JP6894200B2 - Heat sink for electrical equipment - Google Patents

Heat sink for electrical equipment Download PDF

Info

Publication number
JP6894200B2
JP6894200B2 JP2016128846A JP2016128846A JP6894200B2 JP 6894200 B2 JP6894200 B2 JP 6894200B2 JP 2016128846 A JP2016128846 A JP 2016128846A JP 2016128846 A JP2016128846 A JP 2016128846A JP 6894200 B2 JP6894200 B2 JP 6894200B2
Authority
JP
Japan
Prior art keywords
heat radiating
heat
flow path
radiating plate
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016128846A
Other languages
Japanese (ja)
Other versions
JP2018006458A (en
Inventor
塩田 広
広 塩田
洋輔 高井
洋輔 高井
岳良 真屋
岳良 真屋
宣史 池田
宣史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Industrial Products and Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Industrial Products and Systems Corp filed Critical Toshiba Industrial Products and Systems Corp
Priority to JP2016128846A priority Critical patent/JP6894200B2/en
Publication of JP2018006458A publication Critical patent/JP2018006458A/en
Application granted granted Critical
Publication of JP6894200B2 publication Critical patent/JP6894200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Transformer Cooling (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明の実施形態は、電気機器用放熱器に関する。 Embodiments of the present invention relate to radiators for electrical equipment.

近年、変圧器等の電気機器に採用される冷却方式としては、火災防止等の安全上の理由から、従来の絶縁油を用いた方式に代えて、例えばSF6やCO2ガス、又は乾燥空気などの冷媒気体を用いた方式が多くなってきている。しかしながら、上記した冷媒気体は、従来の絶縁油に比べて熱伝達率が悪く、冷却能力に劣る。そのため、従来、冷媒気体を用いた放熱器では、絶縁油を用いた放熱器と同等の冷却能力を得ようとした場合に、絶縁油を用いた放熱器に比べて大きくなってしまい、設置スペースを圧迫していた。 In recent years, as a cooling method adopted for electrical equipment such as a transformer, for safety reasons such as fire prevention, instead of the conventional method using insulating oil, for example, SF6, CO2 gas, dry air, etc. The number of methods using refrigerant gas is increasing. However, the above-mentioned refrigerant gas has a poor heat transfer coefficient and is inferior in cooling capacity as compared with the conventional insulating oil. Therefore, in the past, a radiator using a refrigerant gas would be larger than a radiator using insulating oil when trying to obtain a cooling capacity equivalent to that of a radiator using insulating oil, and the installation space would be increased. Was squeezing.

特開平3−68114号公報Japanese Unexamined Patent Publication No. 3-68114

そこで、本発明の実施形態は、放熱性能を低下させることなく小型化を図ることができる電気機器用放熱器を提供する。 Therefore, an embodiment of the present invention provides a radiator for an electric device that can be miniaturized without deteriorating the heat dissipation performance.

本実施形態の電気機器用放熱器は、内部に冷媒流体を流すための複数の流路を有し同一形状の板状に形成され厚み方向に所定距離離間させて積層された複数の放熱板を備え、前記放熱板に形成された各前記流路は、前記流路が延びる方向に直角方向でかつ前記放熱板の面に沿った方向に向かって所定間隔で離間して配置されており、前記放熱板は、左右両端側に設けられて幅寸法が左右で異なっている縁部と、前記流路の両端部に設けられて前記放熱板を厚み方向に貫くと共に積層方向へ突出して前記流路に連通した2つのヘッダ部と、を有し、2つの前記ヘッダ部は、各ヘッダ部の中心が前記放熱板において前記流路の長手方向に対する直角方向の中心を通る中心線上に位置するように又は前記放熱板の中心点に対して相互に点対称となる位置に設けられ、積層方向に隣接する2枚の前記放熱板について見た場合、前記各放熱板はその積層方向に向かって交互に裏表反転又は中心点を支点に積層方向の面に沿って180°回転させた姿勢で、かつ、積層方向に対して左右の両側が揃うように配置されており、一方の前記放熱板に形成された前記流路と他方の前記放熱板に形成された前記流路とは、それぞれ前記流路が延びる方向に対して直角方向の面で切断した断面視において千鳥状に配置されていると共に、一方の前記放熱板に設けられた前記ヘッダ部と他方の放熱板に設けられた前記ヘッダ部とが突き合わせて連結されており、隣接する前記放熱板の間の前記所定距離は、前記放熱板に形成された前記流路の間の前記所定間隔の半分に設定されている。 The radiator for electric equipment of the present embodiment has a plurality of heat sinks having a plurality of flow paths for flowing a refrigerant fluid inside, and a plurality of heat sinks formed in a plate shape having the same shape and laminated at a predetermined distance in the thickness direction. Each of the flow paths formed on the heat radiating plate is arranged at a predetermined interval in a direction perpendicular to the direction in which the flow path extends and in a direction along the surface of the heat radiating plate. The heat sinks are provided on both left and right ends and have different width dimensions on the left and right, and the heat sinks are provided on both ends of the flow path so as to penetrate the heat sink in the thickness direction and project in the stacking direction. has two header portions communicating, to, two of said header portion, such that the center of each header portion is positioned on a center line passing through a right angle direction of the center with respect to the longitudinal direction of the flow path in the heat radiating plate Alternatively, when two heat sinks are provided at positions symmetrical with each other with respect to the center point of the heat sinks and are adjacent to each other in the stacking direction, the heat sinks are alternately arranged in the stacking direction. It is arranged so that it is turned upside down or rotated 180 ° along the surface in the stacking direction with the center point as the fulcrum, and the left and right sides are aligned with respect to the stacking direction, and is formed on one of the heat sinks. The flow path and the flow path formed on the other heat sink are arranged in a staggered manner in a cross-sectional view cut along a plane perpendicular to the direction in which the flow path extends. The header portion provided on the heat sink and the header portion provided on the other heat sink are abutted and connected to each other, and the predetermined distance between adjacent heat sinks is formed on the heat sink. It is set to half of the predetermined interval between the flow paths.

一実施形態による電気機器用放熱器の一例を示す側面図A side view showing an example of a radiator for an electric device according to an embodiment. 一実施形態による電気機器用放熱器の一例を示す正面図Front view showing an example of a radiator for an electric device according to an embodiment. 一実施形態による電気機器用放熱器について、図2のX3−X3線に沿って示すもので、積層方向に隣接する2つ放熱板の断面を拡大して示す断面図The radiator for electrical equipment according to one embodiment is shown along the X3-X3 line of FIG. 2, and is a cross-sectional view showing an enlarged cross section of two heat sinks adjacent to each other in the stacking direction. 従来構成の電気機器用放熱器について、図3に相当する断面図A cross-sectional view corresponding to FIG. 3 of a radiator for electrical equipment having a conventional configuration.

以下、一実施形態について図面を参照しながら説明する。
図1に示す実施形態の電気機器用放熱器10(以下、単に放熱器10と称す)は、電気機器用のいわゆるパネルラジエータであって、複数の放熱板20と、2つの接続部31と、を備えている。複数の放熱板20は、放熱板20の厚み方向に向かって所定間隔離間した状態で積層されている。各放熱板20は、図1及び図2に示すように、全体として矩形の板状に形成されている。放熱板20は、図2及び図3に示す複数の流路21と、図1及び図2に示す2つのヘッダ部22と、を有している。各流路21は、図2に示すように、放熱板20の面に沿って直線状に延びている。なお、以下の説明においては、各流路21が延びる方向を、放熱器10の上下方向とする。また、各流路21が延びる方向に直角方向でかつ放熱板20の面に沿った方向を、放熱器10の左右方向とする。
Hereinafter, one embodiment will be described with reference to the drawings.
The radiator 10 for electrical equipment (hereinafter, simply referred to as a radiator 10) of the embodiment shown in FIG. 1 is a so-called panel radiator for electrical equipment, and includes a plurality of heat sinks 20, two connection portions 31, and the like. It has. The plurality of heat radiating plates 20 are laminated at predetermined intervals in the thickness direction of the heat radiating plates 20. As shown in FIGS. 1 and 2, each heat radiating plate 20 is formed in a rectangular plate shape as a whole. The heat radiating plate 20 has a plurality of flow paths 21 shown in FIGS. 2 and 3, and two header portions 22 shown in FIGS. 1 and 2. As shown in FIG. 2, each flow path 21 extends linearly along the surface of the heat sink 20. In the following description, the direction in which each flow path 21 extends is the vertical direction of the radiator 10. Further, the direction perpendicular to the direction in which each flow path 21 extends and along the surface of the heat radiating plate 20 is defined as the left-right direction of the radiating device 10.

各流路21は、流路21の長手方向つまり放熱板20の上下方向に対して直角方向の面で切断した断面が、図3に示すように円形となるように形成されている。なお、流路21の断面形状は円形に限られず、例えば楕円や矩形、又は多角形等であっても良い。各流路21は、一の放熱板20において、流路21の延びる方向に対して直角方向でかつ放熱板20の面に沿った方向、つまり左右方向に向かって所定間隔で離間して配置されている。この場合、図3に示すように、一の放熱板20内において隣接する2つの流路21の中心間の距離を中心間距離Lとする。 Each flow path 21 is formed so that the cross section cut in the longitudinal direction of the flow path 21, that is, in the plane perpendicular to the vertical direction of the heat radiating plate 20, is circular as shown in FIG. The cross-sectional shape of the flow path 21 is not limited to a circle, and may be, for example, an ellipse, a rectangle, or a polygon. Each flow path 21 is arranged in one heat radiating plate 20 at a predetermined interval in a direction perpendicular to the extending direction of the flow path 21 and in a direction along the surface of the heat radiating plate 20, that is, in the left-right direction. ing. In this case, as shown in FIG. 3, the distance between the centers of two adjacent flow paths 21 in one heat sink 20 is defined as the center-to-center distance L.

放熱板20は、例えばプレス加工された2枚の薄鋼板を溶接することで構成されている。この場合、1枚の薄鋼板には、プレス加工によって流路21の半分が形成される。そして、流路21の半分が形成された薄鋼板を2枚重ね合わせて溶接することで、放熱板20が構成される。流路21の内部には、例えばSF6やCO2ガス、又は乾燥空気などの冷媒流体が流される。なお、冷媒流体は、気体に限られず、絶縁油等の流体であっても良い。 The heat radiating plate 20 is formed by welding, for example, two pressed thin steel plates. In this case, half of the flow path 21 is formed on one thin steel plate by press working. Then, the heat radiating plate 20 is formed by superimposing and welding two thin steel plates on which half of the flow path 21 is formed. A refrigerant fluid such as SF6, CO2 gas, or dry air flows inside the flow path 21. The refrigerant fluid is not limited to gas, and may be a fluid such as insulating oil.

図3に示すように、積層方向に隣接する2枚の放熱板20について見ると、一方の放熱板20に形成された流路21と、他方の放熱板20に形成された流路21とは、それぞれ流路21が延びる方向に対して直角方向の面で切断した断面視において互い違いとなるような千鳥状に配置されている。すなわち、他方の放熱板20に形成された各流路21は、それぞれ一方の放熱板20に形成された各流路21に対して、左右方向においてL/2ずれて配置されている。 As shown in FIG. 3, when looking at two heat radiating plates 20 adjacent to each other in the stacking direction, the flow path 21 formed on one heat radiating plate 20 and the flow path 21 formed on the other heat radiating plate 20 are The flow paths 21 are arranged in a staggered manner so as to be staggered in a cross-sectional view cut along a plane perpendicular to the extending direction. That is, the flow paths 21 formed in the other heat sink 20 are arranged so as to be displaced by L / 2 in the left-right direction with respect to the flow paths 21 formed in the one heat sink 20.

この場合、一の放熱板20について見ると、各流路21は、図2に示すように、放熱板20を左右方向に二分割する中心線Chに対して非対称となるように配置されている。すなわち、放熱板20は、図2及び図3に示すように、左右両端側の縁部241、242の幅寸法が左右で異なっている。具体的には、左右両端側の縁部241、242のうち、幅寸法の小さい方の縁部を第1縁部241とし、幅寸法の大きい方の縁部を第2縁部242とする。また、放熱板20の左右両側の端部のうち、第1縁部241側の端部を第1端部251とし、第2縁部242側の端部を第2端部252とする。そして、各流路21のうち、第1端部251側の流路を第1端部側流路211とし、第2端部252側の流路を第2端部側流路212とする。 In this case, looking at one heat sink 20, each flow path 21 is arranged so as to be asymmetric with respect to the center line Ch that divides the heat sink 20 into two in the left-right direction, as shown in FIG. .. That is, as shown in FIGS. 2 and 3, the heat radiating plate 20 has different width dimensions of the left and right edge portions 241 and 242 on the left and right ends. Specifically, of the left and right edge portions 241 and 242, the edge portion having the smaller width dimension is referred to as the first edge portion 241 and the edge portion having the larger width dimension is referred to as the second edge portion 242. Further, among the left and right end portions of the heat radiating plate 20, the end portion on the first edge portion 241 side is referred to as the first end portion 251 and the end portion on the second edge portion 242 side is referred to as the second end portion 252. Then, among each of the flow paths 21, the flow path on the first end 251 side is referred to as the first end side flow path 211, and the flow path on the second end 252 side is referred to as the second end side flow path 212.

また、図3に示すように、第1端部側流路211の中心Pxから第1端部251までの距離寸法を距離Xとし、第2端部側流路212の中心Pyから第2端部252までの距離寸法を距離Yとする。この場合、距離Yと距離Xとの差は、同一の放熱板20において隣接する2つの流路21の中心間距離Lの半分つまりL/2に設定されている。 Further, as shown in FIG. 3, the distance dimension from the center Px of the first end side flow path 211 to the first end portion 251 is defined as the distance X, and the second end side flow path 212 from the center Py to the second end. Let the distance dimension to the part 252 be the distance Y. In this case, the difference between the distance Y and the distance X is set to half of the distance L between the centers of the two adjacent flow paths 21 in the same heat sink 20, that is, L / 2.

2つのヘッダ部22は、図1及び図2に示すように管状に形成されており、放熱板20を厚み方向に貫くと共に各流路21に連通して設けられている。また、ヘッダ部22は、図1に示すように、放熱板20の面に対して直角方向に突出つまり積層方向の両側へ向かって突出して設けられている。すなわち、ヘッダ部22は、放熱板20を厚み方向に貫くように形成されている。各放熱板20は、積層方向に隣接する放熱板20のヘッダ部22を突き合わせた状態で溶接されている。これにより、各放熱板20が相互に連結されていると共に、各放熱板20の流路21がヘッダ部22を介して相互に連通されている。 The two header portions 22 are formed in a tubular shape as shown in FIGS. 1 and 2, and are provided so as to penetrate the heat radiating plate 20 in the thickness direction and communicate with each flow path 21. Further, as shown in FIG. 1, the header portion 22 is provided so as to project in a direction perpendicular to the surface of the heat radiating plate 20, that is, to project toward both sides in the stacking direction. That is, the header portion 22 is formed so as to penetrate the heat radiating plate 20 in the thickness direction. Each heat radiating plate 20 is welded in a state where the header portions 22 of the heat radiating plates 20 adjacent to each other in the stacking direction are butted against each other. As a result, the heat sinks 20 are connected to each other, and the flow paths 21 of the heat sinks 20 are communicated with each other via the header portion 22.

図1及び図2に示すように、2つの接続部31は、積層された複数の放熱板20のうち、積層方向における一方端側の放熱板20に設けられている。接続部31は、フランジ管状に形成されており、ヘッダ部22に溶接されている。接続部31は、冷媒流体を流す図示しない管部材に接続される。また、放熱器10において接続部31とは反対側の面を構成する放熱板20は、そのヘッダ部22の一部つまり最外面を形成する部分が塞がれている。これにより、複数のヘッダ部22を放熱板20の積層方向に連結して形成された直線状の経路の終端部分が形成されている。 As shown in FIGS. 1 and 2, the two connecting portions 31 are provided on the heat radiating plate 20 on one end side in the stacking direction among the plurality of laminated heat radiating plates 20. The connecting portion 31 is formed in a tubular flange shape and is welded to the header portion 22. The connecting portion 31 is connected to a pipe member (not shown) through which the refrigerant fluid flows. Further, the heat radiating plate 20 forming the surface of the radiator 10 opposite to the connecting portion 31 is closed with a part of the header portion 22, that is, a portion forming the outermost surface. As a result, the end portion of the linear path formed by connecting the plurality of header portions 22 in the stacking direction of the heat radiating plates 20 is formed.

この構成において、2つの接続部31のうち、一方例えば上側の接続部31から放熱器10内に流入した冷媒流体は、一方この場合上側のヘッダ部22を通って各放熱板20に分配されるとともに、各放熱板20の流路21を上から下へ向かって流れる。その際、流路21を流れる冷媒流体と外気との熱交換によって冷媒流体の放熱が行われる。そして、放熱板20の流路21を流れた冷媒流体は、他方この場合下側のヘッダ部22を通って合流した後、他方この場合下側の接続部31から外部すなわち電気機器側へ流出する。 In this configuration, of the two connecting portions 31, for example, the refrigerant fluid that has flowed into the radiator 10 from the upper connecting portion 31 is distributed to each heat sink 20 through the upper header portion 22 in this case. At the same time, it flows from the top to the bottom in the flow path 21 of each heat sink 20. At that time, the refrigerant fluid is dissipated by heat exchange between the refrigerant fluid flowing through the flow path 21 and the outside air. Then, the refrigerant fluid flowing through the flow path 21 of the heat radiating plate 20 merges through the lower header portion 22 in this case, and then flows out from the lower connecting portion 31 in this case to the outside, that is, to the electric device side. ..

この場合、2つのヘッダ部22は、図1に示すように、各ヘッダ部22の中心が放熱板20の左右方向の中心線Ch上に位置するように、又は放熱板20の中心点Oに対して点対称となるように設けられている。本実施形態の場合、2つのヘッダ部22は、放熱板20を上下方向に二分割する中心線Cvに対して対称で、かつ、ヘッダ部22の中心位置が左右方向の中心線Ch上に位置するように配置されている。 In this case, as shown in FIG. 1, the two header portions 22 are arranged so that the center of each header portion 22 is located on the center line Ch in the left-right direction of the heat radiating plate 20, or at the center point O of the heat radiating plate 20. On the other hand, it is provided so as to be point-symmetrical. In the case of the present embodiment, the two header portions 22 are symmetrical with respect to the center line Cv that divides the heat sink 20 into two in the vertical direction, and the center position of the header portion 22 is located on the center line Ch in the horizontal direction. It is arranged to do.

この場合、各放熱板20は、それぞれ同一形状に形成されているが、配置される姿勢つまり放熱板20の向きが、積層方向に向かって交互に入れ替わるように異なっている。すなわち、各放熱板20は、積層方向に向かって交互に裏表反転又は中心点Oを支点に放熱板20の面に沿って180°回転させた姿勢で配置されている。これにより、図3に示すように、各放熱板20の流路21がそれぞれ千鳥状となるように配置されている。 In this case, the heat sinks 20 are each formed to have the same shape, but the postures in which they are arranged, that is, the directions of the heat sinks 20, are different so as to alternate toward the stacking direction. That is, each heat sink 20 is arranged in a posture of being alternately turned upside down or rotated 180 ° along the surface of the heat sink 20 with the center point O as a fulcrum in the stacking direction. As a result, as shown in FIG. 3, the flow paths 21 of the heat sinks 20 are arranged in a staggered manner.

次に、図3に示す本実施形態と図4に示す従来構成とにおける、離間距離Dと積層距離Ha、Hbとの関係について説明する。なお、図4に示す従来構成の放熱器は、放熱板90によって構成されている。従来構成の放熱板90は、左右方向に対称に構成されている。この場合、従来構成の放熱板90は、本実施形態の放熱板20と同様に、流路21を有している。 Next, the relationship between the separation distance D and the stacking distances Ha and Hb in the present embodiment shown in FIG. 3 and the conventional configuration shown in FIG. 4 will be described. The radiator of the conventional configuration shown in FIG. 4 is composed of a heat sink 90. The heat sink 90 having the conventional configuration is symmetrically configured in the left-right direction. In this case, the heat sink 90 having the conventional configuration has a flow path 21 like the heat sink 20 of the present embodiment.

なお、積層距離Ha、Hbとは、積層方向に隣接する2つの放熱板20間又は放熱板90間の距離、つまり2つの放熱板20、90の厚みの中心間距離を意味する。また、離間距離Dとは、図3及び図4に示すように、積層方向に隣接する2つの放熱板20間又は放熱板90間において、最も接近している2つの流路21の中心間距離を意味する。この離間距離Dは、隣接する放熱板20間又は放熱板90間に対し、流路21内を流れる冷媒流体との熱交換に必要な外気等を円滑に流すために確保することが必要な距離である。離間距離Dは、流路21の径や冷媒流体の種類等に応じて適宜設定される。なお、この場合、図3に示す本願実施形態における離間距離Dと、図4に示す従来構成における離間距離Dとは、同一の値に設定されている。 The stacking distances Ha and Hb mean the distance between the two heat sinks 20 or the heat sinks 90 adjacent to each other in the stacking direction, that is, the distance between the centers of the thicknesses of the two heat sinks 20 and 90. Further, as shown in FIGS. 3 and 4, the separation distance D is the distance between the centers of the two flow paths 21 that are closest to each other between the two heat sinks 20 adjacent to each other in the stacking direction or between the heat sinks 90. Means. This separation distance D is a distance required to smoothly flow the outside air or the like necessary for heat exchange with the refrigerant fluid flowing in the flow path 21 between the adjacent heat sinks 20 or 90. Is. The separation distance D is appropriately set according to the diameter of the flow path 21, the type of refrigerant fluid, and the like. In this case, the separation distance D in the embodiment of the present application shown in FIG. 3 and the separation distance D in the conventional configuration shown in FIG. 4 are set to the same value.

まず、図4に示す従来構成における積層距離Hbについて見る。図4に示す各放熱板90は、各流路21が千鳥状とはならない態様で単純に積層して配置したものである。この構成において、積層方向に隣接する2つの放熱板90間で最接近する2つの流路21は、積層方向の直線上に並んでいる。そのため、図4の構成において、積層距離Hbは、離間距離Dとなる。 First, let us look at the stacking distance Hb in the conventional configuration shown in FIG. The heat sinks 90 shown in FIG. 4 are simply laminated and arranged so that the flow paths 21 do not have a staggered shape. In this configuration, the two flow paths 21 that are closest to each other between the two heat sinks 90 adjacent to each other in the stacking direction are arranged on a straight line in the stacking direction. Therefore, in the configuration of FIG. 4, the stacking distance Hb is the separation distance D.

これに対し、図3に示す本実施形態では、各流路21は相互に互い違いとなるような千鳥状に配置されている。この構成において、各放熱板20間で最接近する2つの流路21は、積層方向に対して傾斜した状態で配置される。すなわち、隣接する2つの放熱板20間で最接近する2つの流路21は、積層方向において直線上には並ばない。この場合、これら最接近する2つの流路21の中心間の距離が離間距離Dとなる。そして、これら最接近する2つの流路21の中心間を結ぶ直線と、一方の放熱板20の面との成す角度を角度αとすると、積層距離Haは、次式(1)で表される。
Ha=Hb×sinα=D×sinα ・・・(1)
On the other hand, in the present embodiment shown in FIG. 3, the flow paths 21 are arranged in a staggered manner so as to be staggered with each other. In this configuration, the two flow paths 21 that are closest to each other between the heat sinks 20 are arranged so as to be inclined with respect to the stacking direction. That is, the two flow paths 21 that are closest to each other between the two adjacent heat sinks 20 do not line up in a straight line in the stacking direction. In this case, the distance between the centers of the two closest flow paths 21 is the separation distance D. Then, assuming that the angle formed by the straight line connecting the centers of the two closest flow paths 21 and the surface of one of the heat sinks 20 is the angle α, the stacking distance Ha is expressed by the following equation (1). ..
Ha = Hb × sinα = D × sinα ・ ・ ・ (1)

この場合、0<α<90°である。そのため、式(1)によれば、図3に示す本実施形態における積層距離Haは、図4に示す従来構成の積層距離Hbつまり離間距離Dを超えることがない。そして、この場合、例えば離間距離Dと中心間距離Lとが等しければ、α=60°となり、Ha=D×(√3/2)となる。すなわち、この場合、離間距離Dと中心間距離Lとが等しければ、図3に示す本実施形態における積層距離Haは、図4に示す従来構成の積層距離Hbの(√3/2)倍となる。また、例えばα=45°である場合、図3に示す本実施形態の積層距離Haは、図4に示す従来構成の積層距離Hbの(1/√2)倍となる。このように、各流路21を千鳥状に配置することで、従来構成と同一の離間距離Dを確保しつつ、各放熱板20間の積層距離Haを、千鳥状に配置されていない従来構成の積層距離Hbよりも縮めることができる。 In this case, 0 <α <90 °. Therefore, according to the formula (1), the stacking distance Ha in the present embodiment shown in FIG. 3 does not exceed the stacking distance Hb of the conventional configuration shown in FIG. 4, that is, the separation distance D. In this case, for example, if the separation distance D and the center-to-center distance L are equal, α = 60 ° and Ha = D × (√3 / 2). That is, in this case, if the separation distance D and the center-to-center distance L are equal, the stacking distance Ha in the present embodiment shown in FIG. 3 is (√3 / 2) times the stacking distance Hb of the conventional configuration shown in FIG. Become. Further, for example, when α = 45 °, the stacking distance Ha of the present embodiment shown in FIG. 3 is (1 / √2) times the stacking distance Hb of the conventional configuration shown in FIG. In this way, by arranging the flow paths 21 in a staggered pattern, the same separation distance D as in the conventional configuration is secured, and the stacking distance Ha between the heat radiation plates 20 is not arranged in a staggered pattern in the conventional configuration. It can be shortened from the stacking distance Hb of.

以上説明した実施形態によれば、放熱器10は、複数の放熱板20を備えている。放熱板20は、内部に冷媒流体を流すための複数の流路21を有し、板状に形成され、その板状の厚み方向に所定距離Ha離間させて積層されている。各放熱板20は、複数の流路21を有している。各流路21は、流路21が延びる方向に直角方向でかつ放熱板20の面に沿った方向に向かって所定間隔で離間して配置されている。そして、積層方向に隣接する2枚の放熱板20について見た場合、一方の放熱板20に形成された流路21と他方の放熱板20に形成された流路21とは、それぞれ流路21が延びる方向に対して直角方向の面で切断した断面視において千鳥状に配置されている。 According to the embodiment described above, the radiator 10 includes a plurality of heat sinks 20. The heat radiating plate 20 has a plurality of flow paths 21 for flowing the refrigerant fluid inside, is formed in a plate shape, and is laminated with a predetermined distance Ha in the thickness direction of the plate shape. Each heat sink 20 has a plurality of flow paths 21. The flow paths 21 are arranged at right angles to the direction in which the flow path 21 extends and at predetermined intervals in the direction along the surface of the heat radiating plate 20. When looking at the two heat radiating plates 20 adjacent to each other in the stacking direction, the flow path 21 formed on one heat radiating plate 20 and the flow path 21 formed on the other heat radiating plate 20, respectively, are the flow paths 21. They are arranged in a staggered pattern in a cross-sectional view cut along a plane perpendicular to the extending direction.

すなわち、積層方向に隣接する2枚の放熱板20における各流路21は、それぞれ千鳥状に配置されている。これによれば、隣接する2つの放熱板20間において最接近する流路21間の離間距離Dを所定値以上に確保しつつ、放熱板20間の積層距離Haを、従来構成の積層距離Hbよりも縮めることができる。換言すれば、離間距離Dを小さくすることなく、放熱板20間の積層距離Haを、従来構成の積層距離Hbよりも縮めることができる。その結果、放熱器10において、従来構成の放熱器と同等の放熱性能を維持しつつ、放熱板20の積層方向の厚みを低減して全体としての小型化を図ることができる。 That is, the flow paths 21 in the two heat sinks 20 adjacent to each other in the stacking direction are arranged in a staggered pattern. According to this, while ensuring the separation distance D between the flow paths 21 closest to each other between the two adjacent heat sinks 20 to a predetermined value or more, the stacking distance Ha between the heat sinks 20 is set to the stacking distance Hb of the conventional configuration. Can be shrunk than. In other words, the stacking distance Ha between the heat radiating plates 20 can be shortened as compared with the stacking distance Hb of the conventional configuration without reducing the separation distance D. As a result, in the radiator 10, the thickness of the heat sink 20 in the stacking direction can be reduced while maintaining the same heat dissipation performance as that of the radiator having the conventional configuration, and the overall size can be reduced.

各放熱板20は、それぞれ2つのヘッダ部22を有している。2つのヘッダ部22は、流路21の長手方向の両端部つまり上下方向の両端部に設けられている。各ヘッダ部22は、それぞれ放熱板20を厚み方向に貫くと共に流路21に連通している。そして、2つのヘッダ部22は、ヘッダ部22の中心が放熱板20の左右方向の中心線Ch上に位置するように、又は放熱板20の中心点Oに対して点対称となるように設けられている。 Each heat sink 20 has two header portions 22 respectively. The two header portions 22 are provided at both ends in the longitudinal direction of the flow path 21, that is, at both ends in the vertical direction. Each header portion 22 penetrates the heat radiating plate 20 in the thickness direction and communicates with the flow path 21. The two header portions 22 are provided so that the center of the header portion 22 is located on the center line Ch in the left-right direction of the heat radiating plate 20 or is point-symmetrical with respect to the center point O of the heat radiating plate 20. Has been done.

これによれば、同一形状の各放熱板20を、積層方向に向かって交互に裏表反転又は中心点Oを支点に放熱板20の面に沿って180°回転させた形態で配置することで、図3に示すように、各放熱板20の流路21を千鳥状に配置することができる。すなわち、これによれば、流路21を千鳥状に配置するために、積層方向に配置された各放熱板20の形状を異ならせる必要がない。つまり、流路21を千鳥状に配置した場合であっても、各放熱板20の形状を共通化することができる。これにより、例えば放熱板20の製造に要するプレス型も共通化することができ、その結果、流路21を千鳥状に配置することによる部品種類の増加や製造コストの増加等を抑制することができる。 According to this, each heat radiating plate 20 having the same shape is arranged in a form of being alternately turned upside down or rotated 180 ° along the surface of the heat radiating plate 20 with the center point O as a fulcrum in the stacking direction. As shown in FIG. 3, the flow paths 21 of each heat radiation plate 20 can be arranged in a staggered manner. That is, according to this, in order to arrange the flow paths 21 in a staggered manner, it is not necessary to make the shapes of the heat sinks 20 arranged in the stacking direction different. That is, even when the flow paths 21 are arranged in a staggered pattern, the shape of each heat sink 20 can be made common. As a result, for example, the press mold required for manufacturing the heat sink 20 can be standardized, and as a result, it is possible to suppress an increase in the types of parts and an increase in manufacturing cost due to the staggered arrangement of the flow paths 21. it can.

また、同一の放熱板20において、例えば第2端部252側に設けられた第2端部側流路212の中心部Pyから第2端部252までの距離Y寸法と、第1端部251側に設けられた第1端部側流路211の中心Pxから第1端部251までの距離X寸法との差が、同一の放熱板20において隣接する2つの流路21の中心間距離Lの半分であるL/2に設定されている。これによれば、図3に示すように、各放熱板20を、積層方向に向かって交互に裏表反転又は中心点Oを支点に放熱板20の面に沿って180°回転させた姿勢で配置した場合に、各端部251、252が積層方向に伸びる直線上に揃う。このため、各流路21を千鳥状に配置した場合であっても、放熱器10全体を見た場合に、第1端部251と第2端部252とが互い違いに段差状となることを防ぐことができる。その結果、放熱器10全体を見た場合における外観上の意匠性を向上させることができる。 Further, in the same heat radiating plate 20, for example, the distance Y dimension from the center portion Py of the second end portion side flow path 212 provided on the second end portion 252 side to the second end portion 252 and the first end portion 251 The difference from the distance X dimension from the center Px of the first end side flow path 211 provided on the side to the first end 251 is the distance L between the centers of two adjacent flow paths 21 in the same heat radiation plate 20. It is set to L / 2, which is half of. According to this, as shown in FIG. 3, each heat radiating plate 20 is arranged in a posture of being alternately turned upside down or rotated 180 ° along the surface of the heat radiating plate 20 with the center point O as a fulcrum in the stacking direction. When this is done, the ends 251 and 252 are aligned on a straight line extending in the stacking direction. Therefore, even when the flow paths 21 are arranged in a staggered pattern, the first end portion 251 and the second end portion 252 are alternately stepped when the entire radiator 10 is viewed. Can be prevented. As a result, it is possible to improve the design of the appearance when the entire radiator 10 is viewed.

以上本発明の一実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although one embodiment of the present invention has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This novel embodiment can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

図面中10は電気機器用放熱器、20は放熱板、21は流路、22はヘッダ部、251は第1端部(一方の端部)、252は第2端部(他方の端部)を示す。 In the drawing, 10 is a radiator for electrical equipment, 20 is a heat sink, 21 is a flow path, 22 is a header, 251 is a first end (one end), and 252 is a second end (the other end). Is shown.

Claims (2)

内部に冷媒流体を流すための複数の流路を有し同一形状の板状に形成され厚み方向に所定距離離間させて積層された複数の放熱板を備え、
前記放熱板に形成された各前記流路は、前記流路が延びる方向に直角方向でかつ前記放熱板の面に沿った方向に向かって所定間隔で離間して配置されており、
前記放熱板は、左右両端側に設けられて幅寸法が左右で異なっている縁部と、前記流路の両端部に設けられて前記放熱板を厚み方向に貫くと共に積層方向へ突出して前記流路に連通した2つのヘッダ部と、を有し、
2つの前記ヘッダ部は、各ヘッダ部の中心が前記放熱板において前記流路の長手方向に対する直角方向の中心を通る中心線上に位置するように又は前記放熱板の中心点に対して相互に点対称となる位置に設けられ、
積層方向に隣接する2枚の前記放熱板について見た場合、前記各放熱板はその積層方向に向かって交互に裏表反転又は中心点を支点に積層方向の面に沿って180°回転させた姿勢で、かつ、積層方向に対して左右の両側が揃うように配置されており、一方の前記放熱板に形成された前記流路と他方の前記放熱板に形成された前記流路とは、それぞれ前記流路が延びる方向に対して直角方向の面で切断した断面視において千鳥状に配置されていると共に、
一方の前記放熱板に設けられた前記ヘッダ部と他方の放熱板に設けられた前記ヘッダ部とが突き合わせて連結されており、
隣接する前記放熱板の間の前記所定距離は、前記放熱板に形成された前記流路の間の前記所定間隔の半分に設定されている、
電気機器用放熱器。
It has a plurality of flow paths for flowing a refrigerant fluid inside, and is provided with a plurality of heat sinks formed in a plate shape of the same shape and laminated at a predetermined distance in the thickness direction.
Each of the flow paths formed on the heat radiating plate is arranged at a predetermined interval in a direction perpendicular to the direction in which the flow path extends and in a direction along the surface of the heat radiating plate.
The heat radiating plates are provided on both left and right ends and have different width dimensions on the left and right, and the heat radiating plates are provided on both ends of the flow path so as to penetrate the heat radiating plate in the thickness direction and project in the stacking direction. It has two header in communication with the road, and
The two header portions are pointed so that the center of each header portion is located on the center line passing through the center in the direction perpendicular to the longitudinal direction of the flow path in the heat radiation plate or with respect to the center point of the heat radiation plate. Provided at symmetrical positions
When looking at the two heat radiating plates adjacent to each other in the stacking direction, the heat radiating plates are alternately inverted toward the stacking direction or rotated 180 ° along the surface in the stacking direction with the center point as a fulcrum. And, the left and right sides are arranged so as to be aligned with each other in the stacking direction, and the flow path formed on one of the heat radiating plates and the flow path formed on the other heat radiating plate are respectively. It is arranged in a staggered pattern in a cross-sectional view cut along a plane perpendicular to the direction in which the flow path extends.
The header portion provided on one of the heat sinks and the header portion provided on the other heat sink are abutted and connected to each other.
The predetermined distance between the adjacent heat sinks is set to half of the predetermined distance between the flow paths formed in the heat sinks.
Heat sink for electrical equipment.
同一の前記放熱板において、一方の端部側に設けられた前記流路の中心から前記放熱板の一方の端部までの距離寸法と他方の端部側に設けられた前記流路の中心から前記放熱板の他方の端部までの距離寸法との差が、同一の前記放熱板において隣接する2つの前記流路の中心間距離の半分に設定されている、
請求項1に記載の電気機器用放熱器。
In the same heat radiating plate, from the distance dimension from the center of the flow path provided on one end side to one end of the heat radiating plate and the center of the flow path provided on the other end side. The difference from the distance dimension to the other end of the heat radiating plate is set to half the distance between the centers of the two adjacent flow paths in the same heat radiating plate.
The radiator for electrical equipment according to claim 1.
JP2016128846A 2016-06-29 2016-06-29 Heat sink for electrical equipment Active JP6894200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016128846A JP6894200B2 (en) 2016-06-29 2016-06-29 Heat sink for electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016128846A JP6894200B2 (en) 2016-06-29 2016-06-29 Heat sink for electrical equipment

Publications (2)

Publication Number Publication Date
JP2018006458A JP2018006458A (en) 2018-01-11
JP6894200B2 true JP6894200B2 (en) 2021-06-30

Family

ID=60949795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128846A Active JP6894200B2 (en) 2016-06-29 2016-06-29 Heat sink for electrical equipment

Country Status (1)

Country Link
JP (1) JP6894200B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185539A (en) * 1975-01-27 1976-07-27 Hitachi Ltd NETSUKOKANKI
JP4451981B2 (en) * 2000-11-21 2010-04-14 三菱重工業株式会社 Heat exchange tube and finless heat exchanger
JP2006162141A (en) * 2004-12-06 2006-06-22 Matsushita Electric Ind Co Ltd Heat exchanger
US20090277611A1 (en) * 2008-04-21 2009-11-12 Vasanth Vailoor Air-cooled radiator assembly for oil-filled electrical quipment
JP2012046114A (en) * 2010-08-27 2012-03-08 Mitsubishi Heavy Ind Ltd Heating-medium heater and vehicular air-conditioner including the same
JP6387858B2 (en) * 2015-02-26 2018-09-12 株式会社デンソー Refrigerant heat exchanger

Also Published As

Publication number Publication date
JP2018006458A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6126358B2 (en) Multi-plate oil cooler
JP6420140B2 (en) Oil cooler
CN102084205A (en) Plate-type heat exchanger, particularly for motor vehicles
WO2017047825A1 (en) Laminated type heat sink
KR101624523B1 (en) Heat dissipation device and semiconductor device
US20130058042A1 (en) Laminated heat sinks
US20160223272A1 (en) Tank structure for header-plate-less heat exchanger
US20150122465A1 (en) Heat sink device
KR101384569B1 (en) Transformer having air cooling type radiator
JP6671170B2 (en) Heat exchanger
KR20140042736A (en) Cooling device
JP6894200B2 (en) Heat sink for electrical equipment
JP3192720U (en) Plate member and heat exchanger
JP2007266463A (en) Cooler
WO2017018431A1 (en) Mounting structure for water-cooled air coolers
JP5556691B2 (en) Heat exchanger
JP2008249241A (en) Heat exchanger
US20110042048A1 (en) Heat exchanger
JP6343183B2 (en) Flat tube for header plateless heat exchanger
JP2017020694A (en) Plate type heat exchanger
JP2007017078A (en) Medium passage forming body for microchannel heat exchanger
JP7210646B2 (en) heat sinks and heat exchangers
JP2019066054A (en) Heat exchanger
JP7244438B2 (en) Laminated heat exchanger
KR101927119B1 (en) Heat exchanger assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200818

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200826

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200901

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200918

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200929

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210119

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210330

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210511

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210603

R150 Certificate of patent or registration of utility model

Ref document number: 6894200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250