white arrows indicate the flow of vapor and air of the working fluid.

図では、煩雑さを避けるため、熱交換器3内のチューブを省略している。また作動流体および蒸気の流れが見やすいように、蒸発管の鉛直方向の長さを極端に短く表示している。 In the figure, the tube in the heat exchanger 3 is omitted in order to avoid complication. In addition, the vertical length of the evaporation pipe is displayed extremely short so that the flow of working fluid and steam can be easily seen.

図2(b)に示す本発明に係る熱サイフォン1は、断熱部に二重円管構造を採用している点において、図2(a)に示す、断熱部に単一円管構造を採用した従来の熱サイフォン1Aと相違している。一方、熱サイフォン1および1Aの中空部には、共に非凝縮性のガスである空気と作動流体である水が封入されている。 The thermal siphon 1 according to the present invention shown in FIG. 2 (b) adopts a single circular tube structure for the heat insulating portion in that it adopts a double circular tube structure for the heat insulating portion. It is different from the conventional thermal siphon 1A. On the other hand, the hollow portions of the thermal siphons 1 and 1A are both filled with air, which is a non-condensable gas, and water, which is a working fluid.

最初に、図2(a)を参照して、断熱部に単一円管構造を採用した従来の熱サイフォン1Aにおける作動流体およびその蒸気の流れを説明する。従来の熱サイフォン1Aでは、有底の蒸発管2Aの上端を熱交換器3の筐体31で覆い、中空部に空気と水を封入している。 First, with reference to FIG. 2A, the working fluid and the flow of its vapor in the conventional thermal siphon 1A adopting a single circular tube structure for the heat insulating portion will be described. In the conventional heat siphon 1A, the upper end of the bottomed evaporation tube 2A is covered with the housing 31 of the heat exchanger 3, and air and water are sealed in the hollow portion.

ヒータ7によって加熱され、蒸発した水蒸気は蒸発管2Aの中空部を上昇して熱交換器3に到達する。そして熱交換器3のチューブ33に接触し、チューブ内を流れる純水によって冷却され、凝縮・液化する。液化した水は、筐体31底部の溝34に溜められた後、液戻し管4を通って蒸発管2Aの底部に戻され、再度、ヒータ7によって加熱される。 The water vapor heated and evaporated by the heater 7 rises in the hollow portion of the evaporation tube 2A and reaches the heat exchanger 3. Then, it comes into contact with the tube 33 of the heat exchanger 3, is cooled by the pure water flowing in the tube, and is condensed and liquefied. The liquefied water is stored in the groove 34 at the bottom of the housing 31, then returned to the bottom of the evaporation pipe 2A through the liquid return pipe 4, and is heated again by the heater 7.

なお、水蒸気の一部は蒸発管2Aの中空部を上昇する間に管の内周面に接触して冷やされ、凝縮・液化して水に戻った後、液膜流となって蒸発管2Aの底部まで戻る。 A part of the water vapor comes into contact with the inner peripheral surface of the evaporation tube 2A while ascending through the hollow portion of the evaporation tube 2A to be cooled, and after condensing and liquefying and returning to water, it becomes a liquid film flow and becomes an evaporation tube 2A. Return to the bottom of.

次に、図2(b)を参照して、断熱部に二重円管構造を採用した本発明に係る熱サイフォン1における作動流体およびその蒸気の流れを説明する。図1を用いて説明したように、本発明に係る熱サイフォン1では、蒸発管2の断熱部に、主管21内に内管22を配置した二重円管構造を採用すると共に、蒸発管2内に、作動流体WFである水と非凝縮性ガスである空気を封入している。 Next, with reference to FIG. 2B, the working fluid and the flow of steam thereof in the thermal siphon 1 according to the present invention in which the double circular tube structure is adopted for the heat insulating portion will be described. As described with reference to FIG. 1, in the thermal siphon 1 according to the present invention, a double circular pipe structure in which the inner pipe 22 is arranged in the main pipe 21 is adopted as the heat insulating portion of the evaporation pipe 2, and the evaporation pipe 2 is used. Water, which is a working fluid WF, and air, which is a non-condensable gas, are sealed therein.

更に、内管22の上端部は主管21の上端部より上方に位置して熱交換器4内に開放され、下端部は主管21の底部に溜まった作動流体(水)WFに接しない位置に保持されている。 Further, the upper end of the inner pipe 22 is located above the upper end of the main pipe 21 and is opened into the heat exchanger 4, and the lower end is positioned so as not to come into contact with the working fluid (water) WF accumulated in the bottom of the main pipe 21. It is held.

ヒータ3によって加熱され、蒸発した水蒸気は、大半が内管22の中空部を通って熱交換器3に到達する。そして熱交換器3のチューブ33に接触し(図1参照)、チューブ内を流れる純水によって冷却され、凝縮・液化する。液化した作動流体(水)WFは、筐体31の底部に形成されたリング状の溝34に溜められた後、液戻し管4を通って主管21の底部に戻され、再度、ヒータによって加熱される。 Most of the water vapor heated and evaporated by the heater 3 reaches the heat exchanger 3 through the hollow portion of the inner pipe 22. Then, it comes into contact with the tube 33 of the heat exchanger 3 (see FIG. 1), is cooled by the pure water flowing in the tube, and is condensed and liquefied. The liquefied working fluid (water) WF is stored in the ring-shaped groove 34 formed at the bottom of the housing 31, then returned to the bottom of the main pipe 21 through the liquid return pipe 4, and is heated again by the heater. Will be done.

熱交換器3の筐体31内の空気は、内管22内を上昇した蒸気に押され、白抜きの矢印で示すように、主管21と内管22との間隙を通って下降した後、作動流体の蒸気と共に内管22内を上昇し、主管21と内管22の間を循環する。 The air in the housing 31 of the heat exchanger 3 is pushed by the rising steam in the inner pipe 22, and as shown by the white arrow, descends through the gap between the main pipe 21 and the inner pipe 22, and then descends. It rises in the inner pipe 22 together with the steam of the working fluid and circulates between the main pipe 21 and the inner pipe 22.

上述したように、本発明に係る熱サイフォン1は、空気が蒸発管2の中空部を循環することによって蒸気の上昇が促進され、更に、主管21と内管22との間隙を還流する空気層による断熱効果が得られる。これに対し、従来の熱サイフォン1Aは、空気の循環による蒸気の上昇促進効果が得られない。結果として、本発明に係る熱サイフォン1は、従来の熱サイフォン1Aに比較して地熱抽出の熱輸送効率が向上する。 As described above, in the thermal siphon 1 according to the present invention, the air layer circulates in the hollow portion of the evaporation pipe 2 to promote the rise of steam, and further, the air layer recirculates in the gap between the main pipe 21 and the inner pipe 22. Insulation effect can be obtained. On the other hand, the conventional thermal siphon 1A does not have the effect of promoting the rise of steam due to the circulation of air. As a result, the heat siphon 1 according to the present invention improves the heat transport efficiency of geothermal extraction as compared with the conventional heat siphon 1A.

<熱輸送効率の比較>
図2(a)に示した従来の熱サイフォン1Aおよび図2(b)に示した本発明に係る熱サイフォン1について、それぞれ実験を行い、各熱サイフォンの熱輸送効率を算出した。その結果を図3のグラフに示す。
<Comparison of heat transport efficiency>
Experiments were conducted on the conventional thermal siphon 1A shown in FIG. 2 (a) and the thermal siphon 1 according to the present invention shown in FIG. 2 (b), and the heat transport efficiency of each thermal siphon was calculated. The result is shown in the graph of FIG.

図において、横軸は入熱量を示し、縦軸は熱輸送効率を示す。図中、実線は本発明に係る熱サイフォン1の熱輸送効率を示し、破線は従来の熱サイフォン1Aの熱輸送効率を示す。以下、熱輸送効率の算出方法について説明する。 In the figure, the horizontal axis shows the amount of heat input, and the vertical axis shows the heat transfer efficiency. In the figure, the solid line shows the heat transport efficiency of the heat siphon 1 according to the present invention, and the broken line shows the heat transport efficiency of the conventional heat siphon 1A. Hereinafter, a method for calculating the heat transport efficiency will be described.

熱サイフォンの熱輸送効率ηallは、下記(1)式で表される。

Figure 0006896255
The heat transport efficiency η all of the heat siphon is expressed by the following equation (1).
Figure 0006896255

(1)式において、qinは蒸発管の蒸発部における単位時間当たりの入熱量(W)を表し、下記(2)式を用いて算出する。

Figure 0006896255
ここで、Vはヒータの入力電圧(V)、Rはヒータの抵抗(Ω)、qlossはヒータの単位時間当たりの放熱量(W)を示す。 In the formula (1), q in represents the amount of heat input (W) per unit time in the evaporation part of the evaporation tube, and is calculated using the following formula (2).
Figure 0006896255
Here, V is the input voltage (V) of the heater, R is the resistance (Ω) of the heater, and q loss is the heat dissipation amount (W) per unit time of the heater.

そして単位時間当たりの放熱量qlossは下記(3)式を用いて算出する。

Figure 0006896255
ここで、λは、図示しないが、ヒータを取り巻くように配置された断熱材の熱伝導率(W/(m・K))、T1およびT2は、当該断熱材の内周側および外周側に設置された2つの熱電対で測定した温度(K)で、T1は内周側、T2は外周側の値を示す。またΔxは熱電対間の距離(m)、Aはヒータの外周面の表面積(m2)を示す。 Then, the heat dissipation amount q loss per unit time is calculated using the following equation (3).
Figure 0006896255
Here, although λ is not shown, the thermal conductivity (W / (m · K)) of the heat insulating material arranged so as to surround the heater, and T 1 and T 2 are the inner peripheral side and the outer peripheral side of the heat insulating material. The temperature (K) measured by two thermocouples installed on the side, T 1 indicates the value on the inner peripheral side, and T 2 indicates the value on the outer peripheral side. Further, Δx indicates the distance between thermocouples (m), and A indicates the surface area (m 2 ) of the outer peripheral surface of the heater.

また(1)式において、qoutは熱交換器での単位時間当たりの熱回収量(W)を表し、下記(4)式を用いて算出する。

Figure 0006896255
ここで、tは熱交換時間(s)、mは冷却水の流量(g/s)、cpは冷却水の比熱(J/(g・K))、T1は冷却水の入口温度(K)、T2は冷却水の出口温度(K)を示す。 Further, in the equation (1), q out represents the amount of heat recovered (W) per unit time in the heat exchanger, and is calculated using the following equation (4).
Figure 0006896255
Here, t is the heat exchange time (s), m is the flow rate of the cooling water (g / s), c p is the specific heat of the cooling water (J / (g · K)), and T 1 is the inlet temperature of the cooling water ( K) and T 2 indicate the outlet temperature (K) of the cooling water.

本実施の形態では、長さ400mmの熱交換器を含め、全長1760mm、直径52mm、厚さ2mmのアルミニウム製の主管を用いて、実験を行った。その際の冷却水の流量は約15mL、初期の冷却水の温度は20℃であった。 In this embodiment, an experiment was conducted using an aluminum main pipe having a total length of 1760 mm, a diameter of 52 mm, and a thickness of 2 mm, including a heat exchanger having a length of 400 mm. The flow rate of the cooling water at that time was about 15 mL, and the temperature of the initial cooling water was 20 ° C.

図3のグラフから明らかなように、破線で示した単一円管構造の従来の熱サイフォン1Aは、入熱量の低下に伴って熱輸送効率が低下しており、熱輸送効率も低い値を示している。これに対し、実線で示した本発明に係る二重円管構造の熱サイフォン1は、全般的に熱輸送効率が高く、また入熱量に対して安定した値を示している。この結果より、本発明に係る熱サイフォン1は、従来の熱サイフォン1Aに比較し、地熱抽出の熱輸送効率が大幅に向上していることがわかる。 As is clear from the graph of FIG. 3, in the conventional heat siphon 1A having a single circular tube structure shown by a broken line, the heat transport efficiency decreases as the amount of heat input decreases, and the heat transport efficiency also decreases. Shown. On the other hand, the heat siphon 1 having a double circular tube structure according to the present invention shown by a solid line generally has high heat transfer efficiency and shows a stable value with respect to the amount of heat input. From this result, it can be seen that the heat siphon 1 according to the present invention has significantly improved heat transport efficiency of geothermal extraction as compared with the conventional heat siphon 1A.

図3に示したグラフは、全長1.8m程度の小型の熱サイフォンを用い、かつ熱源としてヒータを用いたものであるが、断熱部に二重円管構造を採用した本発明に係る熱サイフォンは、断熱部に単一円管構造を採用した従来のものに比較して熱輸送効率が明らかに優れていることから、地下100m〜300mの地熱帯から地熱を抽出する場合にも、十分な効果が期待できる。 The graph shown in FIG. 3 uses a small heat siphon having a total length of about 1.8 m and a heater as a heat source. The heat siphon according to the present invention adopts a double circular tube structure for the heat insulating portion. Is clearly superior in heat transport efficiency compared to the conventional one that uses a single circular tube structure for the heat insulating part, so it is sufficient even when extracting geothermal heat from the geothermal 100m to 300m underground. The effect can be expected.

なお、本実施の形態では、上述した非凝縮性のガスとして、蒸発管に大気圧の空気を封入したが、窒素や、アルゴン等の不活性ガスを用いても同様の効果が得られる。またガスの圧力についても、低すぎる場合にはガス封入の効果が低下するが、適切な圧力のガスを封入すれば、大気圧の空気を封入した場合と同様の循環効果が得られる。 In the present embodiment, the evaporation tube is filled with atmospheric pressure air as the non-condensable gas described above, but the same effect can be obtained by using an inert gas such as nitrogen or argon. Further, when the gas pressure is too low, the effect of filling the gas is reduced, but if the gas having an appropriate pressure is filled, the same circulation effect as when the atmospheric pressure air is filled can be obtained.

1 熱サイフォン
2 蒸発管
3 熱交換器
4 液戻し管
5 蓄熱機
6 ポンプ
7 ヒータ
21 主管
22 内管
23 断熱材
24 フランジ
31 筐体
32 蓋
33、51 チューブ
34 溝
41 注入口
42 調節弁
43 タンク
44 吐出口
WF 作動流体
1 Heat siphon 2 Evaporation pipe 3 Heat exchanger 4 Liquid return pipe 5 Heat storage machine 6 Pump 7 Heater 21 Main pipe 22 Inner pipe 23 Insulation material 24 Flange 31 Housing 32 Lid 33, 51 Tube 34 Groove 41 Injection port 42 Control valve 43 Tank 44 Discharge port WF working fluid

Claims (5)

下端部を熱源に挿入した状態で略鉛直方向に設置され、かつ中空部に凝縮性の作業流体および非凝縮性のガスが封入された有底の主管と、
前記主管の上端部に、主管の開口を覆うように連結された熱交換器と、
前記熱交換器によって凝縮され、液化した作動流体を、前記主管の下方に形成された孔を通して管内に戻す液戻し管と、
前記主管の中空部に、当該主管と間隔を隔てて設置され、かつ上端部が前記熱交換器内に開放され、下端部が前記主管の底部に溜まった作動流体に接しない位置に保持された内管と、を備えたことを特徴とする熱サイフォン。
A bottomed main pipe that is installed in a substantially vertical direction with the lower end inserted in the heat source, and in which a condensable working fluid and a non-condensable gas are sealed in the hollow part.
A heat exchanger connected to the upper end of the main pipe so as to cover the opening of the main pipe.
A liquid return pipe that returns the working fluid condensed and liquefied by the heat exchanger to the inside of the pipe through a hole formed below the main pipe.
It was installed in the hollow portion of the main pipe at a distance from the main pipe, the upper end was opened in the heat exchanger, and the lower end was held at a position not in contact with the working fluid accumulated in the bottom of the main pipe. A heat siphon characterized by having an inner tube.
前記熱交換器には、チューブを介して蓄熱機およびポンプが接続されており、
当該ポンプによって前記チューブ内を循環する冷媒により、前記作動流体によって熱源から輸送された熱を前記蓄熱機に蓄える、請求項1に記載の熱サイフォン。
A heat storage device and a pump are connected to the heat exchanger via a tube.
The heat siphon according to claim 1, wherein the heat transferred from the heat source by the working fluid is stored in the heat storage device by the refrigerant circulating in the tube by the pump.
前記作動流体として水を用い、かつ前記非凝縮性のガスとして空気を用いる、請求項1または2に記載の熱サイフォン。 The thermal siphon according to claim 1 or 2, wherein water is used as the working fluid and air is used as the non-condensable gas. 前記熱交換器として、円筒型の筐体の中空部に螺旋状のチューブが収容されたシェル&チューブ型の熱交換器を用いる、請求項1乃至3のいずれかに記載の熱サイフォン。 The heat siphon according to any one of claims 1 to 3, wherein as the heat exchanger, a shell & tube type heat exchanger in which a spiral tube is housed in a hollow portion of a cylindrical housing is used. 前記主管の上端部は、前記熱交換器の筐体との連結部から上方に突出して、当該主管と前記筐体との間に溝が形成され、
当該溝に溜まった作動流体は、前記筐体の底部に形成された注入口から前記液戻し管に注入される、請求項4に記載の熱サイフォン。
The upper end of the main pipe projects upward from the connecting portion of the heat exchanger with the housing, and a groove is formed between the main pipe and the housing.
The thermal siphon according to claim 4, wherein the working fluid accumulated in the groove is injected into the liquid return pipe from an injection port formed at the bottom of the housing.
JP2019001074A 2019-01-08 2019-01-08 Heat siphon Active JP6896255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019001074A JP6896255B2 (en) 2019-01-08 2019-01-08 Heat siphon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019001074A JP6896255B2 (en) 2019-01-08 2019-01-08 Heat siphon

Publications (2)

Publication Number Publication Date
JP2020112277A JP2020112277A (en) 2020-07-27
JP6896255B2 true JP6896255B2 (en) 2021-06-30

Family

ID=71666896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019001074A Active JP6896255B2 (en) 2019-01-08 2019-01-08 Heat siphon

Country Status (1)

Country Link
JP (1) JP6896255B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139445A (en) * 1974-09-30 1976-04-02 Akihiro Saito Juryokunisakarau hiitopaipu
JPS59108066U (en) * 1982-07-26 1984-07-20 三菱電機株式会社 thermosiphon
JPS63143488A (en) * 1986-12-04 1988-06-15 Showa Alum Corp Heat pipe
JPH06257417A (en) * 1993-03-08 1994-09-13 Fujikura Ltd Heat pipe turbine
JPH0835786A (en) * 1994-07-22 1996-02-06 Tohoku Electric Power Co Inc Rod-form loop type heat pipe
JP5125889B2 (en) * 2008-08-28 2013-01-23 三菱電機株式会社 Variable conductance heat pipe
TWI443294B (en) * 2011-12-28 2014-07-01 Ind Tech Res Inst Heat take-out device

Also Published As

Publication number Publication date
JP2020112277A (en) 2020-07-27

Similar Documents

Publication Publication Date Title
EP2835609B1 (en) Loop thermosiphon emergency cooling system
AU551169B2 (en) Two-phase thermosyphon heater
JP5612096B2 (en) Self-supporting pump for heated liquid, and heat-driven liquid closed-loop automatic circulation system using the same
US20170363365A1 (en) Cooling device
US20070273024A1 (en) Cooling System with a Bubble Pump
JP6122067B2 (en) Method and apparatus for spontaneous heat transfer in the direction opposite to natural convection
US20120227935A1 (en) Interconnected heat pipe assembly and method for manufacturing the same
US20050099775A1 (en) Pumped liquid cooling for computer systems using liquid metal coolant
JPS6222060B2 (en)
RU2104456C1 (en) Thermosiphon
US8069906B2 (en) Vehicular exhaust heat recovery apparatus with frozen working fluid melting
US9711246B2 (en) Passive containment air cooling device and system with isolated pressure boundary
KR20040104460A (en) Heat Pipe
US10222132B2 (en) Heat transfer apparatus
JP6896255B2 (en) Heat siphon
CN102425968A (en) Compact type loop heat pipe device
JP6992195B2 (en) Independent auxiliary thermosiphon for inexpensively extending active cooling to other interior walls of the freezer.
US4444022A (en) Water heating system
JP2005337336A (en) Liquefied gas evaporating device
JP2751051B2 (en) Heat transfer device
US4328683A (en) Water heating system
JPS62123291A (en) Large-caliber and long vertical thermo siphon
CN211853519U (en) Novel air bath type gasifier
JP2000121257A (en) Heat exchanger
JP2009092287A (en) Heat pump hot water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200630

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210601

R150 Certificate of patent or registration of utility model

Ref document number: 6896255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150