JP6893686B2 - High-performance low-voltage loss static total heat exchange element manufacturing method - Google Patents

High-performance low-voltage loss static total heat exchange element manufacturing method Download PDF

Info

Publication number
JP6893686B2
JP6893686B2 JP2017092713A JP2017092713A JP6893686B2 JP 6893686 B2 JP6893686 B2 JP 6893686B2 JP 2017092713 A JP2017092713 A JP 2017092713A JP 2017092713 A JP2017092713 A JP 2017092713A JP 6893686 B2 JP6893686 B2 JP 6893686B2
Authority
JP
Japan
Prior art keywords
heat exchange
total heat
sheet
exchange element
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017092713A
Other languages
Japanese (ja)
Other versions
JP2018189315A (en
Inventor
岡野 浩志
浩志 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP2017092713A priority Critical patent/JP6893686B2/en
Publication of JP2018189315A publication Critical patent/JP2018189315A/en
Application granted granted Critical
Publication of JP6893686B2 publication Critical patent/JP6893686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、たとえば冷暖房時に換気した時の熱エネルギー回収や互いに温度の異なる気体の流れの全熱交換などに用いられる直交流型全熱交換素子に関するものである。 The present invention relates to a orthogonal flow type total heat exchange element used, for example, for recovering heat energy when ventilating during heating and cooling, and for total heat exchange of gas flows having different temperatures.

従来、直交流型全熱交換器は冷暖房時に換気した時の顕熱エネルギーの回収とともに湿分を戻すようにしている。このために2つの空気通路の間で湿分の移動ができるように透湿性のある紙で空気通路を遮断している。 Conventionally, the orthogonal flow type total heat exchanger recovers the sensible heat energy when ventilating during heating and cooling, and returns the moisture. For this reason, the air passages are blocked with breathable paper so that moisture can move between the two air passages.

以下従来の直交流型全熱交換器の一例を図に沿って説明する。図5は従来例の直交流型全熱交換素子の斜視図である。図5において、1はライナーシートであり透湿性のある難燃紙などよりなり平面状である。 Hereinafter, an example of a conventional orthogonal flow type total heat exchanger will be described with reference to the drawings. FIG. 5 is a perspective view of a conventional orthogonal flow type total heat exchange element. In FIG. 5, reference numeral 1 denotes a liner sheet, which is made of breathable flame-retardant paper or the like and has a flat shape.

2、3はコルゲートシートであり、これも透湿性のある難燃紙などであり、波付け加工されている。そしてコルゲートシート2及び3はライナーシート1を介して接合され、互いに波の方向が直交している。 A few are corrugated sheets, which are also breathable flame-retardant papers and are corrugated. The corrugated sheets 2 and 3 are joined via the liner sheet 1, and the directions of the waves are orthogonal to each other.

これによって互いに直交するとともにライナーシート1によって遮断された空気流通路が形成される。そして各空気流通路に流れる空気の温度が相違する場合は、ライナーシート1を介して顕熱交換がなされる。 As a result, an air flow passage that is orthogonal to each other and is blocked by the liner sheet 1 is formed. When the temperatures of the air flowing through the air flow passages are different, sensible heat exchange is performed via the liner sheet 1.

またライナーシート1は透湿性があるため、各空気流通路に流れる空気の絶対湿度が相違する場合は、ライナーシート1を介して湿気の交換がなされる。このようにして各空気流通路に流れる空気の全熱交換がなされる。 Further, since the liner sheet 1 has moisture permeability, when the absolute humidity of the air flowing through each air flow passage is different, the humidity is exchanged through the liner sheet 1. In this way, the total heat exchange of the air flowing through each air flow passage is performed.

このような直交流型全熱交換器に用いられる全熱交換素子は、特許文献1の図3に開示されているような、シングルフェーサ装置などの成形機によって製造される。 The total heat exchange element used in such a orthogonal flow type total heat exchanger is manufactured by a molding machine such as a single facer device as disclosed in FIG. 3 of Patent Document 1.

また、異なる全熱交換素子の製造方法として、特許文献2の図1に開示されているような、平板プレート上に合成樹脂製フィン(リブ)を並列に形成するものや、射出成形や真空成形などで樹脂製のリブ付き平板プレートを製造するものがある。 Further, as a method for manufacturing different total heat exchange elements, as disclosed in FIG. 1 of Patent Document 2, synthetic resin fins (ribs) are formed in parallel on a flat plate, injection molding or vacuum forming. There is a product that manufactures a flat plate with ribs made of resin.

特開2011−163650号公報Japanese Unexamined Patent Publication No. 2011-163650 特公平6−55442号公報Special Fair 6-55442 Gazette

特許文献1に開示されたものは、難燃紙などの紙製の場合は、コルゲートは単なるスペーサーで通気抵抗になるだけである。またコルゲートとライナーの接触部は、例えばピッチ(コルゲートの山間や谷間の長さ)4.1mmの場合で約1.6mmの幅があり、この部分は紙が二重になり、しかも接着剤で接着されているので全熱交換には寄与しない。 またコルゲートとライナー接触部近傍は三角形状の狭窄部が形成され、この部分は全熱交換性能への寄与が弱くしかも空気流の抵抗となるなどの問題があった。 What is disclosed in Patent Document 1 is that in the case of paper such as flame-retardant paper, the corrugated is merely a spacer and becomes a ventilation resistance. The contact area between the corrugated liner and the liner has a width of about 1.6 mm when the pitch (length of the corrugated peaks and valleys) is 4.1 mm, and this part is made of double-layered paper and is made of adhesive. Since it is glued, it does not contribute to total heat exchange. Further, a triangular narrowed portion is formed in the vicinity of the contact portion between the corrugated and the liner, and this portion has a problem that the contribution to the total heat exchange performance is weak and the air flow resistance.

特許文献2などに開示されたものは、コルゲートとライナーの厚みを薄くできないため、空気流の抵抗が増大するという問題があった。 The one disclosed in Patent Document 2 and the like has a problem that the resistance of the air flow increases because the thickness of the corrugated and the liner cannot be reduced.

本発明は前記課題を解消するためになされたもので、透湿性が有り、ガス遮断性の有るシートを谷−山−谷と二重折りにしてリブを形成する。リブは等間隔で複数、必要とするシートの全面に形成した成形品を用いることにより、熱交換性能が高く空気流の圧力損失が低い全熱交換素子を提供することを目的とする。 The present invention has been made to solve the above problems, and a sheet having moisture permeability and gas blocking property is double-folded in a valley-mountain-valley to form a rib. It is an object of the present invention to provide a total heat exchange element having high heat exchange performance and low air flow pressure loss by using a plurality of ribs at equal intervals and formed on the entire surface of a required sheet.

本発明は、透湿性が有り、ガス遮断性の有るシートに等間隔で複数の折山を入れてリブを形成し、一枚のシートで直交流型全熱交換素子を構成する片ダンボール(ライナー+コルゲート)として機能する全熱交換素子用成形体(段加工品)を作ることを最も主要な特徴とする。 In the present invention, a single corrugated cardboard (liner) is formed by forming ribs on a moisture-permeable and gas-blocking sheet by inserting a plurality of folds at equal intervals to form a orthogonal flow type total heat exchange element. The most important feature is to make a molded body (stage processed product) for a total heat exchange element that functions as (+ corrugated).

本発明の直交流型全熱交換素子は、透湿性が有り、ガス遮断性の有るシートに等間隔で複数の折山を入れてリブを形成し、前記複数のリブを形成したシートを、リブの先端に接着剤を塗布しながら、1段毎に直交する様に積層して全熱交換素子を製作する。これにより、従来の全熱交換素子より熱交換性能が向上し、空気流の圧力損失を低減させるという利点がある。 In the orthogonal flow type total heat exchange element of the present invention, ribs are formed by inserting a plurality of folds at equal intervals into a sheet having moisture permeability and gas blocking property, and the sheet on which the plurality of ribs are formed is formed into ribs. While applying an adhesive to the tip of the element, the total heat exchange element is manufactured by laminating each step so as to be orthogonal to each other. This has the advantage that the heat exchange performance is improved as compared with the conventional total heat exchange element, and the pressure loss of the air flow is reduced.

また、引用文献1の図1に開示されている、図5のような従来の直交流型全熱交換素子と比較して、シートの使用量が減少することによりコストダウンすることも可能となった。 Further, as compared with the conventional orthogonal flow type total heat exchange element as shown in FIG. 5 disclosed in FIG. 1 of the cited document 1, it is possible to reduce the cost by reducing the amount of the sheet used. It was.

図1は本実施例の直交流型全熱交換素子の斜視図である。FIG. 1 is a perspective view of the orthogonal flow type total heat exchange element of this embodiment. 図2は本実施例の直交流型全熱交換素子用のハニカム成形品を作成する成形機の構成を示す図である。FIG. 2 is a diagram showing a configuration of a molding machine for producing a honeycomb molded product for a orthogonal flow type total heat exchange element of this embodiment. 図3は本実施例の成形機で成形された成形品の斜視図である。FIG. 3 is a perspective view of a molded product molded by the molding machine of this embodiment. 図4は本実施例の直交に積層する前の成形品の斜視図である。FIG. 4 is a perspective view of the molded product before being laminated at right angles in this embodiment. 図5は従来例の直交流型全熱交換素子の斜視図である。FIG. 5 is a perspective view of a conventional orthogonal flow type total heat exchange element.

本発明は、透湿性が有り、ガス遮断性の有るシートに等間隔で複数の折山を入れてリブを形成し、一枚のシートで直交流型全熱交換素子を構成する片ダンボール(ライナー+コルゲート)形状の全熱交換素子用成形体(段加工品)を作ることで、従来の全熱交換素子より熱交換性能が向上し、空気流の圧力損失を低減させるという目的を実現した。 In the present invention, a single cardboard (liner) is formed by forming ribs on a moisture-permeable and gas-blocking sheet by inserting a plurality of folds at equal intervals to form a orthogonal flow type total heat exchange element with one sheet. By making a molded body (staged product) for a total heat exchange element (+ corrugated) shape, the heat exchange performance is improved compared to the conventional total heat exchange element, and the purpose of reducing the pressure loss of the air flow is realized.

以下、本発明の実施例の直交流型全熱交換素子斜視図を図1に示す。4は本実施例の直交流型全熱交換素子である。直交流型全熱交換素子4は、難燃紙などの透湿性が有り、ガス遮断性の有るシートによる複数の折山で形成されたリブ5を有するハニカム成形品6を、リブ5が角度90度で交差する向きで積層し、接着剤で接合して製造される。リブ5によって形成される第一の空気流路7と第二の空気流路8にそれぞれ外気OAと還気RAの異なる状態の空気流を流すことで、ハニカム成形品6の仕切り部9を媒体として外気と還気の間で顕熱及び潜熱の交換が行われる。 Hereinafter, a perspective view of a orthogonal flow type total heat exchange element according to an embodiment of the present invention is shown in FIG. Reference numeral 4 denotes a orthogonal flow type total heat exchange element of this embodiment. The orthogonal flow type total heat exchange element 4 is a honeycomb molded product 6 having ribs 5 formed by a plurality of folds made of a sheet having moisture permeability such as flame-retardant paper and gas blocking property, and the ribs 5 have an angle of 90. Manufactured by laminating in a direction that intersects at right angles and joining with an adhesive. By flowing air flows in different states of the outside air OA and the return air RA through the first air flow path 7 and the second air flow path 8 formed by the ribs 5, the partition portion 9 of the honeycomb molded product 6 is used as a medium. As a result, sensible heat and latent heat are exchanged between the outside air and the return air.

ハニカム成形品6を段加工する成形機の構成を図2に示す。成形機は、透湿性が有り、ガス遮断性の有るシート10を回転ローラAと回転ローラB間で駆動するリブ5の折山を作るキャタピラー状(無限軌道状)の成形ベルト11へ送ると共に、回転しながら回転ローラA部でできた成形ベルト11の凹部12に成形ローラ13の凸部14でシート10を押し込む。このとき、凸部14には、接着剤容器15に貯蔵された接着剤が二本の接着ローラ16によって塗布される。凹部12に折山状に織り込まれたシート10は、接着剤で接着されリブ5が形成され、押えローラ17を通ってハニカム成形品6となって成形機から出てくる。 FIG. 2 shows a configuration of a molding machine for stepping the honeycomb molded product 6. The molding machine sends the moisture-permeable and gas-blocking sheet 10 to the caterpillar-shaped (track-shaped) forming belt 11 that forms a fold of the rib 5 that drives between the rotating roller A and the rotating roller B, and at the same time. While rotating, the sheet 10 is pushed into the concave portion 12 of the forming belt 11 formed by the rotating roller A portion by the convex portion 14 of the forming roller 13. At this time, the adhesive stored in the adhesive container 15 is applied to the convex portion 14 by the two adhesive rollers 16. The sheet 10 woven into the concave portion 12 in a folded mountain shape is adhered with an adhesive to form a rib 5, passes through a pressing roller 17, and becomes a honeycomb molded product 6 and comes out of the molding machine.

図3は、成形機で段加工されたハニカム成形品6を示す。図3のようにハニカム成形品6は、直交流型全熱交換素子4を製作するのに適切な寸法で切断される。また、リブ5が形成されており、この部分はシート10が二重になり、しかも接着剤で接着されているので全熱交換には寄与しないが、仕切り部9は全熱交換に寄与する。さらにリブ5は、シートが二重になりしかも接着されているので補強効果があり、熱交換性能向上やコスト低減の目的で出来るだけ薄いシートを用いても、熱交換素子として必要な強度を得ることができるという効果も有る。 FIG. 3 shows a honeycomb molded product 6 which has been step-processed by a molding machine. As shown in FIG. 3, the honeycomb molded product 6 is cut to a size suitable for manufacturing the orthogonal flow type total heat exchange element 4. Further, the rib 5 is formed, and since the sheet 10 is doubled and adhered with an adhesive in this portion, it does not contribute to total heat exchange, but the partition portion 9 contributes to total heat exchange. Further, the rib 5 has a reinforcing effect because the sheet is doubled and adhered, and even if a sheet as thin as possible is used for the purpose of improving heat exchange performance and reducing cost, the strength required as a heat exchange element can be obtained. It also has the effect of being able to do it.

切断されたハニカム成形品6は、図4のようにリブ5の先端に接着剤を塗布しながら、一段毎に90度の角度で回転させて直交するように積層して直交流型全熱交換素子4を製作する。なお、本実施例では、シート10の折山で形成したリブ5の間隔を等間隔として、リブ5を一段毎に90度の角度で回転させて積層したが、これに限定されるものではなく、リブ5の間隔は等間隔でなくてもよいし、一段毎に回転させる角度も90度でなくてもよい。 As shown in FIG. 4, the cut honeycomb molded product 6 is laminated so as to be orthogonal by rotating each step at an angle of 90 degrees while applying an adhesive to the tip of the rib 5, and orthogonal flow type total heat exchange. The element 4 is manufactured. In this embodiment, the ribs 5 formed by the ridges of the sheet 10 are set at equal intervals, and the ribs 5 are rotated and laminated at an angle of 90 degrees for each step, but the present invention is not limited to this. The ribs 5 do not have to be evenly spaced, and the angle of rotation for each step does not have to be 90 degrees.

以上のように構成した本実施例の図1の直交流型全熱交換素子4と図5のコルゲートタイプ直交流型全熱交換素子の従来例と比較を行なう。図5の従来例では、透湿シートのライナーシート1と波型のコルゲートシート2、3を組合わせて片段が形成される。金属製の直交流型熱交換素子では、コルゲートは伝熱フィンとして機能するが、紙製の場合は熱伝導性が良くないので伝熱フィンとして機能せず、コルゲートは単なるスペーサーで、通気抵抗になるだけである。また、コルゲートシート2、3とライナーシート1の接触部は、例えばピッチ4.1mmの場合で約1.6mmの幅があり、この部分は、シートが二重になり、しかも接着剤で接着されているので全熱交換には寄与しない。また、コルゲートシート1とライナーシート2、3接触部近傍は三角形状の狭窄部が形成され、この部分は全熱交換性能への寄与が弱く、しかも空気流の抵抗となっている。 A comparison is made between the orthogonal flow type total heat exchange element 4 of FIG. 1 and the conventional example of the corrugated type orthogonal flow type total heat exchange element of FIG. 5 configured as described above. In the conventional example of FIG. 5, one step is formed by combining the liner sheet 1 of the moisture permeable sheet and the corrugated corrugated sheets 2 and 3. In a metal orthogonal flow type heat exchange element, the corrugate functions as a heat transfer fin, but in the case of paper, it does not function as a heat transfer fin because the heat conductivity is not good, and the corrugate is just a spacer and acts as a ventilation resistance. It just becomes. Further, the contact portion between the corrugated sheets 2 and 3 and the liner sheet 1 has a width of about 1.6 mm when the pitch is 4.1 mm, for example, and this portion has a double sheet and is adhered with an adhesive. Therefore, it does not contribute to total heat exchange. Further, a triangular constricted portion is formed in the vicinity of the contact portion between the corrugated sheet 1 and the liner sheets 2 and 3, and this portion has a weak contribution to the total heat exchange performance and is an air flow resistance.

これに対して図1の本実施例では、流路を寸断する壁の面積が半分以下になり、しかも狭窄部が出来ないので圧力損失が大幅に低下する。本実施例では、ライナーとしての仕切り部9を支持するリブ5の接着面積は最小面積であり、湿度透過による全熱交換性能は最大限発揮される。また、スペーサー部(コルゲート)の最小化は原料シートの最小化でもあり、コストダウンに寄与する。 On the other hand, in the present embodiment of FIG. 1, the area of the wall that cuts the flow path is reduced to less than half, and the constricted portion is not formed, so that the pressure loss is significantly reduced. In this embodiment, the bonding area of the rib 5 that supports the partition portion 9 as a liner is the minimum area, and the total heat exchange performance due to humidity transmission is maximized. In addition, the minimization of the spacer portion (corrugate) also minimizes the raw material sheet, which contributes to cost reduction.

ライナー間の高さを同じくした場合の比較では圧力損失ΔPは約80%低減、シートの必要長さは約20%少なくできる。試算では、コルゲートとライナーの接触接着部を見込まなければ同等性能になるはずだが、接触接着部が半分以下になるので性能向上が見込める。シートの使用量を合わせた構成で比較すると、積み上げ高さが従来例で2.1mmの場合、本実施例では1.4mmで熱交換面積は1.5倍になり、全熱交換性能(全熱交換効率)は従来例で45%に対して、本実施例では50〜58%に向上するが、圧力損失ΔPは逆に約6割減少するという効果を有する。従来例と本実施例(ライナー高さ同じ:高さ2.1mm、シート長同じ:高さ1.4mm)の比較表を表1に示す。 In comparison when the heights between the liners are the same, the pressure loss ΔP can be reduced by about 80%, and the required length of the sheet can be reduced by about 20%. According to a trial calculation, the performance should be the same if the contact adhesion between the corrugated and the liner is not expected, but the performance can be expected to improve because the contact adhesion is less than half. Comparing with the configuration that combines the amount of sheets used, when the stacking height is 2.1 mm in the conventional example, the heat exchange area is 1.5 times as large as 1.4 mm in this example, and the total heat exchange performance (total). The heat exchange efficiency) is improved from 45% in the conventional example to 50 to 58% in this embodiment, but the pressure loss ΔP is conversely reduced by about 60%. Table 1 shows a comparison table between the conventional example and the present embodiment (same liner height: height 2.1 mm, same sheet length: height 1.4 mm).

Figure 0006893686
以上のように、本実施例の成形機によるハニカム成形品で構成された直交流型全熱交換素子を使うことによって、従来の直交流型全熱交換素子と比較して、全熱交換性能の向上、圧力損失の低減、原料シート使用量減少によるコストダウンが可能となる。なお、本実施例では、難燃紙など透湿性が有り、ガス遮断性の有るシートを用いたが、これに限定されるものではなく、透湿性が無いシートを用いることにより直交流型顕熱交換素子にも使用できる。
Figure 0006893686
As described above, by using the orthogonal flow type total heat exchange element composed of the honeycomb molded product by the molding machine of this embodiment, the total heat exchange performance is improved as compared with the conventional orthogonal flow type total heat exchange element. It is possible to improve, reduce pressure loss, and reduce costs by reducing the amount of raw material sheet used. In this embodiment, a sheet having moisture permeability and gas blocking property such as flame-retardant paper was used, but the present invention is not limited to this, and a sensible heat of orthogonal flow type is used by using a sheet having no moisture permeability. It can also be used for interchangeable elements.

本発明は、上記のように折山成形が出来る程度の厚みで、透湿性が有り、ガス遮断性の有るシートを用いることにより、全熱交換性能が高く、低圧力損失の直交流型全熱交換素子を安価に提供することができる。また、アルミ箔など透湿性が無く、ガス遮断性の有る金属薄膜などを用いることにより、熱交換性能が高く、低圧力損失の直交流型顕熱交換素子を安価に提供することができる。 In the present invention, by using a sheet having a thickness sufficient for origami forming as described above, having moisture permeability, and having gas blocking property, the total heat exchange performance is high and the total heat of the orthogonal flow type having low pressure loss is low. The exchange element can be provided at low cost. Further, by using a metal thin film having no moisture permeability such as aluminum foil and having a gas blocking property, it is possible to provide a sensible heat exchange element having high heat exchange performance and low pressure loss at low cost.

1 ライナーシート
2、3 コルゲートシート
4 直交流型全熱交換素子
5 リブ
6 ハニカム成形品
7 第一の空気流路
8 第二の空気流路
9 仕切り部
10 シート
11 成形ベルト
12 凹部
13 成形ローラ
14 凸部
15 接着剤容器
16 接着ローラ
17 押えローラ
A、B 回転ローラ
1 Liner sheet 2, 3 Corrugated sheet 4 Orthogonal flow type total heat exchange element 5 Rib 6 Honeycomb molded product 7 First air flow path 8 Second air flow path 9 Partition 10 Sheet 11 Molding belt 12 Recess 13 Molding roller 14 Convex part 15 Adhesive container 16 Adhesive roller 17 Presser roller A, B Rotating roller

Claims (1)

一枚のガス遮断性の有るシートに、所定間隔で同一高さの複数の折山を設けてスペーサーとしてのリブを形成した成形体を複数段積層したものであって、奇数段の前記成形体と偶数段の前記成形体とが相互に所定角度を持っているよう積層した直交流型熱交換素子の構成部材であるハニカム状成形体の製造方法であって、前記ハニカム状成形体の製造方法が、2本の回転ローラ間で駆動する無限軌道状の成形ベルトと前記成形ベルトの前記回転ローラとの接触部分に生じた凹部に、前記シートに接着剤を付着させて成形ローラの凸部で押し込むことによって、前記シートの全面にリブを形成することを特徴とするハニカム状成形体の製造方法。 A single sheet having a gas-blocking property is formed by laminating a plurality of molded bodies in which ribs as spacers are formed by providing a plurality of folded ridges at the same height at predetermined intervals in a plurality of stages. A method for manufacturing a honeycomb-shaped molded product, which is a constituent member of a orthogonal flow type heat exchange element in which the molded product and an even-numbered molded product are laminated so as to have a predetermined angle with each other. However, an adhesive is attached to the sheet in the concave portion formed in the contact portion between the infinite orbital forming belt driven between the two rotating rollers and the rotating roller of the forming belt, and the convex portion of the forming roller is formed. A method for producing a honeycomb-shaped molded product, which comprises forming ribs on the entire surface of the sheet by pushing it in.
JP2017092713A 2017-05-09 2017-05-09 High-performance low-voltage loss static total heat exchange element manufacturing method Active JP6893686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017092713A JP6893686B2 (en) 2017-05-09 2017-05-09 High-performance low-voltage loss static total heat exchange element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017092713A JP6893686B2 (en) 2017-05-09 2017-05-09 High-performance low-voltage loss static total heat exchange element manufacturing method

Publications (2)

Publication Number Publication Date
JP2018189315A JP2018189315A (en) 2018-11-29
JP6893686B2 true JP6893686B2 (en) 2021-06-23

Family

ID=64479768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017092713A Active JP6893686B2 (en) 2017-05-09 2017-05-09 High-performance low-voltage loss static total heat exchange element manufacturing method

Country Status (1)

Country Link
JP (1) JP6893686B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU202548U1 (en) * 2020-05-26 2021-02-24 Алексей Михайлович Маханов PLATE REGENERATIVE HEAT EXCHANGER

Also Published As

Publication number Publication date
JP2018189315A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP4877016B2 (en) Heat exchange element
US20170370609A1 (en) Enthalpy Heat Exchanger
ES2951782T3 (en) Enthalpy exchanger element, enthalpy exchanger comprising said elements and method for their production
EP2068107A1 (en) Heat exchanging element
JP3612826B2 (en) Heat exchange element
PL208687B1 (en) Heat exchanger and method of manufacture thereof
WO2010125644A1 (en) Total heat exchange element
JP6893686B2 (en) High-performance low-voltage loss static total heat exchange element manufacturing method
JP3023546B2 (en) Heat exchanger elements
TWI421460B (en) Heat exchange element
JP4928295B2 (en) Sensible heat exchange element
JP3879482B2 (en) Stacked heat exchanger
KR100911776B1 (en) Heat exchanger, and making method thereof
JP3731114B2 (en) Manufacturing method of heat exchanger
JP4466156B2 (en) Heat exchanger
JP6537760B1 (en) Heat exchange element and heat exchange ventilator
JP3546574B2 (en) Heat exchanger
KR101443053B1 (en) Sensible heat exchange element
JP2012141121A (en) Total heat exchange element
CN110573823A (en) Flow path plate, heat exchange element, heat exchange ventilator, and method for manufacturing flow path plate
WO2022038762A1 (en) Heat exchange element and heat exchange ventilation device
JP2019168132A (en) Method for manufacturing heat exchange element and channel plate
JP6430089B1 (en) HEAT EXCHANGE ELEMENT, HEAT EXCHANGE VENTILATION DEVICE, AND HEAT EXCHANGE ELEMENT MANUFACTURING METHOD
JP7428421B1 (en) heat exchange element
KR20090001373A (en) Heat exchanger, and making method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210526

R150 Certificate of patent or registration of utility model

Ref document number: 6893686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250