JP6895364B2 - Heat-dissipating paint composition, heat-dissipating coating and coating method - Google Patents

Heat-dissipating paint composition, heat-dissipating coating and coating method Download PDF

Info

Publication number
JP6895364B2
JP6895364B2 JP2017203110A JP2017203110A JP6895364B2 JP 6895364 B2 JP6895364 B2 JP 6895364B2 JP 2017203110 A JP2017203110 A JP 2017203110A JP 2017203110 A JP2017203110 A JP 2017203110A JP 6895364 B2 JP6895364 B2 JP 6895364B2
Authority
JP
Japan
Prior art keywords
heat
dissipating
coating
coupling agent
silane coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017203110A
Other languages
Japanese (ja)
Other versions
JP2019077736A (en
Inventor
和孝 横山
和孝 横山
良祐 小平
良祐 小平
孝輔 伊達木
孝輔 伊達木
貴宣 小林
貴宣 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2017203110A priority Critical patent/JP6895364B2/en
Priority to US16/155,200 priority patent/US20190119520A1/en
Priority to CN201811201517.1A priority patent/CN109694625B/en
Publication of JP2019077736A publication Critical patent/JP2019077736A/en
Application granted granted Critical
Publication of JP6895364B2 publication Critical patent/JP6895364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C09D123/24Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having ten or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/16Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using synthetic lacquers or varnishes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • B05D7/26Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials synthetic lacquers or varnishes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring

Description

本発明は、放熱を促進するために基材の表面に形成される放熱性被膜、放熱性被膜に含まれる放熱性塗料組成物、及び被膜形成方法に関する。 The present invention relates to a heat-dissipating coating formed on the surface of a base material to promote heat dissipation, a heat-dissipating coating composition contained in the heat-dissipating coating, and a film-forming method.

装置の放熱を促進するために、装置の表面に形成される放熱性被膜が公知である。放熱性被膜は、一般的に、アクリル樹脂等の樹脂からなる母材と、母材に保持されたカーボンブラック等の無機粒子からなる放熱性フィラーとを含む(例えば、特許文献1)。 A heat-dissipating coating formed on the surface of the device is known to promote heat dissipation of the device. The heat-dissipating coating generally contains a base material made of a resin such as an acrylic resin and a heat-dissipating filler made of inorganic particles such as carbon black held by the base material (for example, Patent Document 1).

特開2006−281514号公報Japanese Unexamined Patent Publication No. 2006-281514

従来の放熱性被膜は、放熱性フィラーを必須の構成としている。そのため、母材に適した放熱性フィラーの選択や、放熱性フィラーの調製、母材への放熱性フィラーの分散等を行なう必要がある。また、放熱性フィラーには、母材の劣化を促進するものもある。放熱性フィラーを省略することができれば、放熱性被膜の作成が容易になる。 The conventional heat-dissipating coating has a heat-dissipating filler as an essential configuration. Therefore, it is necessary to select a heat-dissipating filler suitable for the base material, prepare the heat-dissipating filler, and disperse the heat-dissipating filler in the base material. In addition, some heat-dissipating fillers accelerate the deterioration of the base material. If the heat-dissipating filler can be omitted, the heat-dissipating coating can be easily produced.

本発明は、以上の背景を鑑み、放熱性フィラーを省略することができる放熱性塗料組成物、放熱性被膜及び被膜形成方法を提供することを課題とする。 In view of the above background, it is an object of the present invention to provide a heat-dissipating coating composition, a heat-dissipating film, and a film-forming method capable of omitting a heat-dissipating filler.

上記課題を解決するために本発明の第1の態様は、放熱性被膜を形成するための放熱性塗料組成物であって、以下の化学式(1)で表されるポリ−α−オレフィンとシランカップリング剤とを含むことを特徴とする放熱性塗料組成物。

Figure 0006895364
ここで、Rは水素又はメチル基であり、Rは炭素数が5〜20の直鎖アルキル基である。 In order to solve the above problems, the first aspect of the present invention is a heat-dissipating coating composition for forming a heat-dissipating film, which is a poly-α-olefin and silane represented by the following chemical formula (1). A heat-dissipating paint composition comprising a coupling agent.
Figure 0006895364
Here, R 1 is a hydrogen or methyl group, and R 2 is a linear alkyl group having 5 to 20 carbon atoms.

この態様によれば、放熱性フィラーを省略することができる放熱性塗料組成物を提供することができる。直鎖アルキル基は、柔軟性を有し、様々な立体配座をとることができる。そのため、直鎖アルキル基からなる側鎖の回転や振動を含む分子運動によって、側鎖におけるエネルギー消費が増加すると共に、側鎖と外部の気体分子や液体分子との接触が増加し、放熱が促進すると考えられる。 According to this aspect, it is possible to provide a heat-dissipating coating composition in which the heat-dissipating filler can be omitted. The linear alkyl group is flexible and can have various conformations. Therefore, due to molecular motion including rotation and vibration of the side chain composed of linear alkyl groups, energy consumption in the side chain increases, contact between the side chain and external gas molecules and liquid molecules increases, and heat dissipation is promoted. It is thought that.

また、上記の態様において、シランカップリング剤の含有量が、ポリ−α−オレフィンとシランカップリング剤との合計に対して1〜10wt%であるとよい。 Further, in the above embodiment, the content of the silane coupling agent is preferably 1 to 10 wt% with respect to the total of the poly-α-olefin and the silane coupling agent.

この態様によれば、ポリ−α−オレフィンとシランカップリング剤との反応率が向上する。 According to this aspect, the reaction rate between the poly-α-olefin and the silane coupling agent is improved.

また、上記の態様において、前記化学式(1)のRは炭素数が10〜15の直鎖アルキル基であるとよい。 Further, in the above embodiment, R 2 of the chemical formula (1) is preferably a linear alkyl group having 10 to 15 carbon atoms.

この態様によれば、放熱性被膜の放熱性能を向上させることができる。 According to this aspect, the heat dissipation performance of the heat dissipation film can be improved.

本発明の他の態様は、上記の第1及び第2の態様における放熱性塗料組成物を含み、基材の表面に形成された放熱性被膜を提供する。 Another aspect of the present invention comprises the heat-dissipating coating composition according to the first and second aspects described above, and provides a heat-dissipating coating formed on the surface of a base material.

この態様によれば、放熱性フィラーを省略することができる放熱性被膜を提供することができる。 According to this aspect, it is possible to provide a heat-dissipating coating that can omit the heat-dissipating filler.

上記の態様において、厚さが15〜50μmであるとよい。 In the above embodiment, the thickness is preferably 15 to 50 μm.

この態様によれば、放熱性被膜の放熱性を向上させることができる。放熱性被膜では、主に表面に位置する直鎖アルキル基の側鎖を介して熱が放熱されるため、体積に対する表面積が大きいほど放熱性が向上する。 According to this aspect, the heat dissipation of the heat dissipation coating can be improved. In the heat-dissipating coating, heat is dissipated mainly through the side chain of the linear alkyl group located on the surface, so that the larger the surface area with respect to the volume, the better the heat-dissipating property.

上記の態様において、前記基材は、アルミニウムを含む材料から形成されているとよい。 In the above embodiment, the base material may be formed of a material containing aluminum.

この態様によれば、放熱性被膜を基材に安定性良く接着することができる。 According to this aspect, the heat-dissipating coating can be stably adhered to the base material.

上記の態様において、無機粒子から形成された放熱性フィラーの含有量が0.1wt%以下であるとよい。また、上記の態様において、放熱性被膜は無機粒子から形成された放熱性フィラーを含まないことが好ましい。 In the above embodiment, the content of the heat-dissipating filler formed from the inorganic particles is preferably 0.1 wt% or less. Further, in the above aspect, it is preferable that the heat-dissipating film does not contain a heat-dissipating filler formed from inorganic particles.

この態様によれば、放熱性被膜の放熱性を向上させることができる。放熱性フィラーは、表面の直鎖アルキル基の分子運動を阻害して放熱性を低下させると考えられる。 According to this aspect, the heat dissipation of the heat dissipation coating can be improved. It is considered that the heat-dissipating filler inhibits the molecular motion of the linear alkyl group on the surface to reduce the heat-dissipating property.

本発明の他の態様は、基材の表面に被膜を形成するための被膜形成方法であって、以下の化学式(1)で表される組成物とシランカップリング剤とを含む溶液を前記基材の表面に塗布する第1工程と、前記第1工程の後に、前記溶液が塗布された前記基材を100℃〜150℃で加熱する第2工程とを含むことを特徴とする。

Figure 0006895364
ここで、Rは水素又はメチル基であり、Rは炭素数が5〜20の直鎖アルキル基である。 Another aspect of the present invention is a film forming method for forming a film on the surface of a base material, wherein a solution containing the composition represented by the following chemical formula (1) and a silane coupling agent is used as a base. It is characterized by including a first step of applying to the surface of the material, and after the first step, a second step of heating the base material to which the solution is applied at 100 ° C. to 150 ° C.
Figure 0006895364
Here, R 1 is a hydrogen or methyl group, and R 2 is a linear alkyl group having 5 to 20 carbon atoms.

以上の構成によれば、放熱性フィラーを省略することができる放熱性塗料組成物、放熱性被膜及び被膜形成方法を提供することができる。 According to the above configuration, it is possible to provide a heat-dissipating coating composition, a heat-dissipating coating, and a film-forming method capable of omitting the heat-dissipating filler.

放熱性能試験に使用する試験容器Test container used for heat dissipation performance test 放熱性能試験における、(A)放熱時間と温度との関係を示すグラフ、(B)放熱時間と温度差(ln(Ts−Ta))との関係を示すグラフIn the heat dissipation performance test, (A) a graph showing the relationship between heat dissipation time and temperature, and (B) a graph showing the relationship between heat dissipation time and temperature difference (ln (Ts-Ta)). 放熱性被膜の厚みと放熱速度比との関係を示すグラフGraph showing the relationship between the thickness of the heat-dissipating coating and the heat-dissipating speed ratio 放熱性被膜の側鎖の炭素数と放熱速度比との関係を示すグラフGraph showing the relationship between the number of carbon atoms in the side chain of the heat-dissipating coating and the heat-dissipating speed ratio

以下、本発明に係る放熱性塗料組成物、放熱性被膜、及び被膜形成方法の実施形態について説明する。 Hereinafter, embodiments of a heat-dissipating coating composition, a heat-dissipating coating, and a coating-forming method according to the present invention will be described.

(放熱性塗料組成物)
実施形態に係る放熱性塗料組成物は、放熱性被膜に含まれる組成物であり、以下の化学式(1)で表されるポリ−α−オレフィンとシランカップリング剤とを含む。

Figure 0006895364
ここで、Rは水素又はメチル基であり、Rは炭素数が5〜20の直鎖アルキル基である。 (Heat-dissipating paint composition)
The heat-dissipating coating composition according to the embodiment is a composition contained in the heat-dissipating coating film, and contains a poly-α-olefin represented by the following chemical formula (1) and a silane coupling agent.
Figure 0006895364
Here, R 1 is a hydrogen or methyl group, and R 2 is a linear alkyl group having 5 to 20 carbon atoms.

化学式(1)で表されるポリ−α−オレフィンは、炭素数が7〜22のα−オレフィンの重合反応によって生成することができる。また、β位にメチル基の側鎖を有するα−オレフィンを使用することによって、Rをメチル基にすることができる。 The poly-α-olefin represented by the chemical formula (1) can be produced by a polymerization reaction of an α-olefin having 7 to 22 carbon atoms. Further, R 1 can be converted to a methyl group by using an α-olefin having a side chain of a methyl group at the β-position.

シランカップリング剤は、一般式X−Si−Yで表される構造を有する。ここで、Xは有機基であり、Yは炭素数が1〜3のアルコキシ基である。有機基は、例えば、ビニル基、エポキシ基、メタクリル基、アクリル基、アミノ基、メルカプト基である。アルコキシ基は、例えば、メトキシ基、エトキシ基、ジメトキシ基、ジエトキシ基である。XとSiとの間に炭素数1〜6のアルキレン基が介在してもよい。また、Yは、1つのアルコキシ基をメチル基に変更してもよい。シランカップリング剤は、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシランである。 The silane coupling agent has a structure represented by the general formula X-Si-Y 3. Here, X is an organic group, and Y is an alkoxy group having 1 to 3 carbon atoms. The organic group is, for example, a vinyl group, an epoxy group, a methacryl group, an acrylic group, an amino group, or a mercapto group. The alkoxy group is, for example, a methoxy group, an ethoxy group, a dimethoxy group, or a diethoxy group. An alkylene group having 1 to 6 carbon atoms may be interposed between X and Si. Further, Y may change one alkoxy group to a methyl group. The silane coupling agent includes, for example, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane. , 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-Methyloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxy Silane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane.

シランカップリング剤の含有量は、ポリ−α−オレフィンとシランカップリング剤との合計に対して1〜10wt%であり、より好ましくは1〜5wt%である。シランカップリング剤がビニルトリメトキシシランであり、かつポリ−α−オレフィンのRが水素であり、Rが炭素数5〜20の直鎖アルキル基である場合、シランカップリング剤の含有量が5〜10wt%のときシランカップリング剤とポリ−α−オレフィンとの反応率が90%以上になり、シランカップリング剤の含有量が1〜4wt%のとき反応率が98%以上であった。 The content of the silane coupling agent is 1 to 10 wt%, more preferably 1 to 5 wt% with respect to the total of the poly-α-olefin and the silane coupling agent. When the silane coupling agent is vinyltrimethoxysilane, R 1 of the poly-α-olefin is hydrogen, and R 2 is a linear alkyl group having 5 to 20 carbon atoms, the content of the silane coupling agent. When the content is 5 to 10 wt%, the reaction rate between the silane coupling agent and the poly-α-olefin is 90% or more, and when the content of the silane coupling agent is 1 to 4 wt%, the reaction rate is 98% or more. It was.

(放熱性塗料)
放熱性塗料は、上述したポリ−α−オレフィン及びシランカップリング剤を含む放熱性塗料組成物と、放熱性塗料組成物を溶解する溶剤とを含み、液体として調製される。溶剤は、揮発性の有機溶剤であることが好ましく、例えばアセトン、メチルエチルケトン等のケトン類、酢酸メチル、酢酸エチル、酢酸プロピル等の酢酸エステル類、ノルマルヘキサン、シクロヘキサン、メチルシクロヘキサン、ノルマルヘプタン等の炭化水素類、トルエン、キシレン、ベンゼン等の芳香族炭化水素類等、ブチルセロソルブ、フェニルセロソルブ、ジメチルセロソルブ等のエーテル類であってよい。放熱性塗料は、更に顔料や顔料分散剤、レベリング剤、消泡剤、増粘剤等を含んでもよい。
(Heat-dissipating paint)
The heat-dissipating coating material contains the heat-dissipating coating composition containing the above-mentioned poly-α-olefin and silane coupling agent and a solvent for dissolving the heat-dissipating coating composition, and is prepared as a liquid. The solvent is preferably a volatile organic solvent, for example, ketones such as acetone and methyl ethyl ketone, acetate esters such as methyl acetate, ethyl acetate and propyl acetate, and hydrocarbons such as normal hexane, cyclohexane, methylcyclohexane and normal heptane. It may be hydrogens, aromatic hydrocarbons such as toluene, xylene and benzene, and ethers such as butyl cellosolve, phenyl cellosolve and dimethyl cellosolve. The heat-dissipating paint may further contain a pigment, a pigment dispersant, a leveling agent, an antifoaming agent, a thickener and the like.

(放熱性被膜)
放熱性被膜は、基材の表面に形成される被膜であり、上記の放熱性塗料組成物を含む。基材は、例えば熱交換器のハウジングやチューブ、コアであってよい。熱交換器は、例えば車両のインタークーラーやラジエータであってよい。基材は、鉄やアルミニウム、それらの合金から形成されているとよい。
(Heat-dissipating coating)
The heat-dissipating coating is a coating formed on the surface of the base material, and includes the above-mentioned heat-dissipating coating composition. The base material may be, for example, a heat exchanger housing, a tube, or a core. The heat exchanger may be, for example, a vehicle intercooler or radiator. The base material may be formed of iron, aluminum, or an alloy thereof.

放熱性被膜において、化学式(1)で表されるポリ−α−オレフィンは、シランカップリング剤を介して基材に結合する。シランカップリング剤は、アルコキシ基が加水分解によって水酸基になり、鉄やアルミニウムの表面の水酸基と水素結合することによって基材に結合する。また、シランカップリング剤は、有機基においてポリ−α−オレフィンと結合する。シランカップリング剤は、例えば、化学式(1)のRと置換し、有機基において、ポリ−α−オレフィンの主鎖の炭素と結合する。放熱性被膜の厚さは、15μm〜50μmであることが好ましい。 In the heat-dissipating film, the poly-α-olefin represented by the chemical formula (1) is bonded to the substrate via a silane coupling agent. In the silane coupling agent, the alkoxy group becomes a hydroxyl group by hydrolysis, and bonds to the base material by hydrogen bonding with the hydroxyl group on the surface of iron or aluminum. In addition, the silane coupling agent binds to the poly-α-olefin at the organic group. Silane coupling agent, for example, replaced with R 2 of Formula (1), in an organic group is bonded to the carbon of the main chain of poly -α- olefin. The thickness of the heat-dissipating coating is preferably 15 μm to 50 μm.

放熱性被膜は、無機粒子から形成された放熱性フィラーの含有量が0.1wt%以下である。また、放熱性被膜は、無機粒子から形成された放熱性フィラーを含まないことが好ましい。放熱性フィラーは、例えばカーボンブラックや酸化亜鉛、窒化アルミニウム、酸化ケイ素、フッ化カルシウム、窒化ホウ素、石英、カオリン、水酸化アルミニウム、ベントナイト、タルク、サリサイト、フォルステライト、マイカ、コージェライト、窒化ホウ素等の粒子である。 The heat-dissipating coating has a content of a heat-dissipating filler formed from inorganic particles of 0.1 wt% or less. Further, it is preferable that the heat-dissipating coating does not contain a heat-dissipating filler formed of inorganic particles. Heat-dissipating fillers include, for example, carbon black, zinc oxide, aluminum nitride, silicon oxide, calcium fluoride, boron nitride, quartz, kaolin, aluminum hydroxide, bentonite, talc, salicite, forsterite, mica, cordierite, and boron nitride. Etc. particles.

放熱性被膜を形成するポリ−α−オレフィンの直鎖アルキル基の側鎖は、柔軟性を有し、様々な立体配座をとることができる。そのため、側鎖の回転や振動を含む分子運動によって、側鎖におけるエネルギー消費が増加すると共に、側鎖と外部の気体分子や液体分子との接触が増加し、放熱性被膜の放熱性が向上すると考えられる。側鎖は、分子運動のし易さから直鎖アルキル基であることが好ましい。側鎖が、極性を有する官能基や二重結合、三重結合等を含むと側鎖の分子運動が阻害され、放熱性が低下すると考えられる。 The side chains of the linear alkyl groups of the poly-α-olefin that form the heat-dissipating film are flexible and can have various conformations. Therefore, due to molecular motion including rotation and vibration of the side chain, energy consumption in the side chain increases, contact between the side chain and external gas molecules and liquid molecules increases, and the heat dissipation of the heat-dissipating coating is improved. Conceivable. The side chain is preferably a linear alkyl group because of the ease of molecular motion. It is considered that if the side chain contains a polar functional group, a double bond, a triple bond, or the like, the molecular motion of the side chain is inhibited and the heat dissipation property is lowered.

(被膜形成方法)
第1の被膜形成方法では、最初の工程において、上記の放熱性塗料を基材の表面に塗布する。塗布方法は、スプレー塗布やディップ塗布、はけ塗り、ローラー塗り等を含む。次の工程では、放熱性塗料を塗布した基材を100〜150℃で20〜40分間加熱する。この工程によって、ポリ−α−オレフィンとシランカップリング剤とが結合すると共に、溶剤が揮発する。これにより、基材の表面に放熱性被膜が形成される。
(Film formation method)
In the first film forming method, the above heat-dissipating paint is applied to the surface of the base material in the first step. The coating method includes spray coating, dip coating, brush coating, roller coating and the like. In the next step, the base material coated with the heat-dissipating paint is heated at 100 to 150 ° C. for 20 to 40 minutes. By this step, the poly-α-olefin and the silane coupling agent are bonded and the solvent is volatilized. As a result, a heat-dissipating film is formed on the surface of the base material.

(被膜形成方法の実施例)
化学式(1)においてRを水素、Rの炭素数を各種値としたものを放熱性塗料組成物として使用した。シランカップリング剤は、ビニルトリメトキシシランとした。ポリ−α−オレフィン及びシランカップリング剤をブチルセロソルブで希釈して放熱性塗料とした。シランカップリング剤の含有量は、ポリ−α−オレフィンとシランカップリング剤との合計に対して5wt%とした。ポリ−α−オレフィン及びシランカップリング剤のブチルセロソルブに対する濃度は、5wt%とした。基板(基材)はアルミニウム板(A1050、長さ150mm×幅70mm×厚み0.8mm)を使用した。エアスプレーによって放熱性塗料を基板の一方の表面に適量噴霧することによって、基板の一方の表面に放熱性塗料を塗布した。続いて、加熱炉を使用して、放熱性塗料を塗布した基板を120℃で30分間加熱した。加熱により、ポリ−α−オレフィンがシランカップリング剤を介して基板の表面に結合し、ブチルセロソルブが揮発し、基板の表面に放熱性被膜が形成された。加熱後の放熱性被膜の厚さを放熱性被膜の厚さとした。放熱性被膜の厚さは、エアスプレーによる放熱性塗料の噴霧量によって調節することができる。
(Example of film forming method)
In the chemical formula (1), R 1 was hydrogen and R 2 was used as a heat-dissipating paint composition having various carbon numbers. The silane coupling agent was vinyltrimethoxysilane. The poly-α-olefin and the silane coupling agent were diluted with butyl cellosolve to obtain a heat-dissipating paint. The content of the silane coupling agent was 5 wt% with respect to the total of the poly-α-olefin and the silane coupling agent. The concentration of the poly-α-olefin and the silane coupling agent with respect to butyl cellosolve was 5 wt%. An aluminum plate (A1050, length 150 mm × width 70 mm × thickness 0.8 mm) was used as the substrate (base material). The heat-dissipating paint was applied to one surface of the substrate by spraying an appropriate amount of the heat-dissipating paint on one surface of the substrate by air spraying. Subsequently, using a heating furnace, the substrate coated with the heat-dissipating paint was heated at 120 ° C. for 30 minutes. Upon heating, the poly-α-olefin was bonded to the surface of the substrate via the silane coupling agent, the butyl cellosolve was volatilized, and a heat-dissipating film was formed on the surface of the substrate. The thickness of the heat-dissipating film after heating was defined as the thickness of the heat-dissipating film. The thickness of the heat-dissipating coating can be adjusted by the amount of the heat-dissipating paint sprayed by the air spray.

(放熱性能試験)
放熱性被膜の放熱性の評価は、次の放熱性能試験によって行った。図1に示すように、底部を切り取った直方体のスチール缶1(長さ130mm×幅50mm×高さ100mm、厚み0.8mm)の底部を、放熱性被膜2を形成した基板3で閉塞することによって試験容器4を作成した。基板3は、放熱性被膜2が形成された面が下側(外側)を向くように配置した。スチール缶1と基板3とは接着剤によって液密に結合した。試験容器4の上部及び側部は、厚さ30mmの発泡スチロール6(断熱材)で覆われている。試験容器4は、発泡スチロール6を介して台7の上に配置し、基板3を他の構造体から十分に離れた位置に配置した。試験容器4の上部には、液体の注入口が形成されている。試験容器4の内部には、試験開始時に100℃に加熱したエンジンオイル350mLを投入した。投入したエンジンオイルは、試験容器の内部に設けた撹拌棒8によって200rpmで撹拌した。また、試験容器4の内部にはエンジンオイルの温度を測定するための熱電対9が設けられている。また、測定装置の外部(発泡スチロールの外方)には、外気温度を測定するための熱電対(不図示)が設けられている。測定は、外気温度が室温(約22℃)の環境下で実施し、投入したエンジンオイルの温度が100℃から低下し、85℃になったときを時間0として、以後のエンジンオイルの温度を記録した。また、参照試験として、放熱性被膜を有しない基板を底部とした試験容器を用いて、同様の放熱性能試験(温度測定)を行なった。
(Heat dissipation performance test)
The heat dissipation of the heat dissipation coating was evaluated by the following heat dissipation performance test. As shown in FIG. 1, the bottom of a rectangular parallelepiped steel can 1 (length 130 mm × width 50 mm × height 100 mm, thickness 0.8 mm) with the bottom cut off is closed with a substrate 3 on which a heat-dissipating coating 2 is formed. Test container 4 was prepared by. The substrate 3 was arranged so that the surface on which the heat-dissipating coating 2 was formed faced downward (outside). The steel can 1 and the substrate 3 were liquidtightly bonded by an adhesive. The upper part and the side part of the test container 4 are covered with Styrofoam 6 (insulation material) having a thickness of 30 mm. The test container 4 was placed on the table 7 via the styrofoam 6, and the substrate 3 was placed at a position sufficiently distant from other structures. A liquid inlet is formed in the upper part of the test container 4. Inside the test container 4, 350 mL of engine oil heated to 100 ° C. was charged at the start of the test. The charged engine oil was stirred at 200 rpm by a stirring rod 8 provided inside the test container. Further, a thermocouple 9 for measuring the temperature of the engine oil is provided inside the test container 4. Further, a thermocouple (not shown) for measuring the outside air temperature is provided on the outside of the measuring device (outside the styrofoam). The measurement was carried out in an environment where the outside air temperature was room temperature (about 22 ° C.), and when the temperature of the added engine oil decreased from 100 ° C. to 85 ° C., the time was set to 0, and the subsequent engine oil temperature was set to 0. Recorded. In addition, as a reference test, a similar heat dissipation performance test (temperature measurement) was performed using a test container having a substrate having no heat dissipation film at the bottom.

図2(A)及び(B)に放熱性能試験から得られた結果を示す。図2(A)及び(B)は、化学式(1)で表されるポリ−α−オレフィンにおいて、Rを水素、Rの炭素数を13としたものを使用し、放熱性被膜の厚さを20μmとした場合の結果である。図2(A)のグラフでは、横軸を時間[s]、縦軸を温度[℃]としている。エンジンオイルは、基板を介した放熱により時間の経過と共に温度が低下する。図2(B)のグラフは、図2(A)の結果を変換して示すものであり、横軸を時間[s]、縦軸をエンジンオイルの温度Tsから外気温度Taを減じた値の自然体数(ln(Ts−Ta))としている。図2(A)及び(B)からわかるように、底部の基板が放熱性被膜を有する場合、放熱性被膜を有しない場合(参照試験)に対してグラフの傾きが大きいことが確認された。図2(B)におけるグラフの傾き、すなわち単位時間(1s)当たりのln(Ts−Ta)の変化量を放熱速度Vs、Vrと定義する。基板が放熱性被膜を有する場合の放熱速度をVs、基板が放熱性被膜を有しない場合(参照試験)の放熱速度をVrとする。また、参照試験の放熱速度Vrに対する放熱速度Vsの比を放熱速度比R(=(Vs−Vr)/Vr×100)と定義する。 2 (A) and 2 (B) show the results obtained from the heat dissipation performance test. 2 (A) and 2 (B) use poly-α-olefins represented by the chemical formula (1) in which R 1 is hydrogen and R 2 has 13 carbon atoms, and the thickness of the heat-dissipating coating film is high. This is the result when the value is 20 μm. In the graph of FIG. 2A, the horizontal axis is time [s] and the vertical axis is temperature [° C.]. The temperature of engine oil decreases with the passage of time due to heat dissipation through the substrate. The graph of FIG. 2 (B) shows the result of FIG. 2 (A) converted. The horizontal axis is the time [s], and the vertical axis is the value obtained by subtracting the outside air temperature Ta from the engine oil temperature Ts. The number of natural bodies (ln (Ts-Ta)) is used. As can be seen from FIGS. 2A and 2B, it was confirmed that the slope of the graph was larger than when the bottom substrate had a heat-dissipating coating and when it did not have a heat-dissipating coating (reference test). The slope of the graph in FIG. 2B, that is, the amount of change in ln (Ts-Ta) per unit time (1s) is defined as heat dissipation rates Vs and Vr. Let Vs be the heat dissipation rate when the substrate has a heat dissipation film, and Vr be the heat dissipation rate when the substrate does not have a heat dissipation film (reference test). Further, the ratio of the heat dissipation rate Vs to the heat dissipation rate Vr in the reference test is defined as the heat dissipation rate ratio R (= (Vs−Vr) / Vr × 100).

(膜厚が放熱性に与える影響)
化学式(1)で表されるポリ−α−オレフィンのRを水素、Rの炭素数を13とし、放熱性塗料の基板への噴霧量を変更することによって、各種膜厚の放熱性被膜を形成した。生成した放熱性被膜の厚さは、15μm、45μm、78μmであった。これらの各膜厚の放熱性被膜を有する基板に対して放熱性能試験を行なった。
(Effect of film thickness on heat dissipation)
By setting R 1 of the poly-α-olefin represented by the chemical formula (1) to hydrogen and R 2 to 13 carbon atoms and changing the amount of the heat-dissipating paint sprayed onto the substrate, heat-dissipating coatings of various film thicknesses are formed. Was formed. The thickness of the heat-dissipating coating produced was 15 μm, 45 μm, and 78 μm. A heat dissipation performance test was conducted on a substrate having a heat dissipation film having each of these film thicknesses.

図3は、放熱性被膜の厚さと放熱速度比との関係を示すグラフである。図3の結果から、放熱性被膜の厚さが増加するにつれて、放熱速度比が低下することが確認された。また、放熱性被膜の厚さが80μm以上の範囲では、放熱速度比がほとんど変化しないことが確認された。本実施例に係る放熱性被膜は、厚さを10μm以下にすると均質な被膜を形成することが困難であった。また、放熱性被膜の厚さが0のとき放熱速度比は0であるため、放熱性被膜は少なくとも10μm以上の厚さを有することが好ましい。そのため、放熱性被膜の厚さは、15〜50μmが好ましいといえる。また、この範囲内において膜厚が薄いほど放熱性が向上するため、放熱性被膜の厚さは、15〜40μmがより好ましく、15〜30μmが更に好ましい。放熱性被膜の厚さが薄いほど、体積に対する表面積の割合が大きくなり、体積に対して放熱性被膜の表面に配置される直鎖アルキル基の割合が増加する。そのため、放熱性が増加すると考えられる。 FIG. 3 is a graph showing the relationship between the thickness of the heat-dissipating coating and the heat-dissipating speed ratio. From the results of FIG. 3, it was confirmed that the heat dissipation rate ratio decreased as the thickness of the heat dissipation film increased. Further, it was confirmed that the heat dissipation rate ratio hardly changed in the range where the thickness of the heat dissipation film was 80 μm or more. When the thickness of the heat-dissipating coating according to this example was 10 μm or less, it was difficult to form a homogeneous coating. Further, since the heat dissipation rate ratio is 0 when the thickness of the heat dissipation film is 0, it is preferable that the heat dissipation film has a thickness of at least 10 μm or more. Therefore, it can be said that the thickness of the heat-dissipating coating is preferably 15 to 50 μm. Further, in the range of this range, the thinner the film thickness, the better the heat dissipation. Therefore, the thickness of the heat dissipation film is more preferably 15 to 40 μm, further preferably 15 to 30 μm. The thinner the heat-dissipating coating, the greater the ratio of surface area to volume and the greater the ratio of linear alkyl groups placed on the surface of the heat-dissipating coating to volume. Therefore, it is considered that the heat dissipation property is increased.

(側鎖が放熱性に与える影響)
化学式(1)で表されるポリ−α−オレフィンのRを水素、Rの炭素数を8、13、17とし、厚さが20μmの放熱性被膜を形成した。そして、各基板に対して放熱性能試験を行なった。
(Effect of side chain on heat dissipation)
R 1 of the poly-α-olefin represented by the chemical formula (1) was hydrogen, the carbon number of R 2 was 8, 13, and 17, and a heat-dissipating film having a thickness of 20 μm was formed. Then, a heat dissipation performance test was performed on each substrate.

図4は、側鎖の炭素数と放熱速度比との関係を示すグラフである。図4の結果から、直鎖アルキル基の炭素数(側鎖の炭素数)が8、13、17のいずれの場合も放熱速度比が0より大きくなり、放熱性被膜を有しない場合に対して放熱性が向上することが確認された。図4の結果に基づく近似曲線から側鎖の炭素数が5〜20の範囲内において、放熱速度比が0より大きくなり、放熱性被膜による放熱性の向上効果が生じると考えられる。直鎖アルキル基の炭素数(側鎖の炭素数)が10〜15のときに放熱速度比が極大になることが確認された。そのため、側鎖の炭素数は10〜15の範囲がより好ましいといえる。 FIG. 4 is a graph showing the relationship between the number of carbon atoms in the side chain and the heat dissipation rate ratio. From the results of FIG. 4, when the number of carbon atoms of the linear alkyl group (the number of carbon atoms in the side chain) is 8, 13, or 17, the heat dissipation rate ratio is larger than 0, and the case where the heat dissipation film is not provided. It was confirmed that the heat dissipation was improved. From the approximate curve based on the result of FIG. 4, it is considered that the heat dissipation rate ratio becomes larger than 0 in the range of 5 to 20 carbon atoms in the side chain, and the heat dissipation film improves the heat dissipation. It was confirmed that the heat dissipation rate ratio became maximum when the number of carbon atoms of the linear alkyl group (the number of carbon atoms in the side chain) was 10 to 15. Therefore, it can be said that the number of carbon atoms in the side chain is more preferably in the range of 10 to 15.

(放熱性フィラーが放熱性被膜の放熱性に与える影響)
放熱性塗料組成物に含まれるポリ−α−オレフィンのRの炭素数を13とし、実施例に係る放熱性塗料を作成した。また、比較例として、放熱性フィラーとしてカーボンブラック(粒径3μm)を0.5wt%の濃度で懸濁させた放熱性塗料を作成した。比較例に係る放熱性塗料は、放熱性フィラーを含む点を除き他の条件は、実施例に係る放熱性塗料と同様である。実施例及び比較例に係る放熱性塗料を使用して、それぞれ厚さが20μmの放熱性被膜を形成した。これらの実施例及び比較例に係る放熱性被膜を有する基板に対して放熱性能試験を行なった。
(Effect of heat-dissipating filler on heat-dissipating coating)
The heat-dissipating paint according to the examples was prepared by setting the carbon number of R 2 of the poly-α-olefin contained in the heat-dissipating paint composition to 13. Further, as a comparative example, a heat-dissipating paint in which carbon black (particle size 3 μm) was suspended at a concentration of 0.5 wt% was prepared as a heat-dissipating filler. The heat-dissipating paint according to the comparative example is the same as the heat-dissipating paint according to the examples except that it contains a heat-dissipating filler. Using the heat-dissipating paints according to Examples and Comparative Examples, heat-dissipating coatings having a thickness of 20 μm were formed. A heat dissipation performance test was performed on a substrate having a heat dissipation coating according to these Examples and Comparative Examples.

放熱性能試験の結果、実施例に係る放熱性被膜(放熱性フィラー無し)は、比較例に係る放熱性被膜(放熱性フィラー有り)よりも高い放熱性を有することが確認された。放熱性フィラーが放熱性被膜の表面に露出することによって、表面における直鎖アルキル基からなる側鎖の密度が低下することが考えられる。また、放熱性フィラーによって、放熱性被膜の表面における直鎖アルキル基からなる側鎖の分子運動が阻害されることが考えられる。これらによって、放熱性フィラーを含まない放熱性被膜の方が、放熱性フィラーを含む放熱性被膜より放熱性が向上したと考えられる。 As a result of the heat dissipation performance test, it was confirmed that the heat-dissipating film (without heat-dissipating filler) according to the example had higher heat-dissipating property than the heat-dissipating film (with heat-dissipating filler) according to the comparative example. It is conceivable that the heat-dissipating filler is exposed on the surface of the heat-dissipating coating, so that the density of side chains composed of linear alkyl groups on the surface is reduced. Further, it is considered that the heat-dissipating filler inhibits the molecular motion of the side chain composed of the linear alkyl group on the surface of the heat-dissipating coating. As a result, it is considered that the heat-dissipating coating containing no heat-dissipating filler has improved heat-dissipating properties as compared with the heat-dissipating coating containing the heat-dissipating filler.

1 :スチール缶
2 :放熱性被膜
3 :基板
4 :試験容器
6 :発泡スチロール
7 :台
8 :撹拌棒
9 :熱電対
1: Steel can 2: Heat-dissipating coating 3: Substrate 4: Test container 6: Styrofoam 7: Stand 8: Stirring rod 9: Thermocouple

Claims (7)

放熱性被膜を形成するための放熱性塗料組成物であって、
以下の化学式(1)で表されるポリ−α−オレフィンとシランカップリング剤とを含み、
前記化学式(1)のR は炭素数が10〜15の直鎖アルキル基であり、
シランカップリング剤の含有量が、ポリ−α−オレフィンとシランカップリング剤との合計に対して1〜10wt%であることを特徴とする放熱性塗料組成物。
Figure 0006895364
ここで、Rは水素又はメチル基であり、Rは炭素数が5〜20の直鎖アルキル基である。
A heat-dissipating paint composition for forming a heat-dissipating film.
Look including the following Formula poly -α- olefin and a silane coupling agent represented by (1),
R 2 of the chemical formula (1) is a linear alkyl group having 10 to 15 carbon atoms.
A heat-dissipating coating composition characterized in that the content of the silane coupling agent is 1 to 10 wt% with respect to the total of the poly-α-olefin and the silane coupling agent.
Figure 0006895364
Here, R 1 is a hydrogen or methyl group, and R 2 is a linear alkyl group having 5 to 20 carbon atoms.
請求項1に記載の前記放熱性塗料組成物を含み、基材の表面に形成されたことを特徴とする放熱性被膜。 A heat-dissipating coating comprising the heat-dissipating coating composition according to claim 1 and formed on the surface of a base material. 厚さが15〜50μmであることを特徴とする請求項2に記載の放熱性被膜。 The heat-dissipating coating according to claim 2 , wherein the thickness is 15 to 50 μm. 前記基材は、アルミニウムを含む材料から形成されていることを特徴とする請求項2又は請求項3に記載の放熱性被膜。 The heat-dissipating coating according to claim 2 or 3 , wherein the base material is formed of a material containing aluminum. 無機粒子から形成された放熱性フィラーの含有量が0.1wt%以下であることを特徴とする請求項2〜請求項4のいずれか1つの項に記載の放熱性被膜。 The heat-dissipating coating according to any one of claims 2 to 4 , wherein the content of the heat-dissipating filler formed from the inorganic particles is 0.1 wt% or less. 無機粒子から形成された放熱性フィラーを含まないことを特徴とする請求項2〜請求項5のいずれか1つの項に記載の放熱性被膜。 The heat-dissipating coating according to any one of claims 2 to 5 , wherein the heat-dissipating filler formed from inorganic particles is not contained. 基材の表面に被膜を形成するための被膜形成方法であって、
以下の化学式(1)で表される組成物とシランカップリング剤とを含む溶液を前記基材の表面に塗布する第1工程と、
前記第1工程の後に、前記溶液が塗布された前記基材を100℃〜150℃で加熱する第2工程とを含み、
前記化学式(1)のR は炭素数が10〜15の直鎖アルキル基であり、
シランカップリング剤の含有量が、ポリ−α−オレフィンとシランカップリング剤との合計に対して1〜10wt%であることを特徴とする被膜形成方法。
Figure 0006895364
ここで、Rは水素又はメチル基であり、Rは炭素数が5〜20の直鎖アルキル基である。
A film forming method for forming a film on the surface of a base material.
The first step of applying a solution containing the composition represented by the following chemical formula (1) and a silane coupling agent to the surface of the base material, and
After the first step, the second step of heating the base material coated with the solution at 100 ° C. to 150 ° C. is included.
R 2 of the chemical formula (1) is a linear alkyl group having 10 to 15 carbon atoms.
A film forming method characterized in that the content of the silane coupling agent is 1 to 10 wt% with respect to the total of the poly-α-olefin and the silane coupling agent.
Figure 0006895364
Here, R 1 is a hydrogen or methyl group, and R 2 is a linear alkyl group having 5 to 20 carbon atoms.
JP2017203110A 2017-10-20 2017-10-20 Heat-dissipating paint composition, heat-dissipating coating and coating method Active JP6895364B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017203110A JP6895364B2 (en) 2017-10-20 2017-10-20 Heat-dissipating paint composition, heat-dissipating coating and coating method
US16/155,200 US20190119520A1 (en) 2017-10-20 2018-10-09 Thermally emissive coating material composition, thermally emissive coating and coating forming method
CN201811201517.1A CN109694625B (en) 2017-10-20 2018-10-16 Thermal emission coating material composition, thermal emission coating layer, and coating layer forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017203110A JP6895364B2 (en) 2017-10-20 2017-10-20 Heat-dissipating paint composition, heat-dissipating coating and coating method

Publications (2)

Publication Number Publication Date
JP2019077736A JP2019077736A (en) 2019-05-23
JP6895364B2 true JP6895364B2 (en) 2021-06-30

Family

ID=66170938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017203110A Active JP6895364B2 (en) 2017-10-20 2017-10-20 Heat-dissipating paint composition, heat-dissipating coating and coating method

Country Status (3)

Country Link
US (1) US20190119520A1 (en)
JP (1) JP6895364B2 (en)
CN (1) CN109694625B (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277379A (en) * 1995-04-05 1996-10-22 Masahiro Shigemitsu Silica-based coating material
US6368708B1 (en) * 1996-06-20 2002-04-09 3M Innovative Properties Company Polyolefin microspheres
JP4014484B2 (en) * 2002-10-22 2007-11-28 三井化学株式会社 Heat-dissipating resin sheet
JP3952197B2 (en) * 2003-07-17 2007-08-01 日本ペイント株式会社 Metal surface treatment method and galvanized steel sheet
JP2006111848A (en) * 2004-09-14 2006-04-27 Idemitsu Kosan Co Ltd Heat-conductive resin composition
JP5064662B2 (en) * 2005-06-15 2012-10-31 出光興産株式会社 Modified α-olefin polymer and method for producing crosslinked product thereof
JP2008214535A (en) * 2007-03-06 2008-09-18 Idemitsu Kosan Co Ltd Endothermic and heat shock-alleviating material
JP2008303314A (en) * 2007-06-08 2008-12-18 Sumitomo Seika Chem Co Ltd Powdered coating composition
JP6014299B2 (en) * 2008-09-01 2016-10-25 東レ・ダウコーニング株式会社 Thermally conductive silicone composition and semiconductor device
CN102414020B (en) * 2009-05-11 2016-04-20 新日铁住金株式会社 Surface-treated metal material and manufacture method thereof
JP2011074251A (en) * 2009-09-30 2011-04-14 Dainippon Toryo Co Ltd Rust prevention primer for aluminum member and aluminum member
JP2011138857A (en) * 2009-12-28 2011-07-14 Shin-Etsu Chemical Co Ltd Method of manufacturing electronic device with excellent heat dissipation and rework properties, and electronic device
EP3034531A1 (en) * 2014-12-19 2016-06-22 Evonik Degussa GmbH Dispersion for easy use in the production of encapsulation films

Also Published As

Publication number Publication date
CN109694625B (en) 2021-05-11
CN109694625A (en) 2019-04-30
JP2019077736A (en) 2019-05-23
US20190119520A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
US6451382B2 (en) Method for improving heat efficiency using silane coatings and coated articles produced thereby
JP6454954B2 (en) Composition, antireflection layer using the same, method for forming the same, glass having the same, and solar cell module
TW201823258A (en) Liquid composition for film formation and method for producing same
CN1155672C (en) Coating compositions with a base consisting of silanes contg. epoxide groups
Seok et al. Preparation of corrosion protective coatings on galvanized iron from aqueous inorganic–organic hybrid sols by sol–gel method
JP6895364B2 (en) Heat-dissipating paint composition, heat-dissipating coating and coating method
JP2019011463A (en) Composition
JPH04202481A (en) Composition for treating metal surface
KR101378096B1 (en) pre-construction Anti-corrosive Primer Paint and forming the coating layer using the same
JP2014205743A (en) Inorganic coating composition and coated article thereof
JP5605598B1 (en) Rust preventive composition
JP4131244B2 (en) Rust preventives and painted articles
JP2004256696A (en) Silicon-containing zinc rich hybrid japanese lacquer composition
JP2002115084A (en) Surface treating agent, surface treatment film and surface modified metallic material
JP2012116969A (en) Coating composition
JP4573506B2 (en) Rust preventive paint composition
JP2009280692A (en) Metal-coating material, light emitting device, and method for protecting metal surface
JP5051341B2 (en) Protective agent for concrete structure, method for producing the same, and method for protecting concrete structure
WO2019189791A1 (en) Mixed composition
JP2016050276A (en) Surface treatment agent for coated steel panel
JP7461187B2 (en) coating composition
JP2019210354A (en) Resin composition, molding, laminate, gas barrier material, coating material and adhesive
JP6080071B2 (en) Coating agent composition for metal painting
JP2017226764A (en) Coating film, manufacturing method of coating film and coating composition
JPH04337373A (en) Coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6895364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150