JP6895348B2 - Infrared light emitting element - Google Patents

Infrared light emitting element Download PDF

Info

Publication number
JP6895348B2
JP6895348B2 JP2017166618A JP2017166618A JP6895348B2 JP 6895348 B2 JP6895348 B2 JP 6895348B2 JP 2017166618 A JP2017166618 A JP 2017166618A JP 2017166618 A JP2017166618 A JP 2017166618A JP 6895348 B2 JP6895348 B2 JP 6895348B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
line
gaas substrate
mesa portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017166618A
Other languages
Japanese (ja)
Other versions
JP2019046900A (en
Inventor
訓史 八坂
訓史 八坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2017166618A priority Critical patent/JP6895348B2/en
Publication of JP2019046900A publication Critical patent/JP2019046900A/en
Application granted granted Critical
Publication of JP6895348B2 publication Critical patent/JP6895348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は赤外線発光素子に関する。 The present invention relates to an infrared light emitting device.

近年、中赤外の波長領域、特に波長が2.0μmから12μm程度である赤外線発光素子が注目されている。この波長領域はCO2や炭化水素などの気体分子による光吸収が見られる波長域であるため、LED光源、赤外線センサ、及び所望の波長帯のみを透過する光学フィルタを組み合わせ、吸収量を検出することで気体分子の濃度を計測する、低消費電力の非分散型ガスセンサとしての応用が期待されている。
特許文献1には、基板と基板の一面上に形成された半導体積層部を備え、基板の裏面(一面の反対面)が光取り出し面である赤外線発光素子が記載されている。この半導体積層部は、基板の一面側から第一導電型半導体層、発光層、および第二導電型半導体層をこの順に有し、InおよびSbを含む材料からなるメサ部を有する。また、基板としてGaAs基板が例示されている。そして、赤外線発光素子の発光効率(単位面積当たりの発光強度)を向上させる技術が記載されている。
In recent years, an infrared light emitting device having a wavelength region of mid-infrared, particularly a wavelength of about 2.0 μm to 12 μm, has attracted attention. Since this wavelength region is a wavelength region in which light absorption by gas molecules such as CO 2 and hydrocarbons can be seen, the absorption amount is detected by combining an LED light source, an infrared sensor, and an optical filter that transmits only the desired wavelength band. Therefore, it is expected to be applied as a low power consumption non-dispersive gas sensor that measures the concentration of gas molecules.
Patent Document 1 describes an infrared light emitting device having a substrate and a semiconductor laminated portion formed on one surface of the substrate, and the back surface (opposite surface of one surface) of the substrate is a light extraction surface. This semiconductor laminated portion has a first conductive type semiconductor layer, a light emitting layer, and a second conductive type semiconductor layer in this order from one surface side of the substrate, and has a mesa part made of a material containing In and Sb. Further, a GaAs substrate is exemplified as the substrate. Then, a technique for improving the luminous efficiency (emission intensity per unit area) of the infrared light emitting element is described.

特開2016−149392号公報Japanese Unexamined Patent Publication No. 2016-149392

基板の裏面を光取り出し面とする赤外線発光素子には、光取り出し効率を向上させることが求められているが、現状では光取り出し効率を向上させる有用な技術が提案されていない。
本発明の課題は、基板の裏面を光取り出し面とする赤外線発光素子の光取り出し効率を向上させることである。
Infrared light emitting devices having the back surface of the substrate as the light extraction surface are required to improve the light extraction efficiency, but at present, no useful technique for improving the light extraction efficiency has been proposed.
An object of the present invention is to improve the light extraction efficiency of an infrared light emitting element having the back surface of the substrate as the light extraction surface.

上記課題を解決するために、本発明の第一態様の赤外線発光素子は、下記の構成(1)〜(4)を有する。
(1)GaAs基板と、GaAs基板の一面上に形成された半導体積層部であって、一面側から第一導電型半導体層、発光層、および第二導電型半導体層をこの順に有し、第一導電型半導体層はInおよびSbを含む材料で形成され、一面から突出する第一メサ部と第一メサ部から突出する第二メサ部とを有し、第一メサ部と第二メサ部との境界が発光層よりもGaAs基板側に存在する半導体積層部と、を備える。
(2)GaAs基板の一面に対して垂直な断面において、以下に定義する基準線分S1と、GaAs基板の一面をなす一面線と、のなす角度αが、32.2°<α≦90°を満たす。基準線分S1とは、発光層の第二導電型半導体層との境界線の中心点Aと、第一メサ部の側面をなす第一側面線と一面線との共有点Bと、を結ぶ線分であって、第二メサ部の側面をなす第二側面線と交差しない線分である。
(3)GaAs基板の一面に対して垂直な断面において、基準側面線と一面線とのなす角度βが、32.2°<β≦90°を満たす。基準側面線とは、第二側面線を含む直線であって、第一側面線と交差しない直線である。
(4)一面の反対面であるGaAs基板の裏面が光取り出し面である。
In order to solve the above problems, the infrared light emitting device of the first aspect of the present invention has the following configurations (1) to (4).
(1) A GaAs substrate and a semiconductor laminated portion formed on one surface of the GaAs substrate, which has a first conductive semiconductor layer, a light emitting layer, and a second conductive semiconductor layer in this order from the one surface side. The one conductive semiconductor layer is formed of a material containing In and Sb, has a first mesa portion protruding from one surface and a second mesa portion protruding from the first mesa portion, and has a first mesa portion and a second mesa portion. A semiconductor laminated portion whose boundary with the light emitting layer is closer to the GaAs substrate side than the light emitting layer is provided.
(2) In a cross section perpendicular to one surface of the GaAs substrate, the angle α formed by the reference line segment S1 defined below and the one surface line forming one surface of the GaAs substrate is 32.2 ° <α ≦ 90 °. Meet. The reference line segment S1 connects the center point A of the boundary line between the light emitting layer and the second conductive semiconductor layer and the common point B between the first side surface line and the one surface line forming the side surface of the first mesa portion. It is a line segment that does not intersect with the second side surface line that forms the side surface of the second mesa portion.
(3) In the cross section perpendicular to one surface of the GaAs substrate, the angle β formed by the reference side surface line and the one surface line satisfies 32.2 ° <β ≦ 90 °. The reference side line is a straight line including the second side line and does not intersect with the first side line.
(4) The back surface of the GaAs substrate, which is the opposite surface of one surface, is the light extraction surface.

本発明の第二態様の赤外線発光素子は、上記構成(1)(3)(4)と下記の構成(5)を有する。
(5)GaAs基板の一面に対して垂直な断面において、以下に定義する基準直線S2と、GaAs基板の一面をなす一面線と、のなす角度γが、32.2°<γ≦90°を満たす。基準直線S2とは、発光層の第二導電型半導体層との境界線の中心点Aと、第一メサ部と第二メサ部との境界点Cと、を結ぶ線分を含む直線であって、第一メサ部の側面をなす第一側面線と交差しない直線である。
The infrared light emitting device of the second aspect of the present invention has the above configurations (1), (3) and (4) and the following configurations (5).
(5) In the cross section perpendicular to one surface of the GaAs substrate, the angle γ formed by the reference straight line S2 defined below and the one surface line forming one surface of the GaAs substrate is 32.2 ° <γ ≦ 90 °. Fulfill. The reference straight line S2 is a straight line including a line segment connecting the center point A of the boundary line between the light emitting layer and the second conductive semiconductor layer and the boundary point C between the first mesa portion and the second mesa portion. It is a straight line that does not intersect the first side surface line that forms the side surface of the first mesa part.

本発明の赤外線発光素子によれば、GaAs基板の一面に対して垂直な断面における角度αまたは角度γと角度βとを特定することにより、光取り出し効率の向上が期待できる。 According to the infrared light emitting device of the present invention, it is expected that the light extraction efficiency can be improved by specifying the angle α or the angle γ and the angle β in the cross section perpendicular to one surface of the GaAs substrate.

第一態様の赤外線発光素子のGaAs基板の一面に対して垂直な断面を示し、基準線分S1と角度αを説明する図である。It is a figure which shows the cross section perpendicular to one surface of the GaAs substrate of the infrared light emitting element of the 1st aspect, and explains the reference line segment S1 and the angle α. 第一態様および第二態様の赤外線発光素子のGaAs基板の一面に対して垂直な断面を示し、基準側面線L1と角度βを説明する図である。It is a figure which shows the cross section perpendicular to one surface of the GaAs substrate of the infrared light emitting element of the 1st aspect and 2nd aspect, and explains the reference side surface line L1 and the angle β. 第一態様および第二態様の赤外線発光素子のGaAs基板の一面に対して垂直な断面を示し、GaAsから空気に入射する光の屈折角θ3が90°となる入射角θ21と、そのためのInSbからGaAsに入射する光の入射角θ1とを説明する図である。From the incident angle θ21 at which the refraction angle θ3 of the light incident on the air from GaAs is 90 ° and the InSb for that purpose, which shows a cross section perpendicular to one surface of the GaAs substrate of the infrared light emitting element of the first aspect and the second aspect. It is a figure explaining the incident angle θ1 of the light incident on GaAs. 第一態様および第二態様の赤外線発光素子のGaAs基板の一面に対して垂直な断面を示し、角度βの好ましい範囲を説明する図である。It is a figure which shows the cross section perpendicular to one surface of the GaAs substrate of the infrared light emitting element of the 1st aspect and 2nd aspect, and explains the preferable range of an angle β. 第二態様の赤外線発光素子のGaAs基板の一面に対して垂直な断面を示し、基準直線S2と角度γを説明する図である。It is a figure which shows the cross section perpendicular to one surface of the GaAs substrate of the infrared light emitting element of the 2nd aspect, and explains the reference line S2 and the angle γ. 本発明の一実施形態の赤外線発光素子を示す平面図(a)と、そのA−A断面図(b)である。FIG. 3A is a plan view showing an infrared light emitting device according to an embodiment of the present invention, and FIG. 3B is a cross-sectional view taken along the line AA. 図6(b)の部分拡大図である。It is a partially enlarged view of FIG. 6 (b). 一実施形態の赤外線発光素子を構成する半導体積層部の形成方法を説明する断面図である。It is sectional drawing explaining the method of forming the semiconductor laminated part which comprises the infrared light emitting element of one Embodiment. 一実施形態の赤外線発光素子を含む赤外線発光装置を示す断面図である。It is sectional drawing which shows the infrared light emitting device which includes the infrared light emitting element of one Embodiment.

[本発明の第一態様および第二態様に関する詳細な説明]
本発明の第一態様の赤外線発光素子は、GaAs基板を備え、光取り出し面がGaAs基板の裏面(半導体積層部が形成されている一面の反対面)であり、半導体積層部が第一メサ部と第二メサ部を有し、第一導電型半導体層がInおよびSbを含む材料で形成された赤外線発光素子において、上記構成(2)および(3)を有することを特徴とする。
波長4.0μmの場合、InSbの屈折率n1は3.9であり、GaAsの屈折率n2は3.3であるため、スネルの法則(n1×sinθ1=n2×sinθ2)により、InSbからGaAsに入射する光の屈折角θ2が90°となる入射角θ1は、θ1=sin-1(n2/n1)=57.79577°≒57.8°である。
[Detailed description of the first aspect and the second aspect of the present invention]
The infrared light emitting device of the first aspect of the present invention includes a GaAs substrate, the light extraction surface is the back surface of the GaAs substrate (the opposite surface of one surface on which the semiconductor laminated portion is formed), and the semiconductor laminated portion is the first mesa portion. An infrared light emitting device having a second mesa portion and a first conductive semiconductor layer made of a material containing In and Sb, characterized by having the above configurations (2) and (3).
When the wavelength is 4.0 μm, the refractive index n1 of InSb is 3.9 and the refractive index n2 of GaAs is 3.3. Therefore, according to Snell's law (n1 × sinθ1 = n2 × sinθ2), InSb is changed to GaAs. The incident angle θ1 at which the refraction angle θ2 of the incident light is 90 ° is θ1 = sin -1 (n2 / n1) = 57.79577 ° ≈57.8 °.

つまり、この赤外線発光素子の第一導電型半導体層31がInSb層である場合、図1に示すように、GaAs基板2の一面に対して垂直な断面において、発光層33の第二導電型半導体層35との境界線の中心点Aから、第一メサ部301の側面をなす第一側面線L301とGaAs基板2の一面をなす一面線L21との共有点Bに向かう波長4.0μmの光は、入射角θ1が57.8°の時に屈折角θ2が90°になる。よって、点Aと点Bを結ぶ基準線分S1と一面線L21とのなす角度α(90°−θ1)が32.2°より大きければ(例えば32.3°以上であれば)、この光は全反射しないで、GaAs基板2に入る。なお、一般的に半導体積層部を形成する各半導体層の屈折率差は小さいため、発光層33から第一導電型半導体層31に入射する光はほぼ直進するものと考えることができる。 That is, when the first conductive semiconductor layer 31 of the infrared light emitting element is the InSb layer, as shown in FIG. 1, the second conductive semiconductor of the light emitting layer 33 has a cross section perpendicular to one surface of the GaAs substrate 2. Light having a wavelength of 4.0 μm from the center point A of the boundary line with the layer 35 toward the common point B between the first side surface line L301 forming the side surface of the first mesa portion 301 and the one side line L21 forming one surface of the GaAs substrate 2. When the incident angle θ1 is 57.8 °, the refraction angle θ2 becomes 90 °. Therefore, if the angle α (90 ° −θ1) formed by the reference line segment S1 connecting the points A and B and the one-sided line L21 is larger than 32.2 ° (for example, if it is 32.3 ° or more), this light Enters the GaAs substrate 2 without total internal reflection. Since the difference in refractive index between the semiconductor layers forming the semiconductor laminated portion is generally small, it can be considered that the light incident on the first conductive semiconductor layer 31 from the light emitting layer 33 travels substantially straight.

すなわち、上記構成(2)を有することで、第一導電型半導体層31がInSb層である場合、理想的には中心点AからGaAs基板2に向かう波長4.0μmの光の全てをGaAs基板に入射させることができる。よって、第一態様の赤外線発光素子は、上記構成(2)を有することで光取り出し効率の向上が期待できる。
また、この赤外線発光素子の第一導電型半導体層31がInSb層である場合、図2に示すように、GaAs基板の一面に対して垂直な断面において、発光層33の第二メサ部302の側面をなす第二側面線L302を含む直線L1と、一面線L21とのなす角度βが32.2°以下であれば、直線L1に沿ってGaAs基板2に向かう光は、上記と同じ理由で、全反射しないでGaAs基板2に入る。
That is, by having the above configuration (2), when the first conductive semiconductor layer 31 is an InSb layer, ideally, all the light having a wavelength of 4.0 μm from the center point A toward the GaAs substrate 2 is emitted from the GaAs substrate. Can be incident on. Therefore, the infrared light emitting device of the first aspect can be expected to improve the light extraction efficiency by having the above configuration (2).
When the first conductive semiconductor layer 31 of the infrared light emitting element is an InSb layer, as shown in FIG. 2, the second mesa portion 302 of the light emitting layer 33 has a cross section perpendicular to one surface of the GaAs substrate. If the angle β formed by the straight line L1 including the second side surface line L302 forming the side surface and the one side line L21 is 32.2 ° or less, the light directed to the GaAs substrate 2 along the straight line L1 is for the same reason as described above. , Enters the GaAs substrate 2 without total reflection.

これに対して、図2に二点鎖線で示すように、第二メサ部の側面の傾斜が実線の傾斜より小さい(すなわち、角度βが32.2°より小さい)と、第二側面線L302を含む直線L10に沿ってGaAs基板2に向かう光は界面で全反射する。そのため、二点鎖線で示す第二側面線L302を有する赤外線発光素子の場合は、直線L10と角度βが32.2°である直線L1との間でGaAs基板2に向かう光Eは、GaAs基板2に入らない。
つまり、β>32.2°を満たすことで、第一導電型半導体層31がInSb層である場合、発光層の幅方向端部Dから第二側面線L302を含む直線L1に沿って向かう波長4.0μmの光を理想的には全てGaAs基板に入射させることができる。
よって、第一態様の赤外線発光素子は、上記構成(3)を有することで光取り出し効率の向上が期待できる。
On the other hand, as shown by the alternate long and short dash line in FIG. 2, when the inclination of the side surface of the second mesa portion is smaller than the inclination of the solid line (that is, the angle β is smaller than 32.2 °), the second side surface line L302 The light directed to the GaAs substrate 2 along the straight line L10 including the above is totally reflected at the interface. Therefore, in the case of an infrared light emitting device having a second side line L302 indicated by a two-dot chain line, the light E directed to the GaAs substrate 2 between the straight line L10 and the straight line L1 having an angle β of 32.2 ° is the GaAs substrate. Does not fit in 2.
That is, by satisfying β> 32.2 °, when the first conductive semiconductor layer 31 is an InSb layer, the wavelength directed from the widthwise end D of the light emitting layer along the straight line L1 including the second side surface line L302. Ideally, all 4.0 μm light can be incident on the GaAs substrate.
Therefore, the infrared light emitting device of the first aspect can be expected to improve the light extraction efficiency by having the above configuration (3).

また、第二メサ部の側面の傾斜が小さいほど、発光層の幅方向両端部からGaAs基板2に入らない光の量が多くなるだけでなく、赤外線発光素子の幅が大きくなる。そのため、β≦32.2°であることは、赤外線発光素子の小型化という点でも好ましくない。
一方、GaAs基板と空気との界面を考えると、波長4.0μmの場合、空気の屈折率n3は1.0であり、GaAsの屈折率n2は3.3である。そのため、図3に示すように、GaAs基板から空気に入射する光の入射角をθ21とし、屈折角をθ3とすると、スネルの法則(n2×sinθ21=n3×sinθ3)により、屈折角θ3が90°となる入射角θ21は、θ21=sin-1(n3/n2)=17.6397°≒17.6である。
Further, the smaller the inclination of the side surface of the second mesa portion, the larger the amount of light that does not enter the GaAs substrate 2 from both ends in the width direction of the light emitting layer, and the wider the width of the infrared light emitting element. Therefore, β ≦ 32.2 ° is not preferable in terms of miniaturization of the infrared light emitting element.
On the other hand, considering the interface between the GaAs substrate and air, the refractive index n3 of air is 1.0 and the refractive index n2 of GaAs is 3.3 when the wavelength is 4.0 μm. Therefore, as shown in FIG. 3, assuming that the incident angle of light incident on the air from the GaAs substrate is θ21 and the refraction angle is θ3, the refraction angle θ3 is 90 according to Snell's law (n2 × sin θ21 = n3 × sin θ3). The incident angle θ21 at ° is θ21 = sin -1 (n3 / n2) = 17.6397 ° ≈ 17.6.

つまり、入射角θ21が17.6°より大きければ、GaAs基板2に入った光を裏面22から空気中に取り出せる。
そして、入射角θ21と屈折角θ2は同じであるため、屈折角θ2が17.6になる入射角θ1は、θ1=sin-1(n2/n1)=14.824°≒14.8°となり、θ1が14.8°未満(つまりθ1の余角δが75.2°より大)であれば、InSb層31からGaAs基板2に入った波長4.0μmの光を裏面22から空気中に取り出せる。
よって、余角δに相当する角度αが75.2°より大きければ(例えば75.3°以上であれば)、第一導電型半導体層31がInSb層である場合、中心点Aから点Bを通ってGaAs基板2に入った波長4.0μmの光を、理想的には全てGaAs基板2の裏面から空気中に取り出せるため好ましい。
That is, if the incident angle θ21 is larger than 17.6 °, the light entering the GaAs substrate 2 can be taken out into the air from the back surface 22.
Since the incident angle θ21 and the refraction angle θ2 are the same, the incident angle θ1 at which the refraction angle θ2 is 17.6 is θ1 = sin -1 (n2 / n1) = 14.824 ° ≈ 14.8 °. If θ1 is less than 14.8 ° (that is, the marginal angle δ of θ1 is larger than 75.2 °), light having a wavelength of 4.0 μm entering the GaAs substrate 2 from the InSb layer 31 is introduced into the air from the back surface 22. Can be taken out.
Therefore, if the angle α corresponding to the margin angle δ is larger than 75.2 ° (for example, if it is 75.3 ° or more), when the first conductive semiconductor layer 31 is an InSb layer, the center point A to the point B Ideally, all the light having a wavelength of 4.0 μm that has passed through the GaAs substrate 2 and entered the GaAs substrate 2 can be taken out into the air from the back surface of the GaAs substrate 2, which is preferable.

また、発光層33の幅方向端部DからGaAs基板2に向かう波長4.0μmの光についても、入射角θ1の余角δが75.2°より大きい光は、InSb層31からGaAs基板2に入って裏面22から空気中に取り出せる。そして、図4に示すように、余角δに相当する角度βについて、第二側面線L302が二点鎖線で示されるβ=90°の場合は、第二側面線L302が実線で示されるβ=75.2°の場合よりも、三角形Fで示す面積分だけ上記光の空気中への取り出し量が少なくなる。つまり、角度βが75.2°より大きいと、上記光の空気中への取り出し量が少なくなるため、角度βは75.2°以下であることが好ましい。 Further, with respect to the light having a wavelength of 4.0 μm from the widthwise end D of the light emitting layer 33 toward the GaAs substrate 2, the light having a marginal angle δ of the incident angle θ1 larger than 75.2 ° is emitted from the InSb layer 31 to the GaAs substrate 2. It can be taken out into the air from the back surface 22. Then, as shown in FIG. 4, when the second side surface line L302 is β = 90 ° indicated by the alternate long and short dash line for the angle β corresponding to the margin angle δ, the second side surface line L302 is indicated by the solid line β. The amount of light taken out into the air is smaller by the area indicated by the triangle F than in the case of = 75.2 °. That is, when the angle β is larger than 75.2 °, the amount of the light taken out into the air is small, so that the angle β is preferably 75.2 ° or less.

本発明の第二態様の赤外線発光素子は、GaAs基板を備え、光取り出し面がGaAs基板の裏面(半導体積層部が形成されている一面の反対面)であり、半導体積層部が第一メサ部と第二メサ部を有し、第一導電型半導体層がInおよびSbを含む材料で形成された赤外線発光素子において、上記構成(3)および(5)を有することを特徴とする。
この赤外線発光素子の第一導電型半導体層31がInSb層である場合、図5に示すように、GaAs基板2の一面に対して垂直な断面において、発光層33の第二導電型半導体層35との境界線の中心点Aから、第一メサ部301と第二メサ部302との境界点Cを通ってGaAs基板2に向かう波長4.0μmの光は、入射角θ1が57.8°の時に屈折角θ2が90°になる。よって、基準直線S2と一面線L21とのなす角度γ(90°−θ1)が32.2°より大きければ(例えば、32.3°以上)であれば、この光は全反射しないで、GaAs基板2に入る。
The infrared light emitting device of the second aspect of the present invention includes a GaAs substrate, the light extraction surface is the back surface of the GaAs substrate (the opposite surface of one surface on which the semiconductor laminated portion is formed), and the semiconductor laminated portion is the first mesa portion. An infrared light emitting device having a second mesa portion and a first conductive semiconductor layer made of a material containing In and Sb, characterized by having the above configurations (3) and (5).
When the first conductive semiconductor layer 31 of the infrared light emitting element is an InSb layer, as shown in FIG. 5, the second conductive semiconductor layer 35 of the light emitting layer 33 has a cross section perpendicular to one surface of the GaAs substrate 2. Light having a wavelength of 4.0 μm from the center point A of the boundary line with and through the boundary point C between the first mesa portion 301 and the second mesa portion 302 toward the GaAs substrate 2 has an incident angle θ1 of 57.8 °. At this time, the refraction angle θ2 becomes 90 °. Therefore, if the angle γ (90 ° −θ1) formed by the reference straight line S2 and the one-sided line L21 is larger than 32.2 ° (for example, 32.3 ° or more), this light is not totally reflected and is GaAs. Enter the substrate 2.

すなわち、上記構成(5)を有することで、第一導電型半導体層31がInSb層である場合、中心点Aから点Cを通ってGaAs基板2に向かう波長4.0μmの光を、理想的には全てGaAs基板に入射させることができる。よって、第二態様の赤外線発光素子は、上記構成(5)を有することで光取り出し効率の向上が期待できる。
なお、第二態様の赤外線発光素子が上記構成(3)を有することで光取り出し効率の向上が期待できる理由は、第一態様の赤外線発光素子で説明された理由と同じである。
また、GaAs基板と空気との界面での考察については、角度γが、第一態様の赤外線発光素子での説明の余角δに相当する。
That is, by having the above configuration (5), when the first conductive semiconductor layer 31 is an InSb layer, light having a wavelength of 4.0 μm from the center point A to the GaAs substrate 2 through the point C is ideal. Can all be incident on a GaAs substrate. Therefore, the infrared light emitting device of the second aspect can be expected to improve the light extraction efficiency by having the above configuration (5).
The reason why the light extraction efficiency can be expected to be improved by having the infrared light emitting element of the second aspect having the above configuration (3) is the same as the reason explained in the infrared light emitting element of the first aspect.
Further, regarding the consideration at the interface between the GaAs substrate and the air, the angle γ corresponds to the margin angle δ described in the infrared light emitting device of the first aspect.

よって、第二態様の赤外線発光素子の場合も、余角δに相当する角度γが75.2°より大きければ(例えば75.3°以上であれば)、第一導電型半導体層31がInSb層である場合、中心点Aから点Cを通ってGaAs基板2に入った波長4.0μmの光を、理想的には全てGaAs基板2の裏面から空気中に取り出せるため好ましい。
また、角度βについては、第一の対応で説明した理由と同じで、75.2°以下であることが好ましい。
以上、本発明の第一態様および第二態様について、第一導電型半導体層がInSbの場合を例に挙げて説明したが、InおよびSbを含む半導体層はInSbの屈折率と近い屈折率を有するため、第一導電型半導体層がInSb以外の材料(例えばInAsSbやAlInSbなど)の場合にも、上記と同様の効果が期待できる。
Therefore, even in the case of the infrared light emitting device of the second aspect, if the angle γ corresponding to the residual angle δ is larger than 75.2 ° (for example, if it is 75.3 ° or more), the first conductive semiconductor layer 31 is InSb. In the case of a layer, it is preferable because all the light having a wavelength of 4.0 μm that has entered the GaAs substrate 2 from the center point A through the point C can be ideally taken out into the air from the back surface of the GaAs substrate 2.
Further, the angle β is preferably 75.2 ° or less for the same reason as described in the first correspondence.
The first aspect and the second aspect of the present invention have been described above by taking the case where the first conductive semiconductor layer is InSb as an example, but the semiconductor layer containing In and Sb has a refractive index close to that of InSb. Therefore, the same effect as described above can be expected even when the first conductive semiconductor layer is made of a material other than InSb (for example, InAsSb or AlInSb).

以下、本発明の第一態様および第二態様の赤外線発光素子の構成について説明する。
<半導体積層部>
半導体積層部は、GaAs基板の一面上に形成され、この一面側から第一導電型半導体層、発光層、および第二導電型半導体層をこの順に有し、第一導電型半導体層はInおよびSbを含む材料で形成されている。また、GaAs基板の一面から突出する第一メサ部と第一メサ部から突出する第二メサ部とを有し、第一メサ部と第二メサ部との境界が発光層よりもGaAs基板側に存在する。ここで、第一導電型とは、n型、i型およびp型のいずれでもよい。また、第二導電型についても、n型、i型およびp型のいずれでもよい。第一導電型半導体層と第二導電型半導体層は異なる導電型を有することが好ましい。
Hereinafter, the configurations of the infrared light emitting device according to the first aspect and the second aspect of the present invention will be described.
<Semiconductor laminate>
The semiconductor laminated portion is formed on one surface of a GaAs substrate, and has a first conductive semiconductor layer, a light emitting layer, and a second conductive semiconductor layer in this order from the one surface side, and the first conductive semiconductor layer is In and It is made of a material containing Sb. Further, it has a first mesa portion protruding from one surface of the GaAs substrate and a second mesa portion protruding from the first mesa portion, and the boundary between the first mesa portion and the second mesa portion is closer to the GaAs substrate than the light emitting layer. Exists in. Here, the first conductive type may be any of n type, i type and p type. Further, the second conductive type may be any of n type, i type and p type. It is preferable that the first conductive type semiconductor layer and the second conductive type semiconductor layer have different conductive types.

半導体積層部は、第一導電型半導体層、発光層、および第二導電型半導体層以外の層を含んでいてもよい。具体的には、第一導電型半導体層と発光層の間に、さらに別の層を有してもよい。例えば第一導電型半導体層がi型のバッファ層の場合に、このバッファ層と発光層の間にn型の半導体層を有してもよい。また、発光層と第二導電型半導体層の間に、さらに別の層を有してもよい。
半導体積層部は、例えば、半絶縁性のGaAs基板上にn型半導体層(p型半導体層)、発光層、p型半導体層(n型半導体層)をこの順に成膜し、この積層体をウエットエッチング、或いはドライエッチングの手法を用いて、2段階の加工を行う事により形成される。成膜の方法としては、例えば分子線エピタキシー法(MBE)、或いは有機金属気相成長法(MOCVD)が挙げられる。
The semiconductor laminated portion may include a layer other than the first conductive type semiconductor layer, the light emitting layer, and the second conductive type semiconductor layer. Specifically, another layer may be provided between the first conductive semiconductor layer and the light emitting layer. For example, when the first conductive type semiconductor layer is an i-type buffer layer, an n-type semiconductor layer may be provided between the buffer layer and the light emitting layer. Further, another layer may be provided between the light emitting layer and the second conductive semiconductor layer.
In the semiconductor laminate, for example, an n-type semiconductor layer (p-type semiconductor layer), a light emitting layer, and a p-type semiconductor layer (n-type semiconductor layer) are formed on a semi-insulating GaAs substrate in this order, and the laminate is formed. It is formed by performing two-step processing using a wet etching or dry etching method. Examples of the film forming method include a molecular beam epitaxy method (MBE) and a metalorganic vapor phase growth method (MOCVD).

第一導電型半導体層はInおよびSbを含む材料で形成された層である。発光層および第二導電型半導体層も、InおよびSbを含む材料で形成された層とすることが好ましい。InおよびSbを含む材料としては、InSb、InGaSb、AlGaSb、InAs、InAlAs、InAlSbおよびInAsSbなどが挙げられる。発光層がこれらの材料で構成されることで、上述した波長4.0μmの赤外線を効率良く発生させることが可能となる。 The first conductive semiconductor layer is a layer made of a material containing In and Sb. The light emitting layer and the second conductive semiconductor layer are also preferably layers made of a material containing In and Sb. Examples of the material containing In and Sb include InSb, InGaSb, AlGaSb, InAs, InAlAs, InAlSb and InAsSb. When the light emitting layer is made of these materials, it is possible to efficiently generate the above-mentioned infrared rays having a wavelength of 4.0 μm.

<封止部>
本発明の第一態様および第二態様の赤外線発光素子は、裏面の少なくとも一部を露出し、半導体積層部を封止する封止部を備えることが好ましい。これにより、半導体積層部を外部環境から保護することができる。封止部の材料としては、例えばエポキシ樹脂、フェノール樹脂などの樹脂製モールド材を用いることができる。その際、SiO2やAl23などのフィラーを含む樹脂製モールド材を用いてもよい。またポリイミド、ポリアミド、シリコーン樹脂などからなる応力緩和層(バッファ層)を、半導体積層部と封止部との間に設けてもよい。
<Sealing part>
It is preferable that the infrared light emitting device of the first aspect and the second aspect of the present invention includes a sealing portion that exposes at least a part of the back surface and seals the semiconductor laminated portion. Thereby, the semiconductor laminated portion can be protected from the external environment. As the material of the sealing portion, for example, a resin molding material such as an epoxy resin or a phenol resin can be used. At that time, a resin molding material containing a filler such as SiO 2 or Al 2 O 3 may be used. Further, a stress relaxation layer (buffer layer) made of polyimide, polyamide, silicone resin or the like may be provided between the semiconductor laminated portion and the sealing portion.

<金属層>
本発明の第一形態および第二態様の赤外線発光素子は、金属層を備えることが好ましい。この金属層は、第一メサ部の第一導電型半導体層に接触する第一部分と、第一部分とは独立した部分であって第二メサ部の第二導電型半導体層に接触する第二部分と、を有する。金属層の第一部分および第二部分は、通常、半導体積層部に絶縁層を介して形成され、この絶縁層に設けた開口部を介して第一導電型半導体層および第二導電型半導体層と接触する。また、金属層は、第一メサ側に形成された第一金属層(第一部分を含む)と、第二メサ側に形成された第二金属層(第二部分を含む)とに分かれていて、第一金属層と第二金属層がそれぞれGaAs基板の一面上に形成された第三部分を有する形態をとることができる。
<Metal layer>
The infrared light emitting device of the first aspect and the second aspect of the present invention preferably includes a metal layer. This metal layer has a first portion that contacts the first conductive semiconductor layer of the first mesa portion and a second portion that is independent of the first portion and contacts the second conductive semiconductor layer of the second mesa portion. And have. The first portion and the second portion of the metal layer are usually formed in the semiconductor laminated portion via an insulating layer, and the first conductive type semiconductor layer and the second conductive type semiconductor layer are formed through an opening provided in the insulating layer. Contact. Further, the metal layer is divided into a first metal layer (including the first portion) formed on the first mesa side and a second metal layer (including the second portion) formed on the second mesa side. , The first metal layer and the second metal layer can each have a third portion formed on one surface of a GaAs substrate.

金属層は、第一導電型半導体層と第二導電型半導体層との外部電源を介した電気的接続のための電極として用いられる。また、GaAs基板上に複数の半導体積層部を設ける場合に、これらを直列接続するための配線として用いられる。また、金属層がGaAs基板の一面上に形成されること(第三部分を有すること)で、発光層で発生した光のGaAs基板の一面での反射率が高くなり、発光層で発生した光を光取り出し面(GaAs基板の裏面)から効率よく取り出すことができる。
この金属層は、半導体積層部およびGaAs基板側から例えば、密着層、バリア層、低抵抗層の順に積層された積層構造を有することが好ましい。
The metal layer is used as an electrode for electrical connection between the first conductive semiconductor layer and the second conductive semiconductor layer via an external power source. Further, when a plurality of semiconductor laminated portions are provided on a GaAs substrate, they are used as wiring for connecting these in series. Further, since the metal layer is formed on one surface of the GaAs substrate (having a third portion), the reflectance of the light generated in the light emitting layer on one surface of the GaAs substrate is increased, and the light generated in the light emitting layer is increased. Can be efficiently extracted from the light extraction surface (the back surface of the GaAs substrate).
The metal layer preferably has a laminated structure in which, for example, an adhesion layer, a barrier layer, and a low resistance layer are laminated in this order from the semiconductor laminated portion and the GaAs substrate side.

積層構造の密着層は、TiやCrなど、絶縁層との密着性が良く、n型半導体層、p型半導体層との接触抵抗の低い材料が用いられる。バリア層は、金属層材料と半導体層との相互拡散を抑制するために設けられ、例えばPtを用いることができる。低抵抗層は、金属層を介した外部との接続または複数の半導体積層部間の接続において、不要な電位差による電圧ロスを生じさせないために、低抵抗であることが望ましく、例えばAuを用いることができる。
また、金属層が積層構造である場合の密着層は、金属層の第三部分が発光層で発生した光を反射する役割を有することから、光の吸収損失が少ないことが望ましい。
As the adhesion layer of the laminated structure, a material having good adhesion to the insulating layer such as Ti or Cr and having low contact resistance with the n-type semiconductor layer and the p-type semiconductor layer is used. The barrier layer is provided to suppress mutual diffusion between the metal layer material and the semiconductor layer, and for example, Pt can be used. The low resistance layer is preferably low resistance in order not to cause voltage loss due to an unnecessary potential difference in connection with the outside via a metal layer or connection between a plurality of semiconductor laminates. For example, Au is used. Can be done.
Further, when the metal layer has a laminated structure, the adhesion layer has a role of reflecting the light generated in the light emitting layer by the third portion of the metal layer, so that it is desirable that the light absorption loss is small.

[実施形態]
以下、図面を参照して本発明の実施形態を説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。
図6に示すように、この実施形態の赤外線発光素子1は、GaAs基板2、半導体積層部3、絶縁層4、金属層5、および裏面絶縁膜6を備えている。
GaAs基板2の一面21は[100]面であり、裏面22は[−100]面である。GaAs基板2の一面21に半導体積層部3が形成されている。
[Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the embodiments shown below. In the embodiments shown below, technically preferable limitations are made for carrying out the present invention, but these limitations are not essential requirements of the present invention.
As shown in FIG. 6, the infrared light emitting element 1 of this embodiment includes a GaAs substrate 2, a semiconductor laminated portion 3, an insulating layer 4, a metal layer 5, and a back surface insulating film 6.
One side 21 of the GaAs substrate 2 is a [100] side, and the back side 22 is a [-100] side. The semiconductor laminated portion 3 is formed on one surface 21 of the GaAs substrate 2.

半導体積層部3は、GaAs基板2の一面21から突出する第一メサ部301と第一メサ部301から突出する第二メサ部302とからなる二段メサ構造を有する。
半導体積層部3は、図7に示すように、GaAs基板2側から、SnドープInSb層(n型半導体層、第一導電型半導体層に相当)31、SnドープAlInSb層(n型バリア層)32、ノンドープのAlInSb層(発光層に相当)33、ZnドープAlInSb層(p型バリア層)34、およびZnドープAlInSb層(p型半導体層、第二導電型半導体層に相当)35をこの順に有する。図6および図7に示すように、第一メサ部301と第二メサ部302との境界がSnドープInSb層31内に存在する。
The semiconductor laminated portion 3 has a two-stage mesa structure including a first mesa portion 301 protruding from one surface 21 of the GaAs substrate 2 and a second mesa portion 302 protruding from the first mesa portion 301.
As shown in FIG. 7, the semiconductor laminated portion 3 includes a Sn-doped InSb layer (corresponding to an n-type semiconductor layer and a first conductive semiconductor layer) 31 and a Sn-doped AlInSb layer (n-type barrier layer) from the GaAs substrate 2 side. 32, non-doped AlInSb layer (corresponding to light emitting layer) 33, Zn-doped AlInSb layer (p-type barrier layer) 34, and Zn-doped AlInSb layer (corresponding to p-type semiconductor layer, second conductive semiconductor layer) 35 in this order. Have. As shown in FIGS. 6 and 7, the boundary between the first mesa portion 301 and the second mesa portion 302 exists in the Sn-doped InSb layer 31.

半導体積層部3は、図8に示すように、GaAs基板2上に、n型半導体層31、n型バリア層32、発光層33、p型バリア層34、p型半導体層45、からなる半導体積層体30を形成した後に、一点鎖線に沿ったメサエッチングと、その後の二点鎖線に沿ったメサエッチングを行うことで形成される。
絶縁層4は、半導体積層部3の第一メサ部301および第二メサ部302の上面と側面、およびGaAs基板2の一面21上の第一メサ部301の周囲に形成されている。絶縁層4は、第一メサ部301のn型半導体層31上に第一開口部41を有する。第二メサ部302のp型半導体層35上に第二開口部42を有する。
As shown in FIG. 8, the semiconductor laminated portion 3 is a semiconductor composed of an n-type semiconductor layer 31, an n-type barrier layer 32, a light emitting layer 33, a p-type barrier layer 34, and a p-type semiconductor layer 45 on a GaAs substrate 2. After forming the laminate 30, it is formed by performing mesa etching along the alternate long and short dash line and then mesa etching along the alternate long and short dash line.
The insulating layer 4 is formed around the upper surfaces and side surfaces of the first mesa portion 301 and the second mesa portion 302 of the semiconductor laminated portion 3 and the first mesa portion 301 on one surface 21 of the GaAs substrate 2. The insulating layer 4 has a first opening 41 on the n-type semiconductor layer 31 of the first mesa portion 301. The second opening 42 is provided on the p-type semiconductor layer 35 of the second mesa portion 302.

金属層5は、第一メサ部301側に形成された第一金属層510と、第二メサ部302側に形成された第二金属層520とに分かれている。第一金属層510は、第一開口部41を塞ぎ第一メサ部301のn型半導体層31に接触する部分(第一部分)511と、絶縁層4上に形成されている部分512と、GaAs基板2の一面21上に形成された部分(第三部分、電極)513とからなる。第二金属層520は、第二開口部42を塞ぎ第二メサ部302のp型半導体層35に接触する部分(第二部分)521と、絶縁層4上に形成されている部分522と、GaAs基板2の一面21上に形成された部分(第三部分、電極)523とからなる。 The metal layer 5 is divided into a first metal layer 510 formed on the first mesa portion 301 side and a second metal layer 520 formed on the second mesa portion 302 side. The first metal layer 510 includes a portion (first portion) 511 that closes the first opening 41 and contacts the n-type semiconductor layer 31 of the first mesa portion 301, a portion 512 formed on the insulating layer 4, and GaAs. It is composed of a portion (third portion, electrode) 513 formed on one surface 21 of the substrate 2. The second metal layer 520 includes a portion (second portion) 521 that closes the second opening 42 and contacts the p-type semiconductor layer 35 of the second mesa portion 302, and a portion 522 formed on the insulating layer 4. It is composed of a portion (third portion, electrode) 523 formed on one surface 21 of the GaAs substrate 2.

図7は、図6(a)のA−A断面の部分拡大図であり、GaAs基板2の一面21に対して垂直な断面の一つを示している。そして、図7に示すように、赤外線発光素子1は、第一メサ部301の側面をなす第一側面線L301と一面線L21との共有点B1,B2を有する。
共有点B1と、発光層33のp型バリア層(第二導電型半導体層)34との境界線の中心点Aと、を結ぶ線分は、第二メサ部302の側面をなす第二側面線L302と交差しないため、基準線分S1である。この基準線分S1と一面線L21とのなす角度αが32.2°<α≦90°を満たしている。なお、共有点B2と中心点Aとを結ぶ線分LSは、第二メサ部302の側面をなす第二側面線L302と交差するため、基準線分S1ではない。
FIG. 7 is a partially enlarged view of the AA cross section of FIG. 6A, showing one of the cross sections perpendicular to one surface 21 of the GaAs substrate 2. Then, as shown in FIG. 7, the infrared light emitting element 1 has common points B1 and B2 between the first side surface line L301 and the one side line L21 forming the side surface of the first mesa portion 301.
The line segment connecting the common point B1 and the center point A of the boundary line between the p-type barrier layer (second conductive semiconductor layer) 34 of the light emitting layer 33 is the second side surface forming the side surface of the second mesa portion 302. Since it does not intersect the line L302, it is a reference line segment S1. The angle α formed by the reference line segment S1 and the one-sided line L21 satisfies 32.2 ° <α ≦ 90 °. The line segment LS connecting the common point B2 and the center point A is not the reference line segment S1 because it intersects with the second side surface line L302 forming the side surface of the second mesa portion 302.

また、図7に示す断面の幅方向両端部において、各第二側面線L302を含む直線L1は第一側面線と交差しないため、いずれも基準側面線である。そして、赤外線発光素子1は、図7に示す断面の幅方向両端部において、基準側面線である直線L1と一面線L21とのなす角度βが32.2°<β≦75.2°を満たしている。
また、図7に示す断面の幅方向両端部において、中心点Aと、第一メサ部301と第二メサ部302との境界点Cと、を結ぶ線分を含む各直線は、第一メサ部301の側面をなす第一側面線L301と交差しないため、いずれも基準直線S2である。また、この例では、図7の左側の基準直線S2は、基準線分S1を含んでいる。つまり、図7の左側の基準直線S2と一面線L21とのなす角度γは角度αと同じである。そして、赤外線発光素子1は、図7に示す断面の幅方向両端部において、32.2°<γ≦90°を満たしている。
Further, at both ends in the width direction of the cross section shown in FIG. 7, the straight line L1 including each second side surface line L302 does not intersect with the first side surface line, and thus both are reference side surface lines. Then, the infrared light emitting element 1 satisfies the angle β formed by the straight line L1 and the one-sided line L21, which is the reference side surface line, at 32.2 ° <β ≦ 75.2 ° at both ends in the width direction of the cross section shown in FIG. ing.
Further, at both ends in the width direction of the cross section shown in FIG. 7, each straight line including the line segment connecting the center point A and the boundary point C between the first mesa portion 301 and the second mesa portion 302 is the first mesa. Since it does not intersect the first side surface line L301 forming the side surface of the portion 301, both are reference straight lines S2. Further, in this example, the reference straight line S2 on the left side of FIG. 7 includes the reference line segment S1. That is, the angle γ formed by the reference straight line S2 on the left side of FIG. 7 and the one-sided line L21 is the same as the angle α. The infrared light emitting element 1 satisfies 32.2 ° <γ ≦ 90 ° at both ends in the width direction of the cross section shown in FIG. 7.

このように、赤外線発光素子1は、図7に示す断面において、α>32.2°を満たしているため、中心点AからGaAs基板2に向かう波長4.0μmの光を、理想的には全てGaAs基板2に入射させることができる。また、γ>32.2°を満たしていることで、中心点Aから点Cを通ってGaAs基板2に向かう波長4.0μmの光を、理想的には全てGaAs基板に入射させることができる。さらに、角度βが32.2°<β≦75.2°を満たしていることで、発光層33の幅方向両側で幅方向端部Dから点Cを通ってGaAs基板2に向かう波長4.0μmの光を、理想的には全てGaAs基板2に入射させることでできるとともに、この光のGaAs基板2の裏面22から空気中への取り出し量を多くすることができる。 As described above, since the infrared light emitting element 1 satisfies α> 32.2 ° in the cross section shown in FIG. 7, ideally, light having a wavelength of 4.0 μm from the center point A toward the GaAs substrate 2 is emitted. All can be incident on the GaAs substrate 2. Further, by satisfying γ> 32.2 °, all the light having a wavelength of 4.0 μm from the center point A to the GaAs substrate 2 through the point C can ideally be incident on the GaAs substrate. .. Further, when the angle β satisfies 32.2 ° <β ≦ 75.2 °, the wavelength 4. Ideally, all 0 μm of light can be incident on the GaAs substrate 2, and the amount of this light taken out from the back surface 22 of the GaAs substrate 2 into the air can be increased.

したがって、実施形態の赤外線発光素子1は、波長4.0μmの光取り出し効率が高いものとなる。
なお、ここでは、赤外線発光素子1のGaAs基板2の一面21に対して垂直な一断面(図6(a)のA−A断面)における角度α,β,γについて説明しているが、GaAs基板2の一面21に対して垂直な二以上の断面において、32.2°<α,β,γ≦90°を満たしていることが好ましく、GaAs基板2の一面21に対して垂直な全ての断面において、32.2°<α,β,γ≦90°を満たしていることがより好ましい。
Therefore, the infrared light emitting device 1 of the embodiment has a high light extraction efficiency of a wavelength of 4.0 μm.
Although the angles α, β, and γ in one cross section (AA cross section of FIG. 6A) perpendicular to one surface 21 of the GaAs substrate 2 of the infrared light emitting element 1 are described here, GaAs. It is preferable that 32.2 ° <α, β, γ ≦ 90 ° is satisfied in two or more cross sections perpendicular to one surface 21 of the substrate 2, and all the cross sections perpendicular to one surface 21 of the GaAs substrate 2. It is more preferable that the cross section satisfies 32.2 ° <α, β, γ ≦ 90 °.

<赤外線発光装置>
第一実施形態の赤外線発光素子1を用いて、図9に示す赤外線発光装置10を製造することができる。赤外線発光装置10は、赤外線発光素子1と、リード端子71,72と、金属細線82,82と、封止部9を有する。
リード端子71,72は、赤外線発光素子1の周囲に配置されている。金属細線81は、赤外線発光素子1の第一金属層510の第三部分(第一電極)513とリード端子71とを接続する。金属細線82は、赤外線発光素子1の第二金属層520の第三部分(第二電極)523とリード端子72とを接続する。封止部9は、赤外線発光素子1の裏面絶縁膜6のGaAs基板2とは反対の面を除いた部分に配置され、赤外線発光素子1とリード端子71,72との間を封止している。つまり、赤外線発光素子1の半導体積層部3が封止されている。
<Infrared light emitting device>
The infrared light emitting device 10 shown in FIG. 9 can be manufactured by using the infrared light emitting element 1 of the first embodiment. The infrared light emitting device 10 includes an infrared light emitting element 1, lead terminals 71 and 72, thin metal wires 82 and 82, and a sealing portion 9.
The lead terminals 71 and 72 are arranged around the infrared light emitting element 1. The thin metal wire 81 connects the third portion (first electrode) 513 of the first metal layer 510 of the infrared light emitting element 1 and the lead terminal 71. The thin metal wire 82 connects the third portion (second electrode) 523 of the second metal layer 520 of the infrared light emitting element 1 and the lead terminal 72. The sealing portion 9 is arranged in a portion of the back surface insulating film 6 of the infrared light emitting element 1 excluding the surface opposite to the GaAs substrate 2, and seals between the infrared light emitting element 1 and the lead terminals 71 and 72. There is. That is, the semiconductor laminated portion 3 of the infrared light emitting element 1 is sealed.

つまり、この赤外線発光装置10は、半導体積層部3を封止する封止部9を備える赤外線発光素子1の一例である。
なお、上記実施形態の赤外線発光素子1では、第一金属層510、第二金属層520、および金属層530が、GaAs基板2の一面21上に接触する部分513,523,533を有するが、GaAs基板2の一面21とこれらの部分との間に絶縁膜が介装されていてもよい。
That is, the infrared light emitting device 10 is an example of an infrared light emitting element 1 including a sealing portion 9 that seals the semiconductor laminated portion 3.
In the infrared light emitting device 1 of the above embodiment, the first metal layer 510, the second metal layer 520, and the metal layer 530 have portions 513,523,533 that come into contact with one surface 21 of the GaAs substrate 2. An insulating film may be interposed between one surface 21 of the GaAs substrate 2 and these portions.

1 赤外線発光素子
2 GaAs基板
21 GaAs基板の一面
211 一面の半導体積層部が形成されていない領域
22 GaAs基板の裏面
3 半導体積層部
30 半導体積層体
31 n型半導体層
32 n型バリア層
33 発光層
34 p型バリア層
35 p型半導体層
301 第一メサ部
3011 第一メサ部の第二メサ部で覆われていない上面
302 第二メサ部
4 絶縁層
5 金属層
510 第一金属層
511 n型半導体層に接触する部分(第一部分)
512 絶縁層上に形成されている部分
513 GaAs基板の一面上に形成された部分(第三部分、電極)
520 第二金属層
521 p型半導体層に接触する部分(第二部分)
522 絶縁層上に形成されている部分
523 GaAs基板の一面上に形成された部分(第三部分、電極)
71、72 リード端子
81,82 金属細線
9 封止部
10 赤外線発光装置
S1 基準線分
S2 基準直線
L1 基準側面線(第二側面線を含む直線)
L21 一面線
1 Infrared light emitting element 2 GaAs substrate 21 One side of GaAs substrate 211 Area where one surface of semiconductor laminate is not formed 22 Back surface of GaAs substrate 3 Semiconductor laminate 30 Semiconductor laminate 31 n-type semiconductor layer 32 n-type barrier layer 33 Light emitting layer 34 p-type barrier layer 35 p-type semiconductor layer 301 First mesa part 3011 Upper surface not covered by the second mesa part of the first mesa part 302 Second mesa part 4 Insulation layer 5 Metal layer 510 First metal layer 511 n-type Part in contact with the semiconductor layer (first part)
512 Part formed on the insulating layer 513 Part formed on one surface of the GaAs substrate (third part, electrode)
520 Second metal layer 521 Part in contact with p-type semiconductor layer (second part)
522 Part formed on the insulating layer 523 Part formed on one surface of the GaAs substrate (third part, electrode)
71, 72 Lead terminal 81, 82 Fine metal wire 9 Sealing part 10 Infrared light emitting device S1 Reference line segment S2 Reference straight line L1 Reference side line (straight line including the second side line)
L21 one side line

Claims (8)

GaAs基板と、
前記GaAs基板の一面上に形成された半導体積層部であって、前記一面側から第一導電型半導体層、発光層、および第二導電型半導体層をこの順に有し、前記第一導電型半導体層および前記発光層InSb、InAsSb、およびAlInSbのうちのいずれかの材料で形成され、前記一面から突出する第一メサ部と前記第一メサ部から突出する第二メサ部とを有し、前記第一メサ部と前記第二メサ部との境界が前記発光層よりも前記GaAs基板側に存在する半導体積層部と、
を備え、
前記一面に対して垂直な断面において、
前記発光層の前記第二導電型半導体層との境界線の中心点Aと、前記第一メサ部の側面をなす第一側面線と前記一面をなす一面線との共有点Bと、を結ぶ線分であって、前記第二メサ部の側面をなす第二側面線と交差しない基準線分と、前記一面線とのなす角度αが、32.2°<α≦90°を満たすとともに、
前記第二側面線を含む直線であって、前記第一側面線と交差しない基準側面線と、前記一面線とのなす角度βが、32.2°<β≦90°を満たし、
前記一面の反対面である前記GaAs基板の裏面が光取り出し面であり、少なくとも4.0μmを含む波長の赤外線を発光する赤外線発光素子。
With a GaAs substrate
A semiconductor laminated portion formed on one surface of the GaAs substrate, which has a first conductive semiconductor layer, a light emitting layer, and a second conductive semiconductor layer in this order from the one surface side, and the first conductive semiconductor. The layer and the light emitting layer are made of any one of InSb, InAsSb, and AlInSb, and have a first mesa portion protruding from one surface and a second mesa portion protruding from the first mesa portion. A semiconductor laminated portion in which the boundary between the first mesa portion and the second mesa portion exists on the GaAs substrate side of the light emitting layer.
With
In a cross section perpendicular to the one surface
The center point A of the boundary line between the light emitting layer and the second conductive semiconductor layer and the common point B between the first side surface line forming the side surface of the first mesa portion and the one surface line forming the one surface are connected. A reference line segment that is a line segment and does not intersect the second side surface line forming the side surface of the second mesa portion and the angle α formed by the one surface line satisfy 32.2 ° <α ≦ 90 °.
The angle β formed by the reference side surface line including the second side surface line and not intersecting with the first side surface line and the one surface line satisfies 32.2 ° <β ≦ 90 °.
Ri backside light extraction surface der of the GaAs substrate which is opposite side of the one surface, an infrared light-emitting element you emit infrared wavelengths including at least 4.0 .mu.m.
前記角度αが75.2°<α≦90°を満たす請求項1記載の赤外線発光素子。 The infrared light emitting device according to claim 1, wherein the angle α satisfies 75.2 ° <α ≦ 90 °. 前記角度βが32.2°<β≦75.2°を満たす請求項1または2記載の赤外線発光素子。 The infrared light emitting device according to claim 1 or 2, wherein the angle β satisfies 32.2 ° <β ≦ 75.2 °. GaAs基板と、
前記GaAs基板の一面上に形成された半導体積層部であって、前記一面側から第一導電型半導体層、発光層、および第二導電型半導体層をこの順に有し、前記第一導電型半導体層および前記発光層InSb、InAsSb、およびAlInSbのうちのいずれかの材料で形成され、前記一面から突出する第一メサ部と前記第一メサ部から突出する第二メサ部とを有し、前記第一メサ部と前記第二メサ部との境界が前記発光層よりも前記GaAs基板側に存在する半導体積層部と、
を備え、
前記一面に対して垂直な断面において、
前記発光層の前記第二導電型半導体層との境界線の中心点Aと、第一メサ部と第二メサ部との境界点Cと、を結ぶ線分を含む直線であって、前記第一メサ部の側面をなす第一側面線と交差しない基準直線と、前記一面をなす一面線とのなす角度γが、32.2°<γ≦90°を満たし、
前記第二メサ部の側面をなす第二側面線を含む直線であって、前記第一側面線と交差しない基準側面線と、前記一面線とのなす角度βが、32.2°<β≦90°を満たし、
前記一面の反対面である前記GaAs基板の裏面が光取り出し面であり、少なくとも4.0μmを含む波長の赤外線を発光する赤外線発光素子。
With a GaAs substrate
A semiconductor laminated portion formed on one surface of the GaAs substrate, which has a first conductive semiconductor layer, a light emitting layer, and a second conductive semiconductor layer in this order from the one surface side, and the first conductive semiconductor. The layer and the light emitting layer are made of any one of InSb, InAsSb, and AlInSb, and have a first mesa portion protruding from one surface and a second mesa portion protruding from the first mesa portion. A semiconductor laminated portion in which the boundary between the first mesa portion and the second mesa portion exists on the GaAs substrate side of the light emitting layer.
With
In a cross section perpendicular to the one surface
A straight line including a line segment connecting the center point A of the boundary line between the light emitting layer and the second conductive semiconductor layer and the boundary point C between the first mesa portion and the second mesa portion. The angle γ formed by the reference straight line that does not intersect the first side surface line forming the side surface of the one mesa portion and the one surface line forming the one surface satisfies 32.2 ° <γ ≦ 90 °.
The angle β formed by the reference side surface line which is a straight line including the second side surface line forming the side surface of the second mesa portion and does not intersect with the first side surface line and the one surface line is 32.2 ° <β ≦. Satisfy 90 °,
Ri backside light extraction surface der of the GaAs substrate which is opposite side of the one surface, an infrared light-emitting element you emit infrared wavelengths including at least 4.0 .mu.m.
前記角度γが75.2°<γ≦90°を満たす請求項4記載の赤外線発光素子。 The infrared light emitting device according to claim 4, wherein the angle γ satisfies 75.2 ° <γ ≦ 90 °. 角度βが32.2°<β≦75.2°を満たす請求項4または5記載の赤外線発光素子。 The infrared light emitting device according to claim 4 or 5, wherein the angle β satisfies 32.2 ° <β ≦ 75.2 °. 前記第一導電型半導体層はInSb層である請求項1〜6のいずれか一項に記載の赤外線発光素子。 The infrared light emitting device according to any one of claims 1 to 6, wherein the first conductive semiconductor layer is an InSb layer. 前記裏面の少なくとも一部を露出させ、前記半導体積層部を封止する封止部を備える請求項1〜7のいずれか一項に記載の赤外線発光素子。 The infrared light emitting device according to any one of claims 1 to 7, further comprising a sealing portion for exposing at least a part of the back surface and sealing the semiconductor laminated portion.
JP2017166618A 2017-08-31 2017-08-31 Infrared light emitting element Active JP6895348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017166618A JP6895348B2 (en) 2017-08-31 2017-08-31 Infrared light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017166618A JP6895348B2 (en) 2017-08-31 2017-08-31 Infrared light emitting element

Publications (2)

Publication Number Publication Date
JP2019046900A JP2019046900A (en) 2019-03-22
JP6895348B2 true JP6895348B2 (en) 2021-06-30

Family

ID=65812970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017166618A Active JP6895348B2 (en) 2017-08-31 2017-08-31 Infrared light emitting element

Country Status (1)

Country Link
JP (1) JP6895348B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221186A (en) * 2003-01-10 2004-08-05 Nanotemu:Kk Semiconductor light emitting device
JP4632697B2 (en) * 2004-06-18 2011-02-16 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2007184411A (en) * 2006-01-06 2007-07-19 Sony Corp Light emitting diode and its manufacturing method, integrated light emitting diode and its manufacturing method, light emitting diode backlight, light emitting diode lighting apparatus, light emitting diode display, electronic equipment, and electronic device and its manufacturing method
JP2009164506A (en) * 2008-01-10 2009-07-23 Rohm Co Ltd Semiconductor light-emitting element
GB2466261A (en) * 2008-12-17 2010-06-23 Qinetiq Ltd Semiconductor device and fabrication method
JP2014179427A (en) * 2013-03-14 2014-09-25 Asahi Kasei Electronics Co Ltd Infrared light-emitting element and gas sensor
JP6514438B2 (en) * 2014-03-26 2019-05-15 旭化成エレクトロニクス株式会社 Infrared light emitting element
JP6487232B2 (en) * 2015-02-10 2019-03-20 旭化成エレクトロニクス株式会社 Infrared light emitting diode

Also Published As

Publication number Publication date
JP2019046900A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP4123830B2 (en) LED chip
JP5479461B2 (en) Semiconductor chip that emits radiation
US8772809B2 (en) Semiconductor light emitting device
TWI529967B (en) Semiconductor light emitting device
JPH06318731A (en) Semiconductor light emitting device
US20140191268A1 (en) Light emitting element and light emitting element package
JP2017011202A (en) Light emitting device
JPWO2008155960A1 (en) Semiconductor light emitting device
JP2018510508A (en) Optoelectronic semiconductor chip, optoelectronic semiconductor component, and production method of optoelectronic semiconductor chip
JP2013535828A (en) Radiation emitting semiconductor chip and method of manufacturing radiation emitting semiconductor chip
US20140361324A1 (en) Semiconductor light emitting device
JP4946663B2 (en) Semiconductor light emitting device
US20200144784A1 (en) Semiconductor light-emitting device
JP7233859B2 (en) infrared light emitting diode
US20170186914A1 (en) Light-emitting element and method of manufacturing the same
TW201637240A (en) Semiconductor light emitting element and method of manufacturing the same
US10453995B2 (en) Light-emitting device and manufacturing method thereof
US9324921B2 (en) Light-emitting diode package
JP5541260B2 (en) Group III nitride semiconductor light emitting device
JP2009246407A (en) Light emitting device
JP2009238847A (en) Light-emitting device
JP6895348B2 (en) Infrared light emitting element
JP6028597B2 (en) Group III nitride semiconductor light emitting device
JP2016134423A (en) Semiconductor light emitting element, light emitting device and semiconductor light emitting element manufacturing method
US20220223762A1 (en) Light emitting diode package and light emitting module including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6895348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150