JP6894419B2 - Positive electrode active material for secondary batteries and its manufacturing method - Google Patents

Positive electrode active material for secondary batteries and its manufacturing method Download PDF

Info

Publication number
JP6894419B2
JP6894419B2 JP2018214372A JP2018214372A JP6894419B2 JP 6894419 B2 JP6894419 B2 JP 6894419B2 JP 2018214372 A JP2018214372 A JP 2018214372A JP 2018214372 A JP2018214372 A JP 2018214372A JP 6894419 B2 JP6894419 B2 JP 6894419B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
primary particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018214372A
Other languages
Japanese (ja)
Other versions
JP2019091692A (en
Inventor
ムンホ チェ,
ムンホ チェ,
ジョンファン パク,
ジョンファン パク,
キョンジェ ホ,
キョンジェ ホ,
ヒョンゾン ユ,
ヒョンゾン ユ,
キョンジュン イ,
キョンジュン イ,
ジョンべ パク,
ジョンべ パク,
スンヒョン チェ,
スンヒョン チェ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecopro BM Co Ltd
Original Assignee
Ecopro BM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecopro BM Co Ltd filed Critical Ecopro BM Co Ltd
Publication of JP2019091692A publication Critical patent/JP2019091692A/en
Application granted granted Critical
Publication of JP6894419B2 publication Critical patent/JP6894419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、二次電池用正極活物質及びその製造方法に関し、より詳細には、1次粒子が凝集された2次粒子からなるリチウム複合酸化物において、1次粒子の周辺部にリチウムマンガン酸化物が存在し、リチウムマンガン酸化物の濃度が前記1次粒子の中心から粒子表面まで濃度勾配を表し、リチウムマンガン酸化物の濃度が前記2次粒子において粒子表面から中心方向に濃度勾配を表し、1次粒子内でリチウムイオン移動経路が含まれるものであるリチウム複合酸化物及びその製造方法に関する。 The present invention relates to a positive electrode active material for a secondary battery and a method for producing the same. More specifically, in a lithium composite oxide composed of secondary particles in which primary particles are aggregated, lithium manganese oxidation is performed in the peripheral portion of the primary particles. things present, represents a concentration gradient from the center to the particle surface of the concentration of the lithium manganese oxide is the primary particles, represents a concentration gradient from the particle surface toward the center in the concentration the secondary particles of the lithium manganese oxide, The present invention relates to a lithium composite oxide having a lithium ion transfer path in the primary particles and a method for producing the same.

1990年代初に開発されて、今まで使用されているリチウム二次電池は、軽い小型の大容量電池であって、携帯機器の電源として脚光を浴びている。リチウム二次電池は、水系電解液を使用するニッケル−水素(Ni−MH)、ニッケル−カドミウム(Ni−Cd)、硫酸−鉛電池などのような在来式電池に比べて作動電圧が高く、エネルギー密度が格段に大きいという長所がある。特に、最近には、内燃機関とリチウム二次電池とを混成化(hybrid)した電気自動車用動力源に関する研究が米国、日本、ヨーロッパなどで活発に進まれている。 The lithium secondary battery, which was developed in the early 1990s and has been used so far, is a light and small large-capacity battery, and is in the limelight as a power source for mobile devices. Lithium secondary batteries have a higher operating voltage than conventional batteries such as nickel-hydrogen (Ni-MH), nickel-cadmium (Ni-Cd), and lead sulfate-lead batteries that use an aqueous electrolyte. It has the advantage of significantly higher energy density. In particular, recently, research on a power source for an electric vehicle in which an internal combustion engine and a lithium secondary battery are hybridized has been actively promoted in the United States, Japan, Europe and the like.

リチウム二次電池を用いた電気自動車用大型電池の製作がエネルギー密度の観点で考慮されているが、今までは、安全性を考慮してニッケル水素電池が電気自動車に使用されている。リチウム二次電池は、高い価格と安全性の問題のため、電気自動車に適用するには限界がある。特に、現在商用化されたLiCoOやLiNiOを正極活物質として含むリチウム二次電池は、過充電状態の電池を200〜270℃で加熱すれば、急激な構造変化が表れる。その後、このような構造変化により格子内の酸素が放出されて、充電時の脱リチウムにより不安定な結晶構造を見せる。すなわち、商用化されたリチウム二次電池は、熱に非常に劣悪であるという短所を有する。 The production of large batteries for electric vehicles using lithium secondary batteries has been considered from the viewpoint of energy density, but until now, nickel-metal hydride batteries have been used for electric vehicles in consideration of safety. Lithium secondary batteries have limitations in their application to electric vehicles due to their high price and safety issues. In particular, the lithium secondary batteries currently commercialized containing LiCoO 2 or LiNiO 2 as a positive electrode active material show a rapid structural change when the overcharged battery is heated at 200 to 270 ° C. After that, oxygen in the lattice is released due to such a structural change, and an unstable crystal structure is exhibited due to delithiumization during charging. That is, the commercialized lithium secondary battery has a disadvantage that it is very poor in heat.

これを改善するために、ニッケルの一部を遷移金属元素に置換して発熱開始温度をさらに高くする、或いは、急激な発熱を防止するなどの研究が試みられている。ニッケルの一部をコバルトに置換したLiNi1−xCo(x=0.1〜0.3)物質は、優れた充放電特性と寿命特性とを見せるが、熱的安全性の問題は解決できなかった。また、ニッケルの代わりにマンガンを一部置換したLi−Ni−Mn系複合酸化物、又はニッケルをマンガン及びコバルトに置換したLi−Ni−Mn−Co系複合酸化物とこれらの製造に関連した技術も多数開発された。これに関して、特許第3890185号は、LiNiOやLiMnOに遷移金属を部分置換する概念でなく、マンガンとニッケル化合物とを原子レベルで均一に分散させて固溶体を作る新しい概念の正極活物質を開示している。また、欧州特許第0918041号及び米国特許第6、040、090号は、ニッケルをマンガン及びコバルトに置換したLi−Ni−Mn−Co系複合酸化物を開示しているが、上記文献において開示された複合酸化物がニッケル及びコバルトだけで構成された材料に比べて熱的安全性は向上しているものの、ニッケル系化合物の熱的安全性を完全に解決できなかった。 In order to improve this, studies have been attempted to replace a part of nickel with a transition metal element to further raise the heat generation start temperature, or to prevent sudden heat generation. The LiNi 1-x Co x O 2 (x = 0.1 to 0.3) material in which a part of nickel is replaced with cobalt shows excellent charge / discharge characteristics and life characteristics, but there is a problem of thermal safety. Could not be resolved. Further, a Li-Ni-Mn-based composite oxide in which manganese is partially substituted instead of nickel, or a Li-Ni-Mn-Co-based composite oxide in which nickel is substituted with manganese and cobalt, and technologies related to their production. Has also been developed in large numbers. In this regard, Patent No. 3890185 discloses a positive electrode active material of a new concept of forming a solid solution by uniformly dispersing manganese and a nickel compound at the atomic level, rather than the concept of partially substituting a transition metal with LiNiO 2 or LiMnO 2. doing. Further, European Patent No. 0918041 and US Patent No. 6,040,090 disclose Li-Ni-Mn-Co-based composite oxides in which nickel is replaced with manganese and cobalt, which are disclosed in the above documents. Although the thermal safety was improved as compared with the material in which the composite oxide was composed only of nickel and cobalt, the thermal safety of the nickel-based compound could not be completely solved.

このような問題を解決するために、表面をコーティングするなどの方法を利用して電解質と接する正極活物質の表面組成を変化させる方法が提案された。正極活物質をコーティングするコーティング量は、一般的に正極活物質に対して1〜2重量%以下の少ない量である。少ない量のコーティング物質は、数ナノメートル程度の極めて薄い薄膜層を形成して電解液との副反応を抑制したり、コーティング後、高温での熱処理により粒子の表面に固溶体を形成して粒子内部と異なる金属組成を有するようにする。このとき、コーティン
グ物質と結合した粒子表面層は、数十ナノメートル以下に薄く、コーティング層と粒子バルクとの間の急激な組成差により、電池を数百サイクルで長期使用すれば、その効果が減少する。また、コーティング層が表面に均等に分布されていない不完全なコーティングによっても電池の効果が減少するという問題がある。
In order to solve such a problem, a method has been proposed in which the surface composition of the positive electrode active material in contact with the electrolyte is changed by using a method such as coating the surface. The amount of coating for coating the positive electrode active material is generally 1 to 2% by weight or less less than that of the positive electrode active material. A small amount of coating substance forms an extremely thin thin film layer of about several nanometers to suppress side reactions with the electrolytic solution, or after coating, a solid solution is formed on the surface of the particles by heat treatment at a high temperature to form a solid solution inside the particles. Have a different metal composition from. At this time, the particle surface layer bonded to the coating substance is thin to several tens of nanometers or less, and due to the rapid composition difference between the coating layer and the particle bulk, the effect can be obtained if the battery is used for a long period of several hundred cycles. Decrease. Further, there is a problem that the effect of the battery is reduced due to an incomplete coating in which the coating layer is not evenly distributed on the surface.

これに関して、大韓民国公開特許公報第10−2005−0083869号は、金属組成の濃度勾配を有するリチウム遷移金属酸化物を開示している。しかしながら、上記文献において合成された酸化物は、内部層と外部層の金属組成が異なるが、生成された正極活物質において金属組成が漸進的に変わらない。これは、熱処理過程を介して解決できるが、850℃以上の高い温度では、金属イオン等の熱拡散により濃度勾配差がほとんど生じない。 In this regard, Korean Patent Publication No. 10-2005-0083869 discloses a lithium transition metal oxide having a concentration gradient of metal composition. However, although the oxides synthesized in the above literature have different metal compositions of the inner layer and the outer layer, the metal composition of the produced positive electrode active material does not gradually change. This can be solved through a heat treatment process, but at a high temperature of 850 ° C. or higher, there is almost no difference in concentration gradient due to thermal diffusion of metal ions or the like.

特許第3890185号Patent No. 3890185 欧州特許第0918041号European Patent No. 0918041 米国特許第6,040,090号U.S. Pat. No. 6,040,090 大韓民国公開特許公報第10−2005−0083869号Republic of Korea Published Patent Publication No. 10-2005-0083869

本発明は、上記のような従来技術の問題点を解決するために、1次粒子及び2次粒子内でMn化合物が濃度勾配を表す新しい化合物及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a new compound in which the Mn compound exhibits a concentration gradient in the primary particles and the secondary particles, and a method for producing the same, in order to solve the above-mentioned problems of the prior art.

本発明は、上記のような課題を解決するために、複数の1次粒子が凝集された2次粒子を含み、前記1次粒子の表面部にリチウムマンガン酸化物を含む二次電池用正極活物質を提供する。 In order to solve the above problems, the present invention contains secondary particles in which a plurality of primary particles are aggregated, and the positive electrode activity for a secondary battery contains lithium manganese oxide on the surface of the primary particles. Provide the substance.

本発明に係る二次電池用正極活物質は、前記2次粒子内部の1次粒子間にリチウムマンガン酸化物を含むことを特徴とする。本発明に係る二次電池用正極活物質は、2次粒子を構成する1次粒子間の境界面(boundary)にもリチウムマンガン酸化物を含むことを特徴とする。 The positive electrode active material for a secondary battery according to the present invention is characterized by containing a lithium manganese oxide between the primary particles inside the secondary particles. The positive electrode active material for a secondary battery according to the present invention is characterized in that the boundary surface (boundary) between the primary particles constituting the secondary particles also contains a lithium manganese oxide.

本発明に係る二次電池用正極活物質は、前記1次粒子の表面部におけるMn濃度が1次粒子内部におけるMn濃度より高いことを特徴とする。 The positive electrode active material for a secondary battery according to the present invention is characterized in that the Mn concentration on the surface portion of the primary particles is higher than the Mn concentration inside the primary particles.

本発明に係る二次電池用正極活物質において、前記1次粒子は、1次粒子の中心部から表面部までMn濃度が勾配を有することを特徴とする。 In the positive electrode active material for a secondary battery according to the present invention, the primary particles are characterized in that the Mn concentration has a gradient from the central portion to the surface portion of the primary particles.

本発明に係る二次電池用正極活物質において、前記リチウムマンガン酸化物は、LiMnO、LiMn、MnO、LiMn(0<w<1)、及びLiMnO3(1−v)LiMn(0<v<1)からなる群より選ばれることを特徴とする。本発明に係る二次電池用正極活物質は、Mnを含まない活物質を製造後、マンガンが含まれた溶液で水洗する過程で2次粒子表面及び2次粒子内部、具体的には、2次粒子内の1次粒子の境界にマンガンが存在するようになり、その後、塑性過程で前記マンガンが酸化されながらリチウムマンガン酸化物が形成される。本発明に係る二次電池用正極活物質は、マンガンと酸素との結合比によりLiMnO、LiMn、MnO、LiMn(0<w<1)、及びLiMnO3(1−v)LiMn(0<v<1)からなる群より選ばれるリチウムマンガン酸化物が形成される。 In the positive electrode active material for a secondary battery according to the present invention, the lithium manganese oxide, Li 2 MnO 3, LiMn 2 O 4, MnO 2, Li w Mn 2 O 4 (0 <w <1), and Li 2 It is characterized in that it is selected from the group consisting of MnO 3 (1-v) LiMn 2 O 4 (0 <v <1). The positive electrode active material for a secondary battery according to the present invention is a process of producing an active material containing no Mn and then washing with water with a solution containing manganese. Manganese becomes present at the boundary of the primary particles in the secondary particles, and then lithium manganese oxide is formed while the manganese is oxidized in the plastic process. Positive electrode active material for a secondary battery according to the present invention, Li 2 MnO 3 by coupling ratio between manganese and oxygen, LiMn 2 O 4, MnO 2 , Li w Mn 2 O 4 (0 <w <1), and Li 2 MnO 3 (1-v) Lithium manganese oxide selected from the group consisting of LiMn 2 O 4 (0 <v <1) is formed.

本発明に係る二次電池用正極活物質において、前記正極活物質は、XRD分析時、(020)、(003)、(101)、(006)、(102)、(104)、(005)、(009)、(107)、(018)、(110)、及び(113)の位置でピークを表すことを特徴とする。 In the positive electrode active material for a secondary battery according to the present invention, the positive electrode active material is (020), (003), (101), (006), (102), (104), (005) at the time of XRD analysis. , (009), (107), (018), (110), and (113).

本発明に係る二次電池用正極活物質は、XRD分析時、2θ=20゜〜21゜の間でLiMnOによる(020)ピークが表れることを特徴とする。 The positive electrode active material for a secondary battery according to the present invention is characterized in that a (020) peak due to Li 2 MnO 3 appears between 2θ = 20 ° and 21 ° during XRD analysis.

本発明に係る二次電池用正極活物質は、XRD分析時、2θ=36〜38゜、44〜45゜、及び65〜66゜の間でLi1−xMnのピークが表れることを特徴とする。 In the positive electrode active material for a secondary battery according to the present invention, a peak of Li 1-x Mn 2 O 4 appears between 2θ = 36 to 38 °, 44 to 45 °, and 65 to 66 ° at the time of XRD analysis. It is characterized by.

本発明に係る二次電池用正極活物質は、充電前のXRD分析時に比べて充電後のXRD分析時、(104)位置でのピーク強度増加率が3%以下であることを特徴とする。 The positive electrode active material for a secondary battery according to the present invention is characterized in that the peak intensity increase rate at the position (104) is 3% or less during the XRD analysis after charging as compared with the XRD analysis before charging.

本発明に係る二次電池用正極活物質は、1次粒子内に2次粒子の中心方向に配列されるリチウムイオン移動経路を含むことを特徴とする。 The positive electrode active material for a secondary battery according to the present invention is characterized by including a lithium ion transfer path arranged in the central direction of the secondary particles in the primary particles.

本発明に係る二次電池用正極活物質は、前記リチウムマンガン酸化物が2次粒子表面から1μm以内に表れることを特徴とする。 The positive electrode active material for a secondary battery according to the present invention is characterized in that the lithium manganese oxide appears within 1 μm from the surface of the secondary particles.

本発明に係る二次電池用正極活物質は、下記の化学式1で表示されることを特徴とする。 The positive electrode active material for a secondary battery according to the present invention is characterized by being represented by the following chemical formula 1.

Figure 0006894419
Figure 0006894419

(上記化学式1において0≦x≦0.1、0≦y≦0.02、0≦z≦0.0006、0≦a≦0.1、0≦b≦0.1であり、
M1は、Al、Ni、Mn、Cr、Fe、Mg、Sr、V、Zn、W、Zr、B、Ba、Sc、Cu、Ti、Co、希土類元素、及びこれらの組み合わせから選ばれる1つ以上の元素である。)
本発明はさらに、本発明に係る二次電池用正極活物質を含む二次電池を提供する。
(In the above chemical formula 1, 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.02, 0 ≦ z ≦ 0.0006, 0 ≦ a ≦ 0.1, 0 ≦ b ≦ 0.1.
M1 is one or more selected from Al, Ni, Mn, Cr, Fe, Mg, Sr, V, Zn, W, Zr, B, Ba, Sc, Cu, Ti, Co, rare earth elements, and combinations thereof. It is an element of. )
The present invention further provides a secondary battery containing a positive electrode active material for a secondary battery according to the present invention.

本発明はさらに、
ニッケル、及びコバルトを含む前駆体を製造する第1のステップと、
前記前駆体にリチウム化合物及びアルミニウム化合物を添加し、熱処理して複合金属化合物を製造する第2のステップと、
前記製造された複合金属化合物をマンガンを含む溶液で水洗し、乾燥する第3のステップと、を含む二次電池用正極活物質の製造方法を提供する。
The present invention further
The first step in producing precursors containing nickel and cobalt,
The second step of adding a lithium compound and an aluminum compound to the precursor and heat-treating the precursor to produce a composite metal compound, and
Provided is a method for producing a positive electrode active material for a secondary battery, which comprises a third step of washing the produced composite metal compound with a solution containing manganese and drying it.

本発明に係る二次電池用正極活物質は、1次粒子周辺部にリチウムマンガン酸化物が存在し、2次粒子の内部でリチウムマンガン酸化物が粒子中心から粒子表面に濃度勾配を表し、本発明に係る二次電池用正極活物質を含む二次電池は、高容量、高出力を表しながらも安全性の高い特徴を表す。 In the positive electrode active material for a secondary battery according to the present invention, lithium manganese oxide is present in the periphery of the primary particles, and the lithium manganese oxide shows a concentration gradient from the center of the particles to the surface of the particles inside the secondary particles. The secondary battery containing the positive electrode active material for a secondary battery according to the present invention exhibits high capacity, high output, and high safety.

本発明の一実施例によって製造された二次電池正極活物質の金属濃度のEDXを測定した結果を示す。The result of measuring the metal concentration EDX of the positive electrode active material of the secondary battery manufactured by one Example of this invention is shown. 本発明の一実施例によって製造された二次電池正極活物質の金属濃度のEDXを測定した結果を示す。The result of measuring the metal concentration EDX of the positive electrode active material of the secondary battery manufactured by one Example of this invention is shown. 本発明の一実施例に係る二次電池用正極活物質に対して粒子表面から中心方向に金属濃度を測定した結果を示す。The result of measuring the metal concentration from the particle surface toward the center with respect to the positive electrode active material for a secondary battery which concerns on one Example of this invention is shown. 本発明の一実施例に係る二次電池用正極活物質に対して粒子表面から中心方向に金属濃度を測定した結果を示す。The result of measuring the metal concentration from the particle surface toward the center with respect to the positive electrode active material for a secondary battery which concerns on one Example of this invention is shown. 本発明の一実施例に係る二次電池用正極活物質に対して2次粒子表面において中心方向、1次粒子間の境界から1次粒子内部方向に金属濃度を測定した結果を示す。The results of measuring the metal concentration on the surface of the secondary particles from the boundary between the primary particles to the inside of the primary particles with respect to the positive electrode active material for the secondary battery according to the embodiment of the present invention are shown. 本発明の一実施例に係る二次電池用正極活物質に対して2次粒子表面において中心方向、1次粒子間の境界から1次粒子内部方向に金属濃度を測定した結果を示す。The results of measuring the metal concentration on the surface of the secondary particles from the boundary between the primary particles to the inside of the primary particles with respect to the positive electrode active material for the secondary battery according to the embodiment of the present invention are shown. 本発明の一実施例に係る二次電池用正極活物質に対してXRD測定した結果を示す。The result of XRD measurement with respect to the positive electrode active material for a secondary battery which concerns on one Example of this invention is shown. 本発明の一実施例に係る二次電池用正極活物質に対してXRD測定した結果を示す。The result of XRD measurement with respect to the positive electrode active material for a secondary battery which concerns on one Example of this invention is shown. 本発明の一実施例に係る二次電池用正極活物質に対して1次粒子の様々な位置に存在するリチウムイオンの拡散経路を確認した結果図面である。It is a drawing as a result of confirming the diffusion path of lithium ions existing at various positions of primary particles with respect to the positive electrode active material for a secondary battery which concerns on one Example of this invention. 本発明の一実施例に係る二次電池用正極活物質を用いて製造された電池の初期容量を確認した結果グラフである。It is a result graph which confirmed the initial capacity of the battery manufactured using the positive electrode active material for a secondary battery which concerns on one Example of this invention. 本発明の一実施例に係る二次電池用正極活物質を用いて製造された電池の寿命を常温(25℃)(A)または高温(45℃)(B)で確認した結果グラフである。It is a result graph which confirmed the life of the battery manufactured using the positive electrode active material for a secondary battery which concerns on one Example of this invention at room temperature (25 ° C.) (A) or high temperature (45 ° C.) (B). 本発明の一実施例に係る二次電池用正極活物質を用いて製造された電池の常温(25℃)で1回(A)または50回(B)充放電した後、その特性を確認した結果グラフである。The characteristics of a battery manufactured using the positive electrode active material for a secondary battery according to an embodiment of the present invention were confirmed after being charged and discharged once (A) or 50 times (B) at room temperature (25 ° C.). It is a result graph. 本発明の一実施例に係る二次電池用正極活物質を用いて製造された電池の常温(25℃)で1回(A)または50回(B)充放電した後、その特性を確認した結果グラフである。The characteristics of a battery manufactured using the positive electrode active material for a secondary battery according to an embodiment of the present invention were confirmed after being charged and discharged once (A) or 50 times (B) at room temperature (25 ° C.). It is a result graph. 本発明の一実施例及び比較例による二次電池用正極活物質の50回充放電前後のXRDを測定した結果を示す。The results of measuring the XRD of the positive electrode active material for a secondary battery before and after 50 times charging / discharging according to one example and the comparative example of the present invention are shown. 層状二次電池で充放電によるカチオン移動(cation migration)が発生する模式図を示す。The schematic diagram which cation migration occurs by charge / discharge in a layered secondary battery is shown. 本発明の一実施例(A)及び比較例(B)による二次電池用正極活物質を含む二次電池の50回充放電した前後のXPSを確認した結果グラフである。It is a result graph which confirmed XPS before and after charging and discharging 50 times of the secondary battery containing the positive electrode active material for a secondary battery by one Example (A) and comparative example (B) of this invention. 本発明の一実施例に係る二次電池用正極活物質の50回充放電前後の粒子内のLi−Fを測定した結果を示す。The result of measuring Li-F in the particle before and after 50 times charge and discharge of the positive electrode active material for a secondary battery which concerns on one Example of this invention is shown.

以下、本発明を下記の実施例により詳細に説明する。ただし、下記の実施例は、本発明を例示するためのものであり、これらによって本発明が制限されるものではない。本発明の請求の範囲に記載された技術的思想と実質的に同じ構成を有し、同じ作用効果をなすものは、いずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are for exemplifying the present invention, and the present invention is not limited thereto. Anything having substantially the same configuration as the technical idea described in the claims of the present invention and having the same action and effect is included in the technical scope of the present invention.

実施例1.リチウム複合酸化物の製造
共沈反応によってNi0.98Co0.02(OH)で表示される前駆体を製造した。製造された前駆体にリチウム化合物としてLiOH及びアルミニウム化合物としてAlを1.4モル添加し、熱処理してリチウム二次電池用正極活物質を製造した。
Example 1. Production of Lithium Composite Oxide A precursor represented by Ni 0.98 Co 0.02 (OH) 2 was produced by a coprecipitation reaction. The Al 2 O 3 was 1.4 mol added as LiOH and aluminum compound as the lithium compound to the prepared precursor, to prepare a positive active material for lithium secondary batteries and heat-treated.

製造された複合金属化合物を0.01mol%のMnを含む水洗溶液を用いて水洗し、
150℃、400mmHgの条件下で5時間の間乾燥させてLi1.01Ni0.913Co0.07Al0.014Mn0.000102で表示される二次電池正極活物質を製造した。
The produced composite metal compound was washed with water using a water washing solution containing 0.01 mol% Mn.
Drying under the conditions of 150 ° C. and 400 mmHg for 5 hours produced a secondary battery positive electrode active material represented by Li 1.01 Ni 0.913 Co 0.07 Al 0.014 Mn 0.000102.

実施例2.
製造された複合金属化合物を0.02mol%のMnを含む水洗溶液を用いて水洗することを除いては、実施例1と同じ条件及び方法でLi1.01Ni0.912Co0.07Al0.014Mn0.000202の化学式で表示される二次電池正極活物質を製造した。
Example 2.
Li 1.01 Ni 0.912 Co 0.07 Al under the same conditions and methods as in Example 1 except that the produced composite metal compound was washed with water using a water washing solution containing 0.02 mol% Mn. A secondary battery positive electrode active material represented by the chemical formula of 0.014 Mn 0.000202 was produced.

実施例3.
製造された複合金属化合物を0.03mol%のMnを含む水洗溶液を用いて水洗することを除いては、実施例1と同じ条件及び方法でLi1.01Ni0.911Co0.07Al0.014Mn0.000302の化学式で表示される二次電池正極活物質を製造した。
Example 3.
Li 1.01 Ni 0.911 Co 0.07 Al under the same conditions and methods as in Example 1 except that the produced composite metal compound was washed with water using a water washing solution containing 0.03 mol% Mn. A secondary battery positive electrode active material represented by the chemical formula of 0.014 Mn 0.000302 was produced.

実施例4.
製造された複合金属化合物を0.04mol%のMnを含む水洗溶液を用いて水洗することを除いては、実施例1と同じ条件及び方法でLi1.01Ni0.91Co0.07Al0.014Mn0.000402の化学式で表示される二次電池正極活物質を製造した。
Example 4.
Li 1.01 Ni 0.91 Co 0.07 Al under the same conditions and methods as in Example 1 except that the produced composite metal compound was washed with water using a water washing solution containing 0.04 mol% Mn. A secondary battery positive electrode active material represented by the chemical formula of 0.014 Mn 0.000402 was produced.

実施例5.
製造された複合金属化合物を0.05mol%のMnを含む水洗溶液を用いて水洗することを除いては、実施例1と同じ条件及び方法でLi1.01Ni0.909Co0.07Al0.014Mn0.000502の化学式で表示される二次電池正極活物質を製造した。
Example 5.
Li 1.01 Ni 0.909 Co 0.07 Al under the same conditions and methods as in Example 1 except that the produced composite metal compound was washed with water using a water washing solution containing 0.05 mol% Mn. A secondary battery positive electrode active material represented by the chemical formula of 0.014 Mn 0.000502 was produced.

実施例6.
製造された複合金属化合物を0.06mol%のMnを含む水洗溶液を用いて水洗することを除いては、実施例1と同じ条件及び方法でLi1.01Ni0.908Co0.07Al0.014Mn0.00602の化学式で表示される二次電池正極活物質を製造した。
Example 6.
Li 1.01 Ni 0.908 Co 0.07 Al under the same conditions and methods as in Example 1 except that the produced composite metal compound was washed with water using a water washing solution containing 0.06 mol% Mn. A secondary battery positive electrode active material represented by the chemical formula of 0.014 Mn 0.00602 was produced.

比較例1.マンガンで水洗していないリチウム複合酸化物の製造
マンガン含有溶液に浸漬して水洗することを除いては、実施例1と同じ条件及び方法でLi1.01Ni0.914Co0.07Al0.014化学式で表示されるリチウム複合酸化物を製造した。
Comparative example 1. Production of Lithium Composite Oxide Not Washed with Manganese Li 1.01 Ni 0.914 Co 0.07 Al 0 under the same conditions and methods as in Example 1 except that it is immersed in a manganese-containing solution and washed with water. A lithium composite oxide represented by the .014 O 2 chemical formula was produced.

Figure 0006894419
Figure 0006894419

<実験例>EDX測定
上記実施例において製造された正極活物質に対して測定割合を異なるようにしてEDXを測定し、その結果を図1及び図2に示した。
<Experimental Example> EDX measurement EDX was measured at different measurement ratios with respect to the positive electrode active material produced in the above example, and the results are shown in FIGS. 1 and 2.

図1においてMn含有溶液により水洗された本発明の正極活物質の場合、Mnが2次粒子の表面に存在し、測定割合を拡大して測定した図2において2次粒子の表面に存在する1次粒子間の境界にもMnが存在することが確認できる。 In the case of the positive electrode active material of the present invention washed with water in the Mn-containing solution in FIG. 1, Mn is present on the surface of the secondary particles, and is present on the surface of the secondary particles in FIG. It can be confirmed that Mn also exists at the boundary between the next particles.

<実験例>粒子内部金属濃度の測定
実施例4の二次電池正極活物質におけるマンガン、コバルト、ニッケル、及びアルミニウムの濃度変化を、TEM測定結果から、2次粒子の表面から中心方向に確認し、その結果を図3に示した。
<Experimental Example> Measurement of Metal Concentration Inside Particles The changes in the concentrations of manganese, cobalt, nickel, and aluminum in the positive electrode active material of the secondary battery of Example 4 were confirmed from the surface of the secondary particles toward the center from the TEM measurement results. The results are shown in FIG.

図3においてマンガンは、2次粒子の表面1μm以内に主に位置し、最大濃度は、5重量%以下であり、表面から中心方向に減少する濃度勾配を表すことが確認できる。 In FIG. 3, it can be confirmed that manganese is mainly located within 1 μm of the surface of the secondary particles, the maximum concentration is 5% by weight or less, and the concentration gradient decreases from the surface toward the center.

前記TEM測定範囲におけるマンガン、コバルト、ニッケル、及びアルミニウムの重量%及び原子%を測定し、下記の表2及び図4に示した。 The weight% and atomic% of manganese, cobalt, nickel, and aluminum in the TEM measurement range were measured and shown in Table 2 and FIG. 4 below.

Figure 0006894419
Figure 0006894419

<実験例>Mn濃度勾配確認
実施例4の二次電池正極活物質に含まれるニッケル、コバルト、アルミニウム、及びMn濃度変化を2次粒子の表面(surface、line data 2)、及び2次粒子内部で1次粒子間の境界と接触する部分(grain boundary、line data 6)で測定し、その結果を図5及び図6に示した。図6は、図5において2次粒子の表面から粒子内部に濃度勾配を測定した結果を拡張して示す。
<Experimental Example> Confirmation of Mn Concentration Gradient The changes in the concentrations of nickel, cobalt, aluminum, and Mn contained in the positive electrode active material of the secondary battery of Example 4 are measured on the surface of the secondary particles (surface, line data 2) and inside the secondary particles. The measurement was performed at the portion in contact with the boundary between the primary particles (grain boundary, line data 6), and the results are shown in FIGS. 5 and 6. FIG. 6 shows an expanded result of measuring the concentration gradient from the surface of the secondary particle to the inside of the particle in FIG.

図5及び図6において2次粒子の表面から中心方向にMn濃度が減少しながら濃度勾配を示し、マンガンは、2次粒子の表面1μm以内に位置し、内部ではマンガンが検出されなかった。 In FIGS. 5 and 6, the concentration gradient was shown while the Mn concentration decreased from the surface of the secondary particles toward the center, manganese was located within 1 μm on the surface of the secondary particles, and manganese was not detected inside.

図5に示すように、2次粒子の表面及び内部に位置した1次粒子間の境界、すなわち、grain boundaryでMnが検出され、1次粒子内部では、Mnが検出されず、1次粒子内部方向にMnの濃度が減少する濃度勾配が観察された。
<実験例>XRD測定
上記実施例及び比較例において製造された正極活物質に対してXRDを測定し、その結果を図7及び図8に示した。
As shown in FIG. 5, Mn is detected at the boundary between the primary particles located on the surface and inside of the secondary particles, that is, in the grain boundary, and Mn is not detected inside the primary particles, but inside the primary particles. A concentration gradient was observed in which the concentration of Mn decreased in the direction.
<Experimental Example> XRD measurement XRD was measured for the positive electrode active material produced in the above Examples and Comparative Examples, and the results are shown in FIGS. 7 and 8.

図7において本発明の実施例によりMn含有溶液で処理された本発明の正極活物質の場合、XRD分析時、(020)、(003)、(101)、(006)、(102)、(104)、(005)、(009)、(107)、(018)、(110)、及び(113)位置でピークを表すことが確認できる。 In the case of the positive electrode active material of the present invention treated with the Mn-containing solution according to the embodiment of the present invention in FIG. 7, at the time of XRD analysis, (020), (003), (101), (006), (102), ( It can be confirmed that the peaks are represented at the positions 104), (005), (009), (107), (018), (110), and (113).

図8において本発明の正極活物質の場合、2θ=20゜〜21゜間でLi2MnO3による(020)ピーク、2θ=36〜38゜、44〜45゜及び65〜66゜間でLi1−xMnのピークが表れることが確認できた。すなわち、本発明に係るマンガン含有溶液でコーティングされた正極活物質では、リチウムマンガン酸化物が正極活物質の結晶構造とは異なるLiMnO及びLi1−xMnのスピネル構造で存在するということが確認できた。 In FIG. 8, in the case of the positive electrode active material of the present invention, the (020) peak due to Li2MnO3 between 2θ = 20 ° and 21 °, and Li 1-x between 2θ = 36 to 38 °, 44 to 45 ° and 65 to 66 °. It was confirmed that the peak of Mn 2 O 4 appeared. That is, in the positive electrode active material coated with the manganese-containing solution according to the present invention, the lithium manganese oxide exists in a spinel structure of Li 2 MnO 3 and Li 1-x Mn 2 O 4 different from the crystal structure of the positive electrode active material. I was able to confirm that it would be done.

<実験例>リチウムイオン移動経路確認
実施例4の二次電池正極活物質の1次粒子の各位置によってリチウムイオンの拡散経路をTEM測定データで確認し、図9に示した。図9においてAは、2次粒子の表面位置、Bは、1次粒子の中央位置、Cは、2次粒子内の1次粒子間の境界を示した。
<Experimental Example> Confirmation of Lithium Ion Movement Path The diffusion path of lithium ions was confirmed by TEM measurement data according to each position of the primary particles of the positive electrode active material of the secondary battery of Example 4, and is shown in FIG. In FIG. 9, A indicates the surface position of the secondary particle, B indicates the central position of the primary particle, and C indicates the boundary between the primary particles in the secondary particle.

図9において粒子内部B位置では、リチウムイオン拡散経路が明確に存在し、2次粒子の表面位置であるA位置及び2次粒子内の1次粒子間境界であるC位置では、リチウムイオン拡散経路で結晶構造が歪んだことを確認した。 In FIG. 9, the lithium ion diffusion path is clearly present at the B position inside the particle, and the lithium ion diffusion path is at the A position, which is the surface position of the secondary particle, and the C position, which is the boundary between the primary particles in the secondary particle. It was confirmed that the crystal structure was distorted.

<実験例>残留リチウム測定
実施例1〜6において製造された正極活物質及び比較例において製造された正極活物質の残留リチウムを測定した。
<Experimental Example> Measurement of Residual Lithium Residual lithium of the positive electrode active material produced in Examples 1 to 6 and the positive electrode active material produced in Comparative Example was measured.

具体的に、1gのリチウム複合酸化物を5gの蒸溜水に浸漬させた後、5分間攪拌した。攪拌が終わった後、これをろ過してろ過物を取得し、ここに、0.1MのHCl溶液を添加してpH5になるように滴定した。このとき、添加されたHCl溶液の体積を測定して使用された二次電池正極活物質の残留リチウムを分析した結果を下記の表3に示した。 Specifically, 1 g of the lithium composite oxide was immersed in 5 g of distilled water and then stirred for 5 minutes. After the stirring was completed, this was filtered to obtain a filtrate, to which a 0.1 M HCl solution was added and titrated to pH 5. At this time, the volume of the added HCl solution was measured and the results of analyzing the residual lithium of the positive electrode active material of the secondary battery used were shown in Table 3 below.

Figure 0006894419
Figure 0006894419

<製造例>電池の製造
実施例1〜6において製造された二次電池正極活物質及び比較例1において製造された正極活物質を用いて電池を製造した。
<Manufacturing Example> Manufacture of Battery A battery was manufactured using the positive electrode active material of the secondary battery manufactured in Examples 1 to 6 and the positive electrode active material manufactured in Comparative Example 1.

まず、二次電池正極活物質、導電材としてスーパー−P(super−P)、及び結合剤としてポリビニリデンフルオライド(PVdF)を95:5:3の重量比で混合してスラリを製造した。製造されたスラリを15μm厚さのアルミニウム箔に均一に塗布し、これを135℃で真空乾燥してリチウム二次電池用正極を製造した。 First, a slurry was produced by mixing a secondary battery positive electrode active material, super-P as a conductive material, and polyvinylidene fluoride (PVdF) as a binder at a weight ratio of 95: 5: 3. The produced slurry was uniformly applied to an aluminum foil having a thickness of 15 μm, and this was vacuum dried at 135 ° C. to produce a positive electrode for a lithium secondary battery.

取得されたリチウム二次電池用正極、相手電極としてリチウムホイル、セパレータとして25μm厚さの多孔性ポリエチレン膜(Celgard LLC.,Celgard 2300)、及び液体電解液として、1.15M濃度のLiPFが含まれた、エチレンカーボネートとエチルメチルカーボネートが3:7の体積比で混合された溶媒を使用してコイン電池を製造した。
<実験例>電池特性測定−容量特性
上記製造例において製造された本発明の正極活物質及び比較例の正極活物質を含む電池の初期容量を測定し、その結果を図10及び表4に示した。
The acquired positive electrode for a lithium secondary battery, lithium foil as a mating electrode, a porous polyethylene film (Celgard LLC., Celgard 2300) having a thickness of 25 μm as a separator, and LiPF 6 having a concentration of 1.15 M as a liquid electrolyte are included. A coin battery was manufactured using a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed in a volume ratio of 3: 7.
<Experimental Example> Battery Characteristic Measurement-Capacity Characteristics The initial capacity of the battery containing the positive electrode active material of the present invention and the positive electrode active material of the comparative example manufactured in the above production example was measured, and the results are shown in FIGS. 10 and 4. It was.

Figure 0006894419
Figure 0006894419

図10及び前記表4に示すように、本発明に係る二次電池正極活物質を用いて製造された電池は、充放電効率に優れた。
<実験例>電池特性測定−寿命特性
前記コイン電池の常温(25℃)及び高温(45℃)で寿命特性を測定し、その結果を図11及び表5に示した。
As shown in FIG. 10 and Table 4, the battery manufactured by using the positive electrode active material of the secondary battery according to the present invention was excellent in charge / discharge efficiency.
<Experimental Example> Battery Characteristic Measurement-Lifetime Characteristics The lifespan characteristics of the coin battery were measured at room temperature (25 ° C.) and high temperature (45 ° C.), and the results are shown in FIGS. 11 and 5.

Figure 0006894419
Figure 0006894419

図11及び前記表5に示すように、本発明に係る二次電池正極活物質を用いて製造された電池は、比較例1の電池より寿命特性が改善された。特に、実施例2〜4の二次電池正極活物質を用いて製造された電池は、常温だけでなく、高温でも電池の寿命を維持する効果に優れた。 As shown in FIG. 11 and Table 5, the battery manufactured by using the secondary battery positive electrode active material according to the present invention has improved life characteristics as compared with the battery of Comparative Example 1. In particular, the batteries produced by using the positive electrode active materials of the secondary batteries of Examples 2 to 4 are excellent in the effect of maintaining the life of the batteries not only at room temperature but also at high temperatures.

<実験例>電池特性測定−高温充放電特性
コイン電池を1回または50回充放電したときの充放電特性を常温(25℃)及び高温(45℃)で測定し、その結果をdQ/dV対電圧(V)に変換して図12及び図13に示した。
<Experimental example> Battery characteristic measurement-High temperature charge / discharge characteristics The charge / discharge characteristics when a coin battery is charged / discharged once or 50 times are measured at room temperature (25 ° C) and high temperature (45 ° C), and the results are dQ / dV. Converted to voltage (V) and shown in FIGS. 12 and 13.

図12及び図13に示すように、本発明に係る二次電池正極活物質を用いて製造された電池は、常温だけでなく、高温でも充放電特性に優れた。 As shown in FIGS. 12 and 13, a battery manufactured by using the positive electrode active material of the secondary battery according to the present invention has excellent charge / discharge characteristics not only at room temperature but also at high temperature.

<実験例>充放電後のXRD測定
上記実施例及び比較例において製造された正極活物質を用いて製造されたコイン電池に対して、50回充放電後、電池を分解し、取得された正極活物質に対してXRDを測定し、電池製造前の活物質に対して測定したXRDデータと対比して、その結果を図14及び表6に示した。
<Experimental Example> XRD measurement after charging / discharging With respect to a coin battery manufactured using the positive electrode active material manufactured in the above Examples and Comparative Examples, the battery was disassembled after charging / discharging 50 times, and the obtained positive electrode was obtained. The XRD was measured for the active material and compared with the XRD data measured for the active material before the battery was manufactured, and the results are shown in FIGS. 14 and 6.

Figure 0006894419
Figure 0006894419

図14及び表6に示すように、本発明における実施例4の二次電池正極活物質を用いて製造されたコイン電池は、50回充放電後にもI(104)値の変化が5%以下であり、比較例より少なかった。
一般的な電池の場合、充放電が続けられれば、カチオン移動(cation migration)により結晶構造が劣化される。図15に示すように、(104)位置でのピーク強度は、カチオン移動(cation migration)が発生した程度を表すことと判断することができた。
本発明の正極活物質の場合、充放電が続けられた後にも、I(104)値の増加が2.61%に過ぎず、充放電後にもバルク(bulk)構造が劣化される程度が減少されることが確認できた。
As shown in FIGS. 14 and 6, the coin battery manufactured by using the secondary battery positive electrode active material of Example 4 in the present invention has a change of 5% or less in I (104) value even after 50 times of charging and discharging. It was less than the comparative example.
In the case of a general battery, if charging and discharging are continued, the crystal structure is deteriorated by cation migration. As shown in FIG. 15, it could be determined that the peak intensity at the position (104) represents the degree to which cation migration occurred.
In the case of the positive electrode active material of the present invention, the increase in the I (104) value is only 2.61% even after the charging / discharging is continued, and the degree of deterioration of the bulk structure is reduced even after the charging / discharging. It was confirmed that it would be done.

<実験例>電池のXPS確認
製造例1において実施例4の二次電池正極活物質を用いて製造されたコイン電池及び比較例1において製造された二次電池正極活物質を用いて製造されたコイン電池を50回充放電前後のXPSを測定し、その結果を図16、図17、及び表7に示した。
<Experimental Example> Confirmation of XPS of Battery A coin battery manufactured using the secondary battery positive electrode active material of Example 4 in Production Example 1 and a secondary battery positive electrode active material manufactured in Comparative Example 1 were used. The XPS of the coin battery before and after charging and discharging 50 times was measured, and the results are shown in FIGS. 16, 17, and 7.

Figure 0006894419
Figure 0006894419

図16、及び表7において本発明に係る実施例4の二次電池正極活物質を用いて製造されたコイン電池は、50回充放電後にもI(Li−F)、すなわち、Li−Fによるピークの強度が減少した。 In FIGS. 16 and 7, the coin battery manufactured by using the secondary battery positive electrode active material of Example 4 according to the present invention is still in I (Li-F), that is, Li-F even after being charged and discharged 50 times. The intensity of the peak decreased.

<実験例>正極活物質内部のLiF生成測定
製造例1において実施例4の二次電池正極活物質を用いて製造されたコイン電池及び比較例1において製造された二次電池正極活物質を用いて製造されたコイン電池を50回充放電後、正極活物質の断面をEDXで測定し、その結果を図17に示した。
<Experimental Example> Measurement of LiF generation inside the positive electrode active material In Production Example 1, a coin battery manufactured using the secondary battery positive electrode active material of Example 4 and a secondary battery positive electrode active material manufactured in Comparative Example 1 were used. After charging and discharging the coin battery manufactured in the above 50 times, the cross section of the positive electrode active material was measured by EDX, and the result is shown in FIG.

図17において本発明の正極活物質の場合、粒子内部のLi−Fが比較例より少なく検出されることが確認できた。 In FIG. 17, it was confirmed that in the case of the positive electrode active material of the present invention, less Li-F inside the particles was detected than in the comparative example.

Claims (12)

複数の1次粒子が凝集された2次粒子を含み、
前記1次粒子の表面部にリチウムマンガン酸化物を含み、
前記2次粒子内部の1次粒子間にリチウムマンガン酸化物を含み、
前記1次粒子の表面部におけるMn濃度が1次粒子内部におけるMn濃度より高く、
前記リチウムマンガン酸化物は、スピネル結晶構造を有するリチウムマンガン酸化物を含み、
前記1次粒子の表面部におけるリチウムマンガン酸化物は、スピネル結晶構造を有しないリチウムマンガン酸化物と、スピネル結晶構造を有するリチウムマンガン酸化物とを含む、二次電池用正極活物質。
Containing secondary particles in which a plurality of primary particles are aggregated,
The surface of the primary particles contains lithium manganese oxide.
Lithium manganese oxide is contained between the primary particles inside the secondary particles,
The Mn concentration on the surface of the primary particles is higher than the Mn concentration inside the primary particles.
The lithium manganese oxide, viewed contains a lithium manganese oxide having a spinel crystal structure,
The lithium manganese oxide on the surface of the primary particles is a positive electrode active material for a secondary battery , which contains a lithium manganese oxide having no spinel crystal structure and a lithium manganese oxide having a spinel crystal structure.
前記1次粒子は、1次粒子の中心部から表面部までMn濃度が勾配を有する請求項1に記載の二次電池用正極活物質。 The positive electrode active material for a secondary battery according to claim 1, wherein the primary particles have a gradient in Mn concentration from the central portion to the surface portion of the primary particles. 前記リチウムマンガン酸化物が2次粒子表面から1μm以内に表れる請求項1に記載の二次電池用正極活物質。 The positive electrode active material for a secondary battery according to claim 1, wherein the lithium manganese oxide appears within 1 μm from the surface of the secondary particles. 前記正極活物質は、XRD分析時、(020)、(003)、(101)、(006)、(102)、(104)、(005)、(009)、(107)、(018)、(110)、及び(113)の位置でピークを表す請求項1に記載の二次電池用正極活物質。 The positive electrode active material was prepared as (020), (003), (101), (006), (102), (104), (005), (009), (107), (018), at the time of XRD analysis. The positive electrode active material for a secondary battery according to claim 1, which represents a peak at the positions (110) and (113). 前記正極活物質は、XRD分析時、2θ=20゜〜21゜の間でLiMnOによる(020)ピークが表れる請求項1に記載の二次電池用正極活物質。 The positive electrode active material for a secondary battery according to claim 1, wherein the (020) peak due to Li 2 MnO 3 appears between 2θ = 20 ° and 21 ° during XRD analysis. 前記正極活物質は、XRD分析時、2θ=36〜38゜、44〜45゜、及び65〜66゜の間でLi1−xMnのピークが表れる請求項1に記載の二次電池用正極活物質。 The secondary according to claim 1, wherein the positive electrode active material shows a peak of Li 1-x Mn 2 O 4 between 2θ = 36 to 38 °, 44 to 45 °, and 65 to 66 ° at the time of XRD analysis. Positive electrode active material for batteries. 前記正極活物質は、充電前のXRD分析時に比べて充電後のXRD分析時、(104)位置でのピーク強度増加率が3%以下である請求項1に記載の二次電池用正極活物質。 The positive electrode active material for a secondary battery according to claim 1, wherein the positive electrode active material has a peak intensity increase rate of 3% or less at the position (104) during the XRD analysis after charging as compared with the XRD analysis before charging. .. 前記正極活物質は、1次粒子内に2次粒子の中心方向に配列されるリチウムイオン移動経路を含む請求項1に記載の二次電池用正極活物質。 The positive electrode active material for a secondary battery according to claim 1, wherein the positive electrode active material includes a lithium ion transfer path arranged in the primary particles in the central direction of the secondary particles. 前記2次粒子は、下記の化学式1で表示される請求項1に記載の二次電池用正極活物質:
Figure 0006894419
(上記化学式1において0≦x≦0.1、0≦y≦0.02、0z≦0.0006、0≦a≦0.1、0≦b≦0.1であり、
M1は、Al、Ni、Mn、Cr、Fe、Mg、Sr、V、Zn、W、Zr、B、Ba、Sc、Cu、Ti、Co、希土類元素、及びこれらの組み合わせから選ばれる1つ以上の元素である。)
The secondary particles are the positive electrode active material for a secondary battery according to claim 1, which is represented by the following chemical formula 1.
Figure 0006894419
(In the above chemical formula 1, 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.02, 0 < z ≦ 0.0006, 0 ≦ a ≦ 0.1, 0 ≦ b ≦ 0.1.
M1 is one or more selected from Al, Ni, Mn, Cr, Fe, Mg, Sr, V, Zn, W, Zr, B, Ba, Sc, Cu, Ti, Co, rare earth elements, and combinations thereof. It is an element of. )
請求項1に記載の二次電池用正極活物質を含む二次電池。 A secondary battery containing the positive electrode active material for a secondary battery according to claim 1. ニッケル、及びコバルトを含む前駆体を製造する第1のステップと、
前記前駆体にリチウム化合物を添加し、熱処理して複合金属化合物を製造する第2のステップと、
前記製造された複合金属化合物をマンガンを含む溶液で水洗し、乾燥する第3のステップと、
を含む請求項1に記載の二次電池用正極活物質の製造方法。
The first step in producing precursors containing nickel and cobalt,
The second step of adding a lithium compound to the precursor and heat-treating it to produce a composite metal compound,
The third step of washing the produced composite metal compound with a solution containing manganese and drying it,
The method for producing a positive electrode active material for a secondary battery according to claim 1.
前記第2のステップは、前記前駆体に前記リチウム化合物に加えてアルミニウム化合物を添加し、熱処理を行って前記複合金属化合物を製造することを含む、請求項11に記載の方法。The method according to claim 11, wherein the second step comprises adding an aluminum compound in addition to the lithium compound to the precursor and performing a heat treatment to produce the composite metal compound.
JP2018214372A 2017-11-15 2018-11-15 Positive electrode active material for secondary batteries and its manufacturing method Active JP6894419B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0152450 2017-11-15
KR10-2017-0152449 2017-11-15
KR20170152449 2017-11-15
KR20170152450 2017-11-15

Publications (2)

Publication Number Publication Date
JP2019091692A JP2019091692A (en) 2019-06-13
JP6894419B2 true JP6894419B2 (en) 2021-06-30

Family

ID=66836604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018214372A Active JP6894419B2 (en) 2017-11-15 2018-11-15 Positive electrode active material for secondary batteries and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6894419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102623096B1 (en) * 2022-11-03 2024-01-08 에스케이온 주식회사 Lithium secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114556627B (en) * 2019-10-18 2024-03-15 Ecopro Bm有限公司 Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
KR102324691B1 (en) * 2019-12-19 2021-11-09 주식회사 포스코 Cathode active material method for manufacturing the same, and lithium ion battery including the same
KR20210093641A (en) * 2020-01-20 2021-07-28 주식회사 엘지에너지솔루션 Method of diagnosing degradation of electrode active material for lithium secondary battery
CN111628157B (en) * 2020-06-30 2024-03-26 蜂巢能源科技有限公司 Positive electrode material, preparation method thereof and lithium ion battery
CN112382749B (en) * 2020-07-03 2024-04-12 华中科技大学 Lithium ion battery anode material and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164214A (en) * 1998-11-25 2000-06-16 Japan Storage Battery Co Ltd Now-aqueous electrolyte secondary battery
JP5137414B2 (en) * 2007-02-20 2013-02-06 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material
JP2008298112A (en) * 2007-05-29 2008-12-11 Ntn Corp Universal joint and its manufacturing method
WO2009063613A1 (en) * 2007-11-12 2009-05-22 Toda Kogyo Corporation Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous elctrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
JP5740297B2 (en) * 2011-12-22 2015-06-24 株式会社日立製作所 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, vehicle equipped with the same, and power storage system
JP5871186B2 (en) * 2012-03-01 2016-03-01 株式会社Gsユアサ Non-aqueous electrolyte secondary battery active material, method for producing the active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
CN104220378B (en) * 2012-04-05 2017-07-18 东曹株式会社 Mangano-manganic oxide Composite particle and its manufacture method containing metal
CN109599555A (en) * 2013-02-28 2019-04-09 日产自动车株式会社 Positive active material, positive electrode, anode and non-aqueous electrolyte secondary battery
JP2016033901A (en) * 2014-07-31 2016-03-10 ソニー株式会社 Positive electrode active material, positive electrode and battery
KR101555594B1 (en) * 2014-10-02 2015-10-06 주식회사 에코프로 Cathod active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
JP6323725B2 (en) * 2015-11-30 2018-05-16 トヨタ自動車株式会社 Positive electrode active material used for lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102623096B1 (en) * 2022-11-03 2024-01-08 에스케이온 주식회사 Lithium secondary battery

Also Published As

Publication number Publication date
JP2019091692A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP6894419B2 (en) Positive electrode active material for secondary batteries and its manufacturing method
JP7121771B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP7438922B2 (en) Lithium composite oxide for lithium secondary battery and method for producing the same
US10367197B2 (en) Positive active material composition for lithium battery, method of preparing the same, and lithium battery including the same
JP6265520B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR102130484B1 (en) Cathode active material and manufacturing method thereof
JP6845869B2 (en) Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery positive electrode active material produced by this method.
JP7354184B2 (en) Lithium composite oxide for lithium secondary battery and method for producing the same
JP6771419B2 (en) Lithium composite oxide for lithium secondary batteries and its manufacturing method
CN102782911B (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP6875172B2 (en) Lithium composite oxide for lithium secondary batteries and its manufacturing method
CN102782909B (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP6793588B2 (en) Lithium composite oxide for lithium secondary batteries and its manufacturing method
KR20100093034A (en) Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous electrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
KR20220009443A (en) Composite cathode materials for lithium ion batteries, lithium ion batteries, and vehicles
US10749205B2 (en) Method for producing positive active material precursor and positive active material for lithium secondary batteries, exhibiting concentration gradient, and positive active material precursor and positive active material for lithium secondary batteries, exhibiting concentration gradient, produced by same
JP7150911B2 (en) Lithium composite oxide for lithium secondary battery and method for producing the same
JP7257475B2 (en) Lithium composite oxide and method for producing the same
US10862119B2 (en) Cathode active material and manufacturing method thereof
JP2008130287A (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2014167873A (en) Negative electrode active material for lithium ion secondary battery, process of manufacturing the same, and lithium ion secondary battery
JP7329696B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including the same
JP2024056857A (en) Positive electrode active material, its manufacturing method, and lithium secondary battery including the same
CN117936720A (en) Lithium composite oxide and positive electrode active material for secondary battery comprising same
JP2024520026A (en) Lithium nickel-based composite oxides as positive electrode active materials for rechargeable lithium-ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210603

R150 Certificate of patent or registration of utility model

Ref document number: 6894419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250